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Abstract

Trigonometric time integrators are introduced as a class of explicit numerical
methods for quasilinear wave equations. Second-order convergence for the semi-
discretization in time with these integrators is shown for a sufficiently regular
exact solution. The time integrators are also combined with a Fourier spectral
method into a fully discrete scheme, for which error bounds are provided without
requiring any CFL-type coupling of the discretization parameters. The proofs
of the error bounds are based on energy techniques and on the semiclassical
G̊arding inequality.
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1 Introduction

The topic of the present paper is the numerical analysis of quasilinear wave equations.
Such wave equations show up in a variety of applications, ranging from elastodynamics
to general relativity. The (local-in-time) analysis of quasilinear wave equations is well-
developed since the seventies with the papers [24] by Kato and [23] by Hughes, Kato
& Marsden being major contributions to the local well-posedness theory. Indeed,
the techniques have also now found their way into classical monographs on partial
differential equation, see, for instance, the monograph [31] by Taylor, as well as
the books by Sogge [29] and Hörmander [22]. However, the numerical analysis of
quasilinear wave equations is much less developed. The main challenge is, of course,
the numerical treatment of the quasilinear term in the equation.
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In the present paper, we focus on quasilinear wave equations of the form

∂2t u = ∂2xu− u+ κ a(u) ∂2xu+ κ g
(
u, ∂xu

)
(1)

where g and a are smooth and real-valued functions such that g(0, 0) = a(0) = 0.
We consider real-valued solutions to (1) with 2π-periodic boundary conditions in one
space dimension, x ∈ T = R/(2πZ), for initial values

u(·, 0) = u0, ∂tu(·, 0) = u̇0 (2)

given at time t = 0. The real-valued parameter κ will be used to emphasize the
strength of the nonlinearities, and we will be interested both in the regime where
κ is small so that the nonlinearities are small and the regime where κ is of order
one. Quasilinear wave equations of this form with small |κ| have been extensively
studied by Groves & Schneider [17], Chong & Schneider [5], Chirilus-Bruckner, Düll &
Schneider [4] and Düll [9]: the equations from the class (1) are prototypes for models
in nonlinear optics with a nonlinear Schrödinger equation as a modulation equation
[17, Introduction]. Many examples from elasticity and fluid mechanics can also be
reduced to quasilinear wave equations under the form (1). Relevant applications from
elasticity and general relativity appeared in [23] for instance, though of course many of
the most physically interesting examples occur in dimensions 2 and include potential
dependence upon ∂xu in a and possible dependence upon ∂tu. Using the techniques
developed here to study smooth solutions in relevant higher dimensional models will
be a topic for future work and would likely require some higher regularity assumptions
on the solutions.

The principal difficulty in the numerical discretization of (1) is the quasilinear
term κa(u)∂2xu. For typical explicit methods for the discretization in time, in which
the numerical approximation at a discrete time depends in an explicit way on this
quasilinear term at some previous time step, there is a risk of losing derivatives, in
the sense that a control of a certain number of spatial derivatives of the numerical
solution requires the control of more derivatives of the numerical solution at previous
time steps. This phenomenon is by far not restricted to quasilinear wave equations,
and an established way to prevent a loss of derivatives is to resort to carefully chosen
implicit methods. In the case of quasilinear wave equations, this route has been taken
recently by Hochbruck & Pažur [21] and Kovács & Lubich [25], who propose and
study implicit and semi-implicit methods of Runge–Kutta type for semi-discretization
in time for a more general class of quasilinear evolution equations.

In the present paper, we take another route and show how a class of explicit time
discretizations can be used to numerically solve the quasilinear wave equation (1) (and
also how it can be combined with a Fourier spectral method in space). The considered
class of methods is the class of trigonometric integrators, which is described in detail
in Section 2. These methods are exponential integrators and have been originally
developed for highly oscillatory ordinary differential equations, see, for instance, [10]
or Chapter XIII of the monograph [19]. Meanwhile, they were recognized to work well
also for wave equations in the semilinear case, see [1–3, 6, 7, 11, 13]. We show here,
how these explicit methods can be put to use also in the quasilinear case. A careful
choice of the filters in these integrators turns out to play a crucial role in avoiding the
above-mentioned loss of derivatives.

For the considered and derived trigonometric integrators, we rigorously prove
second-order convergence in time. We also prove convergence of a fully discrete
method which is based on a combination with a spectral discretization in space,
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without requiring any CFL-type coupling of the discretization parameters. See Section
3 for statements of the error bounds. The proofs of our convergence results are based
on energy techniques as they are widely used in mathematical analysis to prove well-
posedness of quasilinear equations and also well-established in the numerical analysis
of quasilinear parabolic equations, see, e.g., [28]. Furthermore, they have been applied
in the recent analysis of implicit methods for quasilinear hyperbolic equations in [21]
for (semi-)implicit Euler methods and in [25] for (linearly) implicit midpoint methods
and implicit Runge–Kutta methods.

Here, we are interested in the analysis of explicit trigonometric integrators for
quasilinear wave equations in the form (1). Note that in contrast to the semilinear case
studied in [1–3, 6, 7, 11, 13], the proof uses energy techniques with a nontrivial modified
discrete energy to prove stability of the methods under appropriate assumptions on
the filters. In addition, in the case of non-small κ, we also need tools from semiclassical
pseudodifferential calculus to ensure that the modified discrete energy is positive.

We mention that recently in [14, 15] explicit exponential integrators for quasi-
linear parabolic problems in Banach spaces were considered. Analysis of quasilinear
parabolic equations can generally be done using simpler techniques stemming from
the regularization implicit in the diffusion operators, but quasilinear waves must be
handled with more care given the lack of smoothing properties of the leading order
operator. We also point out that the exponential integrators in [14, 15] are based on
solving exactly a differential equation with the linearization of the quasilinear part on
the right, whereas the trigonometric integrators considered in the present paper are
based on solving exactly a differential equation with the pure linear part ∂2xu− u on
the right, which can have computational benefits.

The methods and their analysis as presented in the present paper can be extended
to higher spatial dimensions or to quasilinear wave equations (1) without Klein–Gordon
term −u on the right-hand side. Moreover, we could also only assume that a and g
are smooth on an open subset and deal with smooth solutions that stay in this subset
on the considered time interval. In this way, our scheme can be used to approximate
the classical p-system of elasticity and gas dynamics (as long as the solutions are
smooth and with no vacuum). See [26] for instance for a discussion of this model.
It would be interesting to see if our methods and their analysis can be extended to
quasilinear wave equations (1) with a semilinear term g that depends also on ∂tu
(for example in order to handle the equations considered in [8]), to the more abstract
classes of equations considered in [21, 25], or to other equations with a possible loss of
derivatives in explicit numerical methods, such as quasilinear Schrödinger equations
as considered in [27].

The article is organized as follows. In Section 2, we introduce the considered
trigonometric integrators, for which we state global error bounds in Section 3. The
proof of the error bound for the semi-discretization in time is given in Section 4, and
the one for the full discretization in Section 5. The necessary tools from semiclassical
pseudodifferential calculus are collected in the appendix.

Notation. By Hs = Hs(T), s ≥ 0, we denote the usual Sobolev space, equipped
with the norm ‖·‖s given by

‖v‖2s =
∑
j∈Z
〈j〉2s|v̂j |2 for v(x) =

∑
j∈Z

v̂je
ijx

with the weights

〈j〉 =
√
j2 + 1, j ∈ Z.
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By 〈·, ·〉s, we denote the corresponding scalar product,

〈v, w〉s =
∑
j∈Z
〈j〉2sv̂jŵj for v(x) =

∑
j∈Z

v̂je
ijx, w(x) =

∑
j∈Z

ŵje
ijx.

We study solutions (u(·, t), ∂tu(·, t)) of the quasilinear wave equation (1) in product
spaces Hs+1 ×Hs, on which we use the norm

‖|(u, u̇)|‖s =
(
‖u‖2s+1 + ‖u̇‖2s

)1/2
.

For s > 1
2 , we will make frequent use of the classical estimates in Sobolev spaces

‖uv‖0 ≤ Cs‖u‖0‖v‖s, ‖uv‖s ≤ Cs‖u‖s‖v‖s (3a)

and

‖G(u)‖s ≤ Λs(‖u‖s)‖u‖s, ‖G(u)−G(v)‖s ≤ Λs(‖u‖s + ‖v‖s)‖u− v‖s, (3b)

where G is any smooth function such that G(0) = 0 and Λs(·) is a continuous non-
decreasing function, see for instance [32], Chapter 13, Section 3.

2 Discretization of quasilinear wave equations

2.1 Trigonometric integrators for the discretization in time

The quasilinear wave equation (1) can be written in compact form as

∂2t u = −Ω2u+ κf(u). (4)

with the nonlinearity
f(u) = a(u)∂2xu+ g

(
u, ∂xu

)
(5)

and the linear operator
Ω =

√
−∂2x + 1,

that is, the operator Ω acts on a function by multiplication of the jth Fourier coefficient
with

√
j2 + 1.

For the discretization in time of (4), we use trigonometric integrators, see [19,
Section XIII.2.2]. We introduce them here as splitting integrators as in [10], since
this interpretation is convenient for the error analysis to be presented in this paper.
Written in first-order form ∂t(u, u̇) = (u̇,−Ω2u+ κf(u)), equation (4) is split into

∂t

(
u
u̇

)
=

(
u̇
−Ω2u

)
and ∂t

(
u
u̇

)
=

(
0

κf(u)

)
,

and the usual Strang splitting is applied with time step-size τ . In addition, the
nonlinearity f(u) of (5) is replaced by

f̂(u) = Ψ1f(Φu), (6)

where
Ψ1 = ψ1(τΩ) and Φ = φ(τΩ)

are filter operators computed from suitably chosen filter functions ψ1 and φ. Through-
out, we assume that the filter functions are bounded and continuously differentiable
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with bounded derivative. Denoting by un and u̇n approximations to u(·, tn) and
∂tu(·, tn) at time tn = nτ , the numerical method thus reads

u̇+n = u̇n + 1
2τκf̂(un),(

Ωun+1

u̇−n+1

)
=

(
cos(τΩ) sin(τΩ)
− sin(τΩ) cos(τΩ)

) (
Ωun
u̇+n

)
,

u̇n+1 = u̇−n+1 + 1
2τκf̂(un+1).

(7)

By eliminating the intermediate values u̇+n and u̇−n+1, one time step of the method is
seen to be given by

un+1 = cos(τΩ)un + τ sinc(τΩ)u̇n + 1
2τ

2 sinc(τΩ)κf̂(un),

u̇n+1 = −Ω sin(τΩ)un + cos(τΩ)u̇n + 1
2τ cos(τΩ)κf̂(un) + 1

2τκf̂(un+1).
(8)

The numerical flow of this method is denoted in the following by ϕτ , i.e.,

(un+1, u̇n+1) = ϕτ (un, u̇n). (9)

Note that the above splitting method (7) is not a slow-fast splitting in the sense of
[10] and [19, Section XIII.1], where one would split the first order problem ∂t(u, u̇) =
(u̇,−Ω2u + κf(u)) into the unbounded (fast) part ∂t(u, u̇) = (u̇,−Ω2u + κa(u)∂2xu)
and the remaining bounded (slow) part. While such an approach might be feasible
in principle, the above scheme (7) has the advantage that both subproblems can be
solved easily.

2.2 On the filter functions

We collect some assumptions on the filter functions φ and ψ1 that are going to play
an important role in the following.

Assumption 1. Already in the semilinear case, the bounds

|φ(ξ)| ≤ 1 and |1− φ(ξ)| ≤ c0ξ2 for all ξ ≥ 0, (10a)

|ψ1(ξ)| ≤ 1 and |1− ψ1(ξ)| ≤ c0ξ2 for all ξ ≥ 0 (10b)

with a constant c0 are needed for finite-time error bounds, see [11].

