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INFINITE-ENERGY SOLUTIONS TO ENERGY-CRITICAL

NONLINEAR SCHRÖDINGER EQUATIONS IN MODULATION

SPACES

ROBERT SCHIPPA

Abstract. We prove new well-posedness results for energy-critical nonlinear
Schrödinger equations in modulation spaces. This covers initial data with

infinite mass and energy. The proof is carried out via bilinear refinements and

adapted function spaces.

1. Introduction

In this paper we continue the study of modulation spaces as initial data for
nonlinear Schrödinger equations started in [33]. Modulation spaces in the present
context are used to model initial data, which are decaying slower than functions
in L2-based Sobolev spaces. These spaces are natural because of their invariance
under the linear Schrödinger evolution in sharp contrast with the Lp-based Sobolev
spaces for p 6= 2. Modulation spaces were introduced by Feichtinger [16]; see also
subsequent joint works with Gröchenig [17, 18, 19]. The body of literature on
modulation spaces is already huge, so we refer to [33, 12, 36, 2] and references
therein for an overview with an emphasis on the use of modulation spaces in the
context of dispersive equations.

In the work [33] Lp-smoothing estimates in modulation spaces were considered:

(1) ‖eit∆u0‖Lp([0,1],Lp(Rd)) . ‖u0‖Ms
p,2(Rd).

These turned out to be useful to prove well-posedness results for the cubic NLS

(2)

{
i∂tu+ ∆u = ±|u|2u, (t, x) ∈ R× R,
u(0) = u0 ∈Ms

p,2(R).

The solution was placed in Strichartz spaces, in which the linear part was estimated
by (1) and the nonlinear part was iterated with Strichartz estimates.

By frequency localization and rescaling arguments, the estimates (1) followed
from `2-decoupling for the paraboloid due to Bourgain–Demeter [8]. Let E denote
the Fourier extension operator for the (truncated) paraboloid:

Ef(t, x) =

∫
{ξ∈Rd:|ξ|<1}

ei(x.ξ+t|ξ|
2)f(ξ)dξ.

Bourgain–Demeter proved the following estimates, which are sharp up to the ε-loss:

(3) ‖Ef‖Lp(Bd+1(0,R)) .ε R
sdec+ε

(∑
σ

‖Efσ‖2Lp(wBd+1(0,R))

)1/2
with sdec = sdec(p, d) given by

sdec =

{
0, 2 ≤ p ≤ 2(d+2)

d ,
d
4 −

d+2
2p ,

2(d+2)
d ≤ p ≤ ∞,

1
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and fσ denotes f · 1B(xσ,R−1/2) such that the family of R−1/2-balls are finitely

overlapping. In [33] was pointed out how the right-hand side is related to the
modulation space norm of the initial value by rescaling and a kernel estimate. Thus,
(3) indeed gives (1) with s > 2sdec(p, d). It was also shown in [33] that s ≥
2sdec(p, d) is necessary for (1) to hold true.

Theorem 1.1 (Lp-smoothing estimates in modulation spaces, [33, Theorem 1.1]).
Let d ≥ 1 and p ≥ 2. Then, (1) holds true for s > 2sdec(p, d).

In the present work, we show bilinear refinements via Galilean invariance:

Proposition 1.2. Let d ≥ 3, ε > 0, and N1, N2 ∈ 2N0 with N2 . N1. Then, we
find the following estimate to hold:
(4)

‖PN1
eit∆f1PN2

eit∆f2‖L2
t,x([0,1]×Rd) .ε N

d−2
2 +ε

2 ‖PN1
f1‖M4,2(Rd)‖PN2

f2‖M4,2(Rd).

Bilinear refinements go back to Bourgain [4, 5].

Next, we apply bilinear Strichartz estimates in modulation spaces to extend the
local well-posedness theory of nonlinear Schrödinger equations. We consider the
energy-critical nonlinear Schrödinger equation for d ∈ {3, 4}:

(5)

{
i∂tu+ ∆u = ±|u|

4
d−2u (t, x) ∈ R× Rd,

u(0) = u0 ∈M1+ε
4,2 (Rd).

