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We introduce a novel example of space-time analogy,
where a dissipative soliton microcomb generates a
traveling-wave temporal Fabry-Perot for trapping a
bichromatic dispersive comb, generated at the second-
harmonic of the pump laser. The fundamental frequency
comb is generated in the anomalous dispersion regime,
whereas the dispersive comb is generated in the normal
dispersion regime. Direct numerical simulations are in
excellent agreement with an analytical model.
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In recent years, there has been significant research interest in4

the study of optical pulse propagation in spatiotemporal disper-5

sive media. We are considering here the novel effects that may6

arise in the presence of a refractive index modulation, both in7

space and time, which is induced by a traveling-wave pertur-8

bation. In this context, intriguing space-time analogies, such as9

temporal reflection and refraction, total internal reflection, and10

temporal guiding from a moving boundary have been revealed11

[1]. For example, an optical fiber soliton permits to introduce,12

via cross-phase-modulation, a traveling-wave refractive index13

perturbation which acts on a weak dispersive wave propagat-14

ing at a different wavelength [2, 3]. Moreover, the propagation15

of either a soliton pair or a soliton train provides the temporal16

analog of a waveguide or a Fabry–Perot resonator [4, 5] or a17

spatiotemporal moving Bragg grating mirror [6].18

In this work, we introduce a new example of a wave propa-19

gation effect that can be explained in terms of space-time analo-20

gies. Specifically, we show that dissipative (or cavity) Kerr soli-21

tons (DKS) associated with a coherent frequency comb in the22

anomalous dispersion regime of a microresonator may create23

a Fabry-Perot resonator temporal cavity for dispersive waves24

at different carrier frequencies. In the relevant case where the25

microresonator has both quadratic and cubic nonlinearities, a26

time-stationary dispersive wave is spontaneously generated by27

the fundamental frequency (FF) soliton comb via phase-matched28

intra-cavity second-harmonic (SH) generation. Based on numer-29

ical experiments, we show that the usual sweeping of the fre-30

quency detuning of the FF coherently injected CW laser across31

the cavity resonance leads to the simultaneous generation of a32

stable pair of coupled combs, comprising a FF soliton comb and33

a dispersive SH comb.34

Along with that, recent experimental demonstrations of two-35

colors comb generation [7, 8] motivate deeper theoretical investi-36

gations of nonlinear cavity systems with simultaneous χ(2) and37

χ(3) nonlinearities [9–11]. In these systems, combs may result38

from a strong nonlinear interaction of both types of nonlineari-39

ties. Here we consider a different situation, where the properties40

of the SH comb generated in the normal dispersion regime are41

determined by the linear temporal waveguides, which are dy-42

namically induced via cross-phase modulation by the train of43

DKS at the FF in the anomalous dispersion regime.44

Let us consider the set of coherently driven and damped45

mean-field equations that describe propagation in a passive46

cavity with both quadratic and cubic nonlinearities [9, 10, 12–47

14]:48






∂A

∂t
=

[
→ε1 → i∆ → iϱ1

∂2

∂τ2

]
A + iκBA

↑ + S

+
[
iγ1|A|2 + 2iγ12|B|2

]
A (1)

∂B

∂t
=

[
→ε2 → i2∆ → d

∂

∂τ
→ iϱ2

∂2

∂τ2

]
B + iκA

2

+
[
iγ2|B|2 + i2γ21|A|2

]
B . (2)

Here A and B are the wave amplitudes at the FF (index 1) and49

the SH (index 2), respectively. The CW laser source S coherently50
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Fig. 1. (a) Temporal profile of a FF cavity soliton coupled to a
dispersive SH wave. (b) Intracavity energy of the FF and SH
field while sweeping the detuning ∆. (c-d) Temporal evolution
of the FF and SH fields. (e-f) Final spectrum for the field A and
B. The values used for this simulation are ε1,2 = 1, ϱ1 = →1,
ϱ2 = 1, κ = 0.5, γ1,12 = 0.5, γ2,21 = 1, S = 12, tR = 30 , d = 0.

