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AN EXPONENTIAL-TYPE INTEGRATOR FOR THE KDV EQUATION

by

Martina Hofmanovéd & Katharina Schratz

Abstract. — We introduce an exponential-type time-integrator for the KdV equation and prove
its first-order convergence in H*! for initial data in H®. Furthermore, we outline the generalization
of the presented technique to a second-order method.

We consider the Korteweg-de Vries (KdV) equation
1
(1) atu(t7x) + agu(ta :E) = §ax(u(ta IE))27 ’LL(O,I’) = UO(:E)v teR, ze€T= [_ﬂ-a 7T]7

where for practical implementation issues we impose periodic boundary conditions. For local-
wellposedness results of the periodic KAV equation in low regularity spaces we refer to [1, 5, 19].

In the context of the numerical time integration of (non)linear partial differential equations
splitting methods as well as exponential integrators contribute attractive classes of integration
methods. We refer to [7, 8, 9, 18] for an extensive overview, and in particular to [3, 4, 16| for
the analysis of splitting methods for Schrédinger(-Poisson) equations. In recent years, splitting
as well as exponential integration schemes (including Lawson type Runge-Kutta methods [15])
have also gained a lot of attention in the context of the numerical integration of the KdV
equation, see for instance [10, 11, 12, 13, 14, 20] and the references therein. We also refer
to [2] for a splitting approach for the Kadomtsev-Petviashvili equation.

In particular, a distinguished convergence result was obtained in [11, 10]. In the latter it was
proven that the Strang splitting, where the right-hand side of the KdV equation is split into the
linear and Burgers part, respectively, is second-order convergent in H" for initial data in H"+°
for r > 1 assuming that the Burgers part is solved exactly.

Here we derive a first-order exponential-type time-integrator for the KdV equation (1) based
on Duhamel’s formula

. t .
(2) u(t) = e %ty 4 ;/ e*ag(tfs)am(u(s))st
0

Key words and phrases. — KdV equation — exponential-type time integrator — convergence.
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looking at the “twisted variable” v(t) = eagtu(t). This idea of “twisting” the variable is widely
used in the analysis of partial differential equations in low regularity spaces (see, for instance
[1, 5, 19] for the periodic KdV equation) and also well known in the context of numerical
analysis, see [15] for the introduction of Lawson type Runge-Kutta methods. However, instead
of approximating the appearing integral with a Runge-Kutta method (see for instance [13]) we
use the key relation

(3) k3 4 k3 — (k1 + ko) = —3(ky + ko)k1ko

which allows us to overcome the loss of derivative by integrating the stiff parts (i.e., the terms
involving 02) exactly. The derived exponential-type integrator is unconditionally stable and we
will in particular show its first-order convergence in H' for initial data in H3. A key tool in our
convergence analysis is a variant of [10, Lemma 3.1].

The presented technique can be generalized to higher-order methods. We outline the con-
struction of a second-order exponential-type integrator in Remark 1.4.

Notation: In the following we will denote the Fourier expansion of some function f € L?(T)
by f(z) = jez fue’®®. Furthermore, we will use the notation

. —1 . . .
@ @e={ {10 e 05 1) = () e,
€
k£0

1. An exponential-type integrator

To illustrate the idea we first consider initial values with zero mean. In Remark 1.3 we point
out the generalization to general initial values.

Assumption 1.1. — Assume that the zero-mode of the initial value is zero, i.e., 4g(0) =
(2m)~! [ u(0,2)dz = 0. Note that the conservation of mass then implies that o (t) = 0.

We will derive a scheme for the “twisted” variable v(t) = e%'u(t). With this transformation
at hand the equation in v reads

t
(5) ot) =w+ 5 [ o, () s
0
such that
L [T i 4e)d3 —03(tn-+s) 2
(6) vty +7) =v(ty) + 5 [ e =0y (e 2Ty (t, + s)) ds.
0

For a small time-step 7 we iterate Duhamel’s formula (5) and approximate the exact solution (6)
as follows

1 [7 2
(7) Ot +7) % v(tn) + / ltnt9)03 g (e—83<tn+s>v(tn)) ds.
0
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The key relation (3) now allows us the following integration technique (cf. [1, 5, 19]): We have

/T (tn-‘rs)aga ( —83(tn+s)v(tn))2d8

=2 / on ) (G obl* K K8) ) ey, (1) () 42075
k1 k2
efi(thrT)((k1+k2)3fk%fkg) B efitn((k1+k2)3fkffk§)