The equation (5) is energy critical because the scaling

u(t, x)→ λ
d−2

2 u(λ2t, λx)

leaves the energy invariant:

E[u] =

∫
Rd

|∇u(t, x)|2

2
± d− 2

d+ 2
|u|

d+2
d−2 dx.

The corresponding scaling critical Sobolev space is Ḣ1(Rd). For local well-posedness

in Ḣ1(Rd) we refer to the survey by Bourgain [7]. Global well-posedness and scat-
tering for the defocusing case is much harder and was proved for d = 3 by Colliander
et al. [14] and for d = 4 by Ryckman–Vişan [32]; see also references therein and
Bourgain’s seminal contribution [6] in the radially symmetric case. Sharp con-
ditions for global well-posedness and scattering of the focusing equation in the
radial case were proved by Kenig–Merle [27]. We refer to the solutions with ini-
tial data in M1+ε

4,2 as infinite energy solutions because we can find a sequence of

Schwartz functions (fn) ⊆ S(Rd) with ‖fn‖M1+ε
4,2
≤ C, but ‖fn‖H1 ↑ ∞. For this

purpose, consider a mollified indicator function fn = χ1 ∗ 1B(0,n) supported in
B(0, n+ 1), which has Fourier support rapidly decaying off B(0, 2). We normalize
1 = ‖fn‖L4(Rd) ∼ ‖fn‖M1+ε

4,2 (Rd). But then,

‖fn‖H1(Rd) ∼ ‖fn‖L2(Rd) ↑ ∞.

The reason is that we allow for L4-admissible decay at infinity in M1+ε
4,2 , which is

slower than for L2-based Sobolev spaces.
Previous results on infinite energy solutions to nonlinear Schrödinger equations

are due to Braz e Silva et al. [9] with initial data in weak Lp-spaces. The results in [9]
do not cover the energy critical equations though; see also [10]. Moreover, weak Lp-
spaces are not invariant under the linear propagation in contrast with modulation
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spaces. The first results on infinite energy solutions are due to Cazenave–Weissler
[11], who consider initial data with finite linear solution in a certain Lp-norm. The
results in [11] do not cover the energy critical case. L2-based Besov spaces were
considered by Planchon [31]. We also mention the recent contributions of Correia
et al. [15, 1].

Moreover, we remark how the arguments of [33] extend to L2-critical equations
for d ∈ {1, 2}, i.e., the quintic NLS on the real line or the cubic NLS in R2. Note
that

Hs(Rd) ∼Ms
2,2(Rd) ↪→Ms

p,2(Rd)
for p ≥ 2 and s ≥ 0. In this sense, the following well-posedness results are almost
critical:

Theorem 1.3. Let s > 0 and T > 0.

(1) Then, the equation

(6)

{
i∂tu+ ∆u = ±|u|4u, (t, x) ∈ R× R,
u(0) = u0 ∈Ms

6,2(R) + L2(R)

is locally well-posed in XT = C([0, T ], L2(R) +Ms
6,2(R))∩L6

t ([0, T ], L6(R))
provided that ‖u0‖Ms

6,2(R)+L2(R) ≤ ε(T ).

(2) The equation

(7)

{
i∂tu+ ∆u = ±|u|2u, (t, x) ∈ R× R2,
u(0) = u0 ∈Ms

4,2(R2) + L2(R2)

is locally well-posed in XT = C([0, T ], L2(R2)+Ms
4,2(R2))∩L4

t ([0, T ], L4(R2))
provided that ‖u0‖Ms

4,2(R2)+L2(R2) ≤ ε(T ).

Note how above we choose the the size of the initial data in terms of the existence
time. It would be more practical to consider T = T (u0), which is possible, but not
detailed for simplicity of presentation (see the proof of Theorem 1.4 below).

For d ≥ 3 the derivative loss in the high frequencies of the L4-Strichartz estimate
has to be ameliorated via bilinear estimates. We show the following:

Theorem 1.4. Let d ∈ {3, 4}, and ε > 0. Then (5) is analytically locally well-posed
in XT ↪→ C([0, T ],M1+ε

4,2 (Rd)). For any u0 ∈ M1+ε
4,2 (Rd) there is T = T (u0) such

that there is a unique solution u ∈ XT to (5), and the data-to-solution mapping
analytically depends on the initial value.

