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STABILITY AND DYNAMICS OF PLANAR FRONTS IN
REACTION-DIFFUSION SYSTEMS UNDER NONLOCALIZED

PERTURBATIONS

BJÖRN DE RIJK AND JORIS VAN WINDEN

Abstract. We analyze the stability and dynamics of bistable planar fronts in multicom-
ponent reaction-diffusion systems on Rd. Under standard spectral stability assumptions,
we establish Lyapunov stability of the front against fully nonlocalized perturbations.
Such perturbations could previously be treated only for scalar equations via comparison
principles. We also prove that the leading-order dynamics of the perturbed front are
governed by a modulation that tracks the motion of the front interface and evolves
according to a viscous Hamilton–Jacobi equation. This effective description reveals that
asymptotic orbital stability does not hold in general. However, asymptotic stability can
be recovered by imposing localization of perturbations in the transverse spatial directions.
The treatment of nonlocalized perturbations on Rd poses significant challenges, both
at the linear and nonlinear level. At the linear level, the neutral translational mode
gives rise to continuous spectrum which touches the origin and cannot be projected
out by conventional means, resulting in merely algebraic decay rates for the residual.
Our linear estimates are necessarily L∞-based, yielding significantly weaker decay rates
than those available for Lp-localized perturbations. At the nonlinear level, quadratic
gradient terms decay at a critical rate and cannot be treated perturbatively. We overcome
these challenges by carefully decomposing the linearized dynamics, blending semigroup
methods with ideas from the stability analysis of viscous shock waves, and introducing a
novel nonlinear tracking scheme that combines spatiotemporal modulation with forcing
techniques and the Cole–Hopf transform.

1. Introduction

Let d, n ∈ N with d ≥ 2. We consider multidimensional reaction-diffusion systems of
the form

∂tu = D∆u+ f(u), (t, x) ∈ [0,∞)× Rd, (1.1a)

u(0, x) = u0(x), x ∈ Rd, (1.1b)

where u(t, x) ∈ Rn, f : Rn → Rn is a smooth nonlinearity, D ∈ Rn×n is a symmetric
positive-definite matrix, ∆ is the d-dimensional Laplacian, and u0 : Rd → Rn is bounded
and uniformly continuous. We are interested in the stability of planar traveling fronts
against fully nonlocalized perturbations. Planar traveling fronts are solutions to (1.1a) of
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the form

utf(t, y, z) = ϕ(z − ct), (1.2)

with wave speed c ∈ R and smooth profile ϕ : R → Rn connecting asymptotic end states
ϕ± = limζ→±∞ ϕ(ζ). Here we decompose x ∈ Rd as x = (y, z) with y ∈ Rd−1 and z ∈ R,
referring to y and z as the transverse and longitudinal/horizontal directions, respectively.
We emphasize that, since we allow ϕ+ = ϕ−, the class of solutions under consideration
includes pulses as well as genuine fronts.

Our main results may be informally summarized as follows.

Main results (informal summary). Let utf be a solution to (1.1a) of the form (1.2).
Under natural spectral stability assumptions, the following statements hold:

• utf is Lyapunov stable against Cub-perturbations, but asymptotic orbital stability
does not hold.

• utf is asymptotically stable against Cub-perturbations which decay, no matter how
slowly, as |y| → ∞.

• Any solution u to (1.1a) which starts near utf (in the supremum norm) satisfies

u(t, y, z) ≈ utf(t, y, z − σ(t, y))

to leading order, where σ evolves according to the viscous Hamilton–Jacobi equation

∂tσ = d⊥∆yσ + 1
2
c |∇σ|2 (1.3)

with viscosity coefficient d⊥ > 0.

Precise mathematical formulations of the hypotheses and results are stated in Sections 1.3
and 1.4, respectively. The viscosity coefficient d⊥ as well as the appropriate initial condition
for (1.3) can be computed from the adjoint zero eigenfunction of the one-dimensional
linearization of (1.1a) about utf ; see (1.12) and (1.18) ahead.

1.1. Existing results. The stability theory of traveling-front solutions to (1.1a) in one
spatial dimension (d = 1) is by now classical; we refer to the seminal work of Sattinger [35]
and to the textbooks [16, 24] for further references. In the bistable case, where the spectra
of the linearizations of (1.1a) about both asymptotic states ϕ± lie in the open left-half
plane, the linearization about the front exhibits a spectral gap separating the translational
eigenvalue at 0 from the remainder of the spectrum. Exploiting the spectral gap to isolate
the neutral translational mode, it follows that spectral stability implies asymptotic orbital
stability : solutions starting sufficiently close to ϕ converge to a spatial translate of the
traveling front. In addition, solutions starting sufficiently close to ϕ remain close to the
traveling front itself, i.e., it is Lyapunov stable. The above statements hold true for many
natural function spaces, and in particular for Cub(R). As such, stability holds without any
spatial localization assumptions on initial data. This was already observed by Sattinger,
cf. [35, § 8], and later confirmed by Fife and McLeod [11].
In the multidimensional setting d ≥ 2, the stability theory of traveling-front solutions

to (1.1a) becomes significantly more delicate. The main difficulty is that invariance of
the planar front in the transverse directions renders the spectrum of the linearization
about ϕ continuous, thereby precluding a spectral gap as in one dimension. Nevertheless,
after pioneering results of Jones, Levermore, and Xin [22, 27, 40] who treated the scalar
case (n = 1) using comparison principles, Kapitula [23] established asymptotic stability
of bistable planar fronts in multicomponent reaction-diffusion systems against localized
perturbations, in the special case where D = I. The analysis in [23] exploits that the
leading-order dynamics are governed by the neutral translational mode in the longitudinal
z-direction, combined with diffusive behavior in the transverse directions. In particular,
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these transverse diffusive effects enforce pointwise decay of L2-localized data at algebraic
rate t−(d−1)/4.
This localization requirement on initial perturbations is not entirely satisfactory for

several reasons. Not only does it exclude initial perturbations corresponding to a spatial
translation of the front, but it also prevents certain interesting dynamics of the perturbed
front from being observed. For the Allen–Cahn equation, which is a special case of (1.1)
with n = 1, such a phenomenon is clearly illustrated in [29, 30]; see also [33]. There it is
shown that a bistable planar front is Lyapunov stable but not asymptotically orbitally
stable against nonlocalized perturbations: unlike the one-dimensional case described in [11,
35], the front interface may undergo persistent oscillations without ever settling to a steady
translate.

In the proofs in [29, 30, 33], sub- and supersolutions of the form u(t, y, z) = ϕ(z − ct−
σ(t, y)) are constructed, where σ : [0,∞)×Rd−1 → R satisfies the viscous Hamilton–Jacobi
equation

∂tσ = ∆yσ + 1
2
c|∇σ|2,

which is exactly (1.3) with d⊥ = 1. In the multicomponent case (n ≥ 2), comparison
principles do not apply and there is little hope to adapt the proofs of [29, 30, 33]. As such,
the question of whether bistable planar fronts are stable against nonlocalized perturbations
when d ≥ 2 and n ≥ 2 has remained open until now. We emphasize that the analysis
in [23] does not resolve this question, since stability with respect to localized perturbations
does, in general, not imply stability against nonlocalized perturbations; see Remark 1.1.
Moreover, [23] restricts to D = I, a special case that significantly simplifies the linear
stability analysis and provides decay rates faster than those expected in the general case;
see Remark 3.3 ahead. We will spend considerable effort proving linear estimates which
lift this restriction.

The contribution of this article is thus to generalize the results of [29, 30, 33] to general
multicomponent reaction-diffusion systems, under natural spectral stability assumptions.
First, we show that solutions to (1.1) which start close to a bistable planar front ϕ in the
supremum norm remain close and converge to a profile of the form ϕ(z − ct − σ(t, y)).
We obtain algebraic decay rates of ∇σ and u(t, y, z) − ϕ(z − ct − σ(t, y)) with optimal
exponents. Moreover, we show that the leading-order behavior of σ is captured by the
viscous Hamilton–Jacobi equation (1.3). Using (1.3) as an effective description of the
front interface, we then recover and extend results of [30] to the multicomponent case and
construct an infinitely oscillating wave front, implying that asymptotic orbital stability does
not hold in general. Finally, we show that asymptotic stability as in [23] can be recovered
for perturbations which decay at spatial infinity (but are not necessarily Lp-localized for
any p <∞).

1.2. Method of proof. Our proof uses recent ideas from the nonlinear stability theory
of periodic traveling-wave solutions to reaction-diffusion systems in one space dimension.
Despite the difference in the number of spatial dimensions, this setting is conceptually
closely related to ours. In particular, both contexts feature diffusive spectrum touching
the origin, and in both cases stability was first shown against localized perturbations.
More strikingly, the modulation of a one-dimensional periodic wave and the interface
motion of a two-dimensional planar front are both governed by the exact same viscous
Hamilton–Jacobi equation, albeit with different coefficients.
In the periodic-wave setting, substantial effort has been devoted to gradually relaxing

localization assumptions on admissible perturbations, ultimately leading to a nonlinear
stability theory for fully nonlocalized Cub-perturbations; see [32] and references therein.
The nonlinear analysis in [32] inspired ours in a significant way. General similarities include
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the use of an inverse-modulated perturbation and the Cole–Hopf transform to handle the
critical term |∇σ|2 in a nonperturbative manner. Key differences are that we treat d ≥ 2
as opposed to d = 1, and adopt a distinct tracking scheme. Specifically, in our nonlinear
analysis the modulation σ(t, y) of the front interface arises as a solution to the forced
viscous Hamilton–Jacobi equation

∂tσ = d⊥∆yσ + 1
2
c |∇σ|2 − g,

σ(0) = 0,
(1.4)

where the forcing g is chosen a posteriori so as to cancel the slowest-decaying contributions
in the equation for the modulated perturbation. This construction avoids the quasilinear
terms that appear in the σ-equation in [32] and simplifies regularity control in the nonlinear
iteration argument. In addition, we note that our setting yields a geometric interpretation
of the nonlinear term |∇σ|2, which is not available in the one-dimensional periodic case.
This interpretation is explained in Section 1.5 ahead.

Our linear stability analysis is significantly more delicate than the one in [23], mainly for
the reason that we allow diffusion matrices D which are not scalar multiples of the identity.
This situation is highly relevant for applications as it is typical in reaction-diffusion models
from biology, ecology, chemistry, and physics that distinct species diffuse at different
rates and cross-diffusion terms occur. To handle general positive-definite matrices D, we
employ an approach inspired by the pointwise Green’s function analysis in [18], which was
developed for the stability theory of planar shock waves in systems of viscous conservation
laws [17]. The main idea is to write the semigroup generated by the linearization in its
(transverse) Fourier representation, and use Cauchy’s theorem to analytically continue
the frequency variable into the complex plane in a way which depends on (y − ỹ)/t. By
distinguishing between the off-diagonal (|y − ỹ|/t ≫ 1) and on-diagonal (|y − ỹ|/t ≲ 1)
regimes and carefully balancing exponential decay/growth in time, space, and frequency
against each other, we are able to split off the principal part of the semigroup and obtain
L∞-bounds on the remainder which decay at the optimal algebraic rate t−1. In contrast
to the analysis in [18], which hinges on contour deformations in the inverse Laplace
representation and pointwise estimates on the resolvent kernel, our approach relies on
standard semigroup theory and elementary perturbative arguments to bound the linear
evolution in Fourier space.

Altogether, we view our results as a meaningful step toward establishing multidimensional
stability of planar periodic waves against Cub-perturbations, as conjectured in [32, §6.5].

Remark 1.1. To illustrate that stability of planar fronts with respect to localized pertur-
bations does not, in general, extend to nonlocalized perturbations, let us consider the
one-dimensional Burgers’ equation

∂tu = ν∂zzu− 1
2
∂z
(
u2
)
, u(t, z) ∈ R, t ≥ 0, z ∈ R, (1.5)

with viscosity parameter ν > 0. For each ϕ± ∈ R with ϕ− > ϕ+, equation (1.5) admits a
planar traveling-front solution utf(t, z) = Φϕ−,ϕ+(z − ct). This front propagates with speed
c = (ϕ+ + ϕ−)/2 and has the profile

Φϕ−,ϕ+(ζ) =
ϕ+ + ϕ−

2
+
ϕ+ − ϕ−

2
tanh

(
ϕ− − ϕ+

4ν
ζ

)
,

which connects the asymptotic states ϕ− and ϕ+. The spatially constant states ϕ± are
only diffusively stable as solutions to the conservation law (1.5). Specifically, they are
asymptotically stable against L1-localized perturbations with pointwise diffusive decay
rate t−

1
2 . Moreover, the comparison principle implies that ϕ± are Lyapunov stable against

nonlocalized perturbations from Cub(R).
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The front solution utf(t, z) to (1.5) is stable with respect to localized perturbations [19],
and this stability persists in multiple spatial dimensions [12, 17]. In contrast, the front is
unstable against nonlocalized perturbations. This becomes apparent by considering the
traveling-front solution uε(t, z) = Φϕ−+ε,ϕ+(z − st) to (1.5), which propagates with speed
s = c+ ε/2 for ε > 0. While ∥uε(0)− utf(0)∥∞ → 0 as ε ↓ 0, we have

lim sup
t→∞

∥uε(t)− utf(t)∥∞ ≥ ϕ− − ϕ+

for ε > 0, which precludes Lyapunov stability. In particular, we conclude that diffusively
stable end states are insufficient to ensure stability against nonlocalized perturbations.