Assumption 2. In the quasilinear case, we need in addition that the functions φ and
ψ1 are continuous in ξ and satisfy

ψ1(ξ) = sinc(ξ)φ(ξ) for all ξ ≥ 0. (11)

The condition in Assumption 2 has been originally derived in a study on energy
conservation properties of trigonometric integrators applied to linear oscillatory ordi-
nary differential equations, see [18, Equation (2.12)]. Surprisingly, it shows up here
again in the somehow unrelated context of finite-time error bounds for quasilinear
wave equations.

Assumption 3. We finally need in addition to (10) and (11) that, for prescribed
0 < δ < 1 and A0 ≥ 0 related to the size of κ and a in (1) and the solution u to (1),

A0 sin( 1
2ξ)

2φ(ξ)2 ≤ 1− δ for all ξ ≥ 0. (12)
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Remark 2.1 (Small nonlinearity). The parameters δ and A0 in Assumption 3 will
be chosen later such that 1 + κ a(u(x, t)) ≥ δ and κ a(u(x, t)) ≤ A0 for all x ∈ T
and all t from the time interval under consideration. In particular, δ is small. In
the regime |κ| � 1 of a small nonlinearity in (1), also the value A0 is small, and
hence Assumption 3 is satisfied in this case for all bounded filter functions φ. The
remaining Assumptions 1 and 2 are thus sufficient to prove error bounds for small |κ|
in (1). They are, for example, satisfied (with c0 = 1) for the trigonometric integrator
of Hairer & Lubich [18], where

φ(ξ) = 1, ψ1(ξ) = sinc(ξ), (13)

and the one of Grimm & Hochbruck [16], where

φ(ξ) = sinc(ξ), ψ1(ξ) = sinc(ξ)2. (14)

Remark 2.2 (Non-small nonlinearity). For non-small |κ| in (1), the coefficient A0 in
(12) is not small and (12) not always true. A new method that we propose here for
this case is the trigonometric integrator (7) with filter functions

φ(ξ) = sinc(cξ), ψ1(ξ) = sinc(ξ) sinc(cξ) (15)

with

c ≥ 1

2

√
A0

1− δ
.

Here, 0 < δ < 1 and A0 ≥ 0 are the numbers of Assumption 3. This choice of filter
functions satisfies Assumptions 1 and 2 (with c0 = max(1, (c2 + 1)/6)), but it also
satisfies Assumption 3. The latter follows from

A0 sin( 1
2ξ)

2φ(ξ)2 =
A0

4c2
sinc( 1

2ξ)
2 sin(cξ)2 ≤ A0

4c2
≤ 1− δ.

Note that a filter function sinc(cξ) can be motivated as an averaging of fast forces
over a time interval of length cτ , see [10] and [19, Section XIII.1.4]. For c = 1, the
new method (15) reduces to the method (14) of Grimm & Hochbruck.

2.3 A spectral Galerkin method for the discretization in space

For a full discretization of (4), we combine the trigonometric integrators of the previous
section with a spectral Galerkin method in space.

We denote by

VK =

{
K∑

j=−K
v̂je

ijx : v̂j ∈ C

}
the space of trigonometric polynomials of degree K and by

PK(v) =

K∑
j=−K

v̂je
ijx for v =

∞∑
j=−∞

v̂je
ijx ∈ L2 (16)

the L2-orthogonal projection onto this ansatz space. In the semi-discretization in time
(7) or (8), we then replace the nonlinearity f̂ of (6) by

f̂K(u) = PK
(
Ψ1f

K(Φu)
)

(17)
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with

fK(u) = aK(u)∂2xu+ gK(u, ∂xu), aK = IK ◦ a, gK = IK ◦ g, (18)

where IK denotes the trigonometric interpolation in the space VK of trigonometric
polynomials of degree K.

This gives the fully discrete method

uKn+1 = cos(τΩ)uKn + τ sinc(τΩ)u̇Kn + 1
2τ

2 sinc(τΩ)κf̂K(uKn ),

u̇Kn+1 = −Ω sin(τΩ)uKn + cos(τΩ)u̇Kn + 1
2τ cos(τΩ)κf̂K(uKn ) + 1

2τκf̂
K(uKn+1),

(19)

which computes approximations uKn ∈ VK and u̇Kn ∈ VK to u(·, tn) and ∂tu(·, tn),
respectively. In addition, we replace the initial values u0 and u̇0 of (2) by some
approximations uK0 ∈ VK and u̇K0 ∈ VK , computed by an L2-orthogonal projection
onto VK :

uK0 = PK(u0), u̇K0 = PK(u̇0).

We emphasize that the nonlinearity f̂K as appearing in (19) can be computed
efficiently using fast Fourier techniques: The functions aK = IK ◦ a and gK = IK ◦ g
can be computed as usual with the fast Fourier transform. The full nonlinearity f̂K

of (17) can then also be computed with fast Fourier techniques, even though it is
defined via projection instead of trigonometric interpolation. This is based on the
observation that the argument of the projection PK in (17) as appearing in (19) is a
trigonometric polynomial of degree 2K, and hence can be computed exactly with the
fast Fourier transform.

3 Statement of global error bounds

In this section, we state our error bounds for the trigonometric integrator (7) and its
fully discrete version (19) when applied to the quasilinear wave equation (1).

We will universally require Assumptions 1–3 on the filter functions of the trigono-
metric integrator (7). In addition, we will require that the exact solution u(x, t) to
(1) satisfies the following assumption.

Assumption 4. Let s ≥ 0. We assume that the exact solution (u(·, t), ∂tu(·, t)) to
(1) is in H5+s ×H4+s with∥∥∣∣(u(·, t), ∂tu(·, t)

)∣∣∥∥
4+s
≤M for 0 ≤ t ≤ T (20)

such that
1 + κ a(u(·, t)) ≥ δ > 0 for 0 ≤ t ≤ T (21)

and
κ a(u(·, t)) ≤ A0 for 0 ≤ t ≤ T (22)

for some constants 0 < δ < 1, M > 0 and A0 ≥ 0.

Remark 3.1. The restriction (21) in Assumption 4 is a natural assumption coming
from the analysis of the equation. It ensures the hyperbolic character of the equation.
By local well-posedness theory, the regularity assumption (20) (which implies (22))
on the exact solution holds locally in time for initial values in H5+s × H4+s, see
[23, 24, 31]. The time-scale of our numerical analysis is the time-scale where a
solution to (1) actually exists and stays bounded.
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We are now ready to state the main result for the semi-discretization in time (7)
whose proof is given in Section 4 below.

Theorem 3.2 (Error bound for the semi-discretization in time). Fix M > 0, T > 0,
c0 ≥ 0, 0 < δ < 1 and A0 ≥ 0. Then, there exists a positive constant τ0 such that, for
all time step-sizes τ ≤ τ0, the following global error bound holds for the time-discrete
numerical solution (un, u̇n) of (7).

If the exact solution (u(·, t), ∂tu(·, t)) satisfies Assumption 4 for s = 0 with con-
stants M , T , δ and A0, and if the filter functions in (7) satisfy Assumption 1–3 with
constants c0, δ and A0, then we have in H2 ×H1 the global error bound∥∥∣∣(un, u̇n)− (u(·, tn), ∂tu(·, tn)

)∣∣∥∥
1
≤ Cτ2 for 0 ≤ tn = nτ ≤ T.

The constant C is of the form C = C ′eC
′|κ|T with C ′ depending on max(1, |κ|) with

the coefficient κ in (1), the smooth functions a and g in (1), the constant c0 of (10),
the constants δ and A0 of (12), (21) and (22) and M from (20), but it is independent
of the time step-size τ , the final time T and the parameter κ in (1).

Remark 3.3. For small nonlinearities with |κ| � 1, we need only Assumptions 1
and 2 on the filter functions of the trigonometric integrator (7) to prove the global
error bound, as explained in Remark 2.1. In this case, the necessary energy estimates
can be proved and bounded in a simpler fashion and the underlying ellipticity of the
second order operator is more easily proved on long time scales. We will give some
indication of these simplifications in Section 4.

For the fully discrete trigonometric integrator (19), we will prove in Section 5 the
following global error bound.

Theorem 3.4 (Error bound for the full discretization). Fix M > 0, T > 0, c0 ≥ 0,
0 < δ < 1, A0 ≥ 0 and s ≥ 0. Then, there exists a positive constant τ0 such that, for
all time step-sizes τ ≤ τ0, the following global error bound holds for the fully discrete
numerical solution (uKn , u̇

K
n ) of (19).

If the exact solution (u(·, t), ∂tu(·, t)) satisfies Assumption 4 for the above s with
constants M , T , δ and A0, and if the filter functions in (7) satisfy Assumption 1–3
with constants c0, δ and A0, then we have in H2 ×H1 the global error bound∥∥∣∣(uKn , u̇Kn )− (u(·, tn), ∂tu(·, tn)

)∣∣∥∥
1
≤ Cτ2 + CK−2−s for 0 ≤ tn = nτ ≤ T.

The constant C is of the same form as in Theorem 3.2 with C ′ depending in addition
on s.

The convergence rate τ2 in Theorem 3.4 for the discretization in time is optimal
as will be shown in the following numerical examples. It is not clear whether the
convergence rate K−2−s for the discretization in space is also optimal under the given
regularity assumption. In fact, numerical experiments suggest that the error behaves
like K−3−s almost uniformly in the time step-size.

In the following numerical examples, we consider the trigonometric integrator (7)
(or (19)) with

• no additional filter functions, i.e., φ = ψ1 = 1, which is known as impulse
method or method of Deuflhard,

• filter functions (13), which is the method of Hairer & Lubich and coincides with
the new method (15) for c = 0,

8



10−3 10−2 10−1 100
10−7

10−5

10−3

10−1

101

10−3 10−2 10−1 100
10−7

10−5

10−3

10−1

101

10−7

10−5

10−3

10−1

101

10−3 10−2 10−1 100
10−7

10−5

10−3

10−1

101

10−7

10−5

10−3

10−1

101

10−3 10−2 10−1 100
10−7

10−5

10−3

10−1

101

10−7

10−5

10−3

10−1

101

Figure 1: Error in H2 × H1 at time 100 vs. time step-size τ for a small nonlinearity (κ = 1/100).
The methods are the impulse method (top left), the method (13) of Hairer & Lubich (top right), the
method (14) of Grimm & Hochbruck (bottom left) and our new method (15) with c = 2 (bottom right).
Different lines correspond to different values of the discretization parameter K = 25, 26, 27, 28, 29,
with darker lines for larger values of K.

• filter functions (14), which is the method of Grimm & Hochbruck and coincides
with the new method (15) for c = 1,

• filter functions (15) with c = 2 and c = 3, which is the new method proposed in
this paper for non-small nonlinearities.

The specific quasilinear wave equation that we consider is (1) with a(u) = u and
g(u, ∂xu) = (∂xu)2 + κu3:

∂2t u = ∂2xu− u+ κu∂2xu+ κ(∂xu)2 + κ2u3. (23)

This is the model problem of [5]. As initial values we consider rather artificially

u(x, 0) =
∑
j∈Z

1√
1 + |j|11+1/50

eijx, ∂tu(x, 0) =
∑
j∈Z

1√
1 + |j|9+1/50

eijx.

For this choice, the initial values are in H5 × H4, but not in H5+σ × H4+σ for
σ ≥ 1/100, so that the initial values just don’t fail to satisfy the regularity assumption
(20) for s = 0.

Example 3.5 (Small nonlinearity). We consider equation (23) with a small nonlin-
earity as in [5]. We choose κ = 1/100, and we consider correspondingly a long time
interval of length κ−1 = 100. The error in H2 ×H1 of various trigonometric integra-
tors at time t = 100 has been plotted in Figure 1. In the plots, only the temporal
error has been taken into account by comparing the numerical solution to a reference
solution with the same spatial discretization parameter.