8) = (k1 + ko) Op, (£0)0p, (£, )6t (F1h2)z
® Z —i((ky + k2)3 — k§ — k3) i1+ k2) O, (En) Oy (fn)e

k1,k2
_ Z ( —i(tn+) ((k1+h2)3—K§ =) _ (=it ((k1+k2)3k§k§)) 1 D (£) O, (£) 122
Pt —3k1ko
1 2 1 2
— geai(tnw) (e—ai(tnw)@;lv(tn)) _ geai’tn (e—aﬁtn 8;11)@”))
Together with the approximation in (7) this yields that
(9) Un+1 — " + 6e 02 (tn+7) (e—ag(tn—&-T)a;lvn)Q _ éea;f’,tn (e—agtnam—lvn)Q ’
where 05! is defined in (4) and by construction 9! = 0, see Remark 1.2 below.

Remark 1.2. — The zero-mode is preserved by the scheme (9) as the key relation (3) implies
that

~n+l _ ~n 1 E (e—i(tn+T)3(k1+k2)k1k2 . e—itn3(k1+k2)k1k2> 1 ATL N

AT
U, =Vn — = v = Vg .
0 0 klk' k‘1 ko — Y0

k1+ko=0
In order to obtain an approximation to the original solution u(t,) of the KdV equation (1)

at time ¢, = nT we then “twist” the variable back again by setting u" = e ~Oitnyn This yields
the following exponential-type integrator for the KdV equation (1)

(10) uttl = e Tagu + (13( Tas’a;lun>2 B éefq-ag (6;114")2,

where 9, ! is defined in (4) and 4§ ™! = 0 thanks to Remark 1.2. For sufficiently smooth solutions
the semi-discrete scheme (10) is ﬁrst—order convergent, see Corollary 2.8 below for the precise
convergence result.

Remark 1.3. — If 4p(0) = o # 0 we set @ := u — « and look at the modified KdV equation in
u, i.e.,

(11) Ol 4 021 = ad, i + %81(12)2.

Note that the solution (t) of the modified KdV equation (11) satisfies u(t) = 0 for all ¢ as by
the conservation of mass we have that uy(t) = 4(0) = a. Thus, we can proceed as above: We
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look at the twisted variable 7(t) = (@ ~)t7(t) and carry out an approximation as above, i.e.,

1 T B 2
Bt +7) & B(ta) + 5 /O eltn+s)(92—0dk) g (e*@ﬁs)(ai*a@w)@(tn)) ds.

The relation
—(kl + k2)3 + Oé(kl + kg) + k? + k;’ — ak; — aky = —(kl + k2)3 + k? + /{:g

then allows us to derive similarly to above an exponential-type integration scheme
(12)

1 2 1 2
gl — g ge(ﬁg—aaz)(tn—&-'r) (e—(ag—aaz)(tn—kr)a;lﬁn) _ 66(63—0@)1:” (e—(ag—aaz)tnax—%n) ,

where 0,1 is defined in (4) and 05" = 0 cf. Remark 1.2. Finally, by setting u" =

e~ (@%—adx)tngn 4 o we then obtain an approximation to the exact solution u(t,) of the KdV

equation (1) (with non-zero zero-mode) at time ¢, = nr.

Note that higher-order approximations to the solution of the KdV equation (1) can be obtained
by truncating the expansion in (6) later. In Remark 1.4 below we explain the construction of a
second-order scheme in more detail.

Remark 1.4 (A second-order exponential-type integrator). — In order to derive a
second-order approximation in the “twisted” variable v(f) we need to include the second-order
term in the Taylor-series expansion of v(t, + s) in (6). More precisely, plugging the formal
expansion

V(tn + 8) = v(ty) + 80/ (tn) + O (s*0”)
into Duhamel’s formula (6) yields that

T 2
v(tn +7) =v(ty) + % / e(t”+s)agax (e_ag(t"H) (’U(tn) + sv/(tn))) ds + Ri(7,tn,v)
0

1 [ 3 3
=v(t,) + / e(t“H)axax e Oz(tnts),, tn
(13) () +3 ), ( (tn))

2
+ 2s (e_ag(t”"'s)v(tn)) (e_ag(t”"’s)v/(tn)) }ds
+ Ri(7,tn,v) + Ra(T, tn,v),

2

where the remainders satisfy for » > 1/2 and some constant ¢ > 0 that

(14) IR (7, tn, 0)lly + [R2(7, t, v) [l < e sup (Ilax (vo") (Ol + ||3x(v’)2(t)||r)~

tnStSth

In order to construct a numerical scheme based on the expansion (13) we need to solve the
appearing integral. The first term involving the product v? can be easily determined thanks
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to (8). Note that 9o(t) = 9((t) = 0. Thus, similarly, we obtain for the vv'— term with the aid
of the key-relation (3) and integration by parts that