Remark 1.2. Our main results and hypotheses are invariant when substituting u 7→ Au
in (1.1) for any invertible matrix A. Thus, if D is merely real diagonalizable, we can
reduce to the case where D is diagonal by such a substitution. Still, we emphasize that
extending from the case D = I (as treated in [23]) to the case of diagonal D is highly
nontrivial, cf. Remark 3.3.

1.3. Assumptions. We formulate the hypotheses for our main results. The first hypothesis
concerns the existence of a planar traveling front.

Hypothesis 1 (Existence of planar front). There exist a speed c ∈ R and asymptotic end
states ϕ−, ϕ+ ∈ Rn such that (1.1a) admits a planar front solution utf(t, y, z) = ϕ(z − ct),
where the profile function ϕ : R → Rn is smooth and satisfies limζ→±∞ ϕ(ζ) = ϕ±.

By passing to the co-moving frame z 7→ z− ct, we find that ϕ is a stationary solution to

∂tu = D∆u+ c∂zu+ f(u). (1.6)

In the case where d = 1, the linearization of (1.6) about ϕ is given by the closed and
densely defined operator

L0 = D∂zz + c∂z + f ′(ϕ), (1.7)

acting on Cub(R). From the translational invariance of (1.6) it can be deduced that
L0ϕ

′ = 0. The following hypothesis states that aside from this neutral translational mode,
there are no other obstructions to linear asymptotic stability for L0.

Hypothesis 2 (One-dimensional spectral stability). There exists θ1 > 0 such that the
following conditions hold:

(i) Reσ(L0) \ {0} ≤ −θ1.
(ii) 0 ∈ σ(L0), and the range of the associated spectral projection is spanned by ϕ′.

Remark 1.3. The spectral projection in Hypothesis 2-(ii) is well-defined, since 0 ∈ σ(L0) is
isolated by Hypothesis 2-(i).

In one spatial dimension, it is well-known that Hypothesis 2 suffices to prove asymptotic
orbital stability; see e.g. [16, 24, 35], and references therein. It follows from a standard
Sturm–Liouville argument that Hypothesis 2 holds for bistable fronts in the scalar case
n = 1 if and only if the front is monotone; see e.g. [24, Chapter 2]. Examples of
multicomponent reaction-diffusion systems admitting bistable fronts (or pulses) satisfying
Hypothesis 2 are the FitzHugh–Nagumo equation [6], the Gray–Scott system [7], and the
Gierer–Meinhardt model [8].
Hypothesis 2 implies that 0 ∈ σ(L0) is a normal eigenvalue and therefore that L0 is

Fredholm (of index zero). We note that L0 − λ is Fredholm for λ ∈ C if and only if the
asymptotic operators L0,± − λ are invertible, where L0,± is obtained by replacing ϕ with
ϕ± in (1.7). This in turn is equivalent to the hyperbolicity of the asymptotic matrices

Aλ,± =

(
0 I

D−1 (λ− f ′(ϕ±)) −cD−1

)
∈ C2n×2n,
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see [24, Chapter 2] and [34, § 3]. Thus, Hypothesis 2 can only hold if the spectra of L0,±
are confined to the open left-half plane, showing that we have implicitly assumed that the
front is bistable.
Additionally, it follows from Hypothesis 2 that zero is also a simple eigenvalue of the

adjoint operator L∗
0, with eigenfunction e∗ which we may take to be normalized by

⟨e∗, ϕ′⟩2 = 1. (1.8)

We note that hyperbolicity of A0,± guarantees that both ϕ′ and e∗ are exponentially
localized; see [34, Theorem 3.2].

In the higher-dimensional case, the linearization of (1.6) is instead given by the operator

L = D∆+ c∂z + f ′(ϕ),

acting on Cub(Rd). Since ϕ is constant in the transverse direction, it is natural to apply
the Fourier transform in the y-variable. This motivates the introduction of the family of
operators

Lk = D(∂zz − k2) + c∂z + f ′(ϕ), k ∈ R, (1.9)

acting on Cub(R) (note that L0 is consistent with (1.7)). Indeed, letting Fy denote the
Fourier transform in the y-variable, we formally have

[FyLv](ξ, z) = L|ξ|2 [Fyv](ξ, z)

for every ξ ∈ Rd−1 and z ∈ R. This suggests that the spectrum of L satisfies

σ(L) =
⋃
k∈R

σ(Lk), (1.10)

indicating that the operators Lk are decisive for multidimensional spectral stability of
the front. Although we will not prove (1.10), our analysis shows that suitable spectral
assumptions on the family {Lk}k∈R indeed suffice to establish stability.
From (1.9) we might naively expect that increasing k will shift the spectrum of Lk

into the left-half plane. This intuition is correct in the high-frequency regime k ≫ 1.
Specifically, it can be proven that there exists θ > 0 such that σ(Lk) ≤ −θk2 for k ≫ 1.
In the low- and mid- frequency regime k ≲ 1 however, our assumptions so far do not
guarantee spectral stability of Lk, and there are two potential obstructions.

The first possible obstruction occurs in the low-frequency regime. Here, the eigenvalue
0 ∈ σ(L0) can be analytically continued for k ≪ 1, resulting in a critical branch of
spectrum λlin(k) ∈ σ(Lk) which touches the origin and is commonly referred to as the
linear dispersion relation. By a Lyapunov–Schmidt reduction argument, we obtain the
expansion

λlin(k) = −d⊥k2 +O(k4), (1.11)

where the coefficient d⊥ is given by the integral

d⊥ := ⟨e∗, Dϕ′⟩2 =
∫
R
⟨e∗(z), Dϕ′(z)⟩ dz. (1.12)

Depending on the sign on d⊥, the critical branch λlin(k) might lie in the left-half plane, right-
half plane, or be degenerate. The long-wavelength instability in the second case, d⊥ < 0, is
often termed transverse sideband instability. Even with the assumption introduced below,
which ensures that the first scenario, d⊥ > 0, occurs, the presence of marginal continuous
spectrum poses a significant challenge: unlike in the one-dimensional case, a projection
onto the translational eigenmode does not open a spectral gap. This phenomenon manifests
itself in our linear stability analysis, where we only obtain algebraic decay with rate t−1,
cf. Theorem 3.1, which is expected to be optimal under the present level of generality.
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The second possible obstruction occurs in the mid-frequency regime k ∼ 1, where the
spectrum of Lk might cross the imaginary axis in a short-wave transverse instability. To
rule out this possibility, we impose that the spectrum of Lk is contained in the open
left-half plane when k is bounded away from zero.
The above discussion motivates the following natural transverse spectral stability as-

sumption.

Hypothesis 3 (Transverse spectral stability). There exist constants k0, θ2, θ3 > 0 such
that the following hold:

(i) Reσ(Lk) ≤ −θ2k2 for all |k| ≤ k0.
(ii) Reσ(Lk) ≤ −θ3 for all |k| ≥ k0.

As explained in Remark 3.3, Hypothesis 3 follows from Hypothesis 2 if the diffusion matrix
D is a multiple of the identity. We refer to [6] for an example of a two-component reaction-
diffusion system with D = I admitting spectrally stable one-dimensional traveling pulses
satisfying Hypothesis 2, whose multidimensional counterparts thus satisfy Hypothesis 3.
In general, however, Hypothesis 3 may fail even when the underlying one-dimensional front
satisfies Hypothesis 2. Bistable reaction-diffusion systems admitting such transversely
unstable fronts include combustion models [38] and activator-inhibitor systems [37]; we
refer to [5] for further examples.
Assuming Hypothesis 2, it is clear from (1.11) that Hypothesis 3-(i) is satisfied if and

only if d⊥ > 0, which can be verified on a case-by-case basis by computing the sign of the
integral (1.12). On the other hand, outside of certain degenerate scenarios such as the
case D = I, there is no general criterion that ensures Hypothesis 3-(ii) and its verification
is typically nontrivial; see, for instance, [3].

1.4. Main results. From this point onward, Hypotheses 1, 2, and 3 will be in force
throughout. In particular, all objects appearing in these hypotheses (most notably the
profile ϕ) will be regarded as fixed.

Our first main result states that any solution to (1.1a) which starts sufficiently close to
the planar front converges to a smoothly modulated version of the front.

Theorem 1.4 (Convergence to modulated front). There exist constants C, ε > 0 such
that, whenever u0 ∈ Cub(Rd) satisfies

E0 := ∥u0 − ϕ∥∞ ≤ ε, (1.13)

the following statements hold:

• There exists a unique global solution u to (1.1) with regularity

u ∈ C
(
[0,∞), Cub(Rd)

)
∩ C∞(

(0,∞)× Rd
)
. (1.14)

• There exists a smooth modulation function σ : [0,∞) × Rd−1 → R such that the
estimates

sup
(y,z)∈Rd

|u(t, y, z)− ϕ(z − ct− σ(t, y))| ≤ CE0
log(2 + t)

1 + t
(1.15)

and

∥σ(t)∥∞ +
√
1 + t ∥∇σ(t)∥∞ + (1 + t) ∥∆σ(t)∥∞ ≤ CE0 (1.16)

hold for all t ≥ 0.

Notably, the temporal decay rates presented in Theorem 1.4 are sharp (up to a possibly
a logarithm); we refer to Section 5.1 for details. An immediate consequence of Theorem 1.4
is that the planar front is stable in the classical Lyapunov sense.
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Corollary 1.5 (Lyapunov stability). There exist constants C, ε > 0 such that for every
u0 ∈ Cub(Rd) satisfying (1.13) the following statements hold:

• There exists a unique global solution u to (1.1) with regularity (1.14).
• The solution u satisfies

∥u(t)− utf(t)∥∞ ≤ CE0 (1.17)

for all t ≥ 0, where utf is the planar front (1.2).

Our second main result gives a more precise description of the leading-order dynamics
of the perturbed planar front. Specifically, it shows that the modulational dynamics of
the front interface are governed by the viscous Hamilton–Jacobi equation (1.3) which we
state here again, now supplemented with the appropriate initial condition:

∂tσ̃ = d⊥∆yσ̃ + 1
2
c |∇σ̃|2, (1.18a)

σ̃(0, y) = ⟨e∗, ϕ− u0(y, ·)⟩2. (1.18b)

We recall from Section 1.3 that the viscosity coefficient d⊥ in (1.18) is related to the second
derivative of the linear dispersion relation λlin(k) and is given by (1.12). The transverse
long-wavelength instability arising for d⊥ < 0 thus corresponds to the ill-posedness of
the modulation equation (1.18). Hypothesis 3 ensures, however, that in our case we have
d⊥ > 0. The coefficient 1

2
c of the nonlinearity in (1.18) can be interpreted via a nonlinear

dispersion relation, which connects the wave speed to the orientation of the planar front;
see Section 1.5 for further details.

Theorem 1.6 (Effective front dynamics). There exist constants C, ε > 0 such that,
whenever u0 ∈ Cub(Rd) satisfies (1.13), the following statements hold:

• There exists a unique global solution u to (1.1) with regularity (1.14).
• There exists a unique global solution σ̃ to (1.18) with regularity

σ̃ ∈ C
(
[0,∞), Cub(Rd−1)

)
∩ C∞(

(0,∞)× Rd−1
)
. (1.19)

• The solutions u and σ̃ satisfy the estimate

|u(t, y, z)− ϕ(z − ct− σ̃(t, y))| ≤ C
(
E2

0 + E0(1 + t)−1 log(2 + t)
)

(1.20)

for all t ≥ 0 and (y, z) ∈ Rd.

We emphasize that neither Theorem 1.4 nor Theorem 1.6 implies asymptotic (orbital)
stability in the sense that u(t) converges to (any translate of) the planar front. Unlike
the case of L2-localized perturbations considered in [23], asymptotic stability fails for
general Cub-perturbations. For the specific case of the Allen–Cahn equation, this was
demonstrated in [30, Proposition 1.9]. Using the effective description of the front dynamics
provided by Theorem 1.6, we show that a similar counterexample can be constructed for
planar fronts in general multicomponent reaction-diffusion systems.

Corollary 1.7 (No asymptotic orbital stability). For every ε > 0, there exists an initial
condition u0 ∈ Cub(Rd) satisfying (1.13) such that the following statements hold:

• There exists a unique global solution u to (1.1) with regularity (1.14).
• The solution u satisfies

lim sup
t→∞

inf
a∈R

sup
(y,z)∈Rd

|u(t, y, z)− ϕ(z − a)| > 0. (1.21)

Our final result shows that asymptotic stability can be recovered when the initial
perturbation is localized in the transverse spatial directions. This localization condition is
significantly weaker than the L2-integrability requirement in all spatial directions imposed
in [23]. In particular, it requires neither localization in the longitudinal direction nor
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integrability in the transverse directions. As expected, this weaker assumption does not
yield an explicit convergence rate.

Theorem 1.8 (Transverse spatial localization yields asymptotic stability). There exists a
constant ε > 0 such that, whenever u0 ∈ Cub(Rd) satisfies (1.13) and

lim
|y|→∞

sup
z∈R

|u0(y, z)− ϕ(z)| = 0,

there exists a unique global solution u to (1.1) with regularity (1.14), which satisfies

lim
t→∞

∥u(t)− utf(t)∥∞ = 0.