The first local well-posedness results on energy critical nonlinear Schrödinger
equations in the periodic setting are due to Herr–Tataru–Tzvetkov [23, 24]. In
these works, improved bilinear or trilinear estimates were proved via orthogonality
in time. This proof was simplified by Killip–Vişan [28], which is transferred to
modulation spaces presently. Killip–Vişan pointed out how the bilinear refinements
can be used to show the well-posedness result for the energy critical equation. A few
remarks on global results in the periodic setting are in order: Herr–Tataru–Tzvetkov
[23] proved global well-posedness for small initial data by energy conservation. Since

the Sobolev embedding H1(Td) ↪→ L
d+2
d−2 (Td) is sharp, the straight-forward use of

energy conservation requires smallness of the H1(Td) norm. Ionescu–Pausader [25]
subsequently proved global well-posedness for large initial data in the defocusing
case for d = 3 (see also [35, 34]). But the global results fundamentally build on
energy conservation, which is not at disposal for initial data in Ms

4,2(Rd), since these
possibly have infinite mass and energy. Thus, global results, even in the defocusing
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case remain open for initial data in Ms
4,2(Rd). On the other hand, the classical blow-

up arguments (cf. [27]) in the focusing case show that global solutions need not
exist, if the energy is negative. For ill-posedness results for the nonlinear Schrödinger
equation with initial data in modulation spaces we refer to Bhimani–Carles [3].

For further reading, we also refer to the very recent contribution [13], in which
unconditional uniqueness of solutions in C([0, T ], H1(Xd)) for energy critical Schrö-
dinger equations is proved for d ∈ {3, 4} and X ∈ {T,R}. Chen and Holmer [13]
use the Gross–Pitaevskii hierarchy, which was previously considered by Herr and
Sohinger [22] to cover the whole subcritical range for d = 4; see also references
therein.

Outline of the paper. In Section 2 we recall basic facts about modulation spaces,
and we introduce the function spaces used in the proof of Theorem 1.4. In Section
3 we show Proposition 3.1, by which we prove Theorem 1.4 in Section 4. Theorem
1.3 is proved in Section 4 with linear Strichartz estimates for comparison.

2. Preliminaries

2.1. Modulation spaces. The modulation spaces Ms
p,q(Rd) for d ≥ 1, s ∈ R,

p, q ∈ [1,∞] are defined through an isometric decomposition in Fourier space. Let
(σk)k∈Zd with σk = σ(· − k) and σ ∈ C∞c (B(0, 1)) denote a smooth partition of
unity. We define

Ms
p,q(Rd) = {f ∈ S ′(Rd) : ‖f‖Ms

p,q(Rd) =
∥∥(〈k〉s‖σk(D)f‖Lp(Rd)

)
k∈Zd

∥∥
`q
<∞}.

We write Mp,q(Rd) := M0
p,q(Rd) for brevity. We have the following embeddings in

the standard Besov scale (cf. [33, Section 1]): By the embedding `q1 ↪→ `q2 for
q1 ≤ q2 and Bernstein’s inequality, we have

Ms
p,q1(Rd) ↪→Ms

p,q2(Rd) (q1 ≤ q2),

Ms
p1,q(R

d) ↪→Ms
p2,q(R

d) (p1 ≤ p2).

By Plancherel’s theorem, we have

(8) M2,2(Rd) = L2(Rd).

Moreover, we have from kernel estimates with p = 1 and p = ∞ and interpolation
with (8) the estimates

Mp,p′ ↪→ Lp ↪→Mp,p (2 ≤ p ≤ ∞),

Mp,p ↪→ Lp ↪→Mp,p′ (1 ≤ p ≤ 2).

Lastly, we note that

Ms1
p,q1(Rd) ↪→Ms2

p,q2(Rd)

provided that s1 − s2 > d
(

1
q2
− 1

q1

)
> 0 as a consequence of Hölder’s inequality.

