## Publications

Infinite-energy solutions to energy-critical nonlinear Schrödinger equations in modulation spaces. J. Math. Anal. Appl., 519(1):Paper No. 126748, March 2023. URL https://doi.org/10.1016/j.jmaa.2022.126748. . [preprint]

Wellposedness of NLS in modulation spaces. J. Fourier Anal. Appl., 29:9, February 2023. URL https://doi.org/10.1007/s00041-022-09985-9. . [preprint]

A priori estimates for the derivative nonlinear Schrödinger equation. Funkc. Ekvacioj, 65(3):329–346, December 2022. URL https://doi.org/10.1619/fesi.65.329. . [preprint]

Global wellposedness of NLS in $H^1(\Bbb R)+H^s(\Bbb T)$. J. Math. Anal. Appl., 514(2):Paper No. 126359, 14, October 2022. URL https://doi.org/10.1016/j.jmaa.2022.126359. . [preprint]

On smoothing estimates in modulation spaces and the NLS with slowly decaying initial data. J. Funct. Anal., 282(15):109352, March 2022. URL https://doi.org/10.1016/j.jfa.2021.109352. . [preprint]

Unconditional uniqueness of higher order nonlinear Schrödinger equations. Czechoslovak Math. J., 71(3):709–742, October 2021. URL https://doi.org/10.21136/CMJ.2021.0078-20. . [preprint]

On the global wellposedness of the Klein–Gordon equation for initial data in modulation spaces. Proc. Amer. Math. Soc., 149(9):3849–3861, September 2021. URL https://doi.org/10.1090/proc/15497. . [preprint]

On the global well-posedness of the quadratic NLS on $L^2(\mathbb{R})+H^1(\mathbb{T})$. Nonlinear Differ. Equ. Appl., 28(2):11–28, January 2021. URL https://doi.org/10.1007/s00030-020-00670-8. . [preprint]

The global Cauchy problem for the NLS with higher order anisotropic dispersion. Glasgow Math. J., 63(1):45–53, January 2021. URL https://doi.org/10.1017/S0017089519000491. . [preprint]

Local well-posedness for the nonlinear Schrödinger equation in the intersection of modulation spaces $M^s_{p,q}(\mathbb{R}^d)\cap M_{\infty,1}(\mathbb{R}^d)$. In W. Dörfler, M. Hochbruck, D. Hundertmark, W. Reichel, A. Rieder, R. Schnaubelt, and B. Schörkhuber, editors, Mathematics of Wave Phenomena, Trends in Mathematics, pages 89–107, October 2020. Birkhäuser Basel. .

Knocking out teeth in one-dimensional periodic nonlinear Schrödinger equation. SIAM J. Math. Anal., 51(5):3714–3749, September 2019. URL https://doi.org/10.1137/19M1249679. . [preprint]

Nonlinear Schrödinger equation, differentiation by parts and modulation spaces. J. Evol. Equ., 19(3):803–843, September 2019. URL https://doi.org/10.1007/s00028-019-00501-z. . [preprint]

NLS in the modulation space $M_{2,q}(\mathbb{R})$. J. Fourier Anal. Appl., 25(4):1447–1486, August 2019. URL https://doi.org/10.1007/s00041-018-09655-9. . [preprint]

Modulation type spaces for generators of polynomially bounded groups and Schrödinger equations. Semigroup Forum, 98(3):645–668, June 2019. URL https://doi.org/10.1007/s00233-019-10016-1. . [preprint]

On the existence of global solutions of the one-dimensional cubic NLS for initial data in the modulation space $M_{p,q}(\Bbb R)$. J. Differential Equations, 263(8):4429–4441, October 2017. URL https://doi.org/10.1016/j.jde.2017.04.020. . [preprint]

## Preprints

Well-posedness for the KdV hierarchy. CRC 1173 Preprint 2023/23, Karlsruhe Institute of Technology, November 2023. .

A Strichartz estimate for quasiperiodic functions. CRC 1173 Preprint 2023/15, Karlsruhe Institute of Technology, June 2023. .

A priori estimates for a quadratic dNLS. CRC 1173 Preprint 2023/14, Karlsruhe Institute of Technology, May 2023. .

Low regularity well-posedness for KP-I equations: the dispersion-generalized case. CRC 1173 Preprint 2022/44, Karlsruhe Institute of Technology, September 2022. .

## Theses

*Nonlinear Schrödinger equations with rough data*. PhD thesis, Karlsruhe Institute of Technology (KIT), November 2022. .*Modulation spaces and nonlinear Schrödinger equations*. PhD thesis, Karlsruhe Institute of Technology (KIT), September 2018. .

## Other references

Global well-posedness for the cubic nonlinear Schrödinger equation with initial data lying in $L^p$-based Sobolev spaces. J. Math. Phys., 62(7):Paper No. 071507, 13, 2021. URL https://doi.org/10.1063/5.0042321. .

Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces. J. Differential Equations, 269(1):612–640, 2020. URL https://doi.org/10.1016/j.jde.2019.12.017. .

Low regularity conservation laws for integrable PDE. Geom. Funct. Anal., 28(4):1062–1090, 2018. URL https://doi.org/10.1007/s00039-018-0444-0. .

On the 1D cubic nonlinear Schrödinger equation in an almost critical space. J. Fourier Anal. Appl., 23(1):91–124, 2017. URL https://doi.org/10.1007/s00041-016-9464-z. .

The proof of the $l^2$ decoupling conjecture. Ann. of Math. (2), 182(1):351–389, 2015. URL https://doi.org/10.4007/annals.2015.182.1.9. .

Poincaré–Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS. Commun. Math. Phys., 322(1):19–48, August 2013. URL https://doi.org/10.1007/s00220-013-1755-5. .

Modulation spaces and nonlinear evolution equations. In Evolution equations of hyperbolic and Schrödinger type, volume 301 of

*Progr. Math.*, pages 267–283. Birkhäuser/Springer Basel AG, Basel, 2012. .On the global well-posedness for the linear Schrödinger equations with large initial data of infinite $L^2$ norm. Nonlinear Anal., 74(4):1304–1319, 2011. URL https://doi.org/10.1016/j.na.2010.10.003. .