/T seltnt9)02 g (efﬁg(thrs)v(tn)) (efﬁg(tn+s)vl(tn)> ds

0
= 3 [ et ) k)i () 1) 7

k1,k2
= > / iant9) (k) K)oy 4 )i, (1), (£) R0
k17#0,k27#0
k1+ko#£0
- Z e—i(tn—i-T)((k1+k2)3—k:{’—k§) 1 By (tn){)]:; (tn)ei(/ﬂ-l-lm):v
_ 2
1 #0,ka 40 Skikz
k:1+k2750
- Y[ ) i 1) (e s
15 k17#0,k2#0 —3kiks :
( ) k1+k27#£0
. Z efi(thrT)((k1+k2)3,k?*k§) llc - @kl(tn)@;@(tn)ei(kﬁrkg)x
k1 £0,k2£0 —Ikiky
k1+ko#0
e—i(tn+r)((k1+k2)3—k§—k3) _ e—itn((k1+k2)3—k§—k3) ) ) A
. Z __ ’Ukl(tn)’U;@(tn)el(kﬁ_kz)de
k1+k27é0

_ T (tnt7)03 (=03 (tn+T) 5—1 —03(tn+7)9—1,7
Co (e a; v(tn)> (e a; v(tn)>
e(thr‘r)&ga;l (ef(tn+7)ag(8fl)2v(tn)> (e (tn+‘r)83(ax )2 I(tn)>

xT

OO (70 (e ) (7071 (1)

_l’_

O~ O~

with 9, ! defined in (4). Plugging the relations given in (8) and (15) together with the definition

(16) U/'fl — ; tn838 (e—tnag,vn>2
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(see (5)) into the expansion (13) builds the basis of our numerical scheme: As a second-order
approximation to the solution v(¢, + 7) of (5) we take the exponential-type integration scheme

S N %eag(tn+7) (e—ag(thrT)a;lUn)Z B éeagtn (e—agtna;1vn>2

T n 83 _83 n - _83 n -
+ ge(t +7)03 (e 2 (t +T)6¢c 1,Un> (e 3 (¢ +T)8$ 1vm>

1 3 3 3
S (tntT)02 9—1 [ —(tn+T)02 (9—1\2,n —(tn+71)02 (9—1\2, /M
9¢ 0, (e (0, ") ) (e (0, ") )

+ éetnag’am—l <e—tna§ (8;1)21}”) (e—tnag(am—l)2v/n>

with /" given in (16), 9; ' defined in (4) and by construction 95 = 0 (cf. Remark 1.2).

The approximation to the original solution u(t,) of the KdV equation (1) at time ¢, = n7 is
then obtained by “twisting” the variable back again, i.e., by setting u"™ = e~92tnyn This yields
that

(17)
n 3371 n 1 —3T—n2 1—37' —1. n\2 T —83719-1n —837 n
untl = e 7%y —|—6<e O leu) - e %7 (9, u™) —i-g(e O 6x1u)<e %L (u )2>
L —031 19— n —703 0— n L —03T - - n - n
= 507 (@A) (TR0 () + 507 e O (071 ) (07 (™))

where 9, ! is defined in (4) and by construction @™ = 0 (cf. Remark 1.2). The semi-discret
exponential-type integration scheme (17) allows formally second-order convergence in H" for
sufficiently smooth solutions u(t) € H™ with r > 1/2 thanks to the local error bound (14)
together with the observation that

" Ol < e (10207 + 1020OI7) = ¢ (107u@)} + [0zu@)]7) -

We do not pursuit this here and only underline the second-order convergence rate numerically
in Section 3.

In the following section we give a detailed convergence analysis of the first-order exponential-
type integration scheme (10).

2. Error analysis

For simplicity we carry out the error analysis for initial values satisfying Assumption 1.1.
Furthermore, in the following we denote by (-,-) the L? scalar product, i.e., (f,g) = [} fgdz
and by || - ||z2 the corresponding L? norm.

In order to obtain a convergence result in H' we follow the strategy presented in [16, 10]:
We first prove convergence order of one half of the numerical scheme (9) in H? for solutions
in H3, see Section 2.1 Theorem 2.6. This yields essential a priori bounds on the numerical
solution in H? and allows us to prove first-order convergence globally in H', see Theorem 2.7
in Section 2.2. The latter in particular implies first-order convergence of the exponential-type
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integration scheme (10) towards the KdV solution (1), see Corollary 2.8 below for the precise
convergence result.