1.5. Geometric interpretation of nonlinear coefficient. We provide a geometric
interpretation of the coefficient 1

2
c of the nonlinearity in the viscous Hamilton–Jacobi

equation (1.18). To this end, we first derive the following identity via Lyapunov–Schmidt
reduction, which expresses this coefficient as a pairing with the adjoint zero eigenfunction.

Lemma 1.9. It holds

1
2
c = −⟨e∗, Dϕ′′⟩2 = −

∫
R
⟨e∗(z), Dϕ′′(z)⟩ dz. (1.22)

Proof. Observe that for every α > 0, the rescaled profile ϕα(z) := ϕ(α−1z) satisfies the
following rescaled traveling-wave equation:

α2Dϕ′′
α + αcϕ′

a + f(ϕα) = 0. (1.23)

Differentiating (1.23) with respect to α at α = 1 and writing ψ for the resulting derivative,
we find that ψ satisfies

L0ψ = −2Dϕ′′ − cϕ′.

Taking the inner product with the adjoint eigenfunction e∗ and using (1.8) and ⟨e∗, L0ψ⟩2 =
⟨L∗

0e
∗, ψ⟩2 = 0, (1.22) follows. □

Although the proof above is concise and the identity (1.22) will be useful to eliminate
secular terms in the nonlinear iteration, it does not clarify the role of the rescaled profile
ϕα in interpreting the coefficient of the nonlinearity in (1.18). The following argument
provides a more geometric perspective. For the sake of exposition, we restrict to d = 2.
By rotational invariance of (1.1a), the profile ϕ generates a family of rotated planar-front
solutions

uγ(t, y, z) = ϕ

(
z − γy√
1 + γ2

− ct

)
, γ ∈ R.

Introducing α :=
√

1 + γ2 and σ(t, y) := (
√

1 + γ2 − 1)ct+ γy, we obtain the identities

uγ(t, y, z) = ϕα(z − γy −
√

1 + γ2 ct) = ϕα(z − ct− σ(t, y)).

The first identity suggests interpreting uγ as an oblique front with profile ϕα, traveling
horizontally with speed

√
1 + γ2 c, which explains the use of the rescaled profile in the

proof of (1.22). The second identity, which is more in line with our upcoming analysis,
instead suggests viewing the solution as a straight front moving at horizontal speed c,
modulated by σ(t, y). From this perspective, the modulation satisfies

∂tσ =
√

1 + γ2 c− c = 1
2
cγ2 +O(γ3), ∆σ = 0, |∇σ|2 = γ2,

showing that (1.18a) indeed governs σ to leading order in γ. This perspective also reveals
the connection to the nonlinear dispersion relation c(γ) =

√
1 + γ2 c ≈ c+ 1

2
γ2c, which

connects the horizontal speed of uγ to the orientation of the front.
9



1.6. Notation. Let ℓ,m ∈ N and F ∈ {R,C}. On Fℓ we denote by | · | the standard
Euclidean norm and by ⟨·, ·⟩ the associated inner product. Moreover, we let |x|∞ =
max{|x1|, . . . , |xℓ|} for x ∈ Fℓ.

For a Banach space X, we denote by B(X) the Banach space of bounded operators on
X. We write Cub(Rm;Fℓ) for the Banach space of bounded uniformly continuous functions
from Rm to Fℓ, endowed with the supremum norm ∥f∥∞ = sup{|f(x)| : x ∈ Rm}. When
the codomain is clear from context or not essential, we simply write Cub(Rm) instead of
Cub(Rm;Fℓ). We use |||T ||| to abbreviate the operator norm ∥T∥B(Cub(Rm)).

For w ∈ L1(R) and v ∈ Cub(R) we set

⟨w, v⟩2 :=
∫
R
⟨w(z), v(z)⟩ dz

to denote the L2-pairing. If w ∈ L1(R) and v ∈ Cub(Rd), we define

⟨w, v⟩2 := y 7→
∫
R
⟨w(z), v(y, z)⟩ dz,

which yields a function in Cub(Rd−1).
Throughout the article, we fix a smooth nonnegative cutoff function ϱ : R → R which

satisfies
∫
R ϱ(s) ds = 1 and supp ϱ ⊂ [1/4, 3/4]. We also fix a smooth nondecreasing

χ : R → R which satisfies χ(s) = 0 for s ≤ 1/8 and χ(s) = 1 for s ≥ 1/4.
Finally, let S be a set, and let A,B : S → R. Throughout the paper, we abbreviate

the expression “there exists a constant C > 0 such that A(x) ≤ CB(x) for all x ∈ S” by
adopting the notation “A(x) ≲ B(x) for all x ∈ S”.

2. Linear theory: analysis of Fourier symbol

In this section, we study the transverse Fourier symbol of the linearization L of the
reaction-diffusion system (1.6) about the planar front ϕ. The Fourier symbol

L̂ξ = D (∂zz − λ0(ξ)) + c∂z + f ′(ϕ), ξ ∈ Cd−1,

is a closed and densely defined operator on Cub(R), where λ0 : Cd−1 → C denotes the
analytic function

λ0(ξ) =
d−1∑
i=1

ξ2i .

We allow the Fourier frequency variable ξ to take complex values so that we can later
access results from analytic function theory; see Section 3.1 for further details.

We begin by recording several direct consequences of the spectral stability assumptions
in Hypotheses 2 and 3 for the spectrum of L̂ξ at low frequencies |ξ| ≪ 1. We then establish
bounds on the semigroup etL̂ξ in low-, mid-, high-, and all-frequency regimes, which will
be used in Section 3 to analyze the linearized dynamics of (1.6).

2.1. Low-frequency spectral analysis. Since L̂ξ depends analytically on (ξ21 , . . . , ξ
2
d−1)

and 0 is an isolated eigenvalue of L̂0 = L0 whose spectral projection has rank 1 by
Hypothesis 2, it can be extended analytically in (ξ21 , . . . , ξ

2
d−1) by standard perturbation

theory, cf. [26, § II.1.8 and §VII.1.3]. This yields an analytic function λc(ξ) of isolated
eigenvalues of L̂ξ for all |ξ| ≪ 1 with λc(0) = 0. The corresponding spectral projections
Pξ have rank 1 and also depend analytically on (ξ21 , . . . , ξ

2
d−1). Because λc(ξ) is a simple

eigenvalue of L̂ξ, its conjugate λc(ξ) is a simple eigenvalue of the adjoint L̂∗
ξ . The associated

eigenfunctions, as well as their derivatives, are exponentially localized by [34, Theorem 3.2].
10



Finally, a standard computation using Lyapunov–Schmidt reduction yields the leading-
order coefficients in the Taylor expansion of λc(ξ) near ξ = 0. These facts are summarized
in the following proposition.

Proposition 2.1 (Low-frequency spectrum). There exist an open neighborhood U ⊂ Cd−1

of 0, a constant C0 > 0, and holomorphic functions λc : U → C and P : U → B(Cub(R))
such that the following statements hold for every ξ ∈ U :

(1) Reσ(L̂ξ) \ {λc(ξ)} < −θ1/2, where θ1 is as in Hypothesis 2.

(2) λc(ξ) is an isolated eigenvalue of L̂ξ, and the associated spectral projection Pξ has
rank 1.

(3) With d⊥ defined as in (1.12), it holds that d⊥ > 0, as well as:

|λc(ξ) + d⊥λ0(ξ)| ≤ C0|ξ|4, ∥Pξ − P0∥B(Cub(R)) ≤ C0|ξ|2.

Finally, the spectral projection P0 ∈ B(Cub(R)) associated with 0 ∈ σ(L0) is given by

P0v = ⟨e∗, v⟩2 ϕ′, (2.1)

where the adjoint eigenfunction e∗ ∈ ker(L∗
0), satisfying (1.8), was introduced in Section 1.3.

The eigenfunctions ϕ′ and e∗, as well as their derivatives, are smooth and exponentially
localized.

2.2. Semigroup bounds. Since L̂ξ is a sectorial operator on Cub(R), cf. [28, Corol-
lary 3.1.9], it generates an analytic semigroup etL̂ξ . In the following, we establish estimates
on etL̂ξ , which will be used in the upcoming linear stability analysis in Section 3.

We start with the following all-frequency estimates.

Lemma 2.2 (All-frequency bounds). There exist µ1, κ1 > 0 such that

|||etL̂ξ0+iξ1 |||+ |e−td⊥λ0(ξ0+iξ1)| ≲ eκ1t−µ1|ξ0|2t+κ1|ξ1|2t (2.2)

for all ξ0, ξ1 ∈ Rd−1 and t ≥ 0.

Proof. The estimate on e−td⊥λ0(ξ0+iξ1) is elementary, so we only estimate etL̂ξ0+iξ1 . We first
consider the case where ξ1 = 0. We introduce the operators

Lξ = D∂zz + c∂z − |ξ|2D
for ξ ∈ Rd−1. Since D is symmetric and positive-definite, there exists an invertible matrix
J ∈ Rn×n and a positive diagonal matrix D0 ∈ Rn×n such that D = JD0J

−1. Hence, using
the classical bound

|||et(∂zz+c∂z)||| ≤ 1

on the scalar convective heat semigroup for t ≥ 0, see e.g. [32, Proposition 3.6], we find
µ0 > 0 such that

|||etLξ0 ||| = |||Jet(D0∂zz+c∂z−|ξ0|2D0)J−1||| ≲ |||e−t|ξ0|2D0||| ≲ e−µ0|ξ0|2t

for all ξ0 ∈ Rd−1 and t ≥ 0. Since L̂ξ0 = Lξ0 + f ′(ϕ) and f ′(ϕ) is a bounded operator, it
follows from the bounded perturbation theorem, cf. [10, Theorem III.1.3], that there exists
C > 0 such that we have

|||etL̂ξ0 ||| ≲ eCt−µ0|ξ0|2t (2.3)

for all ξ0 ∈ Rd−1 and t ≥ 0. To extend to the case where ξ1 ̸= 0, we first observe that, by
Young’s inequality, we can estimate

|||L̂ξ0+iξ1 − L̂ξ0||| ≲ |ξ0||ξ1|+ |ξ1|2 ≲ δ|ξ0|2 + (1 + δ−1)|ξ1|2 (2.4)
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for all ξ0, ξ1 ∈ Rd−1 and δ > 0. Thus, applying the bounded perturbation theorem again
and choosing δ > 0 sufficiently small, we find a constant κ > 0 such that

|||etL̂ξ0+iξ1 ||| ≲ eCt−µ0
2
|ξ0|2t+κ|ξ1|2

for all ξ0, ξ1 ∈ Rd−1 and t ≥ 0. Thus, (2.2) holds with µ1 = µ0/2 and κ1 = max{C, κ}. □

In the next two lemmas, we establish low- and mid-high-frequency estimates on the
semigroup etL̂ξ .

Lemma 2.3 (Low-frequency bounds). There exist k, µ2, κ2 > 0 such that we have

|||etL̂ξ0+iξ1 (I − Pξ0+iξ1)||| ≲ e−µ2t (2.5)

|||etL̂ξ0+iξ1Pξ0+iξ1 − e−td⊥λ0(ξ0+iξ1)P0||| ≲ t−1e−µ2|ξ0|2t+κ2|ξ1|2t (2.6)

for all t ≥ 1 and ξ0, ξ1 ∈ Rd−1 satisfying max{|ξ0|, |ξ1|} ≤ k.

Proof. Let U ⊂ Cd−1 be as in Proposition 2.1 and choose k > 0 such that V := {ξ0 + iξ1 :
max{|ξ0|, |ξ1|} ≤ k} ⊂ U . Since etL̂ξ is an analytic semigroup for every ξ ∈ Cd−1, its
spectral bound equals its growth bound by [10, Corollary 3.12]. Thus, it follows from
Proposition 2.1 that for all ξ ∈ V there exists Mξ > 0 such that

|||etL̂ξ(I − Pξ)||| ≤Mξe
− θ1

4
t.

Hence, applying Lemma A.1, we obtain the uniform bound (2.5) at the cost of replacing
θ1/4 by µ2 = θ1/8.
For the second estimate, we first rewrite

etL̂ξPξ − e−td⊥λ0(ξ)P0 = etλc(ξ)Pξ − e−td⊥λ0(ξ)P0

= e−td⊥λ0(ξ)((etλc(ξ)+td⊥λ0(ξ) − 1)Pξ + (Pξ − P0))

for ξ ∈ V and t ≥ 1. Thus, using the inequality |ew − 1| ≤ e|w| − 1 ≤ |w|e|w| for w ∈ C
and invoking the Taylor expansions from Proposition 2.1, we find

|||etL̂ξPξ − e−td⊥λ0(ξ)P0||| ≲ (|ξ|2 + t|ξ|4)e−d⊥|Re(ξ)|2t+d⊥|Im(ξ)|2t+C0|ξ|4t

for all ξ ∈ V and t ≥ 1. By additionally imposing k ≤
√
d⊥/(4C0), we can bound

|||etL̂ξPξ − e−td⊥λ0(ξ)P0||| ≲ t−1(t|ξ|2 + t2|ξ|4)e−
1
2
d⊥|Re(ξ)|2t+ 3

2
d⊥|Im(ξ)|2t

≲ t−1e−
1
4
d⊥|Re(ξ)|2t+2d⊥|Im(ξ)|2t

for all ξ ∈ V and t ≥ 1, which shows that (2.6) holds with µ2 = d⊥/4 and κ2 = 2d⊥. □

Lemma 2.4 (Mid- and high-frequency bounds). Let k > 0 be as in Lemma 2.3. There
exist µ3, κ3 > 0 such that

|||etL̂ξ0+iξ1 |||+ |e−td⊥λ0(ξ0+iξ1)| ≲ e−µ3t−µ3|ξ0|2t+κ3|ξ1|2t (2.7)

for all t ≥ 0 and ξ0, ξ1 ∈ Rd−1 with |ξ0| ≥ k.