2.2. Adapted function spaces. We use Up-/V p-spaces taking values in modula-
tion spaces as iteration spaces. Up-/V p-spaces based on L2-based Sobolev spaces
go back to unpublished notes of Tataru in the context of wave maps (cf. [29]). In
case the base space is a general Banach space, we refer to [30] (see also the previous
work by Hadac–Herr–Koch [20, 21]). We shall be brief in the following.
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Let Z be the set of finite partitions −∞ = t0 < t1 < . . . < tK = ∞ and let Z0

be the set of finite partitions −∞ < t0 < t1 < . . . < tK ≤ ∞. We consider Up-/V p-
spaces taking values in modulation spaces Mp,q(Rd). Denote the value space in the
following by E.

Definition 2.1. Let 1 < p < ∞ and {tk}Kk=0 ∈ Z and {φ}K−1
k=0 ⊆ E with∑K−1

k=0 ‖φk‖
p
E = 1 and φ0 = 0. The function a : R→ E defined by

a =
∑K
k=1 1[tk−1,tk)φk−1 is said to be a Up-atom. We define the atomic space

Up(E) = {u =

∞∑
j=1

λjaj : aj : Up − atom, (λj) ∈ `1}

with norm

‖u‖Up = inf{
∞∑
j=1

|λj | : u =

∞∑
j=1

λjaj , (λj) ∈ `1, aj : Up − atom}.

Subspaces are considered as in [20, Proposition 2.2]. The spaces of p-variation
were already considered by Wiener [37] (see [30, Definition 4.8]).

Definition 2.2. Let 1 ≤ p <∞. V p(E) is defined as normed space of all functions
v : R → E such that limt→±∞ v(t) exists, v(∞) := 0 (this is purely conventional
and does not necessarily coincide with the limit), and v(−∞) = limt→−∞ v(t). The
norm is given by

‖v‖V p = sup
{tk}Kk=0∈Z

( K∑
k=1

‖v(tk)− v(tk−1)‖pE
) 1
p

is finite. Let V p− denote the closed subspace of V p with limt→−∞ v(t) = 0.

We have the embeddings (cf. [30, Lemma 4.13]):

Up ↪→ V prc,− ↪→ Uq

for 1 < p < q < ∞. Recall the duality (Mp,q(Rd))′ ' Mp′,q′(Rd) for 1 < p, q < ∞,
which is established via the dual pairing

〈·, ·〉 : Mp,q(Rd)×Mp′,q′(Rd)→ C

(f, g) 7→
∫
Rd
fgdx.

We have the following duality:

Theorem 2.3 ([30, Theorem 4.14]). Let 1 < p <∞. We have

(Up(E))∗ ' V p
′
(E′)

in the sense that

T : V p
′
(E′)→ (Up(E))∗, T (v) = B(·, v)

is an isometric isomorphism.

We have an explicit description of B for sufficiently regular functions:

Proposition 2.4. Let 1 < p < ∞, u ∈ V 1
− be absolutely continuous on compact

intervals and v ∈ V p′(E′). Then,

B(u, v) = −
∫ ∞
−∞
〈u′(t), v(t)〉dt.
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Later we rely on computing the Up-norm with the aid of duality:

(9) ‖u‖Up(E) = sup
v∈V p′ (E′):‖v‖

V p
′
(E′)=1

|B(u, v)|.

We remark that the spaces can as well be localized to an interval, in which case we
write Up(I;E), V p(I;E). We furthermore define the space DUp(I;E):

DUp(I;E) = {f = u′ : u ∈ Up(I;E)}
with the derivative considered in the distributional sense and

‖f‖DUp(I;E) = ‖u‖Up(I;E).

By Theorem 2.3, we have (DUp(I;E))∗ ' V p
′
(I;E′) with respect to a bilinear

mapping, which for f ∈ L1(I) ↪→ DUp(I;E) is given by

B̃(f, v) =

∫ b

a

〈f(t), v(t)〉dt.

We adapt Up-/V p-spaces to the linear Schrödinger propagation eit∆ as usual:

(10) ‖u‖Xp∆(I;E) = ‖e−it∆u‖Xp(I;E)

with X ∈ {U ;V ;DU}.

3. Bilinear refinements

By Galilean invariance, we can show bilinear estimates with derivative loss only
in the low frequency. In the context of Strichartz estimates on tori, we refer to
[28, 4]. Starting point is the following linear Strichartz estimate:

(11) ‖eit∆u0‖L4([0,1]×Rd) . ‖u0‖Ms
4,2(Rd).