drives the passive cavity with distributed losses (ε1,2), with a51

laser/cavity detuning (∆), group-velocity walk-off (d) and group52

velocity dispersion (GVD) (ϱ1,2). The quadratic nonlinear coef-53

ficient is κ, whereas the self-phase (γ1,2) or cross-phase (γ12,21)54

modulation terms are associated with the cubic nonlinearity of55

the cavity. For simplicity, Eqs. (1-2) are written for the case of56

phase-matched SH generation.57

Following [9], we numerically simulated the generation of58

coupled χ(2) + χ(3) combs by using Eqs. (1-2). As it is typically59

done in experiments for the generation of DKS combs, we intro-60

duced a linear ramp of the pump laser-cavity detuning ∆ over61

the first 25 round-trips (from ∆ = →2 up to ∆ = 20); we kept62

∆ fixed for the subsequent 25 round trips to test the stability63

of the numerically excited intracavity field solutions. For the64

moment, let us consider the case of a vanishing linear group-65

velocity walk-off between the FF and the SH, i.e., we set d = 066

in Eqs. (1-2). However, in contrast with the case studied in [9],67

which investigates anomalous dispersion for both fields, we now68

consider a FF (SH) propagating in the anomalous (normal) GVD69

regime, respectively.70

The final state (Fig. 1(a)) in the temporal profile of the intra-71

cavity intensity is very different for the FF and the SH. Three72

DKSs per round-trip are formed at the FF. Whereas, a syn-73

chronous dispersive wave with fast oscillating intensity, which74

is trapped between the DKSs, forms at the SH. The intensity75

of the SH dispersive wave is reduced by more than two orders76

of magnitude with respect to the DKS at the FF. Observing the77

intracavity energy build-up (computed as the fast time integrals78

of |A|2 and |B|2, Fig. 1(b)), it is evident that most of the energy is79

carried by the FF wave. The dynamics results in the typical gen-80

eration of a Kerr DKS emerging from a chaotic spatiotemporal81

evolution (see panel (c)). Around the SH, though, the relatively82

low energy state does not allow the formation of a localized83

solution (panel (d)).84

In Fig. 1(e-f) we report the final spectra for both the FF and85

SH waves, respectively. Once the DKS comb is established at86

the FF, a symmetric double-peaked comb is generated around87

the SH. Interestingly, the dominant spectral component of the88

SH wave slightly mismatches its nominal central frequency νSH.89

This result may suggest a dynamical oscillatory behavior which90

requires an attentive analysis.91

In order to understand what determines the temporal fre-92

quency of the SH comb, we perform a loop of numerical sim-93

ulations by sweeping the value of ϱ2, while keeping all other94

parameters constant. While increasing ϱ2, the oscillation fre-95

quency k↑ of the SH wave diminishes. This is evident by looking96

at both the temporal (Fig. 2(a-b)) and spectral (Fig. 2(c)) profiles.97

In panel (d) we show how k↑ strictly depends on dispersive ef-98

fects and it decreases with the inverse square root of ϱ2. Because99

of the much reduced intensity of the SH comb, it is expected that100

its properties can be described in terms of a linearized model.101

As we are going to confirm by an approximate but analytical102

solution of this model, the temporal period of the oscillation of103

the field intensity at the SH remains fixed all across the round-104

trip time. Moreover, below we present a simple explicit formula105

for k↑ which matches our numerical experiments as shown in106

Fig. 2(d).107

To systematically study the standing- and traveling-wave108

solutions of Eqs. (1-2) observed in the direct numerical simula-109

tions, one sets A(t, τ) = a(τ → ct), and B(t, τ) = b(τ → ct). This110

leads to a system of ordinary differential equations for the wave111

(d)

(a) (b) (c)

Fig. 2. (a-b) temporal profiles of the FF and SH field for two
different values of ϱ2,SH = 0.5 and 2.5, respectively, and (c)
their associated spectra. (d) Comparison between the numer-
ical simulations and theory. Other simulation parameters are:
ε1,2 = 1, ϱ1 = →1, κ = 1, γ1,12 = 0.5, γ2,21 = 1, S = 12, tR = 50
, d = 0.
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Fig. 3. (a) Bifurcation diagram for Eq. (1-2). In red, we report
the CW solution connected with the black branches consisting
of coupled combs. (b-c) Temporal profiles of the two solutions
indicated in panel (a) corresponding to one and two DKSs
in the FF field. The values of the parameters are ε1,2 = 1,
ϱ1 = →0.1, ϱ2 = 0.1, κ = 0.1, γ1,12,21,2 = 1, S = 2, tR = 2π,
d = 0.