Proof. The estimate for e−td⊥λ0(ξ) is elementary, so we only treat etL̂ξ . We first consider
the case ξ1 = 0. Letting µ0, C > 0 be as in (2.3), we introduce k1 =

√
2Cµ−1

0 + 1. It then
follows from (2.3) that we have

|||etL̂ξ0 ||| ≲ e−
µ0
2
t−µ0

2
|ξ0|2t (2.8)

for all t ≥ 0 and ξ0 ∈ Rd−1 with |ξ0| ≥ k1.
12



On the other hand, since the spectral bound of the analytic semigroup etL̂ξ equals
its growth bound by [10, Corollary 3.12], we deduce with the aid of Hypothesis 3 and
Lemma A.1 that

|||etL̂ξ0 ||| ≲ e−
1
2
min{θ2k2,θ3}t

for all t ≥ 0 and ξ0 ∈ Rd−1 with k ≤ |ξ0| ≤ k1. Setting µ = 1
2
min{θ2k2, θ3}, we infer

|||etL̂ξ0 ||| ≲ e
−µ

2
t− µ

2k21
|ξ0|2t

(2.9)

for all t ≥ 0 and ξ0 ∈ Rd−1 with k ≤ |ξ0| ≤ k1.
Combining the high- and mid-frequency estimates (2.8) and (2.9) and setting µ̃ =

min{µ0/2, µ/(2k
2
1)} (note that k1 ≥ 1), then yields

|||etL̂ξ0 ||| ≲ e−µ̃t−µ̃|ξ0|2t

for all t ≥ 0 and ξ0 ∈ Rd−1 with |ξ0| ≥ k. In the same way as in Lemma 2.2, we finally
treat L̂ξ0+iξ1 − L̂ξ0 as a bounded perturbation, which gives us a constant κ3 > 0 such that

|||etL̂ξ0+iξ1 ||| ≲ e−µ̃t− µ̃
2
|ξ0|2t+κ3|ξ1|2t

for all t ≥ 0, ξ1 ∈ Rd−1, and ξ0 ∈ Rd−1 with |ξ0| ≥ k. Thus, (2.7) holds with µ3 = µ̃/2. □

3. Linear theory: semigroup decomposition and estimates

The linearization L of (1.6) about the planar front ϕ is a densely defined, sectorial
operator on Cub(Rd); see, for instance, [28, Corollary 3.1.9]. Consequently, L generates
an analytic semigroup etL. Since Lϕ′ = 0, one cannot expect etL to exhibit decay in
time. Nevertheless, Hypotheses 2 and 3 suggest that the leading-order behavior of etL is
closely related to the translational mode ϕ′. The main result of this section confirms this
expectation.

Theorem 3.1 (Semigroup decomposition). Let d⊥ > 0 be as in Proposition 2.1. We have

etLv = etd⊥∆y⟨e∗, v⟩2ϕ′ + S(t)v, (3.1)

where ∆y denotes the Laplacian in the transverse y-direction, e∗ is as in Section 1.3, and
the remainder S(t) : Cub(Rd) → Cub(Rd) satisfies

∥S(t)v∥∞ ≲ (1 + t)−1∥v∥∞ (3.2)

for all v ∈ Cub(Rd) and t ≥ 0.

Theorem 3.1 shows that the principal part of the semigroup etL is etd⊥∆yP0, where P0

is given by (2.1). In the nonlinear analysis in Section 5, we will estimate this term by
appealing to classical bounds for the heat semigroup, whose smoothing effect yields decay
of derivatives; see, e.g., [29, p. 3537].

Lemma 3.2 (Heat semigroup bounds). It holds

∥etd⊥∆yv∥∞ +
√
t ∥∇etd⊥∆yv∥∞ + t ∥∆ye

td⊥∆yv∥∞ ≲ ∥v∥∞ (3.3)

for all v ∈ Cub(Rd−1) and t ≥ 0.

In the one-dimensional case, a theorem analogous to Theorem 3.1 can be proven by
projecting out the translational mode using the spectral projection associated with the
isolated eigenvalue 0 ∈ σ(L0). By Hypothesis 2, this opens up a spectral gap so that the
remainder decays exponentially. In the multidimensional setting however, the eigenvalue
0 ∈ σ(L) is embedded in the continuous spectrum, cf. (1.11), so that a spectral projection
is not even well-defined. This fundamental obstruction makes the analysis much more
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involved and explains why the decay rate in (3.2) is only algebraic (which is nevertheless
expected to be optimal).

Outside of the special case considered in [23], see Remark 3.3 below, the semigroup etL

is in general not expected to factorize into a longitudinal and a transversal part. As a
result, the proof of Theorem 3.1 is substantially more intricate than the linear stability
analysis of bistable planar fronts in [23]. A further challenge arises from our objective of
establishing pure L∞-bounds, which, in contrast to the setting of integrable perturbations
considered in [23], complicates the use of Fourier methods.

Remark 3.3. The emergence of etd⊥∆y in (3.1) can be illuminated by considering the case
where D = I as treated in [23]. Here, L decomposes as L = L0 +∆y, where ∆y commutes
with L0 (where both are considered as operators on Cub(Rd)). Consequently, the semigroup
factorizes into a longitudinal and a transverse part as

etL = et∆yetL0 .

Applying the one-dimensional spectral projection P0 and using Hypothesis 2, it is straight-
forward to see that the decomposition

etL = et∆yP0 +O
(
e−(θ1/2)t

)
, t ≥ 0 (3.4)

holds true. After using (2.1) and observing that (1.12) with D = I gives d⊥ = 1 by (1.8),
this yields Theorem 3.1, even with an exponential rate. Note however that this case is
highly nongeneric for several reasons:

• σ(Lk) = σ(L0)− k2, so Hypothesis 3 is implied by Hypothesis 2, precluding the
occurrence of transverse instabilities, which are frequently reported in reaction-
diffusion models in the literature; see [5, 37, 38] and references therein.

• λc(ξ) = λ0(ξ) and Pξ = P0 for all ξ in Proposition 2.1.

• etL̂ξ = eλ0(ξ)tetL0 , so Lemmas 2.2, 2.3, and 2.4 are trivial.

3.1. Fourier representation and contour shift. Let v ∈ Cub(Rd). Taking the Fourier
transform in the transverse y-variable, we obtain the following representations

[etLv](t, y, z) = (2π)1−d

∫
Rd−1

∫
Rd−1

ei⟨ξ,y−ỹ⟩[etL̂ξv(ỹ, ·)](z) dξ dỹ,

[etd⊥∆yP0v](t, y, z) = (2π)1−d

∫
Rd−1

∫
Rd−1

ei⟨ξ,y−ỹ⟩e−td⊥λ0(ξ)[P0v(ỹ, ·)](z) dξ dỹ,
(3.5)

where t ≥ 0, y ∈ Rd−1, and z ∈ R. Using the semigroup bounds from Lemma 2.2, it is
seen that the inner integrals in (3.5) converge, whereas convergence of the outer integrals
will follow a posteriori from the estimates in the upcoming Propositions 3.4 and 3.5.

Our strategy to establishing Theorem 3.1 is to bound the inner integral

[Hv](t, y, ỹ, z) :=

∫
Rd−1

ei⟨ξ,y−ỹ⟩Ŝξ(t)[v(ỹ, ·)](z) dξ, Ŝξ(t) := etL̂ξ − e−td⊥λ0(ξ)P0, (3.6)

arising in the Fourier representation of the remainder S(t)v = etLv − etd⊥∆yP0v, in a way
which is integrable in ỹ. A significant challenge is that the factor ei⟨ξ,y−ỹ⟩ does not provide
any integrability in ỹ for real-valued ξ ∈ Rd−1. To address this, we analytically continue
the frequency into the complex plane by adding a well-chosen imaginary offset proportional
to

w := w(t, y, ỹ) :=
y − ỹ

t
.
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This then leads to the family of operators

[Hεv](t, y, ỹ, z) :=

∫
Rd−1

ei⟨ξ+iεw(t,y,ỹ),y−ỹ⟩Ŝξ+iεw(t,y,ỹ)[v(ỹ, ·)] dξ

= e−ε
|y−ỹ|2

t

∫
Rd−1

ei⟨ξ,y−ỹ⟩Ŝξ+iεw(t,y,ỹ)[v(ỹ, ·)] dξ,
(3.7)

where ε ∈ R (we will only use ε > 0), t > 0, y, ỹ ∈ Rd−1, and z ∈ R. By viewing (3.6)
as a superposition of contour integrals, we may use Cauchy’s integral theorem and the
semigroup estimates from Lemma 2.2 to shift ξ 7→ ξ + iεw and conclude that

[Hεv](t, y, ỹ, z) = [Hv](t, y, ỹ, z) (3.8)

for every ε > 0, t > 0, y, ỹ ∈ Rd−1, and z ∈ R, thereby crucially exploiting analyticity
of the Fourier symbol Ŝξ(t) in ξ. We will make effective use of (3.8) in the upcoming
propositions to render sufficient localization in ỹ. Additionally, it will be convenient to
distinguish between the off-diagonal regime where |y − ỹ|/t ≫ 1, and the on-diagonal
regime where |y − ỹ|/t ≲ 1.

The ideas of complexifying ξ and distinguishing between the off-diagonal and on-diagonal
regime to obtain integrable pointwise Green’s function bounds can be traced at least as
far back as the linear stability analysis of multidimensional viscous shock waves in [18],
although the techniques take quite a different shape in this work.

Proposition 3.4 (Off-diagonal bounds). There exist M, ν1 > 0 such that the estimate

|[Hv](t, y, ỹ, z)| ≲ e−ν1t−ν1
|y−ỹ|2

t ∥v∥∞ (3.9)

holds for all v ∈ Cub(Rd), y, ỹ ∈ Rd−1, and t ≥ 1 with |y − ỹ|/t ≥M .

Proof. Applying Lemma 2.2, we obtain the bound

|||etL̂ξ+iεw(t,y,ỹ)|||+ |e−td⊥λ0(ξ+iεw(t,y,ỹ))| ≲ eκ1t−µ1|ξ|2t+κ1ε2|w(t,y,ỹ)|2t = eκ1t−µ1|ξ|2t+κ1ε2
|y−ỹ|2

t

for all ε > 0, y, ỹ ∈ Rd−1, and t ≥ 1. Thus, taking the absolute value inside the integral
in (3.7), setting ε = (2κ1)

−1, and integrating over ξ, we obtain

|[Hεv](t, y, ỹ, z)| ≲ e
κ1t− |y−ỹ|2

4κ1t

∫
Rd−1

e−µ1|ξ|2t dξ · ∥v∥∞ ≲ e
κ1t− |y−ỹ|2

4κ1t ∥v∥∞

≤ e
κ1t− |y−ỹ|2

8κ1t
−M2

8κ1
t∥v∥∞

for all v ∈ Cub(Rd), y, ỹ ∈ Rd−1, and t ≥ 1 with |y − ỹ|/t ≥ M . Choosing M = 4κ1 and
recalling (3.8), it follows that (3.9) holds with ν1 = min{κ1, (8κ1)−1}. □

Proposition 3.5 (On-diagonal bounds). Fix M > 0. Then, there exists ν2 > 0 such that
the estimate

|[Hv](t, y, ỹ, z)| ≲ t−(d+1)/2e−ν2
|y−ỹ|2

t ∥v∥∞ (3.10)

holds for all v ∈ Cub(Rd), y, ỹ ∈ Rd−1, and t ≥ 1 with |y − ỹ|/t ≤M .

Proof. As in the proof of Proposition 3.4, it suffices to estimate [Hεv](t, y, ỹ, z) for some
appropriately chosen value of ε and subsequently use (3.8).

Before we start, we let k be as in Lemma 2.3 and let B0 be the ball in Rd−1 of radius k
centered at the origin. Using (3.7), we estimate

eε
|y−ỹ|2

t |[Hεv](t, y, ỹ, z)| ≲ ∥v∥∞
∫
Rd−1

|||Ŝξ+iεw(t,y,ỹ)||| dξ ≲ ∥v∥∞(T1 + T2 + T3), (3.11)

15



for all ε > 0, v ∈ Cub(Rd), y, ỹ ∈ Rd−1, z ∈ R, and t ≥ 1, where we have introduced the
quantities

T1 :=

∫
Rd−1\B0

|||etL̂ξ+iεw(t,y,ỹ)|||+ |e−td⊥λ0(ξ+iεw(t,y,ỹ))| dξ,

T2 :=

∫
B0

|||etL̂ξ+iεw(t,y,ỹ)(I − Pξ+iεw(t,y,ỹ))||| dξ,

T3 :=

∫
B0

|||etL̂ξ+iεw(t,y,ỹ)Pξ+iεw(t,y,ỹ) − e−td⊥λ0(ξ+iεw(t,y,ỹ))P0||| dξ,

which we will estimate one by one.
It holds by Lemma 2.4 that

|||etL̂ξ+iεw |||+ |e−td⊥λ0(ξ+iεw)| ≲ e−µ3t−µ3|ξ|2t+κ3ε2|w|2t ≲ e−µ3t−µ3|ξ|2t+κ3ε2M2t

for all t ≥ 0, ε > 0, ξ ∈ Rd−1 \ B0, and w ∈ Rd−1 with |w| ≤ M . Thus, it follows, after
integrating over ξ, that

T1 ≲ e−
µ3
2
t

for all ε > 0, y, ỹ ∈ Rd−1, and t ≥ 1 with |y − ỹ|/t ≤M and ε ≤
√
µ3/(2κ3M2).