2.1. Error analysis in H?. — We commence with the error analysis of the numerical
scheme (9) in H?. In Section 2.1.1 we carry out the stability analysis in H?. In Section 2.1.2
we show that the method is consistent of order one half in H? for solutions in H3.

2.1.1. Stability analysis. — Set
1 2 1 2
(18) ®7 (v) :=v+ Eeag(HT) (e_ag(tJrT)a;lv) — geagt (e—ai’taglv)

such that for all k& we have vF*! = o7 (v*). The following stability result holds for the numerical
flow ®7:

Lemma 2.1. — Let f € H? and g € H3. Then, for all t € R we have
|02(@7 (f) — @7 (9))|| 12 < exp(TD)07(f — )|l 12,

where L depends on ||02f| 12 and |3g] 2

Proof. — Note that
182(R (f) — @7 (9)l[72 = 102(F — 9)|7
4 (@2 (e ) (e 00 19) | 2(f — g)
(@ (o)~ (o) | 02f — )
I 6172H8§eag(t+r) [ (efag(tw)a;f)z _ (e’ag(t”)(‘)ajlgf}
o[ (o) (e g) )12

1 1
= 02(f — )2 + 511 + 1L

3 62"
Lemma 2.3 and Lemma 2.4 below allow us the following bounds on I; and I5: We have
(19) \L+ L] < TL|03(f — 9)ll72,

where L depends on ||02f|| ;2 and ||02g]| ;2. Hence,
102(®7 (f) = @7 (9)) 72 < (L +TL)|02(f = 9)|Z2
which yields the assertion. O

In the rest of Section 2.1.1 we will show the essential bound (19). We start with a useful
Lemma.
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Lemma 2.2. — The following estimates hold for u,v,w € H?

(@2, vw — 7| (%) (e7%w) |)] < or|2ull 21020 2 |02 .
(20) 9
3 _93r
[, (90)? = 7 (7% 0,0) )| < er|02ull 29203

for some constant ¢ > 0.

Proof. — The key relation (3) together with the Cauchy-Schwarz inequality allows us the fol-
lowing bound

(02, vw — eagT[ (e*agTv) (e*agTw) })]

= | Z (k1 + ko) %0 (1 4k2) <1 _ e—ir((k1+k2)3_k‘f’—k§)> Bpoy Wy |

k1,k2
- ’ Z kl + k2 (. (k1+k2) ( e_iTBkle(k1+k2)> ﬁklka‘
k1,k2
<37 Y (k1 + ko) 20y g | (1 + Koo) K kegg, i, |
k1,k2
(21) =37 Play|[lk(l - k)||0giy—|

<37 Pliy| (|k(1 = k)?|[optbi—g| + [EI*[1 = k|igtdi—rl)
L,k

g:v(Zlﬂ RO rkn@kw—kl2!wz—k\>2)l/2

l

rar( ) (3 Zrk\ aull = Hllar-4l)”)

l
S?ﬁllaiullm(llv *w(2)||z2+||v xw||2),

where vU) (k) := |k|?|o%| and w) (k) := |k|[7|ig|. By the Young and Cauchy-Schwarz inequality
we furthermore obtain that

o™ 5wz + [0 5 w2 < oDl 0Pl + [0 [0 2 < ello® 2 w2

(22)
< cl|07vll 2| 0Fwll .2

for some constant ¢ > 0. Plugging (22) into (21) yields the first assertion.
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Similarly we have that

2
(s (90)? = %7 (€727 0,0) )| < 37 3 [k + k)i (41| it ol |
k1,k2

1/2
(23) =30 [llai k(1 — k) |ontrl < 3T(Z kﬂf;k]?) u® 5 0@ |2
k.l k

< er|03vll 2w [l 0P 2 < erl|OFvl72]|05ul 2
which yields the second assertion.
Lemma 2.3 (Bound on [;). — We have
1] < er (102(F = 9)lza + 193] 22 ) 102(F = 9) 13
for some constant ¢ > 0.

