## Publications

Effective numerical simulation of the Klein–Gordon–Zakharov system in the Zakharov limit. In W. Dörfler, M. Hochbruck, D. Hundertmark, W. Reichel, A. Rieder, R. Schnaubelt, and B. Schörkhuber, editors, Mathematics of Wave Phenomena, Trends in Mathematics, pages 37–48, October 2020. Birkhäuser Basel. .

Asymptotic preserving trigonometric integrators for the quantum Zakharov system. BIT, 1–21, June 2020. URL https://doi.org/10.1007/s10543-020-00815-2. Online first. . [preprint]

Randomized exponential integrators for modulated nonlinear Schrödinger equations. IMA J. Numer. Anal., 1–20, January 2020. URL https://doi.org/10.1093/imanum/drz050. Online first. . [preprint]

Splitting methods for nonlinear Dirac equations with Thirring type interaction in the nonrelativistic limit regime. J. Computat. Appl. Math., 112494, September 2019. URL https://doi.org/10.1016/j.cam.2019.112494. Online first, in press. . [preprint]

Effective slow dynamics models for a class of dispersive systems. J. Dyn. Diff. Equat., 1–33, September 2019. URL https://doi.org/10.1007/s10884-019-09791-w. Online first. . [preprint]

Trigonometric integrators for quasilinear wave equations. Math. Comp., 88(316):717–749, March 2019. URL https://doi.org/10.1090/mcom/3339. . [preprint]

Uniformly accurate oscillatory integrators for the Klein–Gordon–Zakharov system from low- to high-plasma frequency regimes. SIAM J. Numer. Anal., 57(1):429–457, February 2019. URL https://doi.org/10.1137/18M1177184. . [preprint]

Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math., 18(3):731–755, June 2018. URL https://doi.org/10.1007/s10208-017-9352-1. . [preprint]

Uniformly accurate exponential-type integrators for Klein–Gordon equations with asymptotic convergence to the classical NLS splitting. Math. Comp., 87(311):1227–1254, May 2018. URL https://doi.org/10.1090/mcom/3263. . [preprint]

Asymptotic consistent exponential-type integrators for Klein–Gordon–Schrödinger systems from relativistic to non-relativistic regimes. Electron. Trans. Numer. Anal., 48:63–80, March 2018. URL https://doi.org/10.1553/etna_vol48s63. .

Trigonometric time integrators for the Zakharov system. IMA J. Numer. Anal., 37(4):2042–2066, October 2017. URL https://doi.org/10.1093/imanum/drw059. . [preprint]

An exponential-type integrator for the KdV equation. Numer. Math., 136(4):1117–1137, August 2017. URL https://doi.org/10.1007/s00211-016-0859-1. . [preprint]

Efficient time integration of the Maxwell–Klein–Gordon equation in the non-relativistic limit regime. J. Comput. Appl. Math., 316:247–259, May 2017. URL https://doi.org/10.1016/j.cam.2016.07.007. Selected Papers from NUMDIFF-14. . [preprint]

From the Klein–Gordon–Zakharov system to the Klein–Gordon equation. Math. Methods Appl. Sci., 39(18):5371–5380, December 2016. URL https://doi.org/10.1002/mma.3922. . [preprint]

## Preprints

Asymptotic preserving trigonometric integrators for the quantum Zakharov system. CRC 1173 Preprint 2019/4, Karlsruhe Institute of Technology, January 2019. .

On the comparison of asymptotic expansion techniques for the nonlinear Klein–Gordon equation in the nonrelativistic limit regime. CRC 1173 Preprint 2018/52, Karlsruhe Institute of Technology, December 2018. .

Randomized exponential integrators for modulated nonlinear Schrödinger equations. CRC 1173 Preprint 2018/49, Karlsruhe Institute of Technology, December 2018. .

The KdV approximation for a system with unstable resonances. CRC 1173 Preprint 2018/42, Karlsruhe Institute of Technology, November 2018. .

## Theses

*Uniformly accurate methods for Klein–Gordon type equations*. PhD thesis, Karlsruhe Institute of Technology (KIT), July 2018. .*Numerical integrators for Maxwell–Klein–Gordon and Maxwell–Dirac systems in highly to slowly oscillatory regimes*. PhD thesis, Karlsruhe Institute of Technology (KIT), August 2017. .