We proceed with bounding T2 and T3. By Lemma 2.3 we have

|||etL̂ξ+iεw(I − Pξ+iεw)||| ≲ e−µ2t,

|||etL̂ξ+iεwPξ+iεw − e−td⊥λ0(ξ+iεw)P0||| ≲ t−1e−µ2|ξ|2t+κ2ε2|w|2t

for all t ≥ 1, ε ∈ (0, kM−1), ξ ∈ B0, and w ∈ Rd−1 with |w| ≤ M . Integrating these
bounds over ξ ∈ B0 gives

T2 ≲ e−µ2t,

T3 ≲ t−1t−(d−1)/2eκ2ε2|w(t,y,ỹ)|2t ≤ t−(d+1)/2e
ε|y−ỹ|2

2t ,

for ε ∈ (0,min{kM−1, (2κ2)
−1}), y, ỹ ∈ Rd−1, and t ≥ 1 with |y − ỹ|/t ≤ M . Thus,

choosing ε > 0 such that the established bounds on T1, T2, and T3 hold simultaneously
and looking back at (3.8) and (3.11), we obtain

|[Hv](t, y, ỹ, z)| = |[Hεv](t, y, ỹ, z)| ≲ t−(d+1)/2e−
ε|y−ỹ|2

2t ∥v∥∞
for all v ∈ Cub(Rd), y, ỹ ∈ Rd−1, and t ≥ 1 with |y − ỹ|/t ≤ M . We conclude that (3.10)
holds with ν2 = ε/2. □

We now combine the off-diagonal and on-diagonal bounds to prove Theorem 3.1.

Proof of Theorem 3.1. Let M, ν1 > 0 be as in Proposition 3.4, let ν2 > 0 be as in Proposi-
tion 3.5, and set ν3 = min{ν1, ν2}. For t ≥ 1 and y ∈ Rd−1, define Vt,y to be the set of all
ỹ ∈ Rd−1 which satisfy |y − ỹ|/t ≤M . Then, we have by (3.5), (3.6), (3.9), and (3.10):

|[etLv − etd⊥∆yP0v](t, y, z)| ≤
∫
Rd−1

|[Hv](t, y, ỹ, z)| dỹ

=

∫
Rd−1\Vt,y

|[Hv](t, y, ỹ, z)| dỹ +
∫
Vt,y

|[Hv](t, y, ỹ, z)| dỹ

≲
∥v∥∞
eν3t

∫
Rd−1\Vt,y

e−ν3
|y−ỹ|2

t dỹ +
∥v∥∞
t(d+1)/2

∫
Vt,y

e−ν3
|y−ỹ|2

t dỹ

≲
∥v∥∞
t(d+1)/2

∫
Rd−1

e−ν3
|y−ỹ|2

t dỹ ≲
∥v∥∞
t
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for all v ∈ Cub(Rd) t ≥ 1, y ∈ Rd−1, and z ∈ R, which establishes (3.2) for t ≥ 1. For
short times t ∈ [0, 1], the bound (3.2) follows from standard semigroup theory; see [10,
Proposition I.5.5]. □

4. Nonlinear theory: tracking scheme

In this section, we set up the tracking scheme, which we will employ to close a nonlinear
stability argument and prove our main results. In particular, we introduce a spatiotemporal
modulation of the front to capture its neutral translational dynamics.

4.1. Front modulation. Our objective is to describe the dynamics of the solution u(t)
to (1.1), where E0 := ∥u0 − ϕ∥∞ is sufficiently small. Inspired by the nonlinear stability
theory for periodic waves [9, 21], we introduce the inverse modulation Ansatz

ũ(t, y, z) = u(t, y, z + ct+ σ(t, y)), (4.1)

where σ : [0,∞) × Rd−1 → R is a smooth modulation function that we will choose a
posteriori so as to track the leading-order position of the front interface. Concretely, σ is
selected so that the inverse-modulated perturbation

v(t, y, z) = u(t, y, z + ct+ σ(t, y))− ϕ(z) (4.2)

exhibits temporal decay. Since ∥v(t)∥∞ is equal to the L∞-norm of the forward-modulated
perturbation

v̊(t, y, z) = u(t, y, z)− ϕ(z − ct− σ(t, y)),

it suffices to control v(t) to establish the key estimate (1.15). This decay estimate holds
precisely if σ captures the neutral translational dynamics of the front to leading order.
Using (4.1), we obtain the relations

u(t, y, z) = ũ(t, y, z − ct− σ),

ut(t, y, z) = ũt(t, y, z − ct− σ)− (c+ σt)ũz(t, y, z − ct− σ),

uyi(t, y, z) = ũyi(t, y, z − ct− σ)− σyiũz(t, y, z − ct− σ),

uyiyi(t, y, z) = ũyiyi(t, y, z − ct− σ)− 2σyiũyiz(t, y, z − ct− σ)

− σyiyiũz(t, y, z − ct− σ) + σ2
yi
ũzz(t, y, z − ct− σ)

for i = 1, . . . , d− 1, where we have abbreviated σ(t, y) as σ. Substituting these identities
into (1.1a) and shifting coordinates back gives

∂tũ− (c+ σt)ũz = D∆ũ+ f(ũ)−∆yσDũz − 2∇σ · ∇Dũz + |∇σ|2Dũzz (4.3)

with all terms evaluated at (t, y, z).
Although the viscous Hamilton–Jacobi equation (1.18) provides an effective description

of σ, it is neither accurate enough to yield the decay rate required in (1.15) nor sufficiently
regular near t = 0 to serve as a convenient starting point. Instead, we augment (1.18) with
a mild forcing term g, and then prescribe σ via (1.4), thus imposing the initial condition
σ(0) = 0. Substituting (1.4) into (4.3) yields

∂tũ = D∆ũ+ c ũz + f(ũ)

+ ∆yσ (d⊥ũz −Dũz) + |∇σ|2 (Dũzz + 1
2
c ũz)− 2∇σ · ∇Dũz − g ũz.

(4.4)

Subsequently inserting (4.2) into (4.4) and using (4.1) together with σ(0) = 0 to determine
the initial condition, we obtain that the inverse-modulated perturbation v satisfies

∂tv = Lv +∆σ (d⊥ϕ
′ −Dϕ′) + |∇σ|2 (Dϕ′′ + 1

2
c ϕ′) +N(v, σ, g)− g ϕ′,

v(0) = u0 − ϕ,
(4.5)
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where the nonlinearity is given by

N(v, σ, g) = f(ϕ+ v)− f(ϕ)− f ′(ϕ)v +∆σ (d⊥vz −Dvz) + |∇σ|2 (Dvzz + 1
2
c vz)

− 2∇σ · ∇Dvz − g vz.
(4.6)

Note that there is no term of the form ∇σ · ∇ϕ′, since σ is independent of z and ϕ is
independent of y. Using Taylor’s theorem, we readily establish the following.

Lemma 4.1 (Bound on nonlinearity). Fix a constant C > 0. It holds

∥N(v, σ, g)∥∞ ≲ ∥v∥2∞ + ∥v∥C2

(
∥∆σ∥∞ + ∥∇σ∥∞ + ∥∇σ∥2∞ + ∥g∥∞

)
(4.7)

for all g ∈ Cub(Rd−1), σ ∈ C2
ub(Rd−1), and v ∈ C2

ub(Rd) with ∥v∥∞ ≤ C.

Remark 4.2. Spatiotemporal front modulation is also used in the nonlinear stability analysis
of planar fronts under localized perturbations in [23]. There, one directly estimates the
forward-modulated perturbation v̊(t). In contrast to (4.5), the resulting equation for
v̊(t) contains nonlinear terms of the form (f ′(ϕ(·+ σ))− f ′(ϕ)) v̊. In our setting of Cub-
perturbations, available decay rates are too weak to control such contributions, which decay
only like t−1/2. Thus, in our analysis it is advantageous to work with the inverse-modulated
perturbation instead.

4.2. Forcing. We specify the forcing term in (1.4), which determines σ. To this end, we
use the temporal cut-off function ϱ, introduced in Section 1.6, which is smooth, nonnegative,
has unit integral, and is supported on [1/4, 3/4]. For t ≥ 0, we then set

g(t) = ϱ(t)etd⊥∆y⟨e∗, u0 − ϕ⟩2

+
∑
k∈N

ϱ(t− k)e(t−k)d⊥∆y

∫ k

k−1

e(k−r)d⊥∆y⟨e∗, N(v(r), σ(r), g(r))⟩2 dr.
(4.8)

We will see in Section 5 that this specific choice of g cancels the critical nonlinear
contributions in equation (4.5) in a gentle way. In particular, it enables us to establish
decay of v, ensuring that the modulation σ indeed captures the leading-order dynamics of
the front interface.

The properties of ϱ guarantee that g is smooth in both space and time. We will show that
this smoothness is inherited by the modulation σ. Another useful feature of (4.8) is that,
for t ∈ [0, 1] and n ∈ N, the quantity g(n+ t) is fully determined by N(v(s), σ(s), g(s)) on
[0, n]. As a result, g and σ can be extended in the nonlinear iteration without introducing
an additional fixed-point argument, providing a simpler local analysis than that required
by previous stability approaches based on spatiotemporal modulation; cf. [32, Appendix B].
Since ϱ is supported on [1/4, 3/4], the nonlinearity in (4.8) is always preceded by the

smoothing heat semigroup e
1
8
d⊥∆y . The inner product against e∗ provides additional

smoothing in the z-direction. These smoothing effects are captured in the following result.

Lemma 4.3 (Bound on smoothed nonlinearity). Fix a constant C > 0. We have

∥e
1
8
d⊥∆y⟨e∗, N(v, σ, g)⟩2∥∞ ≲ ∥v∥∞

(
∥v∥∞ + ∥∆σ∥∞ + ∥∇σ∥∞ + ∥∇σ∥2∞ + ∥g∥∞

)
(4.9)

for all g ∈ Cub(Rd−1), σ ∈ C2
ub(Rd−1), and v ∈ C2

ub(Rd) with ∥v∥∞ ≤ C.

Proof. We first rewrite

⟨e∗, N(v, σ, g)⟩2 = ⟨e∗, f(ϕ+ v)− f(ϕ)− f ′(ϕ)v⟩2 −∆σ ⟨e∗z, d⊥v −Dv⟩2
+ |∇σ|2

(
⟨e∗zz, Dv⟩2 − 1

2
c ⟨e∗z, v⟩2

)
+ 2∇ ·

(
∇σ ⟨e∗z, Dv⟩2

)
− 2∆σ ⟨e∗z, Dv⟩2 + g ⟨e∗z, v⟩2,
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using integration by parts with respect to z and the product rule. Using integrability of
e∗, e∗z, and e

∗
zz, every term can now be estimated in the obvious way except for the last

term on the second line. Here, we use the smoothing effect of the heat kernel to see that

∥e
1
8
d⊥∆y

[
∇ · (∇σ⟨e∗z, Dv⟩2)

]
∥∞ ≲ ∥∇σ ⟨e∗z, Dv⟩2∥∞

for all v ∈ C1
ub(Rd) and σ ∈ C2

ub(Rd−1); see Lemma 3.2. The estimate (4.9) follows. □

5. Nonlinear theory: stability analysis

This section is devoted to two a priori estimates that form the core of our nonlinear
stability argument. Assuming the existence of a solution (u, σ, v, g) to the system given
by (1.1), (1.4), (4.5), and (4.8) on a time interval [0, T ], we combine the linear estimates
from Theorem 3.1 and Lemma 3.2 with the nonlinear bounds in Lemmas 4.1 and 4.3 to
derive decay estimates for v, σ, g, and the nonlinearity N(v, σ, g).

5.1. Decay rates and optimality. Before turning to the analysis, let us first discuss the
decay rates that could be expected. Linearizing (1.4) yields the heat equation ∂tσ = d⊥∆σ,
which, by Lemma 3.2, suggests that

σ ∼ E0, ∇σ ∼ E0t
−1/2, ∆σ ∼ E0t

−1, (5.1)

where we recall E0 = ∥u0−ϕ∥∞. These decay rates are, at least at the linear level, optimal
and imply that the nonlinearity in (4.5) decays at rate t−1. Consequently, one cannot
expect v to decay faster than E0t

−1. In practice, integrating a t−1 source term introduces
an additional logarithm, and we will ultimately establish that v decays at rate t−1 log(t).
Combining this with (5.1) and Lemma 4.1 indicates that N(v, σ, g) should decay at the
rate t−3/2 log(t). However, because our derivative bounds on v rely on tame estimates
obtained via interpolation, we establish a slightly weaker (but still sufficient) decay rate
of t−5/4 for N(v, σ, g). Since derivatives of v can be absorbed by the smoothing action
of the heat semigroup, cf. Lemma 4.3, we may use the sharper rate t−3/2 log(t) for the
nonlinearity appearing in the equation (4.8) for g, which, together with the compact
support of ϱ, suggests that g decays at the rate t−3/2 log(t).

