## Publications

The global Cauchy problem for the NLS with higher order anisotropic dispersion. Glasgow Math. J., 1–9, December 2019. URL https://doi.org/10.1017/S0017089519000491. Online first. . [preprint]

Knocking out teeth in one-dimensional periodic nonlinear Schrödinger equation. SIAM J. Math. Anal., 51(5):3714–3749, September 2019. URL https://doi.org/10.1137/19M1249679. . [preprint]

Nonlinear Schrödinger equation, differentiation by parts and modulation spaces. J. Evol. Equ., 19(3):803–843, September 2019. URL https://doi.org/10.1007/s00028-019-00501-z. . [preprint]

NLS in the modulation space $M_{2,q}(\mathbb{R})$. J. Fourier Anal. Appl., 25(4):1447–1486, August 2019. URL https://doi.org/10.1007/s00041-018-09655-9. . [preprint]

Modulation type spaces for generators of polynomially bounded groups and Schrödinger equations. Semigroup Forum, 98(3):645–668, June 2019. URL https://doi.org/10.1007/s00233-019-10016-1. . [preprint]

On the existence of global solutions of the one-dimensional cubic NLS for initial data in the modulation space $M_{p,q}(\Bbb R)$. J. Differential Equations, 263(8):4429–4441, October 2017. URL https://doi.org/10.1016/j.jde.2017.04.020. . [preprint]

## Preprints

Local well-posedness for the nonlinear Schrödinger equation in the intersection of modulation spaces $M^s_{p,q}(\mathbb{R}^d)\cap M_{\infty,1}(\mathbb{R}^d)$. CRC 1173 Preprint 2019/27, Karlsruhe Institute of Technology, December 2019. .

Unconditional uniqueness of higher order nonlinear Schrödinger equations. CRC 1173 Preprint 2019/22, Karlsruhe Institute of Technology, November 2019. Revised version from December 2019. .

On the global wellposedness of the Klein–Gordon equation for initial data in modulation spaces. CRC 1173 Preprint 2019/18, Karlsruhe Institute of Technology, October 2019. .

On the global well-posedness of the quadratic NLS on $L^2(\mathbb{R})+H^1(\mathbb{T})$. CRC 1173 Preprint 2019/9, Karlsruhe Institute of Technology, April 2019. Revised version from October 2019. .

## Theses

*Modulation spaces and nonlinear Schrödinger equationscs*. PhD thesis, Karlsruhe Institute of Technology (KIT), September 2018. .

## Other references

Poincaré–Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS. Commun. Math. Phys., 322(1):19–48, August 2013. URL https://doi.org/10.1007/s00220-013-1755-5. .

On the global well-posedness for the linear Schrödinger equations with large initial data of infinite $L^2$ norm. Nonlinear Anal., 74(4):1304–1319, 2011. URL https://doi.org/10.1016/j.na.2010.10.003. .