For the method (13) of Hairer & Lubich, the method (14) of Grimm & Hochbruck
and the new method (15) with c = 2, we observe second-order convergence in time
uniformly in the spatial discretization parameter (the different lines corresponding to
different spatial discretization parameters are all on top of each other). Note that
the filter functions of these methods satisfy Assumptions 1 and 2 of Theorems 3.2
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Figure 2: Error in H2 ×H1 at time 1
4

vs. time step-size τ for a non-small nonlinearity (κ = 1). The
methods are the method (13) of Hairer & Lubich (top left), the method (14) of Grimm & Hochbruck
(top right) and our new method (15) with c = 2 (bottom left) and c = 3 (bottom right). Different
lines correspond to different values of the discretization parameter K = 25, 26, 27, 28, 29, with darker
lines for larger values of K.

and 3.4 and that Assumption 3 is an empty condition for small κ (see Remark 2.1).
The observed convergence of these methods can thus be explained with Theorems 3.2
and 3.4.

For the impulse method, whose filter functions don’t satisfy Assumption 2, we
observe second-order convergence only for time step-sizes that are sufficiently small
compared to the inverse of the spatial discretization parameter K. This observation
is explained, for small |κ|, in a previous version of this paper [12, Section 5.2]. It is a
quasilinear phenomenon which is not present in the semilinear case [11].

Example 3.6 (Non-small nonlinearity). We consider again equation (23), but now
with a non-small nonlinearity with κ = 1 on a time interval of length 1

4 . Numerical
experiments suggest that the exact solution develops a singularity slightly beyond this
time interval, and that u = κ a(u) (which appears in assumption (22)) is bounded on
this time interval by A0 = 13. The error in H2 ×H1 at time t = 1

4 of the methods
has been plotted in Figure 2.

For the new method (15) with c = 2 and c = 3, we observe second-order conver-
gence in time. These methods satisfy Assumption 1 and 2, but they also satisfy the
additional Assumption 3 for non-small nonlinearities with the relevant value A0 = 13
(this follows from Remark 2.2 since 2 > 1

2

√
A0). The observed convergence of the

new methods can thus be explained with Theorems 3.2 and 3.4. In practice, one will
choose filter functions φ as in (15) with a value of c as small as possible (because the
error constant deteriorates as c grows), and one will possibly adapt the value of c in
the course of the computation (depending on the size of the numerical solution).

The methods (13) of Hairer & Lubich and (14) of Grimm & Hochbruck don’t satisfy
Assumption 3 with the necessary value A0 = 13, although their filters are of the form
(15) of Remark 2.2, but with a too small value c = 0 and c = 1, respectively. For
these methods, the observed convergence is not uniform in the spatial discretization
parameter K.

For additional numerical examples in connection with the questions studied in

10



[4, 5, 9, 17], we refer to a previous version of this paper [12, Section 3.5].

4 Proof of the error bound for the semi-discretization
in time

In this section, we give the proof of Theorem 3.2 on the global error of the trigonometric
integrator (7) applied to the quasilinear wave equation (1) without discretization in
space. In the proof, we restrict to the case g ≡ 0 in (1), i.e.,

f(u) = a(u)∂2xu, f̂(u) = Ψ1

(
a(Φu)(Φ∂2xu)

)
(24)

in the notation (5) and (6). Since the quasilinear term a(u)∂2xu is the most critical
part of the nonlinearity, the extension to nonzero g is rather straightforward and we
will comment throughout on the necessary modifications to take g 6= 0.

Throughout the proof, we denote by C a generic constant that may depend on a,
an upper bound max(1, |κ|) on the absolute value of the coefficient κ in (1) (but not
on a lower bound), the order of the Sobolev space under consideration and on the
constants c0, δ and A0 of (10) and (12). Additional dependencies of C are denoted
by lower indices, e.g., CM with M from (20).

4.1 Basic estimates

The estimates (3) and the smoothness of a imply the following fundamental properties
of the nonlinearity f of (24): We have, for s ≥ 0 and u, v ∈ Hs+2,

‖f(u)‖s ≤ Λs(‖u‖σ)‖u‖σ‖u‖s+2 with σ = max(s, 1) (25)

and the Lipschitz property

‖f(u)− f(v)‖s ≤ Λs
(
‖u‖s+2 + ‖v‖s+2

)(
‖u‖s+2 + ‖v‖s+2

)
‖u− v‖s+2, (26)

where Λs(·) is a continuous non-decreasing function.
Throughout the proof of Theorem 3.2, we make use of the fact that the numerical

flow ϕτ given by (7) maps H2 ×H1 to itself and more generally Hs+1 ×Hs to itself
for s ≥ 1, as stated in the following lemma. This property of an explicit numerical
method is in the quasilinear case by no means natural. It can be shown here using
the smoothing properties of filter functions that satisfy (11).

Lemma 4.1 (Bounds for a single time step). Let s ≥ 1, and let the filter functions
satisfy Assumptions 1 and 2. For a numerical solution (un, u̇n) ∈ Hs+1 ×Hs with

‖|(un, u̇n)|‖s ≤M

we have (un+1, u̇n+1) ∈ Hs+1 ×Hs with

‖|(un+1, u̇n+1)|‖s ≤ CM .

Proof. We consider the method in the form (8). In this formulation, we use that

τ‖sinc(τΩ)u‖s+1 = ‖Ω−1 sin(τΩ)u‖s+1 = ‖sin(τΩ)u‖s ≤ ‖u‖s. (27)

and that

τ‖f̂(u)‖s = τ‖Ψf(Φu)‖s ≤ ‖Φf(Φu)‖s−1 ≤ Λs−1(‖u‖s+1)‖u‖2s+1. (28)
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The first estimate of (28) follows from (11) and (27) with s instead of s+ 1 and the
second one from (10) and (25). These properties yield the claimed bound on the
numerical solution, first for un+1 and with this also for u̇n+1.

In the same way, but using the Lipschitz property (26) instead of (25), we can
derive the following estimate for the difference of two numerical solutions (7).

Lemma 4.2 (Stability of a single time step). Let s ≥ 1, and let the filter functions
satisfy Assumptions 1 and 2. For numerical solutions (un, u̇n) ∈ Hs+1 × Hs and
(vn, v̇n) ∈ Hs+1 ×Hs with

‖|(un, u̇n)|‖s ≤M and ‖|(vn, v̇n)|‖s ≤M

we have ∥∥∣∣(un+1, u̇n+1)− (vn+1, v̇n+1)
∣∣∥∥
s
≤ CM

∥∥∣∣(un, u̇n)− (vn, v̇n)
∣∣∥∥
s
.

Remark 4.3. The basic estimates (25) and (26) extend directly to a nonzero g in (1),
and hence also the statements of Lemmas 4.1 and 4.2.

4.2 Outline of the proof of Theorem 3.2

Lemmas 4.1 and in particular Lemma 4.2 illustrate the difficulties that are encountered
when trying to prove error bounds, say in H2 ×H1. Denoting by

(en+1, ėn+1) = (un+1, u̇n+1)− (u(·, tn+1), ∂tu(·, tn+1)) (29)

the global error of (7) after n time steps, and denoting, with the numerical flow ϕτ
given by (9), by

(dn+1, ḋn+1) = ϕτ
(
u(·, tn), ∂tu(·, tn)

)
−
(
u(·, tn+1), ∂tu(·, tn+1)

)
(30)

the local error when starting at (u(·, tn), ∂tu(·, tn)), one routinely decomposes the
global error in H2 ×H1 as

‖|(en+1, ėn+1)|‖1 ≤
∥∥∣∣ϕτ(un, u̇n)− ϕτ(u(·, tn), ∂tu(·, tn)

)∣∣∥∥
1

+ ‖|(dn+1, ḋn+1)|‖1.

By analyzing the error propagation of the method (stability of the method), one then
aims for estimating the first term on the right-hand side by eCτ‖|(en, ėn)|‖1. The
stability estimate of Lemma 4.2, however, only yields a factor CM instead of eCτ ,
which makes this approach failing.

Our approach here is to replace the H2 × H1-norm by a different but related
measure for the error that allows us to prove a suitable stability estimate. This
measure isn’t a norm, and it depends on time. Its definition is inspired by energy
techniques as used to analyze the exact solution: We introduce in Section 4.3 an
energy-type functional E : H2 ×H1 ×H2 → R, and we will then use

En(en, ėn) = E(en, ėn, un)

instead of ‖|(en, ėn)|‖1 as a measure for the global error (en, ėn).
The error accumulation in this quantity reads

En+1(en+1, ėn+1) = En+1

(
ϕτ
(
un, u̇n

)
− ϕτ

(
u(·, tn), ∂tu(·, tn)

))
+
(
En+1(en+1, ėn+1)− En+1

(
en+1 − dn+1, ėn+1 − ḋn+1

))
.

(31)
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The difference in the second line of (31) accounts for the local error of the method.
It is estimated in Section 4.5 below by adapting the proof for the semilinear case to
the quasilinear case. The term in the first line is En+1 evaluated at a difference of
two numerical solutions, and hence describes the error propagation of the method.
It turns out, in Section 4.3 below, that we can prove a suitable estimate for the
error propagation in the quantity E . The relation of E to the H2 ×H1-norm is then
described in Section 4.4 below. Finally, the error accumulation is studied in Section
4.6 below.

4.3 Stability of the numerical method

A key step in the proof of Theorem 3.2 is to establish stability of the numerical method
(7) in a suitable sense.

We introduce the energy-type quantity

E(e, ė, u) = ‖|(e, ė)|‖21 + κU
(
Φe,Φu

)
, (32)

where
U(e, u) =

〈
cos(τΩ)∂2xe, a(u)∂2xe

〉
0
− 1

4τ
2κ
∥∥Ψ1

(
a(u)∂2xe

)∥∥2
1
. (33)

Up to the non-quadratic term U , this energy E is essentially the H2×H1-norm of (e, ė).
Under the Assumptions 1 and 2, the energy E is well-defined for (e, ė) ∈ H2×H1 and
u ∈ H2. This follows from the Cauchy–Schwarz inequality and (3) applied to the first
term of U and from assumptions (10) and (11) applied as in (28) to the second term
of U .

The motivation to define the energy as in (32) is the calculation in the proof of
the following lemma, where we compute the change in the energy along differences of
numerical solutions.

Lemma 4.4 (Change in the energy). Let the filter functions satisfy Assumptions 1
and 2. For numerical solutions (un, u̇n) ∈ H2 ×H1 and (vn, v̇n) ∈ H2 ×H1 we then
have

E
(
un+1 − vn+1, u̇n+1 − v̇n+1, un+1

)
= E

(
un − vn, u̇n − v̇n, un

)
+ κR

(
Φun+1,Φun,Φvn+1,Φvn

)
with the remainder

R
(
u, u′, v, v′

)
= R̃

(
u, u′, v, v′

)
+R∗

(
u, v
)
−R∗

(
u′, v′

)
, (34)

where
R̃
(
u, u′, v, v′

)
=
〈
u− v, f(u′)− f(v′)

〉
1
−
〈
u′ − v′, f(u)− f(v)

〉
1

(35)

and

R∗(u, v) =
〈
cos(τΩ)(u− v), a(u)∂2x(u− v)

〉
0

+
〈
cos(τΩ)(u− v),

(
a(u)− a(v)

)
∂2xv
〉
1

+ 1
2τ

2κ
〈
Ψ1

(
a(u)∂2x(u− v)

)
,Ψ1

(
(a(u)− a(v))∂2xv

)〉
1

+ 1
4τ

2κ
∥∥Ψ1

(
(a(u)− a(v))∂2xv

)∥∥2
1
.

Proof. By the structure of the “matrix” in the second step of the method (7), we have

‖Ω(un+1 − vn+1)‖21 + ‖u̇−n+1 − v̇
−
n+1‖21 = ‖Ω(un − vn)‖21 + ‖u̇+n − v̇+n ‖21.
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Hence, taking also the first and third step of the method into account, we get

‖Ω(un+1 − vn+1)‖21 +
∥∥(u̇n+1 − v̇n+1

)
− 1

2τκ
(
f̂(un+1)− f̂(vn+1)

)∥∥2
1

= ‖Ω(un − vn)‖21 +
∥∥(u̇n − v̇n)+ 1

2τκ
(
f̂(un)− f̂(vn)

)∥∥2
1
.