Proposition 3.1. Let 1 ≤ K � N and suppose that (11) holds true. Then, we
find the following estimate to hold:

‖PNeit∆u0PKe
it∆v0‖L2([0,1]×Rd) . K

2s‖PNu0‖M4,2
‖PKv0‖M4,2

.

Proof. Let (QK′)K′ be a family of frequency projections to balls of size K in Rd
whose supports are covering B(0, 2N)\B(0, N/2) finitely overlapping. By almost
orthogonality, we find

‖PNeit∆u0PKe
it∆v0‖2L2([0,1]×Rd)

.
∑
K′

‖PNQK′eit∆u0PKe
it∆v0‖2L2([0,1]×Rd)

=
∑
K′

‖PNQK′eit∆u0‖2L4([0,1]×Rd)‖PKe
it∆v0‖2L4([0,1]×Rd).

We apply (11) to the second factor and to the first factor after Galilean transform,
which yields

. K4s
∑
K′

‖QK′u0‖2M4,2
‖PKv0‖2M4,2

. K4s‖PNu0‖2M4,2
‖PKv0‖2M4,2

.

The ultimate estimate follows by the finitely overlapping property and the definition
of the modulation spaces. �

This yields Proposition 1.2 by Theorem 1.1. In the next step we use the transfer
principle to derive an estimate for V 2

∆M4,2-functions.
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Proposition 3.2. Let K,N ∈ 2N0 and 1 ≤ K � N . Suppose that (11) holds.
Then, we find the following estimate to hold:

(12) ‖PNuPKv‖L2
t,x([0,1]×Rd) . K

2s‖PNu‖V 2
∆M4,2

‖PKv‖V 2
∆M4,2

.

Proof. By almost orthogonality, we can write

‖PNuPKv‖2L2 .
∑
K′

‖QK′PNuPKv‖2L2
t,x([0,1]×Rd)

with (QK′)K′ like above. We apply Hölder’s inequality to find

.
∑
K′

‖QK′PNu‖2L4
t,x([0,1]×Rd)‖PKv‖

2
L4
t,x([0,1]×Rd).

We write PKv =
∑
m amgm with gm a U4

∆M4,2-atom:

gm =
∑
j

1Imj e
it∆fmj ,

∑
j

‖fmj ‖4M4,2
= 1.

Consequently,

‖PKv‖L4
t,x([0,1]×Rd) ≤

∑
m

|am|‖PKgm‖L4
t,x([0,1]×Rd)

≤
∑
m

|am|
(∑

j

‖PKeit∆fmj ‖4L4
t,x(Imj ×Rd)

) 1
4

.
∑
m

|am|
(∑

j

‖fmj ‖4M4,2

) 1
4

. Ks
∑
m

|am| . Ks(1 + ε)‖PKv‖U4
∆M4,2

for any ε > 0 by choice of (am) ∈ `1. Likewise, by an additional Galilean transform,
we find

‖QK′PNu‖L4
t,x([0,1]×Rd) . K

s‖QK′PNu‖U4
∆M4,2

.

We use the embedding V 2
∆ ↪→ U4

∆ and carry out the square sum over K ′ to find∑
K′

‖QK′PNu‖2L4
t,x([0,1]×Rd)‖PKv‖

2
L4
t,x([0,1]×Rd)

. K4s
∑
K′

‖QK′PNu‖2U4
∆M4,2

‖PKv‖2U4
∆M4,2

. K4s
∑
K′

‖QK′PNu‖2V 2
∆M4,2

‖PKv‖2V 2
∆M4,2

. K4s‖PNu‖2V 2
∆M4,2

‖PKv‖2V 2
∆M4,2

.

The proof is complete. �

4. Local well-posedness in modulation spaces

This section is devoted to the proof of Theorems 1.3 and 1.4. We begin with the
proof of Theorem 1.3, which is carried out via linear Strichartz estimates (cf. [26,
Theorem 1.2]).
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Proof of Theorem 1.3. We give the proof of (1) in detail. The key ingredients are
still like in [33] smoothing and Strichartz estimates. Let u0 = f1 + f2 with f1 ∈
Ms

6,2(R) and f2 ∈ L2(R). Then, Theorem 1.1 yields

‖U(t)f1‖L6([0,T ],L6(R)) . 〈T 〉
1
6 ‖f1‖Ms

6,2(R)

and by Strichartz estimates we find

‖U(t)f2‖L6([0,T ],L6(R)) . ‖f2‖L2(R).