Proof. — Note that for all ¢ € R the following relation holds

3 493
(€% f,g) = (f,e " %g).
Thus, by setting f = e*ta%f and g = e*tagg we obtain that

= (@2 (0, ) — a2 (e oy g)z, e (f - )
— @2 (07) 22 (0r1a) 2
Using the relation f2 — ¢ = (f — ¢)% + 2(f
= @ (0, (- 9) +202 (0, (T - @) (e %0:5) e 0T - )
(@2 (01~ ) 202 (0,0 - a)) (0:9) . 02(F - 9))
= o(( (- g) + (0 (F-0) (e o —9)) e 2T - a)
+2((c70,(F = 9)) (%7 07'g) + 2 (¥ (F = 9)) (7). e 0N — 9)
+2((e7 %70 (F - 9)) (¢ %70u5) e ¥ O2F - 7))
= 2(0:(f - 9) (0 (F =) + (F = 9)%.2(F - 9))
~2((0:1(F = 9)) 0 +2(F ~ 93+ (07 = 9)) (0:"9) . 62(F — 9))-

Next we use another key fact namely that

(v, Dyut) = %(v,@x(u)2> - —%(&Ev,uQ)

— g)g as well as the chain rule yields that
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as well as that

This yields that

9% - )
~2(f - 37,027 - )

Thus, rearranging the terms leads to
5

h= 2 (e (F-9)) (- 0% 0~ )

(e ®0,(f-0) - (0.7 -0) .9)

+ 4 (7 (F = ) (%79) — (F - 9)(3) . 62(F — 9))

+ 2457 (701 (F - 9)) (7% 05) = (0,1(F = 9)) (8:), 82(F - 9))-
With the aid of Lemma 2.2 we thus obtain that

111] < 7e(162(F = )iz + 1939122 ) 162(F - 9)113:
for some constant ¢ > 0.
Lemma 2.4 (Bound on I3). — We have
L] < TMIBA(S = 92,

where M depends on 92f |12 and 93g]) ;2.
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Proof — In the followmg let M denote a constant depending on |02 f|| ;2 and ||02g]|;2. Setting
f zf and g = e~ zg yields that

= (@2 (o, ) a2 (o) R (o) - 02 (0, g) )

oy 2 (zag@x ) = (e 1522 a2 (0:17)" — 22 (2,%9)"
+ (07 (&Zlf) — 0% (0;1g)%, 02 (a;lf) _ 32 (0:19)%)
=I5+ 13

with

15 =02 (=m0 ) - 02 (0 g) — ke [ (0'F) - (0:%9)°):
393( 0T lf) ( g1 )2>

1= @[ (o ) (o) | - o2 (o7F) - 92 (0:9)”,
2 (0.F) 22 (0, '9)").

2
Similarly to Lemma 2.2 we obtain with F := 92 (&glf) — 0?2 (8;1§)2 by the key relation (3)
using the Cauchy-Schwarz and Young inequality that

A ky + ko)? ir 3_13_ 13 oz PN
|I§‘ - ’ Z F*(liFk?)u <1 —€ ((k1+k2) g k2)> (fklsz - gk1gk2> |

k1k
Fr oo 1R2

_ Z N G (k1 + k)2 (1 o—iT3k1k2 k1+kg)> <fk1fk2 §k1§k2> |

P k1ka
<37 Y F (g (B1 + K)[[ (1 + k2)? (fklfim - §k1§k2) |
k1,k2
(25) <37 JEL[((— k) + 2|1 = k)| + &) (fi — i) frok + Ge(frmk — Gi—r)]

<67)0F |2 (D I(F = @)% 5 G2 | + [1(F = §)3) % fC22)

§=0,1

+ 6710 F |2 (Il(F = )™ # F Oz + 1(F = §)@ % §W|12)
< cr)|0uF || 2| 03(f — g)llm(l\a;ffllL2 + 029l 12)

< TM|03(f — )72,
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where again we used the notation q)(j)(k) := |k||®g|. Similarly, we obtain for I with F :=
ag( 0375 1f) ( 01 ) that
ki+k i (13 , 2 2
|I2| = | Z F (k1+k2) ( : 2) (ez (ki-+Hhs) — Z (k+ha) ) (fk1fk2 gk1gk2> |
k1ks

k1,k2
26 - k1 + ko 2 —ir oz 2 2
(26) < Z |F(k1+k2)(kk)| )1 — emimSkika(ktha) || (fklfk2 - gk1gk2) |

ke 1

< TM|03(f - 9)lIZ--

Plugging the bounds (25) and (26) into (24) yields the assertion. O
2.1.2. Local error analysis. — Let ¢' denote the exact flow associated to the reformulated KdV

equation (5), i.e., v(t) = ¢'(v(0)). The following local error bound holds for the exponential-type
integrator ®7 defined in (18) with v**1 = @7 (v*).