We then expand the second norm on the left and on the right. In the resulting mixed
terms, we use the property

〈v,Ψ1w〉1 = 〈Ψ1v, w〉1 = 〈sinc(τΩ)Φv, w〉1, (36)

which follows from Parseval’s theorem and assumption (11), and we replace the
resulting differences τ sinc(τΩ)(u̇n+1 − v̇n+1) and τ sinc(τΩ)(u̇n − v̇n) with the help
of the relations

τ sinc(τΩ)u̇n+1 = cos(τΩ)un+1 + 1
2τ

2 sinc(τΩ)κf̂(un+1)− un,

τ sinc(τΩ)u̇n = − cos(τΩ)un − 1
2τ

2 sinc(τΩ)κf̂(un) + un+1

and the same relations for v. The second of these relations is taken from (8), and the
first one can be derived from the second one by the symmetry of the method (or from
the numerical method in the form (7) by expressing un in terms of un+1 and u̇n+1).

Using again (36), the definition of the remainder R and ‖|(e, ė)|‖21 = ‖Ωe‖21 + ‖ė‖21,
this yields∥∥∣∣(un+1 − vn+1, u̇n+1 − v̇n+1

)∣∣∥∥2
1

+ κ Ũ
(
Φ(un+1 − vn+1),Φun+1

)
=
∥∥∣∣(un − vn, u̇n − v̇n)∣∣∥∥21 + κ Ũ

(
Φ(un − vn),Φun

)
+ κ R̃

(
Φun+1,Φun,Φvn+1,Φvn

)
with R̃ from (35) and

Ũ(e, u) = −
〈
cos(τΩ)e, f(u)− f(u− e)

〉
1
− 1

4τ
2κ
∥∥Ψ1

(
f(u)− f(u− e)

)∥∥2
1
.

The statement of the lemma follows by setting

R∗(u, v) = U(u− v, u)− Ũ(u− v, u).

To get the final form of R∗, we use

f(u)− f(v) = a(u)∂2x(u− v) + (a(u)− a(v))∂2xv

and 〈·, ·〉1 = 〈·, ·〉0 − 〈∂2x·, ·〉0.

We now estimate the remainder R of Lemma 4.4, which describes the change in the
energy along numerical solutions. The crucial observation is that we gain a factor τ
without requiring more regularity than H2×H1 of the difference of the corresponding
numerical solutions.

Lemma 4.5 (Bound of the change R in the energy). Let the filter functions satisfy
Assumptions 1 and 2. For numerical solutions (un, u̇n) ∈ H2 × H1 and (vn, v̇n) ∈
H3 ×H2 with

‖|(un, u̇n)|‖1 ≤M and ‖|(vn, v̇n)|‖2 ≤M

we have for the remainder R of Lemma 4.4 the bound∣∣R(Φun+1,Φun,Φvn+1,Φvn
)∣∣ ≤ CMτ∥∥∣∣(un, u̇n)− (vn, v̇n)

∣∣∥∥2
1
.
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Proof. The main task is to get the factor τ in the estimate. This is done with the
observation that we have

‖un+1 − un‖1 ≤ CMτ, (37)

which follows from (8) using the property (28) with s = 1 and ‖(cos(τΩ)− 1)un‖1 =
2‖sin( 1

2τΩ)2un‖1 ≤ ‖τΩun‖1 = τ‖un‖2. Similarly, we have

‖vn+1 − vn‖2 ≤ CMτ (38)

by the higher regularity of (vn, v̇n) and also

‖un+1 − un − (vn+1 − vn)‖1 ≤ CMτ
∥∥∣∣(un, u̇n)− (vn, v̇n)

∣∣∥∥
1
. (39)

Under the given regularity assumptions, the differences un+1−un in H1 and vn+1−vn
in H2 thus allow us to gain a factor τ .

Our goal is therefore to recover in the remainder R defined in (34) such differences.
In the following we set

ûn = Φun, v̂n = Φvn. (40)

In this notation and using that 〈·, ·〉1 = 〈·, ·〉0+〈∂x·, ∂x·〉0 we can express the remainder
R in the following way: We have

R
(
ûn+1, ûn, v̂n+1, v̂n

)
= R0 +R1 +

(
R∗
(
ûn+1, v̂n+1

)
−R∗

(
ûn, v̂n

))
,

where

R0 =
〈
ûn+1 − v̂n+1, a(ûn)∂2xûn − a(v̂n)∂2xv̂n

〉
0

−
〈
ûn − v̂n, a(ûn+1)∂2xûn+1 − a(v̂n+1)∂2xv̂n+1

〉
0

and

R1 =
〈
∂x(ûn+1 − v̂n+1), ∂x

(
a(ûn)∂2xûn − a(v̂n)∂2xv̂n

)〉
0

−
〈
∂x(ûn − v̂n), ∂x

(
a(ûn+1)∂2xûn+1 − a(v̂n+1)∂2xv̂n+1

)〉
0
.

With the aid of integration by parts and adding zeroes we obtain that

R1 = −
〈
∂2x
(
ûn+1 − v̂n+1

)
, a(ûn)∂2x

(
ûn − v̂n) +

(
a(ûn)− a(v̂n)

)
∂2xv̂n

〉
0

+
〈
∂2x
(
ûn − v̂n

)
, a(ûn+1)∂2x

(
ûn+1 − v̂n+1

)
+
(
a(ûn+1)− a(v̂n+1)

)
∂2xv̂n+1

〉
0
.

Note that by symmetry we have for the first term that〈
∂2x
(
ûn+1 − v̂n+1

)
, a(ûn)∂2x

(
ûn − v̂n)

〉
0

=
〈
∂2x
(
ûn − v̂n

)
, a(ûn)∂2x

(
ûn+1 − v̂n+1)

〉
0

which we can combine with the first term in the second row, i.e.,

R1 =
〈
∂2x
(
ûn+1 − v̂n+1

)
,
(
a(ûn+1)− a(ûn)

)
∂2x
(
ûn − v̂n)

〉
0

−
〈
∂2x
(
ûn+1 − v̂n+1

)
,
(
a(ûn)− a(v̂n)

)
∂2xv̂n

〉
0

+
〈
∂2x
(
ûn − v̂n

)
,
(
a(ûn+1)− a(v̂n+1)

)
∂2xv̂n+1

〉
0
.
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Adding and subtracting the term
〈
∂2x
(
ûn− v̂n

)
,
(
a(ûn)−a(v̂n)

)
∂2xv̂n

〉
0

(and combining
it with the term in the second row) furthermore yields that

R1 =
〈
∂2x
(
ûn+1 − v̂n+1

)
,
(
a(ûn+1)− a(ûn)

)
∂2x
(
ûn − v̂n)

〉
0

+
〈
∂2x
(
ûn − v̂n − (ûn+1 − v̂n+1)

)
,
(
a(ûn)− a(v̂n)

)
∂2xv̂n

〉
0

−
〈
∂2x
(
ûn − v̂n

)
,
(
a(ûn)− a(v̂n)

)
∂2xv̂n

〉
0

+
〈
∂2x
(
ûn − v̂n

)
,
(
a(ûn+1)− a(v̂n+1)

)
∂2xv̂n+1

〉
0
.

Finally, adding and subtracting the term
〈
∂2x
(
ûn − v̂n

)
,
(
a(ûn+1) − a(v̂n+1)

)
∂2xv̂n

〉
0

(and combining it with the terms in the last two rows) and using integration by parts
on the term in the second row, we obtain that

R1 =
〈
∂2x
(
ûn+1 − v̂n+1

)
,
(
a(ûn+1)− a(ûn)

)
∂2x
(
ûn − v̂n)

〉
0

−
〈
∂x
(
ûn − v̂n − (ûn+1 − v̂n+1)

)
, ∂x

((
a(ûn)− a(v̂n)

)
∂2xv̂n

)〉
0

+
〈
∂2x
(
ûn − v̂n

)
,
(
a(ûn+1)− a(v̂n+1)− (a(ûn)− a(v̂n))

)
∂2xv̂n

〉
0

+
〈
∂2x
(
ûn − v̂n

)
,
(
a(ûn+1)− a(v̂n+1)

)
∂2x
(
v̂n+1 − v̂n

)〉
0
.

With the aid of the bilinear estimates (3) we may thus bound the remainder R1 as
follows: We have

|R1| ≤ C‖ûn+1 − v̂n+1‖2‖a(ûn+1)− a(ûn)‖1‖ûn − v̂n‖2
+ C‖ûn+1 − v̂n+1 − (ûn − v̂n)‖1‖a(ûn)− a(v̂n)‖1‖v̂n‖3
+ C‖ûn − v̂n‖2‖a(ûn+1)− a(v̂n+1)− (a(ûn)− a(v̂n))‖1‖v̂n‖2
+ C‖ûn − v̂n‖2‖a(ûn+1)− a(v̂n+1)‖1‖v̂n+1 − v̂n‖2.

(41)

To estimate the quadruple term in a in the third line of (41), we consider the smooth
function H(u, e) = a(u+ e)− a(u) and note that by (3) and since H(u, 0) = 0

‖H(u, e)−H(v, f)‖1 ≤ ‖H(u, e)−H(u, f)‖1 + ‖H(u, f)−H(v, f)‖1
≤ Λ

(
‖u‖1 + ‖v‖1 + ‖e‖1 + ‖f‖1

)(
‖e− f‖1 + ‖u− v‖1‖f‖1

)
with a non-decreasing function Λ(·), where we have Taylor expanded the second term
to get a function of u − v at the cost of a pointwise bound on f . To be precise, we
use the exact Taylor formula

H(u, f)−H(v, f) = (u− v)

∫ 1

0

∂uH
(
u+ σ(v − u), f

)
dσ

and that
∂uH(u, f) = a′(u+ f)− a′(u)

and hence ∂uH(u, 0) = 0. With u = ûn, e = ûn+1 − ûn, v = v̂n and f = v̂n+1 − v̂n,
this yields for the quadruple term in a in the third line of (41)∥∥(a(ûn+1)−a(ûn)

)
−
(
a(v̂n+1)−a(v̂n)

)∥∥
1
≤ Λ

(
2‖ûn‖1+2‖v̂n‖1+‖ûn+1‖1+‖v̂n+1‖1

)
·
(∥∥ûn+1 − ûn − (v̂n+1 − v̂n)

∥∥
1

+ ‖ûn − v̂n‖1‖v̂n+1 − v̂n‖1
)
. (42)

Thanks to the bound (10a) on the filter functions we obtain with the notation (40)
that

‖ûn − v̂n‖s = ‖Φ(un − vn)‖s ≤ ‖un − vn‖s. (43)
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Plugging the bounds (42) and (43) together with the bounds on the difference ‖un+1−
un‖1 given in (37), the difference ‖vn+1 − vn‖2 given in (38) and the difference
‖un+1 − un − (vn+1 − vn)‖1 given in (39) as well as the bound on ‖un+1 − vn+1‖2
given in Lemmas 4.1 and 4.2 into (41) yields that

|R1| ≤ CMτ
∥∥∣∣(un, u̇n)− (vn, v̇n)

∣∣∥∥2
1
,

where we have used the given regularity assumptions (in particular that vn ∈ H3) and
that a is a sufficiently smooth function.

Thus, the proof is completed upon computing the comparable bound on the more
regular terms R0 and R∗(ûn+1, v̂n+1)−R∗(ûn, v̂n) by a similar analysis. For example,
the difference R∗(ûn+1, v̂n+1)−R∗(ûn, v̂n) contains the difference

R∗1 =
〈
cos(τΩ)(ûn+1 − v̂n+1), a(ûn+1)∂2x(ûn+1 − v̂n+1)

〉
0

−
〈
cos(τΩ)(ûn − v̂n), a(ûn)∂2x(ûn − v̂n)

〉
0
,

which can be split as

R∗1 =
〈
cos(τΩ)

(
ûn+1 − ûn − (v̂n+1 − v̂n)

)
, a(ûn+1)∂2x(ûn+1 − v̂n+1)

〉
0

+
〈
cos(τΩ)(ûn − v̂n),

(
a(ûn+1)− a(ûn)

)
∂2x(ûn+1 − v̂n+1)

〉
0

+
〈
cos(τΩ)(ûn − v̂n), a(ûn)∂2x

(
ûn+1 − ûn − (v̂n+1 − v̂n)

)〉
0
.