Furthermore, since U(t)(L2(R) +Ms
6,2(R)) = L2(R) +Ms

6,2(R), we find

‖U(t)u0‖L∞([0,T ],L2(R)+Ms
6,2(R)) . ‖u0‖L2(R)+Ms

6,2(R).

The nonlinear estimate is concluded by the inhomogeneous Strichartz estimates∥∥∫ t

0

ei(t−s)∆(|u|4u)(s)ds
∥∥
L6([0,T ],L6(R))

. ‖|u|4u‖L6/5([0,T ],L6/5(R))

. ‖u‖5L6([0,T ],L6(R)).

Similarly,∥∥∫ t

0

ei(t−s)∆(|u|4u)(s)ds
∥∥
L∞([0,T ],L2(R))

. ‖|u|4u‖L6/5([0,T ],L6/5(R))

. ‖u‖5L6([0,T ],L6(R)).

This finishes the proof of (1). The difference with the cubic NLS on R analyzed in
[33] is that we cannot afford to apply Hölder’s inequality in time. This gives the
small data constraint. Regarding the claim (2), we note that in two dimensions,
p = q = 4 are sharp Strichartz indices and by Theorem 1.1 we have the smoothing
estimate

‖U(t)f‖L4([0,T ],L4(R2)) . 〈T 〉
1
4 ‖f‖Ms

4,2(R2)

for s > 0. �

We turn to the proof of Theorem 1.4 in earnest. As iteration space, we consider
Xs = `2NU

2
∆M

s
4,2 for s > 1 (cf. Section 2). We have for the norm

‖u‖Xs =
(∑
N

N2s‖PNu‖2U2
∆M4,2

) 1
2 .

We let furthermore

‖v‖Y s =
(∑
N

N2s‖PNu‖2V 2
∆M4,2

) 1
2

and have the embedding Xs ↪→ Y s.
With bilinear estimates in adapted function spaces like in [28] available, we can

apply the arguments from [28] to prove Theorem 1.4. We have the following analog
of [28, Proposition 4.1]:

Proposition 4.1. Let d ∈ {3, 4}, s > 1, and F (u) = ±|u|
4
d−2u. Then, for any

0 < T ≤ 1, we find the following estimates to hold:

(13)
∥∥ ∫ t

0

ei(t−s)∆F (u(s))ds
∥∥
Xs([0,T ])

. ‖u‖
d+2
d−2

Xs([0,T ])
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and ∥∥∫ t

0

ei(t−s)∆[F (u+ w)(s)− F (u(s))]ds
∥∥
Xs([0,T ])

. ‖w‖Xs([0,T ])

(
‖u‖Xs([0,T ]) + ‖w‖Xs([0,T ])

) 4
d−2 .

(14)

The implicit constants do not depend on T .

Proof. We only have to prove (14) because (13) is a special case. By duality, it is
enough to show∣∣ ∫ T

0

∫
Rd

[F (u+ w)(t)− F (u)(t)]v(t, x)dxdt
∣∣

. ‖v‖Y −s([0,T ])‖u‖Xs([0,T ])

(
‖u‖Xs([0,T ]) + ‖w‖Xs([0,T ])

) 4
d−2 .

For the above display, it is enough to show

∑
N0≥1

∑
N1≥...≥N d+2

d−2
≥1

∣∣ ∫ T

0

∫
Rd
vN0

(t, x)

d+2
d−2∏
j=1

u
(j)
Nj

(t, x)dxdt
∣∣

. ‖v‖Y −s

d+2
d−2∏
j=1

‖u(j)‖Xs([0,T ]).

(15)

The proof of (15) follows from linear and bilinear Strichartz estimates combined
with Bernstein’s inequality. We shall only show the variant of the Killip–Vişan
argument for d = 3 to avoid redundancy. In the following let ε = s− 1 > 0.
Case I: d = 3. By Littlewood–Paley theory, the two highest frequencies have to be
comparable.