5.2. Cole–Hopf transform. To deal with the critical nonlinearity 1
2
c |∇σ|2 in (1.4) we

will make use of the Cole–Hopf transform, which we now introduce. To lighten the coming
notation, we begin by defining the parameter

β :=
c

2d⊥
. (5.2)

Setting Iβ := {x ∈ R : βx > −1}, the Cole–Hopf transform Ψβ : R → Iβ and its inverse
Ψ−1

β : Iβ → R are given by

Ψβ(x) =

{
1
β
(eβx − 1), β ̸= 0,

x, β = 0,
(5.3a)

Ψ−1
β (x) =

{
1
β
log(1 + βx), β ̸= 0,

x, β = 0.
(5.3b)

A crucial property of the Cole–Hopf transform is that upon introducing the variable
ξ = Ψβ(σ), equation (1.4) transforms into

∂tξ = d⊥∆ξ − g(1 + βξ),

ξ(0) = 0,
(5.4)

19



which no longer contains the critical nonlinearity. In order to solve (1.4) it thus suffices
to solve (5.4) and take σ = Ψ−1

β (ξ) afterwards (taking into account that Ψ−1
β (x) is only

well-defined for x in the interval Iβ). We will generally refer to ξ as the Cole–Hopf variable.

Remark 5.1. When c = 0, the coefficient of the critical nonlinearity in (1.4) vanishes
and no transformation is needed. This is reflected in the fact that, for β = 0, both Ψβ

and its inverse reduce to the identity and equations (1.4) and (5.4) coincide. Thus, the
above definition of the Cole–Hopf transform allow us to treat the cases c = 0 and c ̸= 0
simultaneously within a unified framework.

5.3. Analysis of forced viscous Hamilton–Jacobi equation. Our first a priori
estimate concerns the modulation function σ, which solves the forced viscous Hamilton–
Jacobi equation (1.4). Applying the Cole–Hopf transform by setting ξ = Ψβ(σ) removes
the critical nonlinearity from (1.4) and allows us to control the solution in terms of the
forcing g. For this purpose, we assume that g decays at the integrable rate t−5/4, which
is weaker than the expected decay rate t−3/2 log(t), cf. Section 5.1, but suffices for our
purposes.

Lemma 5.2 (A priori estimate on modulation). Let C > 0 and k ∈ N0. Then, there exist
constants C0,M0 > 0 such that for each T > 0, M ∈ (0,M0], and smooth g : [0, T ]×Rd−1 →
R satisfying

∥g(t)∥Ck ≤ CM(1 + t)−5/4, t ∈ [0, T ], (5.5)

there exists a unique smooth solution ξ : [0, T ]× Rd−1 → R to (5.4) obeying the a priori
estimate

∥ξ(t)∥Ck ≤ C0M (5.6)

for all t ∈ [0, T ]. Moreover, σ := Ψ−1
β (ξ) is the unique smooth solution to (1.4) on [0, T ].

Proof. Existence and uniqueness of a smooth solution ξ to (5.4) follow from standard
parabolic theory; see [28, Chapter 4]. Such a function ξ satisfies the Duhamel formula

ξ(t) = −
∫ t

0

e(t−s)d⊥∆yg(s)(1 + βξ(s)) ds (5.7)

for t ∈ [0, T ]. Using (5.5), integrability of (1 + t)−5/4, and Lemma 3.2, we obtain the
estimate

∥ξ(t)∥Ck ≤ K0M +K0

∫ t

0

(1 + s)−5/4∥ξ(s)∥Ck ds

for t ∈ [0, T ], where K0 > 0 is a constant, depending only on C and k. An application of
Grönwall’s inequality then yields a constant C0 > 0, depending only on C and k, such
that (5.6) holds.
For c = 0 the final claim is immediate, since in this case σ ≡ ξ and equation (1.4)

coincides with (5.4). For c ̸= 0, set M0 = 1/(2C0β). Then, (5.6) implies −1/2 ≤ βξ ≤ 1/2
whenever M ≤ M0. Consequently, σ := Ψ−1

β (ξ) = β−1 log(1 + βξ) is well-defined, and a
direct computation shows that σ solves (1.4). Since solutions σ to (1.4) and solutions
ξ to (5.4) are related through the Cole–Hopf transform, uniqueness of σ follows from
uniqueness of ξ. □

5.4. Nonlinear iteration argument. We proceed with establishing a priori bounds on
v, σ, g, and the nonlinearity N(v, σ, g), which reflect the expected decay rates as formally
derived in Section 5.1. To this end, we use the following template function

η(t) = sup
s∈[0,t]

(
E0 + ∥σ(s)∥∞ + E−1

0 (1 + s)5/4∥N(v(s), σ(s), g(s))∥∞
)
, (5.8)
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recalling that E0 := ∥u0 − ϕ∥∞. As an input to the nonlinear iteration, we will assume
that η(t) is bounded. With this assumption, we derive bounds on v, σ, and g, together
with a bound on η(t) which is stronger than the assumed one, allowing us to close the
nonlinear iteration. The output of the iteration is stated in the following lemma.

Lemma 5.3 (Nonlinear iteration). Let k ∈ N0. There exist constants C, δ > 0 such that
for any T > 0, u0 ∈ Cub(Rd), smooth σ, g : [0, T ]× Rd−1 → R, and

v ∈ C
(
[0, T ], Cub(Rd)

)
∩ C∞(

(0, T ]× Rd
)

which satisfy (1.4), (4.5), (4.8), and η(t) ≤ 1 for t ∈ [0, T ], the a priori estimates

η(t) ≤ CE
3/4
0 , (5.9a)

∥v(t)∥∞ ≤ CE0(1 + t)−1 log(2 + t), (5.9b)

∥g(t)∥Ck ≤ C
(
ϱ(t)E0 + E2

0(1 + t)−3/2 log(2 + t)
)
, (5.9c)

and

∥σ(t)∥∞ + (1 + t)1/2∥∇σ(t)∥∞ + (1 + t)∥∆σ(t)∥∞ ≤ CE0 (5.9d)

hold for all t ∈ [0, T ]. Moreover, if E0 ≤ δ, we have η(t) ≤ 1 for all t ∈ [0, T ].

To bound nonlinear contributions in the Duhamel formulation of v, σ, and g, we use
the following classical estimate on convolution integrals.

Lemma 5.4 (Convolution estimate). Let α, γ ≥ 0. We have∫ t

0

(1 + t− s)−α(1 + s)−γ ds ≲

{
(1 + t)−1 log(2 + t), α = γ = 1,

(1 + t)max{−α,−γ,−α−γ+1}, otherwise

for all t ≥ 0.

Proof of Lemma 5.3. Throughout the proof, we denote by C > 0 any constant, which is
independent of t, T , u0, E0, u, v, σ, and g.

Let t ∈ [0, T ] be such that η(t) ≤ 1. By definition of η(t), we have

∥N(s)∥∞ ≤ E0(1 + s)−5/4 (5.10)

for s ∈ [0, t], where we have abbreviated

N(s) := N(v(s), σ(s), g(s)).

Applying Lemma 3.2 and recalling that ϱ is supported on [1/4, 3/4], we establish

∥g(τ)∥Ck ≤ Cϱ(τ)E0, ∥g(n+ τ)∥Ck ≤ C sup
r∈[n−1,n]

∥N(r)∥∞

for all τ ∈ [0, 1] and n ∈ N such that τ, n+ τ ∈ [0, t]. In particular, combining the latter
with (5.10) implies

∥g(s)∥C9 ≤ CE0(1 + s)−5/4 (5.11)

for s ∈ [0, t], where the choice for k = 9 is motivated by the interpolation argument in the
upcoming Step 5 of the proof.
Step 1: Estimating σ. Recalling Section 5.2, we introduce the Cole–Hopf variable

ξ := Ψβ(σ) so that ξ solves (5.4) and obeys the associated Duhamel formulation

ξ(s) = −
∫ s

0

e(s−r)d⊥∆yg(r)(1 + βξ(r)) dr (5.12)

for s ∈ [0, t]. Using (5.11) and Lemma 5.2, we then obtain

∥ξ(s)∥C9 ≤ CE0 (5.13)
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for s ∈ [0, t]. Combining this with (5.11) and Lemma 3.2 also gives

∥∇e(s−r)d⊥∆yg(r)(1 + βξ(r))∥∞ ≤ CE0(1 + s− r)−1/2(1 + r)−5/4,

∥∆e(s−r)d⊥∆yg(r)(1 + βξ(r))∥∞ ≤ CE0(1 + s− r)−1(1 + r)−5/4

for r, s ∈ [0, t] with r ≤ s. Substituting this into (5.12) and using Lemma 5.4 gives the
following estimate

(1 + s)1/2∥∇ξ(s)∥∞ + (1 + s)∥∆ξ(s)∥∞ ≤ CE0 (5.14)

for s ∈ [0, t]. Since ξ = Ψβ(σ) by definition, it also holds that σ = Ψ−1
β (ξ). Using the fact

that ∥σ(t)∥∞ ≤ η(t) ≤ 1, it follows that the estimates (5.13) and (5.14) can be transferred
to σ using (uniform) smoothness of Ψ−1

β . This results in

∥σ(s)∥C9 + (1 + s)1/2∥∇σ(s)∥∞ + (1 + s)∥∆σ(s)∥∞ ≤ CE0 (5.15)

for s ∈ [0, t], which establishes (5.9d).
Step 2: Decomposing v. The Duhamel formulation of (4.5) reads

v(s) = esL(u0 − ϕ) +

∫ s

0

e(s−r)LÑ(r) dr

for s ∈ [0, t], where we have abbreviated

Ñ(r) := ∆σ(r)(d⊥ϕ
′ −Dϕ′) + |∇σ(r)|2(Dϕ′′ + 1

2
c ϕ′) +N(r)− g(r)ϕ′. (5.16)

Applying the decomposition of Theorem 3.1 to both terms then shows that we have

v(s) = ζ(s)ϕ′ + w(s), (5.17)

with

ζ(s) := esd⊥∆y⟨e∗, u0 − ϕ⟩2 +
∫ s

0

e(s−r)d⊥∆y⟨e∗, Ñ(r)⟩2 dr, (5.18a)

∥w(s)∥∞ ≤ C(1 + s)−1E0 + C

∫ s

0

(1 + (s− r))−1∥Ñ(r)∥∞ dr (5.18b)

for s ∈ [0, t]. We will now bound w and ζ separately.
Step 3a: Estimating w. We first notice that we can estimate

∥Ñ(s)∥∞ ≤ CE0(1 + s)−1 (5.19)

for s ∈ [0, t], by applying the triangle inequality to (5.16) and then using (5.10), (5.11),
and (5.15). Substituting (5.19) into (5.18b) and using Lemma 5.4 then gives

∥w(s)∥∞ ≤ CE0(1 + s)−1 log(2 + s) (5.20)

for s ∈ [0, t].
Step 3b: Estimating ζ. We establish the estimate

∥ζ(s)∥∞ ≤ CE0(1 + s)−5/4 (5.21)

for s ∈ [0, t]. For s ≤ 1 this is seen from Lemma 3.2, (5.18a) and (5.19). Hence, we now
assume s ≥ 1 and let n = ⌊s⌋ ≥ 1. We will exploit several cancellations induced by our
tracking scheme. For the first piece of cancellation, take the inner product of (5.16) with
e∗ and use (1.8), (1.12), and Lemma 1.9 to find

⟨e∗, Ñ(r)⟩2 = ⟨e∗, N(r)⟩2 − g(r)

for r ∈ [0, t]. Substituting the above into (5.18a), we thus obtain

ζ(s) = esd⊥∆y⟨e∗, u0 − ϕ⟩2 +
∫ s

0

e(s−r)d⊥∆y⟨e∗, N(r)⟩2 dr −
∫ s

0

e(s−r)d⊥∆yg(r) dr. (5.22)
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Our choice of g will ensure that the third term fully cancels the first term and partially
cancels the second. Indeed, using (4.8) and the facts that ϱ has unit integral and that
n = ⌊s⌋ ≥ 1, we find that the third term satisfies∫ s

0

e(s−r)d⊥∆yg(r) dr = esd⊥∆y

∫ s

0

ϱ(r) dr ⟨e∗, u0 − ϕ⟩2

+
∑
k∈N

[∫ s

0

ϱ(r − k) dr

∫ k

k−1

e(s−r)d⊥∆y⟨e∗, N(r)⟩2 dr
]

= esd⊥∆y⟨e∗, u0 − ϕ⟩2 +
∫ n−1

0

e(s−r)d⊥∆y⟨e∗, N(r)⟩2 dr

+

∫ s

0

ϱ(r − n) dr

∫ n

n−1

e(s−r)d⊥∆y⟨e∗, N(r)⟩2 dr.

(5.23)

Substituting (5.23) into (5.22) yields

ζ(s) =

∫ s

n−1

e(s−r)d⊥∆y⟨e∗, N(r)⟩2 dr −
∫ s

0

ϱ(r − n) dr

∫ n

n−1

e(s−r)d⊥∆y⟨e∗, N(r)⟩2 dr.