After partial integration in the last term, this can be estimated as above by

|R∗1| ≤ ‖ûn+1 − ûn − (v̂n+1 − v̂n)‖0‖a(ûn+1)‖1‖ûn+1 − v̂n+1‖2
+ ‖ûn − v̂n‖0‖a(ûn+1)− a(ûn)‖1‖ûn+1 − v̂n+1‖2

+ ‖ûn − v̂n‖1‖a(ûn)‖1‖ûn+1 − ûn − (v̂n+1 − v̂n)‖1,

and hence
|R∗1| ≤ CMτ

∥∥∣∣(un, u̇n)− (vn, v̇n)
∣∣∥∥2

1
.

Another exemplary term in the difference R∗(ûn+1, v̂n+1)−R∗(ûn, v̂n) is

R∗2 = 1
4τ

2κ
∥∥Ψ1

(
(a(ûn+1)− a(v̂n+1))∂2xv̂n+1

)∥∥2
1
,

for which we get with (3), (10) and Lemmas 4.1 and 4.2

|R∗2| ≤ Cτ2
∥∥a(ûn+1)− a(v̂n+1)

∥∥2
1
‖v̂n+1‖23 ≤ CMτ

∥∥∣∣(un, u̇n)− (vn, v̇n)
∣∣∥∥2

1
.

In the situation outlined in Section 4.2, we get from Lemmas 4.4 and 4.5 the
following estimate.

Proposition 4.6 (Stability). Let the filter functions satisfy Assumptions 1 and 2. If
(u, ∂tu) is a solution to (4) in H3 ×H2 with∥∥∣∣(u(·, tn), ∂tu(·, tn)

)∣∣∥∥
2
≤M,

and if (un, u̇n) ∈ H2 ×H1 is a corresponding numerical solution with

‖|(un, u̇n)|‖1 ≤ 2M,

then we have∣∣∣E((un+1, u̇n+1)− ϕτ
(
u(·, tn), ∂tu(·, tn)

)
, un+1

)∣∣∣
≤
∣∣E(en, ėn, un)

∣∣+ CMτ |κ| ‖|(en, ėn)|‖21
with the global error (en, ėn) of (29).
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Proof. Take (vn, v̇n) = (u(·, tn), ∂tu(·, tn)) and (vn+1, v̇n+1) = ϕτ (u(·, tn), ∂tu(·, tn))
in Lemmas 4.4 and 4.5.

Remark 4.7. For a nonzero g in (1), the statement of Lemma 4.4 remains valid, but
with a remainder R∗ that contains additional terms with g(u) instead of a(u)∂2xu. As
g(u) is more regular than a(u)∂2xu, the remainder estimate of Lemma 4.5 extends to
these new terms, and hence Proposition 4.6 on the stability of the method also holds
for nonzero g.

4.4 Controlling Sobolev norms with the energy

Our aim is to show that the energy (32) can be controlled by Sobolev norms and
vice-versa. This is done by estimating the additional contribution κU from above
and below. For small |κ|, this is elementary, and the main result of this section,
Proposition 4.10 below, can be derived directly from the properties (10) and (11) of
the filters and (3) of Sobolev spaces using (27). For non-small κ, we have to work
harder, and this is the main content of this section.

In the following, we set

L(u) = κΦa(u) cos(τΩ)Φ− 1
4κ

2Φa(u) sin2(τΩ)Φ2a(u)Φ.

Using integration by parts and 〈sin(τΩ)v, sin(τΩ)v〉0 = τ2‖sinc(τΩ)v‖21, we obtain
under the Assumption 2 that

κU(Φe,Φu) =
〈
L(Φu)∂2xe, ∂

2
xe
〉
0

(44)

for the term U defined in (33). We have to prove an upper and a lower bound for
this term, the latter being the crucial and difficult part. The key tool to prove the
essential lower bound is given by the following lemma.

Lemma 4.8. Fix M > 0, and let the filter functions satisfy Assumptions 1 and 3
with constants 0 < δ < 1 and A0 ≥ 0. Then, there exists τ0 > 0 such that for every
τ ≤ τ0, for every v ∈ L2 and for every u ∈ H2 with

‖u‖2 ≤M, 1 + κ a(u(x)) ≥ 1
2δ > 0, κ a(u(x)) ≤ A0 + 1

2δ,

we have that
‖v‖20 +

〈
L(Φu)v, v

〉
0
≥ 1

8δ‖v‖
2
0.

In order to prove the above Lemma we need the following estimate.

Lemma 4.9. Let the filter functions satisfy Assumptions 1 and 3 with constants
0 < δ < 1 and A0 ≥ 0. We then have, for all A ≤ A0 + 1

2δ with 1 +A ≥ 1
2δ > 0 and

all ξ ≥ 0,
A cos(ξ)φ(ξ)2 − 1

4A
2 sin(ξ)2φ(ξ)4 ≥ −1 + 1

2δ. (45)

Proof. We use cos(ξ) = cos( 1
2ξ)

2 − sin( 1
2ξ)

2 and sin(ξ) = 2 cos( 1
2ξ) sin( 1

2ξ) to rewrite
(45) as (

1 +A cos( 1
2ξ)

2φ(ξ)2
)(

1−A sin( 1
2ξ)

2φ(ξ)2
)
≥ 1

2δ. (46)

As a function of A, the left-hand side of (46) is a parabola with a downwards opening
or a linear function. To show that (46) holds for all A ≤ A0 + 1

2δ with 1 +A ≥ 1
2δ, it

thus suffices to prove it for the two boundary values −1 + 1
2δ and A0 + 1

2δ of A.
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For A = A0 + 1
2δ ≥ 0, we note that 1 +A cos( 1

2ξ)
2φ(ξ)2 ≥ 1 and

1−A sin( 1
2ξ)

2φ(ξ)2 ≥ 1−A0 sin( 1
2ξ)

2φ(ξ)2 − 1
2δ ≥

1
2δ

by (10) and (12), and hence (46) holds for the right boundary value.
For A = −1 + 1

2δ ≤ 0, we note that 1−A sin( 1
2ξ)

2φ(ξ)2 ≥ 1 and

1 +A cos( 1
2ξ)

2φ(ξ)2 ≥ 1 +
(
−1 + 1

2δ
)

= 1
2δ

by (10), and hence (46) also holds for the left boundary value.

Proof of Lemma 4.8. We first observe that, by the Cauchy–Schwarz inequality, (3)
and (10), ∣∣∣〈L(Φu)v, v

〉
0
−
〈
L(u)v, v

〉
0

∣∣∣ ≤ CM‖Φu− u‖1‖v‖20 ≤ CMτ‖v‖20,
where we use in the second inequality that |φ(ξ) − 1| ≤ min(2, c0ξ

2) ≤ Cξ for ξ ≥ 0
by (10a). This yields 〈

L(Φu)v, v
〉
0
≥
〈
L(u)v, v

〉
0
− CMτ‖v‖20. (47)

Next, we use semiclassical pseudodifferential calculus as presented in Appendix A.
We first express the operator L(u) by quantization of certain symbols. We set, for

x ∈ T and ξ ∈ R and with ω =
√
ξ2 + τ2,

b1(x, ξ) = φ(ω), b2(x, ξ) = κ a(u(x)), b3(x, ξ) = cos(ω), b4(x, ξ) = sin(ω)2φ(ω)2.

As stated there is now somewhat unfortunately τ dependence in the ω symbol, however
the dependence upon our semiclassical parameter τ arises as a very small, bounded
perturbation and hence does not effect any of the semiclassical bounds used. Note in
addition that this slight notational complication arises from the generality of treating
Klein-Gordon type operators with our semi-classical formulation and the τ dependence
in ω would not arise in the wave equation setting.

With the corresponding quantizations Opτb1 , . . . ,Opτb4 (see equation (67) in Ap-
pendix A), we then have

L(u) = Opτb1 Opτb2 Opτb3 Opτb1 −
1
4 Opτb1 Opτb2 Opτb4 Opτb2 Opτb1 .

Note that all the symbols b1, . . . , b4 are in Sσ,1 ∩ Sσ+1,0 for σ = 1 > 1
2 since u is in

H2 and φ is has bounded derivative, and that we have

|bj |σ,1 ≤ CM , |bj |σ+1,0 ≤ CM for j = 1, . . . , 4

by (3b). By (3a), this also holds for finite products of these symbols. We refer
to Appendix A for the definition of the symbol classes Sσ,0 and Sσ+1,1 and the
corresponding seminorms |·|σ,1 and |·|σ+1,0.

By using Proposition A.3 repeatedly, we thus have that∥∥L(u)v −Opτb (v)
∥∥
0
≤ CMτ‖v‖0

with the new symbol

b(x, ξ) = b1(x, ξ)b2(x, ξ)b3(x, ξ)b1(x, ξ)− 1
4b1(x, ξ)b2(x, ξ)b4(x, ξ)b2(x, ξ)b1(x, ξ).
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This estimate and the Cauchy–Schwarz inequality imply〈
L(u)v, v

〉
0
≥
〈
Opτb v, v

〉
0
− CMτ‖v‖20. (48)

Next we use Proposition A.4 to estimate the term with Opτb in (48) further. Note
that the symbol b is in Sσ+1,0 ∩ Sσ+1,1 for σ = 1 > 1

2 since u is in H2 and φ has
bounded derivative, and that we have

|b|σ+1,0 ≤ CM , |b|σ+1,1 ≤ CM .

Note also that
1 + b(x, ξ) ≥ 1

2δ for all x ∈ T, ξ ∈ R

by Lemma 4.9 (with A = κ a(u(x))). By using Proposition A.4, we thus obtain that

‖v‖20 +
〈
Opτb v, v

〉
0
≥ 1

4δ‖v‖
2
0 − CMτ‖v‖20.

Combining this estimate with (47) and (48) yields the statement of the lemma for
sufficiently small τ .

Proposition 4.10. Fix M > 0 and δ > 0, and let the filter functions satisfy Assump-
tions 1–3 with constants 0 < δ < 1 and A0 ≥ 0. Then, there exists τ0 > 0 such that
for every τ ≤ τ0, for every (e, ė) ∈ H2 ×H1 and for every u ∈ H2 with

‖u‖2 ≤M, 1 + κ a(u(x)) ≥ 1
2δ > 0, κ a(u(x)) ≤ A0 + 1

2δ,

we have that the modified energy (32) controls the Sobolev norms, i.e.,

Cδ‖|(e, ė)|‖21 ≤ E(e, ė, u) ≤ CM‖|(e, ė)|‖21 (49)

for two positive constants Cδ, CM .

Proof. First note that for τ sufficiently small and 0 < δ < 1 we have that(
1
8δ − 1

)∥∥∂2xe∥∥20 ≤ κU(Φe,Φu) ≤ CM‖e‖22,

where the upper bound follows from (3) and the lower bound is a consequence of
Lemma 4.8 (with v = ∂2xe) using the representation of κU(Φe,Φu) given in (44). The
bound (49) on the modified energy then follows by its definition in (32).

4.5 Local error bound

Similarly as in the semilinear case [11], but under higher regularity assumptions on
the initial value, we can prove the following local error bound for the numerical
method (7).

Lemma 4.11 (Local error bound in H2 × H1). Let the filter functions satisfy As-
sumptions 1 and 2. If (u, ∂tu) is a solution to (4) in H5 ×H4 with∥∥∣∣(u(·, t), ∂tu(·, t)

)∣∣∥∥
4
≤M for tn ≤ t ≤ tn+1,

then we have
‖|(dn+1, ḋn+1)|‖1 ≤ CMτ

3|κ|

for the local error (dn+1, ḋn+1) of (30).
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Proof. Without loss of generality, we consider the case n = 0, that is, we consider the
local error

(d1, ḋ1) = (u1, u̇1)−
(
u(·, τ), ∂tu(·, τ)

)
.