Case I.1: N0 ∼ N1 ≥ . . . ≥ N5: We apply Proposition 3.1 to vN0
u

(2)
N2

and u
(1)
N1
u

(3)
N3

and estimate the remaining factors in L∞t,x. The estimate in L∞t,x is not a local
smoothing estimate, but due to Bernstein’s and the Cauchy-Schwarz inequality:

‖PNf‖L∞x . ‖PNf‖M∞,1 . ‖PNf‖M4,1
. N

3
2 ‖PNf‖M4,2

.

We write N1 = {(N0, N1, . . . , N5) : N0 ∼ N1 ≥ . . . ≥ N5} for brevity. The
estimates yield ∑

N1

∣∣ ∫ T

0

∫
Rd
vN0

(t, x)u
(1)
N1

(t, x) . . . u
(5)
N5

(t, x)dxdt
∣∣

.
∑
N1

‖vN0u
(2)
N2
‖L2

t,x
‖u(1)

N1
u

(3)
N3
‖L2

t,x
‖u(4)

N4
‖L∞t,x‖u

(5)
N5
‖L∞t,x

.
∑
N1

N
1
2 + ε

2
2 N

1
2 + ε

2
3 N

3
2

4 N
3
2

5 ‖vN0‖V 2
∆M4,2

5∏
i=1

‖u(i)
Ni
‖V 2

∆M4,2

. ‖v‖Y −s
5∏
i=1

‖u(j)‖Y s .

By the embedding Xs ↪→ Y s the proof of Case I.1 is complete.
Case I.2: N0 . N1 ∼ N2 ≥ N3 ≥ N4 ≥ N5. Denote the summation set with N2.
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We apply two bilinear estimates to vN0
u

(1)
N1

and u
(2)
N2
u

(3)
N3

and L∞t,x-estimates to the
other factors to find

∑
N2

∣∣ ∫ T

0

∫
Rd
vN0(t, x)u

(1)
N1

(t, x) . . . u
(5)
N5

(t, x)dxdt
∣∣

.
∑
N2

‖vN0u
(1)
N1
‖L2

t,x
‖u(2)

N2
u

(3)
N3
‖L2

t,x
‖u(4)

N4
‖L∞t,x‖u

(5)
N5
‖L∞t,x

.
∑
N2

N
1
2 + ε

2
0 N

1
2 + ε

2
3 N

3
2

4 N
3
2

5 ‖vN0
‖V 2

∆M4,2

5∏
i=1

‖u(i)
Ni
‖V 2

∆M4,2

.
∑
N2

N
3
2 + 3ε

2
0 N

1
2−ε

4 N
1
2−ε

5

Ns
1N

s
2N

s
2

3

‖vN0‖Y −s
5∏
i=1

‖u(i)
Ni
‖Y s

. ‖v‖Y −s
5∏
i=1

‖u(i)‖Y s .

This finishes the proof of Case I. For the details of the proof of Case II for d = 4
we refer to [28]. �

We can complete the proof of Theorem 1.4 along the lines of [23, 28] with Propo-
sition 4.1 at hand.

Proof of Theorem 1.4. For small initial data we can construct a solution on [0, 1]
by showing that

Φ(u)(t) := eit∆u0 ∓ i
∫ t

0

ei(t−s)∆F (u(s))ds

is a contraction mapping within

B = {u ∈ Xs([0, 1]) ∩ Ct([0, 1],Ms
4,2(Rd)) : ‖u‖Xs ≤ 2η}

endowed with d(u, v) := ‖u − v‖Xs([0,1]). This is a consequence of Proposition 4.1
by observing that Φ maps B into itself by (13) and Φ is indeed contracting by (14).
This proves Theorem 1.4 for small data.