Lemma 2.5. — Let v(ty +t) = ¢'(v(ty)) € H? for 0 <t < 7. Then
192 (67 (v(tr)) — ®F, (v(t) |2 < o2,
)

where ¢ depends on supg<;<.||¢" (v(ty))|| grs-

Proof. — As e'% is a linear isometry in H” for all ¢ € R the iteration of Duhamel’s formula (5)
yields that

197 wl60)) = wlee) e < [ (0900 (0(0)))” = (00t o

< Tesupg<r< 16" (v(t)) — v(te) s,

(27)

where ¢; depends on supy<;<,||¢*(v(tx))||gs. Duhamel’s formula (5) and integration by parts
furthermore yields that

1600 60) — ol < 1| [ 5920, (20 utty +5)) dslr

< ” Z k1k2 ef?nt kika(k1+k2) ( —3itk1ka(k1+ka) ) Akl (tj +t)@k2 (tj _’_t)ei(k1+k2)x”H3

k1,ko
(28) + | Z i k o= 3it; k1k2(k1+k2)(vk1 (tj + t)Ory (5 + 1) — Opy () 0k, (tj))ei(k1+k2)m||H3
Jor K
1 d
+ H/O Y edil +s)k1k2(k1+k2)k1k2 (0 (1 + )0y (b + ) dse 57 g
k1,k2
ki + ko|1/? bl + 1k

<ctt?  sup QHU(Q +1)||3s + et sup [Fa] + [Fal sup [|o(t; + 5)[[3a.

kiko€Zso  |Kiko|'/? kikoeZao  |K1k2l  o<s<t
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Plugging (28) into (27) yields the assertion. O]

2.1.3. Global error bound. — The stability analysis in Section 2.1.1 and local error analysis in
Section 2.1.2 allows us the following global error bound in H?2.

Theorem 2.6. — Let the solution of (5) satisfy v(t) € H?® for t < T. Then there evists a
70 > 0 such that for all 7 < 19 and t, < T we have

[o(t) = 0" ||z < er'/?,
where ¢ depends on supg<;<;, |[v(t)|| s and t,, but can be chosen independently of T.
Proof. — The triangular inequality yields that
lo(thr1) = v Hlgz = (|97 (v(tr)) — 7, (v*) |12
< (17 (v(tr)) — @F, (0(te)) |2 + 19, (v(th)) — @F, (V") 2

Thus, iterating the estimate (29) we obtain with the aid of Lemma 2.1 (with g = v(t;) € H?)
and Lemma 2.5 that as long as v¥ € H? (for 0 < k < n) we have that

(29)

Jo(tns1) = 0™ g2 < er2 + e lfu(tn) = vl < er¥/2 e (¥ 4 e u(t1) = 0" o)

n
< CTS/QZetkL < er!/?t, el
k=0
where ¢ depends on supg<i<q,, [[v(t)| g3, L depends on supg<i<p,l|v(tr)l|gs as well as on

SUPg<p<n |[V*| 2 and we have used the fact that do(t,) = 0f. The assertion then follows by a
bootstrap, respectively, “Lady Windermere’s fan” argument, see, for example [3, 6, 10, 16]. [

2.2. Error analysis in H!. — The error analysis in H? of the numerical scheme (9) given
in Section 2.1 yields a priori bounds on the numerical solution in H? for solutions in H?. This
allows us to derive the following first-order convergence bound in H'.

Theorem 2.7. — Let the solution of (5) satisfy v(t) € H® for t < T. Then there ewists a
70 > 0 such that for all 7 < 19 and t, <T we have

[o(tn) = v"|[gr <er,
where ¢ depends on supg<;<;, ||v(t)||gs and t,,, but can be chosen independently of T.

Proof. — Note that Duhamel’s formula (5) implies the first-order consistency bound
(30)

i —03(t),+5) 48 —02(t+s 2
106 () = @7, ot < [ 102 ] (55000 wit)))” = (50 0(0) o
< Tersupg<i<, |0 (v(tr) — v(te) || 2

< 7'20181lpogt§TH¢t(U(tk))HH37

where ¢; depends on supg<;<,||¢"(v(tx))]| gr2-

2
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Furthermore, as v(t) € H? for t < T we have the boundedness of the numerical solution in
H? a priori thanks to Theorem 2.6, i.e., there exists a 79 > 0 such that for all 7 < 75 v € H?
as long as t, < T. In particular a stability estimate of type