As in the semilinear case [11], the proof relies on a comparison of the method in the form
(8) with the variation-of-constants formula for the exact solution (u(·, τ), ∂tu(·, τ)).
For initial values (2) at time 0, the variation-of-constants formula reads(

u(·, τ)
∂tu(·, τ)

)
= R(τ)

(
u0
u̇0

)
+ κ

∫ τ

0

R(τ − t)
(

0
f(u(·, t))

)
dt

with

R(t) =

(
cos(tΩ) t sinc(tΩ)
−Ω sin(tΩ) cos(tΩ)

)
.

Note that this formula makes sense in H2 ×H1 for solutions in H5 ×H4. Using this
formula, the local error is seen to be of the form(

u1 − u(·, τ)
u̇1 − ∂tu(·, τ)

)
= 1

2τκR(τ)

(
0

f̂(u0)− f(u0)

)
+ 1

2τκ

(
0

f̂(u1)− f(u1)

)
(50a)

+ 1
2τκ

(
0

f(u1)− f(u(·, τ))

)
(50b)

+ 1
2τκ

(
R(τ)

(
0

f(u0)

)
+R(0)

(
0

f(u(·, τ))

))
− κ

∫ τ

0

R(τ − t)
(

0
f(u(·, t))

)
dt.

(50c)

We estimate the three contributions (50a)–(50c) to the local error separately.
(a) The contributions to the local error in the first line (50a) are due to the

introduction of filters in the nonlinearity f̂(u) = Ψ1f(Φu). Using that R(τ) preserves
the norm ‖| · |‖1, we get∥∥∥∥∣∣∣∣R(τ)

(
0

f̂(u0)− f(u0)

) ∣∣∣∣∥∥∥∥
1

= ‖f̂(u0)− f(u0)‖1.

We then split f̂(u0)− f(u0) = Ψ1(f(Φu0)− f(u0)) + (Ψ1f(u0)− f(u0)) and use∥∥Ψ1

(
f(Φu)− f(u)

)∥∥
1
≤ CM‖u‖3‖Φu− u‖3 ≤ CM‖u‖3‖τ2Ω2u‖3 ≤ CMτ2‖u‖25

by the Lipschitz property (26) and the assumptions (10) on the filter functions as well
as

‖Ψ1f(u)− f(u)‖1 ≤ Cτ2‖f(u)‖3 ≤ CMτ2‖u‖25
by (10) and (25). This shows that∥∥∥∥∣∣∣∣R(τ)

(
0

f̂(u0)− f(u0)

) ∣∣∣∣∥∥∥∥
1

≤ CMτ2.

The term in (50a) with u1 instead of u0 can be dealt with in the same way using in
addition that ‖u1‖5 ≤ CM by Lemma 4.1 since ‖|(u0, u̇0)|‖4 ≤M . This finally yields

‖|term on right-hand side of (50a)|‖1 ≤ CMτ
3|κ|. (51)

In the same way we also get

‖|term on right-hand side of (50a)|‖2 ≤ CMτ
2|κ|, (52)
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if we use |1 − ψ1(ξ)| ≤ Cξ and |1 − φ(ξ)| ≤ Cξ (which follow from (10)) instead of
|1− ψ1(ξ)| ≤ Cξ2 and |1− φ(ξ)| ≤ Cξ2.

(b) The contribution to the local error in the third line (50c) is the quadrature
error of the trapezoidal rule. With the corresponding second-order Peano kernel
K2(σ) = 1

2σ(σ − 1), it takes the form

term (50c) = −τ3κ
∫ 1

0

K2(σ)h′′(στ) dσ with h(t) = R(τ − t)
(

0
f(u(·, t))

)
.

We thus have to estimate ‖|h′′(στ)|‖1. For that we use, for ` = 0, 1, 2,∥∥∥∥∣∣∣∣ d`

dt`
R(t)

(
v
v̇

) ∣∣∣∣∥∥∥∥
1

= ‖|(v, v̇)|‖1+` and

∥∥∥∥ d2−`

dt2−`
f
(
u(·, t)

)∥∥∥∥
1+`

≤ CM .

The left bound above follows using the definition of R(t), the corresponding bounds
and (3), while the bound on the right above follows by replacing any occurences of
∂2t u with −Ω2u + κf(u) using (4) considering that (u, ∂tu) is bounded in H5 ×H4.
This yields

‖|term (50c)|‖1 ≤ CMτ
3|κ|. (53)

In the same way we also get

‖|term (50c)|‖2 ≤ CMτ
2|κ|, (54)

if we use the first-order Peano kernel and h′ instead of the second-order Peano kernel
and h′′.

(c) The contribution to the local error in the second line (50b) concerns only the
error in the velocities. Using that we thus already have ‖u1 − u(·, τ)‖3 ≤ CMτ2|κ| by
the estimates (52) and (54) and that∥∥f(u1)− f

(
u(·, τ)

)∥∥
1
≤ CM‖u1 − u(·, τ)‖3

by (26) and Lemma 4.1, we get

‖|term (50b)|‖1 ≤ CMτ
3|κ|.

Together with the estimates (51) and (53) in (a) and (b), this completes the proof of
the stated local error bound.

In view of (31), we are not so much interested in local errors (d, ḋ) in the H2×H1-
norm as estimated in the previous lemma, but instead in energy differences of the
form E(e, ė, u) − E(e − d, ė − ḋ, u), where (d, ḋ) is a local error and (e, ė) is a global
error. This extension is done in the following lemma.

Lemma 4.12. Let the filter functions satisfy Assumptions 1 and 2. If (e, ė) ∈ H2×H1,
(d, ḋ) ∈ H2 ×H1 and u ∈ H2 with

‖e‖2 ≤M, ‖d‖2 ≤M, ‖u‖2 ≤M,

then we have∣∣E(e, ė, u)− E(e− d, ė− ḋ, u)
∣∣ ≤ CM(τ−1|κ|−1‖|(d, ḋ)|‖21 + τ |κ| ‖|(e, ė)− (d, ḋ)|‖21

)
.
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Proof. We use in various forms the generalized Cauchy-Schwarz inequality. Namely,
for any α > 0,

2|〈w, v〉| ≤ α−1‖w‖2 + α‖v‖2 (55)

for a scalar product 〈·, ·〉 with associated norm ‖·‖ which follows from the Cauchy-
Schwarz inequality together with the Young inequality

2ab ≤ αa2 + α−1b2 for α > 0.

This in particular yields that∣∣‖v‖2 − ‖v − w‖2∣∣ =
∣∣‖w‖2 + 2〈w, v − w〉

∣∣ ≤ (1 + α−1)‖w‖2 + α‖v − w‖2.

This yields for the first term in the energy difference E(e, ė, u)− E(e− d, ė− ḋ, u)∣∣‖|(e, ė)|‖21 − ‖|(e− d, ė− ḋ)|‖21
∣∣ ≤ (1 + α−1)‖|(d, ḋ)|‖21 + α‖|(e− d, ė− ḋ)|‖21.

The second term of the energy is κU(ê, û) with û = Φu and ê = Φe. For the second

term in U , we get in the energy difference, with û = Φu, ê = Φe and d̂ = Φd,

1
4τ

2|κ|
∣∣∣∥∥Ψ1

(
a(û)∂2xê

)∥∥2
1
−
∥∥Ψ1

(
a(û)∂2x(ê− d̂)

)∥∥2
1

∣∣∣
≤ 1

4τ
2|κ|(1 + α−1)

∥∥Ψ1

(
a(û)∂2xd̂

)∥∥2
1

+ 1
4τ

2|κ|α
∥∥Ψ1

(
a(û)∂2x(ê− d̂)

)∥∥2
1
,

and hence, by (10), (11) and (26) with s = 0 (similarly as in (28)), we get the bound

CM (1 + α−1)‖d̂‖22 + CMα‖ê− d̂‖22 for this term. For the first term in U , we have〈
cos(τΩ)ê, a(û)∂2xê

〉
1
−
〈
cos(τΩ)(ê− d̂), a(û)∂2x(ê− d̂)

〉
1

=
〈
cos(τΩ)d̂, a(û)∂2xê

〉
1

+
〈
cos(τΩ)(ê− d̂), a(û)∂2xd̂

〉
1

=
〈
cos(τΩ)d̂, a(û)∂2xd̂

〉
1

+
〈
cos(τΩ)d̂, a(û)∂2x(ê− d̂)

〉
1

+
〈
cos(τΩ)(ê− d̂), a(û)∂2xd̂

〉
1
.

Using partial integration, (26) and (55), we get for these terms similarly as above the

bound CM (1 +α−1)‖d̂‖22 +CMα‖ê− d̂‖22. By choosing α = τ |κ|, the statement of the
lemma then follows from assumption (10).

From Lemmas 4.11 and 4.12, we get the following bound for the local error in the
form as it appears in (31).

Proposition 4.13 (Local error bound in the energy). Let the filter functions satisfy
Assumptions 1 and 2. If (u, ∂tu) is a solution to (4) in H5 ×H4 with∥∥∣∣(u(·, t), ∂tu(·, t)

)∣∣∥∥
4
≤M for tn ≤ t ≤ tn+1,

and if (un, u̇n) ∈ H2 ×H1 is a corresponding numerical solution with

‖|(un, u̇n)|‖1 ≤ 2M,

then we have∣∣E(en+1, ėn+1, un+1)− E(en+1 − dn+1, ėn+1 − ḋn+1, un+1)
∣∣

≤ CMτ5|κ|+ CMτ |κ| ‖|(en, ėn)|‖21

with the global errors (en, ėn) and (en+1, ėn+1) of (29) and the local error (dn+1, ḋn+1)
of (30).
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Proof. We apply Lemma 4.12 with (e, ė) = (en+1, ėn+1), (d, ḋ) = (dn+1, ḋn+1) and
u = un+1 in combination with Lemma 4.11. Note that ‖dn+1‖2 ≤ CM by Lemma 4.11,
‖un+1‖2 ≤ CM by Lemma 4.1 and ‖en+1‖2 ≤ CM by the assumption on the exact
solution and by the just mentioned bound on un+1. Lemmas 4.11 and 4.12 then yield
the stated estimate but with (en+1, ėn+1) − (dn+1, ḋn+1) instead of (en, ėn) on the
right-hand side. To get the final statement, we use the definitions (29) of (en+1, ėn+1)
and (30) of (dn+1, ḋn+1) and apply Lemma 4.2.

Remark 4.14. The local error bound of Lemma 4.11 is only based on the estimates
(25) and (26). As they extend to nonzero g in f and (1), also Lemma 4.11 and
Proposition 4.13 extend to this case.

4.6 Error accumulation and proof of Theorem 3.2

We proceed as outlined in Section 4.2. Considering the numerical solution (un, u̇n)
given by (7) for n = 0, 1, . . ., we set

En(e, ė) = E(e, ė, un).

We then decompose En+1(en+1, ėn+1) with the global error (en+1, ėn+1) of (29) as in
(31).

Adapting the usual inductive argument to prove global error bounds, we assume
that the numerical solution (uj , u̇j) satisfies, for j = 0, . . . , n and with the constants
M , A0 and δ of Assumption 4,

‖|(uj , u̇j)|‖1 ≤ 2M (56a)

and

1 + κ a(uj) ≥ 1
2δ and κ a(uj) ≤ A0 + 1

2δ. (56b)

This is clear for j = 0 by Assumption 4. Under these hypotheses, we will prove the
error bound of Theorem 3.2 until time tn = nτ . We will then prove that (56) also
holds for j = n+ 1 to close the inductive argument.