Applying Lemma 3.2 and the estimate (5.10) to this “fully canceled” formula for ζ(s) then
shows that (5.21) also holds true for s ∈ [0, t] with s ≥ 1.
Step 4: Estimating v and N . Combining (5.17) and (5.20)-(5.21) immediately yields

∥v(s)∥∞ ≤ CE0(1 + s)−1 log(2 + s) (5.24)

for s ∈ [0, t], which is exactly (5.9b). As a trivial consequence, we have ∥u(s)∥∞ ≤ C for
s ∈ [0, t]. By standard parabolic regularity theory [28], this implies χ(s)∥u(s)∥C9 ≤ C
for s ∈ [0, t], where we use that χ is supported on [1/8,∞). The additional regularity of
u can then be transferred back to v using (4.2) and (5.15), which ultimately results in
χ(s)∥v(s)∥C9 ≤ C for s ∈ [0, t]. Interpolating this with (5.24) then yields the rather crude
bound

χ(s)∥v(s)∥C2 ≤ CE
3/4
0 (1 + s)−3/4 (5.25)

for s ∈ [0, t], which is the final piece needed to obtain the desired estimate on the
nonlinearity N .
Step 5: Conclusion. Substituting (5.11), (5.15), (5.24), and (5.25) into the nonlinear

estimate (4.7) obtained in Lemma 4.1 and counting powers of E0 and (1 + s) we find

∥N(s)∥∞ ≲ E
7/4
0 (1 + s)−5/4

for s ∈ [0, t]. Combining this with (5.15) shows that (5.9a) is satisfied. Thus, it remains
to show (5.9c). To accomplish this, we combine the estimates (5.11), (5.15), and (5.24)
with the nonlinear bound (4.9) from Lemma 4.3 to find

∥e
1
8
d⊥∆y⟨e∗, N(s)⟩2∥∞ ≲ E2

0(1 + s)−3/2 log(2 + s)

for s ∈ [0, t]. Inserting this into (4.8), while applying Lemma 3.2 and taking into account
the support properties of ϱ, then yields (5.9c).

For the final claim, we insert σ(0) ≡ g(0) ≡ 0 and v(0) = u0 − ϕ into (4.7) and (5.8) to
obtain

η(0) ≤ E0 + CE−1
0 ∥v(0)∥2∞ ≤ CE0 ≤ CE

3/4
0 , (5.26)

so long as E0 ≤ 1.
Now, let C1 > 0 be an admissible constant for both (5.9a) and (5.26), and set δ =

min{(2C1)
−4/3, 1}. Then, when E0 ≤ δ, estimate (5.26) implies η(0) ≤ 1/2. In addition,

estimate (5.9a) shows that η(t) ≤ C1E
3/4
0 ≤ 1/2 for all t ∈ [0, T ] which satisfy η(t) ≤ 1.

Hence, it follows that η(t) ≤ 1 for all t ∈ [0, T ] by continuity of η, as desired. □
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5.5. Construction of solutions to tracking scheme. Given a time T > 0, and a
solution u to the reaction-diffusion system (1.1) on [0, T ], we show that the a priori bounds
established in Lemmas 5.2 and 5.3 ensure the existence of a unique solution (σ, v, g) to the
tracking scheme defined by (1.4), (4.5), and (4.8) on the same interval [0, T ]. In the proof
of the following proposition, we obtain these solutions via a simple iterative extension
procedure, which crucially relies on the following facts:

• For t ∈ [0, 1] and n ∈ N, the value of g(n + t) is completely determined by
N(v(s), σ(s), g(s)) on [0, n].

• The solution u and the forcing g uniquely determine σ and v.

Proposition 5.5 (Extension argument). There exists δ′ > 0 such that for any T > 0,
u0 ∈ Cub(Rd) with E0 = ∥u0 − ϕ∥∞ ≤ δ′, and (classical) solution

u ∈ C
(
[0, T ], Cub(Rd)

)
∩ C∞(

(0, T ]× Rd
)

to (1.1), there exist unique smooth σ, g : [0, T ]× Rd−1 → R and

v ∈ C
(
[0, T ], Cub(Rd)

)
∩ C∞(

(0, T ]× Rd
)

(5.27)

satisfying (1.4), (4.5), and (4.8) for t ∈ [0, T ].

Proof. Let us first assume that the conclusion holds with T replaced by some n ∈ N0.
We will show that with this assumption, the conclusion also holds with T replaced by
t = n + t′ for any t′ ∈ [0, 1], as long as n + t′ ≤ T . The claim then follows by iteration
(the case n = 0 is trivial).

Let σ, v, g be the functions defined on [0, n] which are supplied to us by the assumption.
Using the support properties of ϱ, we see that there exists a unique smooth extension of g
to [0, t] such that (4.8) still holds. Taking E0 ≤ δ, where δ > 0 is as in Lemma 5.3, we have
η(s) ≤ 1 for s ∈ [0, n]. Via (5.8), this implies that ∥N(v(s), σ(s), g(s))∥∞ ≤ E0(1 + s)−5/4

holds for s ∈ [0, n]. Substituting this into (4.8), applying Lemma 3.2, and recalling that ϱ
is supported on [1/4, 3/4], we obtain a T - and u0-independent constant C > 0 such that

∥g(s)∥∞ ≤ CE0(1 + s)−5/4 (5.28)

for s ∈ [0, t]. Hence, Lemma 5.2 yields a T - and u0-independent constant M0 > 0 such
that, provided E0 ≤ M0, there exists a unique smooth extension of σ which solves (1.4)
on [0, t]. With the unique extensions of σ and g at hand, we use (4.2) to uniquely extend
v. This ensures that v has regularity (5.27), which justifies the calculations in Section 4
which show that v solves (4.5). Thus, the result follows by taking δ′ = min{M0, δ}. □

6. Proofs of the main results

The proof of Theorem 1.4 follows by combining the a priori bounds from Lemma 5.3 with
standard local existence and regularity theory for semilinear parabolic equations. At the
same time, we prove Theorem 1.6 by approximating the modulation function σ with the
solution σ̃ of the viscous Hamilton–Jacobi equation (1.18). This is achieved by estimating
the difference of their Cole–Hopf transforms, which satisfies a simple forced linear heat
equation, allowing us to derive the required bounds via the Duhamel formulation.

Proof of Theorems 1.4 and 1.6. Let δ, δ′ > 0 be as in Lemma 5.3 and Proposition 5.5,
respectively. Set ε = min{δ, δ′} and assume E0 ≤ ε. By standard theory [28] for parabolic
semilinear equations there exist a maximal time T ′ ∈ (0,∞] and a maximally defined
(classical) solution

u ∈ C
(
[0, T ′), Cub(Rd)

)
∩ C∞(

(0, T ′)× Rd
)
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of (1.1) such that the following blow-up criterion

lim sup
t↑T ′

∥u(t)∥∞ <∞ =⇒ T ′ = ∞ (6.1)

holds. Applying Proposition 5.5 and using E0 ≤ δ′, we thus obtain smooth σ, g : [0, T ′)×
Rd−1 → R and

v ∈ C
(
[0, T ′), Cub(Rd)

)
∩ C∞(

(0, T ′)× Rd
)

satisfying (1.4), (4.5), and (4.8) for t ∈ [0, T ′). By Lemma 5.3 and the fact that E0 ≤ δ it
then follows that (1.15)-(1.16) and (5.9c) hold for all t ∈ [0, T ′). The uniform estimate for
u on [0, T ′) provided by (1.15) then implies that T ′ = ∞ using (6.1). Thus, (1.15)-(1.16)
hold for all t ≥ 0 and the proof of Theorem 1.4 is complete.
We proceed with the proof of Theorem 1.6. Throughout the proof, we denote by

C > 0 any constant, which is independent of t and u0. Let σ̃ ∈ C
(
[0,∞), Cub(Rd−1)

)
∩

C∞(
(0,∞)× Rd−1

)
be the global (classical) solution to viscous Hamilton–Jacobi equa-

tion (1.18), whose existence and uniqueness follow directly via the Cole–Hopf transform.
Recalling the definitions of β (5.2) and Ψβ (5.3a), we set

ξ := Ψβ(σ), ξ̃ := Ψβ(σ̃), X := ξ̃ − ξ. (6.2)

so that X satisfies
∂tX = d⊥∆X + g(1 + βξ),

X(0) = Ψβ(⟨e∗, ϕ− u0⟩2).
(6.3)

Our strategy is to first show that X remains small and then transfer this control to σ − σ̃.
Specifically, we will establish

∥X(t)∥∞ ≤ C
(
E2

0 + E0(1 + t)−1
)
, t ≥ 0. (6.4)

To this end, we begin by collecting several preliminary estimates. First, note that
e−Cε ≤ 1 + βξ̃(0) ≤ eCε. Using ξ̃(t) = etd⊥∆y ξ̃(0) and positivity of the heat semigroup,
this implies e−Cε ≤ 1 + βξ̃(t) ≤ eCε for all t ≥ 0. This guarantees that the inverse Cole–
Hopf transform of ξ̃ is well-defined and uniformly smooth. By contractivity of the heat
semigroup, it also holds that ∥ξ̃(t)∥∞ ≤ ∥ξ̃(0)∥∞ ≤ CE0 for all t ≥ 0. Therefore, applying
the Cole–Hopf transform to σ(t) and its inverse to ξ̃(t), while recalling estimate (1.16), it
can be seen that

∥σ(t)∥∞ + ∥σ̃(t)∥∞ + ∥ξ(t)∥∞ ≤ CE0 (6.5)

for t ≥ 0. Combining estimate (5.9c) with (6.5), while recalling that ϱ is supported on
[1/4, 3/4], we obtain

∥ξ(t)g(t)∥∞ ≤ CE2
0(1 + t)−3/2 log(2 + t) (6.6)

for t ≥ 0. As a final ingredient, an application of Taylor’s theorem guarantees that

∥X(0)∥∞ ≤ CE0, ∥X(0)− ⟨e∗, ϕ− u0⟩2∥∞ ≤ CE2
0 . (6.7)

Now we are in position to prove (6.4). For t ≤ 1, the claim follows directly by in-
serting (5.9c), (6.6), and (6.7) into the Duhamel representation of (6.3) and applying
Lemma 3.2. Next, we treat the case t ≥ 1. We first observe, since ϱ is supported on
[1/4, 3/4], that (4.8) reduces to

g(s) = ϱ(s)esd⊥∆y⟨e∗, u0 − ϕ⟩2
for s ∈ [0, 1]. Substituting this into the Duhamel formulation for (6.3) and using that ϱ
has unit integral, yields the identity

X(1) = ed⊥∆y

[
X(0)− ⟨e∗, ϕ− u0⟩2

]
+ β

∫ 1

0

e(1−s)d⊥∆yξ(s)g(s) ds.
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Hence, invoking (6.6) and (6.7), and Lemma 3.2, we infer that ∥X(1)∥∞ ≤ CE2
0 . Restarting

the Duhamel formulation for (6.3) at t = 1, we also find the identity

X(t) = e(t−1)d⊥∆yX(1) +

∫ t

1

e(t−s)d⊥∆y
[
g(s)(1 + βξ(s))

]
ds, t ≥ 1.

Combining this with our bound for X(1), Lemma 3.2, and estimates (5.9c) and (6.6) and
using that ϱ is supported on [1/4, 3/4], it follows that (6.4) also holds for t ≥ 1, as claimed.
Finally, we invert the expressions in (6.2) using (6.5) and apply estimate (6.4) to arrive at

∥σ(t)− σ̃(t)∥∞ ≤ C∥X(t)∥∞ ≤ C
(
E2

0 + E0(1 + t)−1
)

for t ≥ 0. Combining this with (1.15)-(1.16) and smoothness of ϕ shows that (1.20) holds,
concluding the proof of Theorem 1.6. □

Subsequently, we prove Corollary 1.7 by combining the leading-order approximation of
the front interface dynamics by the viscous Hamilton–Jacobi equation (1.18a) with the
construction in [30, § 3] of small, infinitely oscillating solutions to (1.18a).