(31)  [10:(27(f) — @7 (9))llz2 < exp(rL)|0u(f = 92, L = L1032, 11029]l2)

is therefore sufficient for our bootstrapping argument in H'! by choosing f = v" € H? and
g = v(t,) € H3. The stability bound (31) follows similarly to Lemma 2.1: Note that

®7(f) = 27972 = 10:(f — 9)Z2
(0,2 (2o ) (%0 50) ] 8, (s — g)
(.0 (0,1 ) — (e 0; ) |, 0uls — )
Ha RHE) [ <678§(t+‘r)8;1f>2 _ (e—ag(tﬂ)a;lg)q
- axeawt (0, 7) — (e ®0:%9) " | I

1 1
= 10u(f = 9)lI72 + i+l

10z

—~

+

,_\CO\D—‘OO\H

Similarly to the proof of Lemma 2.3 we can rewrite I; as
h={f~5.(F =97~ (7 (F - g))
+ (G, (F - g)* — e ( “E(f-g
-2(f-3,9(f -9 - [( (e )b
~ 2(f — §,(0:9) (a;1< 3)) =™ [(e 0:9)) (=701 (F = 9)) ])-

As in Lemma 2.2 we obtain by the key relation (3) that

(33)

I(u, v,w) == |{u, vw — %7 [ (e*aifu) (eff’ifw) }>| <37 3 (k1 + Fa)i gy x| Rr ko[O3, B, .

1,R2
The Cauchy-Schwarz and Young inequality furthermore yield that

I(u,v,w) < 31> Ulail|(U— k)kl[oxdr—i] < 37 (S 1af?) % [o® 5wz
k,l l

34 .
(34 < erllzul] zmin (0@ ™ iz, o020l )

< e7)|0pul p2min (03]l 2|0z w]l 2, 103w]| 121020 2) -
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The above bound allows us to control the first and last two terms in (33) as long as f —g,g € H>.
Furthermore,

2
T(u,v,v) <37 Y [U[ay||(l — k)klloptr—i| < 37 Z|k| [8]2) 2 [ % v D2
(35) k)l
< 37| 0| 2 D 1 [Jo D2 < cfuaxvnynazunm,

which allows us to control the second term in (33) as long as f —g € H! and g € H>.
Using the bounds (34) and (35) in (33) yields that

(36) \L] < TL0s(f = 972y L= LUOZ(f = 9)ll2: [1029] £2)-
Next we write Iy = I$ + I3 with
IS :<ax (678278;1];)2 _a, (efa§7—8;1§)2 B 89667627[ (8;1f>2 B (3;1,@)2},
o, (%0, F) — 0, (e #0,%5) )
1= (%[ (0, ) — (0 '9) | - (0:1) 0. (0,9)".
0. (a;lf)2 — 9, (0719)%).
Note that by the Cauchy-Schwarz and Young inequality we have with F' := 9, <8; 1 f>2 —
0 (071)” that

(37)
ki1+k ir 3_13_p3 3z 2 PSS
|I2‘ - ‘ Z F k1+k2)( 1](3 L 2) <1 —e ((k1+k2) M k2)> (fk1fk2 - gk1gk2> |
ey ks 2
k + k —iT 2 <
- ‘ Z F k1+k2) 1]{: k 2) (1 € 3k1k2 k1+k2)) (fklsz gklgk)2> ‘
1 k2 2
<37 Z ’F—(k1+k2)(k1 + kQ)H(kl + k2)’ (fklka - §k1§k2> ‘
k1,k2

. /2, 3 i )
<37 (S PIAR) T (1 -0« FOlla + 1(F - 9 # O
l
LoN1/2, )
37 (o PIAR) (1= 2" gl + 1~ 2«3Vl )
l

< erl@uFllze (IGF = DO (L +130se) + 1 = DOl (1D e + 15V 1e) )
< M7)0u(F - 312,
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where M depends on |0y f| 2 and ||0zg||r2. A similar bound holds for I§ which implies that
(38) L2 < M7(|0:(f — )72, M = M(|0x |2, 10291 2)-

Plugging the bounds (36) as well as (38) into (32) yields the stability estimate (31).
With the aid of the stability estimate (31) and the local error bound (30) the proof then
follows the line of argumentation to the proof of Theorem 2.6. O

Corollary 2.8. — Let the solution of the KdV equation (1) satisfy u(t) € H? fort <T. Then
there exists a 19 > 0 such that for all T < 79 and t, < T the exponential-type integration
scheme (10) is first-order convergent in H', i.e.,

[utn) — u"[lgr <er,
where ¢ depends on supg<;<;, ||u(t)| gs and t,, but can be chosen independently of T.