Under the regularity assumption (20) on the exact solution and thanks to (56a),
we get from Propositions 4.6 and 4.13∣∣Ej+1(ej+1, ėj+1)

∣∣ ≤ ∣∣Ej(ej , ėj)∣∣+ CMτ |κ| ‖|(ej , ėj)|‖21 + CMτ
5|κ|

for j = 0, . . . , n. Thanks to (56b), we can then apply Proposition 4.10 (with u = uj)
to get ∣∣Ej+1(ej+1, ėj+1)

∣∣ ≤ (1 + CMτ |κ|
)∣∣Ej(ej , ėj)∣∣+ CMτ

5|κ|

for j = 0, . . . , n. Solving this recursion in the standard way yields the error bound∣∣Ej+1(ej+1, ėj+1)
∣∣ ≤ CMτ4eCM |κ|tj+1 (57)

for j = 0, . . . , n. By applying once again Proposition 4.10, we get the global error
bound

‖|(ej+1, ėj+1)|‖21 ≤ CMτ
4eCM |κ|tj+1 , (58)

for j = 0, . . . , n− 1.
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In order to close the induction, we have to justify that (56) also holds for j = n+1.
To do so, we note that the bound on a single time step given in Lemma 4.2, the local
error bound of Lemma 4.11 and the bound (58) for j = n− 1, allow us to estimate1

‖|(en+1, ėn+1)|‖1 ≤ CM‖|(en, ėn)|‖1 + ‖|(dn, ḋn)|‖1 ≤ CM,tn+1τ
2.

This implies ‖u(·, tn+1)−un+1‖2 ≤ CM,tn+1τ
2, and hence (56a) also holds for j = n+1

by assumption (20) provided that τ is sufficiently small. It also implies ‖u(·, tn+1)−
un+1‖L∞ ≤ CM,tn+1

τ2, and hence, again for sufficiently small τ ,

‖κ a(u(·, tn+1))− κ a(un+1)‖L∞ ≤ 1
2δ.

By assumptions (21) and (22), this shows that (56b) also holds for j = n + 1. This
closes the induction and concludes the proof of Theorem 3.2.

5 Proof of the error bound for the full discretization

In this section, we study fully discrete methods (19). We first give the proof of
Theorem 3.4 on their global error. The structure of this proof is the same as for
the semi-discretization in time in Section 4. We study stability in Section 5.1 below,
control Sobolev norms with the energy in Section 5.2, estimate the local error Section
5.3 and put everything together in Section 5.4. All arguments are extensions to the
fully discrete setting of the arguments of Section 4, which illustrates the importance
of proving such semi-discrete error bounds first.

Throughout, we use, for s ≥ s′ ≥ 0, the approximation property∥∥v − PK(v)
∥∥
s′
≤ K−(s−s

′)‖v‖s for v ∈ Hs (59)

of the L2-orthogonal projection PK of (16), and its stability∥∥PK(v)
∥∥
s
≤ ‖v‖s for v ∈ Hs. (60)

In addition, we use, for s ≥ s′ ≥ 0 with s− s′ > 1
2 , the approximation property∥∥v − IK(v)

∥∥
s′
≤ Cs,s′K−(s−s

′)‖v‖s for v ∈ Hs (61)

of the trigonometric interpolation IK , and its stability∥∥IK(v)
∥∥
s
≤ Cs‖v‖s for v ∈ Hs. (62)

We emphasize that all estimates in the following are uniform in the spatial dis-
cretization parameter K.

5.1 Stability of the numerical method

Our aim is to show that the stability estimates of Section 4.3 carry over to the fully
discrete situation.

Starting with the definition of the energy E of (32), we define its fully discrete
version

EK(e, ė, u) = ‖|(e, ė)|‖21 + κUK(Φe,Φu) (63)

1Note that this estimate is not a proof of (58) for j = n, because then the constants would explode.
Instead, it is only used to justify (56) for j = n+ 1.
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with

UK(e, u) =
〈
cos(τΩ)∂2xe,PK

(
aK(u)∂2xe

)〉
0
− 1

4τ
2κ
∥∥Ψ1PK

(
aK(u)∂2xe

)∥∥2
1
. (64)

The difference compared to the E of (32) are the additional projections PK and the
functions aK = IK ◦ a instead of a.

The computation of Lemma 4.4 directly transfer to the new energy (63) of the fully
discrete setting if we use that Ψ1 and PK commute and if we replace the function f
by PK ◦ fK , where fK is defined in (18).

In order to transfer the bound of the remainder term of Lemma 4.5 to the fully
discrete setting, we use the bounds (60) and (62) on PK and IK (to estimate aK =
IK ◦ a, which appears in fK) and in addition the property〈

vK ,PK(w)
〉
s

=
〈
vK , w

〉
s

for vK ∈ VK , w ∈ Hs (65)

with s = 1. This property is needed for the symmetry argument and the partial
integrations in the proof of Lemma 4.5.2

From the fully discrete versions of Lemmas 4.4 and 4.5, we finally get the stability
estimate of Proposition 4.6 also in the fully discrete setting for EK .

5.2 Controlling Sobolev norms with the energy

We show that the bounds on the energy E of Proposition 4.10 carry over to the fully
discrete setting and the corresponding energy EK of (63).

For the upper bound in (49), we proceed as in the proof of Proposition 4.10 and
use in addition (60) and (62) to deal with the additional PK and IK (in aK = IK ◦a).

For the lower bound in (49), we use that we have by (11), (60) and (65) with s = 0

κUK(Φe,Φu) ≥ κ
〈
cos(τΩ)∂2xΦe, aK(Φu)∂2xΦe

〉
0
− 1

4τ
2κ2
∥∥Ψ1

(
aK(Φu)∂2xΦe

)∥∥2
1

=
〈
LK(Φu)∂2xe, ∂

2
xe
〉
0

for a trigonometric polynomial e (note that, in comparison to (64), the projections
PK are absent on the right) with

LK(u) = κΦaK(u) cos(τΩ)Φ− 1
4κ

2ΦaK(u) sin2(τΩ)Φ2aK(u)Φ.

The operator LK is the same as the operator L of Section 5.2, except that a is replaced
by aK = IK ◦a. To obtain the lower bound in (49), we can thus proceed exactly as in
the proof of Proposition 4.10 if we replace a by aK in the statement of this proposition
and restrict to trigonometric polynomials e.

5.3 Local error bound

The main difference compared to the semi-discrete setting arises in the local error
bound of Section 4.5, which now has to take also the spatial error into account. We
denote here and in the following by

uK(·, t) = PK
(
u(·, t)

)
, ∂tu

K(·, t) = PK
(
∂tu(·, t)

)
(66)

the L2-orthogonal projection of the exact solution onto VK .

2It is not immediately clear, whether these steps can also be done if the (traditional) trigonometric

interpolation is used instead of the projection PK to define f̂K in the fully discrete method.
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Lemma 5.1 (Local error bound in H2 ×H1). Let s ≥ 0, and let the filter functions
satisfy Assumptions 1 and 2. If (u, ∂tu) is a solution to (1) in H5+s ×H4+s with∥∥∣∣(u(·, t), ∂tu(·, t)

)∣∣∥∥
4+s
≤M for tn ≤ t ≤ tn+1,

then we have ∥∥∣∣(dKn+1, ḋ
K
n+1

)∣∣∥∥
1
≤ CMτ3|κ|+ CMτK

−2−s|κ|

for the fully discrete local error(
dKn+1, ḋ

K
n+1

)
= ϕKτ

(
uK(·, tn), ∂tu

K(·, tn)
)
−
(
uK(·, tn+1), ∂tu

K(·, tn+1)
)

with the fully discrete numerical flow ϕKτ .

Proof. The proof is similar to the one of Lemma 4.11. We restrict again to the case
n = 0. Writing f̃K = PK ◦ f , we start from the fully discrete analog(

uK1 − uK(·, τ)
u̇K1 − ∂tuK(·, τ)

)
= 1

2τκR(τ)

(
0

f̂K(u0)− f̃K(u0)

)
+ 1

2τκ

(
0

f̂K(uK1 )− f̃K(uK1 )

)
+ 1

2τκR(τ)

(
0

f̂K(uK0 )− f̂K(u0)

)
+ 1

2τκ

(
0

f̃K(uK1 )− f̃K(u(·, τ))

)
+ 1

2τκ

(
R(τ)

(
0

f̃K(u0)

)
+R(0)

(
0

f̃K(u(·, τ))

))
− κ

∫ τ

0

R(τ − t)
(

0

f̃K(u(·, t))

)
dt

of the local error representation (50). In the derivation of this representation, we have
used that PK and the four components of R commute. The contributions to the local
error can be estimated similarly as in the proof of Lemma 4.11 using in addition the
properties (59)–(62) of PK and IK and the assumed regularity of the exact solution.

(a) In the terms of the first line, we decompose f̂K − f̃K = (f̂K − PK ◦ fK) +

PK ◦ (fK − f). For the terms with f̂K −PK ◦ fK (which correspond to (50a)), we get
an estimate CMτ

3|κ| in H2 ×H1 and CMτ
2|κ| in H3 ×H2 as in the proof of Lemma

4.11. For the terms with PK ◦ (fK − f), we use in particular (61) in addition to the
arguments of the proof of Lemma 4.11 to get an estimate CMτK

−4−s|κ| in H2 ×H1

and CMτK
−3−s|κ| in H3 ×H2.

(b) For the terms in the third line (which correspond to (50c)), we get as in the
proof of Lemma 4.11 an estimate CMτ

3|κ| in H2 ×H1 and CMτ
2|κ| in H3 ×H2.

(c) For the new first term in the second line, we get an estimate CMτK
−2−s|κ| in

H2 ×H1 and, using the properties (10) and (11) of the filters as in (28), an estimate
CMK

−2−s|κ| in H3 ×H2. The second term in the second line corresponds to (50b)
and can then be dealt with as in the proof of Lemma 4.11.

Based on Lemma 5.1, we can then prove a corresponding local error bound in the
energy as in Proposition 4.13.

5.4 Proof of Theorem 3.4

The error accumulation is done as in Section 4.6, but with the exact solution replaced
by its projection (66). Note that we need (56b) for aK = IK ◦ a instead of a; we
use (59) and (61) to deal with that. This gives a the claimed global error bound of
Theorem 3.4, but with u replaced by uK = PK ◦ u in the error estimate. We then use
once more (59) to get the precise error estimate of Theorem 3.4.

27



A Semiclassical pseudodifferential calculus

In this section we shall recall the basic results about pseudodifferential calculus that
were needed in our proof. The presentation follows closely [20, Section 8]. We shall
use the Fourier transform on the torus defined by

ûj = (Fxu)(j) =
1

2π

∫ π

−π
u(x)e−ijx dx.

We consider symbols a(x, ξ) (not to be confused with the function a in (1)) defined
on T× R that are continuous in ξ, and we use the quantization

(Opa u)(x) =
∑
j∈Z

a(x, j)ûje
ijx. (67)

We introduce for σ ≥ 0 the following seminorms of symbols:

|a|σ,0 = sup
|α|≤σ

∥∥Fx(∂αx a)
∥∥
L2
j (Z,L∞

ξ (R)), |a|σ,1 = sup
|α|≤σ

∥∥Fx(∂αx ∂ξa)
∥∥
L2
j (Z,L∞

ξ (R)).