Proof of Corollary 1.7. Let ε > 0 be as in Theorem 1.6. It suffices to prove the claim in
the case d = 2 (when d ≥ 3, we can extend the solutions to be constant in the additional
directions).
Step 1: Construction. Using the construction from [30, § 3], we can find a smooth

solution ξ : [0,∞) × R → R to the heat equation ∂tξ = d⊥∂yyξ, a sequence of times
tn ∈ [0,∞) diverging to infinity, and a sequence of points yn ∈ R such that it holds

|ξ(t, y)| ≤ 2, ξ(tn, 0) = (−1)n, ξ(tn, yn) = −(−1)n,

for all t ≥ 0, y ∈ R, and n ∈ N. We then define smooth functions

σ̃δ := Ψ−1
β (δξ), u0,δ(y, z) := ϕ(z)− σ̃δ(0, y)ϕ

′(z),

for (y, z) ∈ R2 and δ ∈ (0, (4β)−1).
Step 2. Verification. We now claim that the statement of the corollary is witnessed by

the family of initial conditions (u0,δ)δ≪1. To see this, first note that by setting u0 = u0,δ
in (1.18b), it follows using (1.8) that σ̃δ is exactly the global solution to (1.18). Moreover,
from the properties of ξ and (5.3b) we also establish

E0,δ := ∥u0,δ − ϕ∥∞ ≲ ∥σ̃δ(0)∥∞ ≲ δ, (6.8a)

|σ̃δ(tn, 0)− (−1)nδ|+ |σ̃δ(tn, yn) + (−1)nδ| ≲ δ2, (6.8b)

for all δ ∈ (0, (4β)−1) and n ∈ N. Now let uδ denote the solution to (1.1a) with initial
condition u0,δ. Using the smoothness of ϕ, an application of Theorem 1.6 then yields that

lim sup
n→∞

sup
z∈Rd

|uδ(tn, 0, z)− ϕ(z − ctn − (−1)nδ)| ≲ δ2,

lim sup
n→∞

sup
z∈Rd

|uδ(tn, yn, z)− ϕ(z − ctn + (−1)nδ)| ≲ δ2,

for all δ ∈ (0,min{(4β)−1, ε}). Since ϕ′ ̸≡ 0 by Hypothesis 2-(ii), the mean value theorem
finally yields constants C0, c0 > 0 such that it holds:

lim sup
n→∞

inf
a∈R

sup
(y,z)∈Rd

|uδ(tn, y, z)− ϕ(z − a)| ≥ 2c0 δ − C0 δ
2 ≥ c0 δ > 0

for all δ ∈ (0,min{(4β)−1, ε, c0C
−1
0 }), so that (1.21) holds. Since E0,δ can be arbitrarily

small due to (6.8a), this completes the proof. □
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Finally, the proof of the asymptotic stability result in Theorem 1.8 is based on an
iterative application of the following lemma, which shows that transversely localized
perturbations of the front remain transversely localized and that their L∞-norm is reduced
by a factor of one half after a finite time. Transverse spatial localization is propagated in
time via a standard Grönwall argument, while the decay in norm follows by combining the
estimate in Theorem 1.6 with the observation that sufficiently localized solutions to the
viscous Hamilton–Jacobi equation (1.18a) converge uniformly to zero.

Lemma 6.1. There exists ε > 0 such that, whenever u0 ∈ Cub(Rd) satisfies (1.13) and

lim
|y|→∞

sup
z∈R

|u0(y, z)− ϕ(z)| = 0,

the following statements hold:

• There exists a unique global solution u to (1.1) with regularity (1.14).
• The solution u retains its transverse localization: it holds

lim
|y|→∞

sup
z∈R

|u(t, y, z)− ϕ(z − ct)| = 0, t ≥ 0. (6.9)

• There exists a time t1 > 0 such that

sup
(y,z)∈Rd

|u(t, y, z)− ϕ(z − ct)| ≤ 1
2
E0, t ≥ t1. (6.10)

Proof. Throughout the proof, we denote by C > 0 any constant, which is independent of t
and u0.
Taking ε > 0 sufficiently small, let u and σ̃ be the global solutions to (1.1) and (1.18)

with regularity (1.14) and (1.19) obtained from Theorem 1.6, so that the estimate (1.20)
holds. Recalling that utf(t, y, z) = ϕ(z − ct) was introduced in (1.2), we set w := u− utf ,
so that w has regularity (1.14) and is a solution to

∂tw = D∆w + f(utf + w)− f(utf),

w(0) = u0 − ϕ.
(6.11)

For h ∈ Cub(Rd), we define the sublinear functional

M [h] = lim sup
R→∞

sup
|y|≥R, z∈R

|h(y, z)|.

We claim that

M [etD∆h] ≲M [h]

for all t ≥ 0 and h ∈ Cub(Rd). Diagonalizing the symmetric matrix D as D = JD0J
−1

with D0 = diag(d1, . . . , dn) ∈ Rn×n a positive diagonal matrix and J ∈ Rn×n invertible,
this bound indeed follows from the Gaussian decay in space of the associated temporal
Green’s function G(t, x) = J diag(G1(t, x), . . . , Gn(t, x)) J

−1 with

Gi(t, x) =
e
− |x|2

4dit

(4πdit)d/2
, i = 1, . . . , n.

Hence, from the Duhamel formulation of (6.11) we can derive the estimate

M [w(t)] ≤ CM [w(0)] + C

∫ t

0

M [f(utf(s) + w(s))− f(utf(s))] ds

≤ CM [w(0)] + C

∫ t

0

M [w(s)] ds
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for t ≥ 0. Since we have M [w(0)] = 0 by the assumption on u0, and the map t 7→M [w(t)]
is continuous, we conclude by Grönwall’s lemma that M [w(t)] = 0 for all t ≥ 0, which
yields (6.9).

Next, note that lim|y|→∞ σ̃(0, y) = 0 by the assumption on u0 and (1.18b). Hence, using
that solutions with localized initial data to the heat equation decay uniformly to 0 as
t→ ∞, it follows, after applying the Cole–Hopf transform, that limt→∞∥σ̃(t)∥∞ = 0. On
the other hand, we deduce from (1.20) that

sup
(y,z)∈Rd

|u(t, y, z)− ϕ(z − ct)| ≤ C
(
E2

0 + E0(1 + t)−1 log(2 + t) + ∥σ̃(t)∥∞
)

for t ≥ 0. Thus, after additionally imposing ε ≤ (4C)−1, we can find t1 > 0, depending
only on u0, such that (6.10) holds. □

Proof of Theorem 1.8. Using translational symmetry of (1.1a), we iterate Lemma 6.1 to
find an increasing sequence of times tn ∈ [0,∞) such that

sup
(y,z)∈Rd

|u(t, y, z)− ϕ(z − ct)| ≤ E02
−n, t ≥ tn,

which proves the claim. □

7. Outlook and open problems

The nonlinear stability framework developed in this paper extends beyond the class
of semilinear reaction-diffusion systems considered here. Provided that the linearization
generates a C0-semigroup on Cub(Rd) with uniformly damped high-frequency component,
we expect the approach to apply to bistable fronts in general semilinear dissipative systems
and even to quasilinear dissipative problems, provided sufficient regularity control is
available within the nonlinear iteration scheme. Such L∞-based regularity control may be
obtained via energy estimates in uniformly local Sobolev spaces; see [2].
The fact that only derivatives of the modulation σ enter the nonlinearity of the per-

turbation equation (4.5) suggests that one may allow for modulational initial data of the
form

u0(y, z) = ϕ(z − σ0(y)) + v0(y, z), (7.1)

where σ0 ∈ C1
ub(Rd−1) and v0 ∈ Cub(Rd) satisfy ∥∇σ0∥∞ + ∥v0∥∞ ≪ 1. Since ∥σ0∥∞ need

not be small, such initial data are not necessarily close to any fixed translate of the planar
front. Proving that the associated solution u to (1.1) stays close to a modulated planar
front would therefore constitute a global stability result. Similar modulational stability
results [1, 20] have been established for wave trains in one spatial dimension, and we
expect that ideas can be adapted to the present setting.

The gradient bound ∥∇etd⊥∆yσ∥∞ ≲ t−1/2∥σ∥BMO suggests a further relaxation to initial
modulations σ0 in (7.1) of bounded mean oscillation. In particular, this permits choices
such as σ0(y) = log(1 + δ|y|) for 0 < δ ≪ 1, for which ∥∇σ0∥∞ ≪ 1 and |σ0(y)| → ∞ as
|y| → ∞, so that ϕ(z − σ0(y)) represents a curved front. Modulational stability for slowly
linearly growing initial modulations σ0 with σ′

0(y) = αδ tanh(δy) and 0 < δ ≪ α, has
been obtained in two-dimensional reaction-diffusion systems under exponentially localized
perturbations [15]. It is an open question whether stability can also be established with
respect to (partly) nonlocalized perturbations.

Existence and stability of bistable curved fronts that are not almost planar, i.e., which
cannot be regarded as modulated fronts ϕ(z−σ0(y)) with ∥∇σ0∥∞ small, have been obtained
in scalar reaction-diffusion equations and in specific multicomponent reaction-diffusion
systems obeying a comparison principle; see, for instance, [14, 31, 33, 39] and numerous
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references therein. To the best of the authors’ knowledge, the nonlinear stability of not-
almost-planar bistable curved fronts in general multicomponent reaction-diffusion systems
remains an open problem, both against localized and against nonlocalized perturbations.
Another possibility is to augment (1.1a) with a random forcing term ζ, as was done

in [4]. It was already observed in [36] that in this case the front motion is governed by a
viscous Hamilton–Jacobi equation with an additional random forcing term ζ̃ derived from
ζ, so that

∂tσ = d⊥∆σ + 1
2
|∇σ|2 + ζ̃ . (7.2)

When ζ̃ is space-time white noise, (7.2) is exactly the Kardar–Parisi–Zhang (KPZ) model
for random asymmetric surface growth [25]. An interesting feature of KPZ is that it is
only well-posed after a renormalization which is (formally) achieved by adding ‘−∞’ to
the right-hand side of (7.2); see e.g. [13]. In our context, this suggests that the average
speed of the front will diverge as the correlation length of ζ̃ approaches zero, showing that
rough noise can have an outsized effect on front propagation. A proof of this fact would
be of great interest and would require techniques from the study of singular stochastic
PDEs. Still, we expect that our methods to treat (1.1a) can be useful to future researchers
attempting to prove such a result.

Appendix A. Uniform semigroup bounds

The following lemma is used in Section 2.2 to pass from ξ-dependent bounds on etL̂ξ to
ξ-independent bounds. We expect that the following argument is known, but were unable
to locate a suitable statement in the literature.

Lemma A.1. Let X be a Banach space, let A be the generator of a C0-semigroup (etA)t≥0

on X, and let S ⊂ B(X) be compact with respect to the uniform operator topology. Suppose
that for every B ∈ S, there exists MB > 0 such that the inequality

∥et(A+B)∥B(X) ≤MB, (A.1)

holds for all t ≥ 0. Then, for every ε > 0, there exists Kε > 0 such that the inequality

∥et(A+B)∥B(X) ≤ Kεe
εt

holds for all t ≥ 0 and B ∈ S.

Proof. Fix some B ∈ S. By using (A.1) and applying the bounded perturbation theorem,
cf. [10, Theorem III.1.3], it follows that there exists an open neighborhood UB ⊂ B(X) of
B such that the inequality

∥et(A+B′)∥B(X) ≤MBe
εt (A.2)

holds for all t ≥ 0 and B′ ∈ UB. The family (UB)B∈S forms an open cover of S. So,
by compactness there exists a subcover (UB)B∈T with T ⊂ S finite. Upon taking Kε =
maxB∈T MB, the result follows. □

Remark A.2. The exponential term eεt cannot be omitted from Lemma A.1. This can be
seen by considering the following example:

X = R2, A = 0, S =

{(
−a2 a
0 −a2

)}
a∈[0,1]

.
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Sancho, and F. Sagués. “Wave propagation in a medium with disordered excitability”. In: Phys. Rev. Lett.
80.24 (1998), pp. 5437–5440. doi: 10.1103/PhysRevLett.80.5437.

[37] M. Taniguchi. “Instability of planar traveling waves in bistable reaction-diffusion systems”. In: Discrete
Contin. Dyn. Syst. Ser. B 3.1 (2003), pp. 21–44. doi: 10.3934/dcdsb.2003.3.21.

[38] D. Terman. “Stability of planar wave solutions to a combustion model”. In: SIAM J. Math. Anal. 21.5
(1990), pp. 1139–1171. doi: 10.1137/0521063.

[39] Z.-C. Wang. “Traveling curved fronts in monotone bistable systems”. In: Discrete Contin. Dyn. Syst. 32.6
(2012), pp. 2339–2374. doi: 10.3934/dcds.2012.32.2339.

[40] J. X. Xin. “Multidimensional stability of traveling waves in a bistable reaction-diffusion equation. I”. In:
Comm. Partial Differential Equations 17.11 (1992), pp. 1889–1899. doi: 10.1080/03605309208820907.

31

https://doi.org/10.1016/j.jde.2011.08.029
https://doi.org/10.1080/03605300902963500
https://doi.org/10.1016/j.jde.2004.06.011
https://doi.org/10.1007/s00205-024-01980-2
https://doi.org/10.1007/s00205-024-01980-2
https://doi.org/10.1007/s10231-008-0072-7
https://doi.org/10.1016/S1874-575X(02)80039-X
https://doi.org/10.1016/0001-8708(76)90098-0
https://doi.org/10.1103/PhysRevLett.80.5437
https://doi.org/10.3934/dcdsb.2003.3.21
https://doi.org/10.1137/0521063
https://doi.org/10.3934/dcds.2012.32.2339
https://doi.org/10.1080/03605309208820907

	1. Introduction
	1.1. Existing results
	1.2. Method of proof
	1.3. Assumptions
	1.4. Main results
	1.5. Geometric interpretation of nonlinear coefficient
	1.6. Notation

	2. Linear theory: analysis of Fourier symbol
	2.1. Low-frequency spectral analysis
	2.2. Semigroup bounds

	3. Linear theory: semigroup decomposition and estimates
	3.1. Fourier representation and contour shift

	4. Nonlinear theory: tracking scheme
	4.1. Front modulation
	4.2. Forcing

	5. Nonlinear theory: stability analysis
	5.1. Decay rates and optimality
	5.2. Cole–Hopf transform
	5.3. Analysis of forced viscous Hamilton–Jacobi equation
	5.4. Nonlinear iteration argument
	5.5. Construction of solutions to tracking scheme

	6. Proofs of the main results
	7. Outlook and open problems
	Appendix A. Uniform semigroup bounds
	References