Proof. — The assertion follows from Theorem 2.7 as % is a linear isometry in H' for all

t e R. O

3. Numerical experiments

In this section, we numerically underline the first- and second-order convergence rates of the
exponential-type integration schemes (10) and (17), respectively, towards the exact solution of
the KdV equation (1). For the space discretization we use a Fourier pseudo spectral method, see
[17], where we choose the largest Fourier mode K = 2!2. Details on the fully discrete scheme
are given in Remark 3.1.

Remark 3.1. — We employ the following fully discrete Fourier pseudo spectral version of (10):

Set BX = {~K/2,...,K/2 —1} and let Fx : BX — B¥ denote the discrete Fourier transform

and F I_(l its inverse. Denote by w0 the discretized initial value vector on the grid z, = 27”@,

a € BX and set
§K’O — Fx (U,K’O) _ [(IKUK’O)_%a (J?KUICO)_%_H, RN (J_"K'LLK,O)%_J .

With this notation at hand a fully discrete Fourier pseudo spectral version of (10) reads
.5 1 I 2 1 _. 3 ~ 2
gimtt = o Bngkn g L pi ([t (P k)] - o P ([7t (00ke)])
with ufntl = F [}1 (£K’"+1). Thereby, the multiplication of two vectors is taken point-wise, i.e.,
(1, ... o] yL, .- Y] = (2, - TRYK]
and the discrete differential operators acting in Fourier space are defined through

Ovic i =i[—K/2,... . K/2-1], 9} =1 ~1,0,1,..

_1 _1
“KJ20 “Kj2—1| -
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Example 3.2. — In the first numerical experiment we choose the initial value
1
(39) u(0,z) = 2sech? (%) sin(x) with  sech(x) = cosh(z)

and integrate the exponential-type integration schemes (10) and (17) up to 7" = 2. As the exact
solution is unknown we take as a reference solution the second-order scheme itself with a very
small time-step size 7 = 10~7. The error between the numerical solutions and the reference
solution at time 7" = 2 as well as a graph of the initial value, the reference solution and the
first-order approximate solution is given in Figure 1.

10 102 107
T

(A) Orderplot (double logarithmic). Con- -2
vergence rates of the first-order scheme ‘
(10) (blue, circle) and the second-order (B) Time evolution of the reference solution
scheme (17) (red, star). The slopes of the uy,; (orange, dotted) and the first-order ap-
dashed and dashed-dotted lines are one proximate solution u™ with 7 ~ 1072 (blue,
and two, respectively. continuous).

FIGURE 1. (Initial value (39)) Numerical simulation of the first- and second-order
exponential-type integration schemes (10) and (17).
Exzample 3.3 (Solitary waves). — The KdV equation
06+ 80+ 50.(6) =0, wcR
allows solitary wave solutions of type
(40) o(t, ) = 3csech? (f(m —ct — a)) with a €R, c¢>0.

In order to test the resolution of solitary waves under the schemes (10) and (17) we choose a
“large torus” Ty, = [~7, 7] with L = 0.1 such that boundary errors are negligible. Furthermore,
we fix ¢ = 1 and @ = 0. The H'-error between the first- and second-order exponential-type
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integration schemes (10) and (17), respectively, and the exact solution (40) at time T = 2 is

illustrated in Figure 2.

10

1073 1072 107"

T

FIGURE 2. (Solitary wave) Orderplot (double logarithmic). Convergence rates of the
first-order scheme (10) (blue, circle) and the second-order scheme (17) (red, star) mea-
sured in a discrete H' norm. The slopes of the dashed and dashed-dotted lines are one
and two, respectively.

A graph of the time evolution of the solitary wave solution (40) (with ¢ = 1.2, a = —57) and
the corresponding first- and second-order approximate solutions (12) and (17), respectively, for
two different time step sizes is illustrated in Figure 3.

t=0
4t |
.ﬂx
7
0 AN
xr
t=16
i A T
A
AN
xr
t =32
7
i\
N
Y
/ \
xr
(A) =102

t=20
41+ ~ B
/\
. J\
xr
t=16
4t J
if‘%
) VAN
xr
t =232
4t J
0 JAN
xr
(B) 7=10"3

FIGURE 3. Time evolution of the solitary wave (40) (yellow, dotted), the first-order
approximate solution (12) (blue, dashed-dotted) and second-order approximate solution
(17) (red, continous) for two different time-step sizes 7.
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