Note that ∥∥Fx(∂αx a)
∥∥2
L2
j (Z,L∞

ξ (R)) =
∑
j∈Z

∥∥(ij)αâj
∥∥2
L∞(R)

with the Fourier coefficients

âj(ξ) = (Fxa)(j, ξ), j ∈ Z, ξ ∈ R, (68)

of a, and similarly ∥∥Fx(∂αx ∂ξa)
∥∥2
L2
j (Z,L∞

ξ (R)) =
∑
j∈Z

∥∥(ij)αâ′j
∥∥2
L∞(R)

with â′j = d
dξ âj = (̂∂ξa)j = (Fx∂ξa)(j, ξ). We shall say that a ∈ Sσ,0 if |a|σ,0 <∞ and

a ∈ Sσ,1 if |a|σ,1 <∞. The use of these seminorms compared to some more classical
ones allows us to avoid to lose too many derivatives while keeping very simple proofs.
Note that we can easily relate |a|σ,0 to more classical symbol seminorms up to losing
more derivatives. For example, we have for every σ ≥ 0

sup
|α|≤σ

sup
x∈T, ξ∈R

|∂αx a(x, ξ)| ≤ C|a|σ+s,0

with s > 1
2 . The lower bound of 1

2 is related to the Sobolev embedding Hs ↪→ L∞

in 1d and should be generalized to d
2 for higher dimensional generalizations of our

arguments here.
Writing a symbol a(x, ξ) as a Fourier series with respect to its first variable x,

a(x, ξ) =
∑
j∈Z

âj(ξ)e
ijx

with Fourier coefficients (68), the quantization (67) takes (formally) the form

(Opa u)(x) =
∑
l∈Z

(∑
k∈Z

âl−k(k)ûk

)
eilx. (69)
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Its L2(T)-norm (which we denote in this appendix by ‖·‖L2(T) to avoid confusion with
the other norms appearing here) is given by

‖Opa u‖2L2(T) =
∑
l∈Z

∣∣∣∣∑
k∈Z

âl−k(k)ûk

∣∣∣∣2 ≤∑
l∈Z

∣∣∣∣∑
k∈Z
‖âl−k‖L∞(R)|ûk|

∣∣∣∣2.
Noting that the upper bound on the right is the squared L2(T)-norm of the product
of the functions with Fourier coefficients ‖âk‖L∞(R) and |ûk|, we get from (3a) the
following L2 continuity result.

Proposition A.1. Assume that σ > 1
2 . Then, there exists C > 0 such that for every

a ∈ Sσ,0 and for every u ∈ L2(T), we have Opa u ∈ L2(T) with

‖Opa u‖L2(T) ≤ C|a|σ,0‖u‖L2(T).

For a very similar result, we refer to [20, Proposition 8.1] which slightly refines
in terms of the regularity of the symbols, the classical results of L2 continuity for
symbols in S0

0,0 that are compactly supported in x, see for example [30].
We shall now state results of symbolic calculus, see also [20, Proposition 8.2].

Proposition A.2. Assume that σ > 1
2 . Then, there exists C > 0 such that for every

a ∈ Sσ+1,1, we have∥∥(Opa)∗(u)−Opa(u)
∥∥
L2(T) ≤ C|a|σ+1,1|u|L2(T), (70)

where (Opa)∗ is the adjoint of the operator Opa for the L2(T) scalar product. Moreover,
we have for every a ∈ Sσ,1 and b ∈ Sσ+1,0 that ab ∈ Sσ,0 and∥∥Opa Opb(u)−Opab(u)

∥∥
L2(T) ≤ C|a|σ,1|b|σ+1,0 ‖u‖L2(T). (71)

Proof. Let us first prove (70). We start by computing a symbol c with

Op∗a = Opc .

Using that, by (69),∑
l∈Z

âl−j(j)ûl =
〈
Opa eijx, u

〉
L2(T) =

〈
eijx,Opc u

〉
L2(T) =

∑
l∈Z

ĉj−l(l)ûl,

we define such a symbol c by

ĉj(ξ) = â−j(ξ + j), j ∈ Z, ξ ∈ R.

Assuming that a ∈ Sσ,0, we thus also have that c ∈ Sσ,0 with |c|σ,0 = |a|σ,0. Next, by
Taylor expansion, we can write

d(x, ξ) := c(x, ξ)− a(x, ξ) =
∑
j∈Z

∫ 1

0

j â′−j(ξ + sj) ds eijx.

We shall prove that |d|σ,0 ≤ |a|σ+1,1 and the result will follow from Proposition A.1.
This estimate follows from

(ij)αd̂j(ξ) = (ij)α
∫ 1

0

j â′−j(ξ + sj) ds = −i

∫ 1

0

(−ij)α+1â′−j(ξ + sj) ds,
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which implies ‖(ij)αd̂j‖L∞(R) ≤ ‖(−ij)α+1â′−j‖L∞(R), and ends the proof of (70).

Let us now prove (71). We first observe that for σ > 1
2 and a ∈ Sσ,0, b ∈ Sσ,0, we

have by (3a) (applied with functions u and v with Fourier coefficients ûj = ‖âj‖L∞(R)

and v̂j = ‖b̂j‖L∞(R)) that
|ab|σ,0 ≤ C|a|σ,0|b|σ,0, (72)

and thus that ab ∈ Sσ,0.
Next, we compute a symbol e with

Opa Opb = Ope .

Such a symbol is obtained by writing Opb as in (69) and Opa as in (67), which yields

e(x, ξ) =
∑
j∈Z

a(x, ξ + j)b̂j(ξ)e
ijx.

We then get that

f(x, ξ) := e(x, ξ)− a(x, ξ)b(x, ξ) =
∑
j∈Z

∫ 1

0

∂ξa(x, ξ + sj) ds j b̂j(ξ)e
ijx.

We next estimate a suitable seminorm of the symbol f to apply Proposition A.1. By
taking the Fourier transform in x, we obtain that

(il)αf̂l(ξ) = (il)α
∑
k∈Z

∫ 1

0

â′l−k(ξ + sk) ds k b̂k(ξ).

We thus have for α ≥ 0∥∥(il)αf̂l
∥∥
L∞(R) ≤ |l|

α
∑
k∈Z

∥∥â′l−k∥∥L∞(R)

∥∥(ik)b̂k
∥∥
L∞(R),

from which we obtain for σ > 1
2 by (3a) that

|f |σ,0 ≤ C|a|σ,1|b|σ+1,0.

Since by definition of f , we have Opa Opb−Opab = Opf , the result follows from
Proposition A.1.

We shall next define a semiclassical version of the above calculus which is the one
of interest for us. For any symbol a(x, ξ) as above, we set for 0 < τ ≤ 1

aτ (x, ξ) = a(x, τξ)

and we define
Opτa u = Opaτ u.

For this calculus, we have the following result, see also [20, Proposition 8.3].

Proposition A.3. Assume that σ > 1
2 . Then, there exists C > 0 such that for every

0 < τ ≤ 1, we have

• for every a ∈ Sσ,0 ∥∥Opτa u
∥∥
L2(T) ≤ C|a|σ,0‖u‖L2(T),
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• for every a ∈ Sσ,1 and for every b ∈ Sσ+1,0∥∥Opτa Opτb (u)−Opτab(u)
∥∥
L2(T) ≤ Cτ |a|σ,1|b|σ+1,0 ‖u‖L2(T)

• for every a ∈ Sσ+1,1∥∥(Opτa)∗(u)−Opτa(u)
∥∥
L2(T) ≤ Cτ |a|σ+1,1 ‖u‖L2(T).

Proof. The results are direct consequences of Propositions A.1 and A.2 since for any
symbol a, we have by definition of aτ that |aτ |σ,0 = |a|σ,0 and |aτ |σ,1 = τ |a|σ,1.

Let us finally state the semiclassical G̊arding inequality.

Proposition A.4. Assume that σ > 1
2 . For a ∈ Sσ+1,0 ∩ Sσ+1,1 assume further that

there exists δ > 0 such that

a(x, ξ) ≥ δ for all x ∈ T, ξ ∈ R.

Then, there exists C > 0 which depends only on |a|σ+1,0, |a|σ+1,1 and δ such that

〈Opτa u, u〉L2(T) ≥ 1
2δ‖u‖

2
L2(T) − Cτ‖u‖

2
L2(T) for all 0 < τ ≤ 1.

Proof. We can write that

a(x, ξ) = 1
2δ + b(x, ξ)2, b(x, ξ) =

(
a(x, ξ)− 1

2δ
)1/2

.

We will show below that, since a ≥ δ > 0, we also have that b ∈ Sσ+1,0 ∩ Sσ+1,1 with

|b|σ+1,0 ≤ C and |b|σ+1,1 ≤ C, (73)

where C depends only on |a|σ+1,0, |a|σ+1,1 and δ. By using Proposition A.3, we thus
get that

Opτa = 1
2δ + (Opτb )∗Opτb +Rτ

with
‖Rτu‖L2(T) ≤ Cτ‖u‖L2(T).

The result follows easily.
It remains to show (73). We restrict here to σ = 1, which is the value of σ that

is needed in Section 4. The proof for other values of σ is similar, but with longer
formulas. In the following, we write

F (y) =
(
y − 1

2δ
)1/2

,

such that b(x, ξ) = F (a(x, ξ)) and we observe that F is a smooth function on [δ,+∞[.
For the first estimate of (73), we start from

|b|2,0 ≤ |F (a)|0,0 +
∣∣∂2xF (a)

∣∣
0,0
≤ |F (a)|0,0 +

∣∣F ′(a)∂2xa
∣∣
0,0

+
∣∣F ′′(a)(∂xa)2

∣∣
0,0
.

To estimate the products further, we use the estimate |cd|0,0 ≤ |c|0,0|d|1,0, which
follows from (3a) in the same way as (72). This yields

|b|2,0 ≤ |F (a)|0,0 + |F ′(a)|1,0|∂2xa|0,0 + |F ′′(a)|1,0|∂xa|1,0|∂xa|0,0. (74)
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To finish the proof, we just need to explain how to estimate |G(a)|1,0 for some smooth
G which is smooth on the image of a. We start from

|G(a)|1,0 ≤
∥∥Fx((1 + ∂x)G(a)

)∥∥
L2
j (Z,L∞

ξ (R)) ≤ C
∥∥Fx((1− ∂2x)G(a)

)∥∥
L∞
j (Z,L∞

ξ (R))

≤ C
∥∥Fx((1− ∂2x)G(a)

)∥∥
L∞
ξ (R,L2

j (Z))
= C‖G(a)‖L∞

ξ (R,H2
x(T)),

where the second estimate follows from∑
j∈Z

∥∥(Fx(1 + ∂x)G(a)
)
(j)
∥∥2
L∞
ξ (R) =

∑
j∈Z

1 + j2

(1 + j2)2
∥∥(Fx(1− ∂2x)G(a)

)
(j)
∥∥2
L∞
ξ (R)

≤
(∑
j∈Z

1

1 + j2

)
sup
j∈Z

∥∥(Fx(1− ∂2x)G(a)
)
(j)
∥∥2
L∞
ξ (R),

and the third estimate follows from interchanging the two L∞-norms and estimating
the L∞j (Z)-norm by the L2

j (Z)-norm.
Next, we can use (3b) to get that for every ξ,

‖G(a)‖H2
x(T) ≤ Λ(‖a‖H2

x(T)))(1 + ‖a‖H2
x(T))

where Λ(·) stands again for a continuous non-decreasing function that can change
from line to line as a stand in for the dependence upon the algebra of the calculus
established here. Therefore we finally obtain that

‖G(a)‖L∞
ξ (R,H2

x(T)) ≤ Λ(‖a‖L∞
ξ (R,H2

x(T)))(1 + ‖a‖L∞
ξ (R,H2

x(T))) ≤ Λ(|a|2,0).

Using this estimate and the above estimate of |G(a)|1,0 in (74) completes the proof of
the first estimate of (73). The proof of the second estimate of (73) is very similar.
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[25] B. Kovács, C. Lubich, Stability and convergence of time discretizations of quasi-linear
evolution equations of Kato type, Numer. Math. (2017), doi:10.1007/s00211-017-0909-3.

[26] P.-L. Lions, B. Perthame, and E. Tadmor, Kinetic formulation of the isentropic gas
dynamics and p-system. Comm. Math. Phys. 163 (1994), 415–431.

[27] J. Lu, J. L. Marzuola, Strang splitting methods for a quasilinear Schrödinger equation:
convergence, instability, and dynamics, Commun. Math. Sci. 13 (2015), 1051–1074.

33



[28] C. Lubich, A. Ostermann, Runge-Kutta approximation of quasi-linear parabolic
equations, Math. Comp. 64 (1995), 601–627.

[29] C. D. Sogge, Lectures on non-linear wave equations, International Press Boston, 1995.

[30] M. E. Taylor, Pseudodifferential operators, vol. 34 of Princeton Mathematical Series,
Princeton University Press, 1981.

[31] M. E. Taylor, Pseudodifferential operators and nonlinear PDE, vol. 100 of Progress in
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