profiles a, b, where the wave speed c is part of the unknowns.112

For this system, we performed a numerical bifurcation analysis113

using the MATLAB package pde2path [15], which is designed114

to treat systems of coupled differential equations. Choosing the115

detuning ∆ as the bifurcation parameter, we computed the curve116

of steady-state solutions of Eqs. (1-2), along with the bifurcation117

points on this curve. Retaining the assumption of zero walk-118

off, the system is reversible in τ, i.e., invariant with respect to119

the transformation τ ↓↔ →τ. Thus, we may find bifurcations120

of symmetric coupled standing-wave solutions with c = 0. In121

Fig. 3 panel (a) we report the bifurcation diagram, and in pan-122

els (b) and (c) we show the coupled combs that bifurcate from123

the steady-state solution of Eqs. (1-2), in the case when either124

only one or two DKSs are present in each round-trip time of the125

FF comb. States with three DKSs per round-trip, such as those126

shown in Fig. 1(a), emerge from the third bifurcation branch in127

Fig. 3(a). The steady-state solutions exhibit, in the presence of128

multiple DKSs per round-trip, a much larger amplitude of the129

oscillations of the SH intracavity field; cf. Fig. 3(b-c).130

Next, we numerically investigated the robustness of the dy-131

namical ω ↭ 2ω interplay in the presence of a nonzero group-132

velocity walk-off d. Fig. 4(a) shows two FF DKSs coupled to133

a dispersive SH wave for a finite walk-off (d = 1.5). Panels134

(b–c) illustrate the corresponding FF and SH temporal dynamics:135

when d ↗= 0, the solitons undergo a drift, yet the overall ω ↭ 2ω136

coupling remains qualitatively unchanged. This observation is137

consistent with the numerical bifurcation analysis, as for d ↗= 0,138

traveling-wave solutions with c ↗= 0 emerge near Hopf bifur-139

cations. Quantitatively, the resulting bifurcation diagrams are140

almost identical to the d = 0 case displayed in Fig. 3(a), since141

the walk-off primarily affects the weak SH field, and has a negli-142

(b) (c)

(a)

Fig. 4. (a) Zoom on the temporal profiles of two drifting FF
solitons coupled to a SH dispersive wave with ϱ2=1 (normal
dispersion) and group-velocity walk-off d = 1.5. (b-c) The
associated FF and SH dynamics. Other simulation parameters
are: ε1,2 = 1, ϱ1 = →1, ϱ2 = 1, κ = 1, γ1,12 = 0.5, γ2,21 = 1,
S = 12, tR = 50.

gible impact on the total intracavity energy EFF + ESH . For this143

reason, we decided not to display the corresponding bifurcation144

diagrams. To analyze the effect of the walk-off on the coupled145

combs in more detail, we performed a path continuation in d146

using the solution displayed in Fig. 3(c) as the starting point.147

We first observe in Fig. 5(a) that the dominant SH frequencies148

±k↑ undergo a symmetry breaking into asymmetrically spaced149

frequencies k±. This symmetry breaking occurs in both the150

temporal and the spectral profiles displayed in Fig. 5, and it is151

explained by the fact that for d ↗= 0 the system loses reversibility152

in τ.153

In Fig. 5(b) we report the solution branch parametrized by d154

but we only display the energy of the SH field, which decreases155

after a few oscillations; the energy of the FF field remains nearly156

constant along the branch. Panels (c-h) of Fig. 5 show the gradual157

change of the temporal and spectral profiles of the traveling158

coupled comb and the SH field, respectively. For d = 1 (panels159

(c-d)), the negative carrier frequency slightly approaches the160

CW component, while its positive counterpart loses energy and161

moves towards higher frequency. This trend is confirmed for162

d = 10 (panels (e-f)) and d = 20 (panels (g-h)). Finally, we note163

that Fig. 5 shows that, as d increases, the dispersive wave in164

the SH field undergoes a smooth transition toward a waveform165

similar to a dark pulse.166

In order to obtain better theoretical insight in the properties167

of the dispersive wave comb, we now derive a simple analyt-168

ical model for the SH field. When neglecting the self-phase-169

modulation term for the weak SH field, one obtains the linear170

equation for B:171

[
ε2 + 2i∆ + d

∂

∂τ
+ iϱ2

∂2

∂τ2

]
B → 2iγ21|A|2B = iκA

2. (3)