For large initial data, we argue with a frequency cutoff. Let u0 ∈Ms
4,2(Rd) with

‖u0‖Ms
4,2(Rd) ≤ A

for some 0 < A <∞. We consider

B = {u ∈ Xs([0, T ])∩Ct([0, T ],Ms
4,2(Rd)) : ‖u‖Xs([0,T ]) ≤ 2A, ‖u>N‖Xs([0,T ]) ≤ 2δ}
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under the metric d(u, v) := ‖u− v‖Xs([0,T ]).
First, we see that Φ indeed maps B to itself:

‖Φ(u)‖Xs ≤ ‖eit∆u0‖Xs +
∥∥∫ t

0

ei(t−s)∆F (u≤N (s))ds
∥∥
Xs

+
∥∥∫ t

0

ei(t−s)∆[F (u)(s)− F (u≤N )(s))]ds
∥∥
Xs

≤ ‖u0‖Ms
4,2

+ C‖F (u≤N )‖L1
tM

s
4,2

+ C‖u≥N‖Xs‖u‖
4
d−2

Xs

≤ A+ CT‖u≤N‖L∞t Ms
4,2
‖u≤N‖

4
d−2

L∞t M
s
∞,1

+ C(2δ)(2A)
4
d−2

≤ A+ CTN
6
d−2 (2A)

d+2
d−2 + C(2δ)(2A)

4
d−2 ≤ 2A

provided δ is chosen small enough depending on A, and T is chosen small enough
depending on A and N .

Next, we decompose F (u) = F1(u) + F2(u), where

F1(u) = O(u2
>Nu

6−d
d−2 ) and F2(u) = O(u

4
d−2

≤N u).

We estimate with the Hölder-like inequality for modulation spaces (cf. [12, Theo-
rem 4.3])

‖P>NΦ(u)‖Xs

≤ ‖eit∆P>Nu0‖Xs +
∥∥∫ t

0

ei(t−s)∆F1(u(s))ds
∥∥
Xs

+
∥∥ ∫ t

0

ei(t−s)∆F2(u(s))ds
∥∥
Xs

≤ ‖P>Nu0‖Ms
4,2(Rd) + C‖u>N‖2Xs‖u‖

6−d
d−2

Xs + C‖F2(u)‖L1
tM

s
4,2

≤ δ + C(2δ)(2A)
6−d
d−2 + CT‖u‖L∞t Ms

4,2
‖u≤N‖

2d
d−2

L∞t M
s
∞,1

≤ δ + C(2δ)(2A)
6−d
d−2 + CTN

2d
d−2 (2A)

d+2
d−2 .

We can bound the above by 2δ provided that δ is chosen small enough depending
on A, and T is chosen small enough depending on A, δ, and N .
Next, we prove that Φ is a contraction. We decompose like above F = F1 +F2 and
observe

F1(u)− F1(v) = O((u− v)(u>N − v>N )(u
6−d
d−2 + v

6−d
d−2 ))

and

F2(u)−F2(v) = O((u−v)(u≤N+v≤N )
4
d−2 )+O((u≤N−v≤N )(u+v)(u≤N+v≤N )

6−d
d−2 ).
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By the above arguments for u, v ∈ B:

d(Φ(u),Φ(v))

. ‖u− v‖Xs(‖u>N‖Xs + ‖v>N‖Xs)(‖u‖Xs + ‖v‖Xs)
6−d
d−2

+ ‖F2(u)− F2(v)‖L1
tM

s
4,2

. (4δ)(4A)
6−d
d−2 d(u, v) + T‖u− v‖L∞t Ms

4,2
(‖u≤N‖L∞t Ms

∞,1
+ ‖v≤N‖L∞t Ms

∞,1
)

4
d−2

+ T (‖u‖L∞t Ms
4,2

+ ‖v‖L∞t Ms
4,2

)‖u≤N − v≤N‖L∞t Ms
∞,1

×
(
‖u≤N‖L∞t Ms

∞,1
+ ‖v≤N‖L∞t Ms

∞,1

) 6−d
d−2

. [(4δ)(4A)
6−d
d−2 + TN

4d
d−2 (4A)

4
d−2 ]d(u, v) ≤ 1

2
d(u, v),

provided δ is chosen small enough depending on A, and T is chosen small enough de-
pending on A andN . This yields uniqueness and analytic dependence of the data-to-
solution mapping within B. To infer uniqueness in Xs([0, T ])∩Ct([0, T ],Ms

4,2(Rd)),
we can compare two solutions for the same initial data through a common frequency
cutoff chosen high enough. Then, we find these to be coinciding in a ball and hence
in Xs([0, T ]) ∩ Ct([0, T ],Ms

4,2(Rd)). �
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