Let us assume now that the FF field forms a localized DKS, which172

can be approximated by the formula A ↘ A1sech(A2τ)→ iS/∆,173

where the amplitude is |A1| =
≃

2∆ and A2 =
√
→∆/ϱ1 > 0174

(see [16, 17]). Applying the discrete Fourier transform, denoted175

by (·)⇐, for 2π-periodic functions to Eq. (3) yields176
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[
ε2 + 2i∆ + idk → iϱ2k

2 → 2iγ21
S

2

∆2

]
Bk

=

[
iκA

2 + 2iγ21(|A|2 → S
2

∆2 )B

]⇐
(k). (4)

Here, Bk = B̃(k) denotes the k-th Fourier mode of the SH field.177

Since we consider a localized DKS at the FF field, its spectral178

envelope is locally flat when subtracting the CW contribution.179

This means that the spectrum of |A|2 → S
2/∆2 decays slowly in180

|k|. Consequently, the right-hand side of Eq. (4) is almost locally181

constant in k, with the exception of the 0-th Fourier mode, which182

typically dominates the spectrum due to the strong 0-th spectral183

component of A
2 caused by the CW pump. We deduce that the184

SH field has dominant Fourier modes B ↘ Bk± e
ik±τ , where k±185

minimizes the modulus of the Fourier multiplier186

ε2 + 2i∆ + idk → iϱ2k
2 → 2iγ21

S
2

∆2 . (5)

The real part of (5) equals the distributed loss ε2 which is inde-187

pendent of k. Thus, equating the imaginary part of (5) to 0, we188

readily obtain the explicit expressions189

k± =
d ±

√
d2 + 8ϱ2∆ → 8ϱ2γ21

S2

∆2

2ϱ2
. (6)

This indicates the presence of two spectral peaks in the SH field190

at the frequencies k±, which are clearly discernible in our nu-191

merical simulations; see Fig. 1(f) and Fig. 5(d,f,h). Since the192

distributed loss ε2 equals the minimal modulus of the Fourier193

multiplier (5), one naturally expects that these peaks become in-194

creasingly pronounced as ε2 tends to 0. When d = 0, system (1-2)195

is reversible in τ, resulting in symmetric spectra; see Fig. 1(e-196

f). Consequently, Bk = B→k and the dominant Fourier mode is197

B ↘ Bk↑ cos(k↑τ), where k↑ = k+ = →k→. Fig. 2(d) shows an198

excellent agreement between theory, as predicted by Eq. (6), and199

results of direct numerical simulations for d = 0. Notably, the200

observation that k↑ decreases with the inverse square root of ϱ2201

for d = 0 is confirmed by Eq. (6). Furthermore, Eq. (6) implies202

that k→ tends to 0 as d ↔ ∞, while k+ diverges to ∞, which203

is consistent with the findings in Fig. 5. In particular, Fig. 5(a)204

shows that Eq. (6) yields accurate predictions for the positions205

of spectral peaks for increasing values of d.206

In conclusion, we propose a novel space-time analogy, pre-207

dicting a temporal Fabry-Perot formed by a dominant Kerr dy-208

namics coupled towards a dispersive second harmonic wave.209

The ω ↭ 2ω interaction produces a second-harmonic wave that210

becomes trapped between the mirrored solitons formed around211

the pump wavelength, with its oscillatory behavior tightly gov-212

erned by dispersion. We observe a spectral symmetry break-213

ing by considering a non-zero walk-off, which connects double214

peaked spectra to standard dark solitons solutions. Our findings215

open the path towards a novel class of octave-spanning comb216

generation sources based on promising material platforms such217

as AlGaAs-on-insulator [18].218
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Fig. 5. Continuation of the coupled comb of Fig. 3 (c) in d. (a)
Comparison between theory (solid lines) and numerics of the
dominant frequency components. (b) Numerical computation
of the intracavity energy of the SH field for increasing values
of d; red dots refer to the cases of panels (c-h). (c-h) Temporal
profiles of the traveling FF and SH field with the spectral pro-
files of the SH field for d = 1, 10, 20. The dashed lines in panels
(c-h) display the values of k± according to Eq. (6).
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