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We introduce a novel example of space-time analogy,
where a dissipative soliton microcomb generates a
traveling-wave temporal Fabry-Perot for trapping a
bichromatic dispersive comb, generated at the second-
harmonic of the pump laser. The fundamental frequency
comb is generated in the anomalous dispersion regime,
whereas the dispersive comb is generated in the normal
dispersion regime. Direct numerical simulations are in
excellent agreement with an analytical model.

In recent years, there has been significant research interest in
the study of optical pulse propagation in spatiotemporal disper-
sive media. We are considering here the novel effects that may
arise in the presence of a refractive index modulation, both in
space and time, which is induced by a traveling-wave pertur-
bation. In this context, intriguing space-time analogies, such as
temporal reflection and refraction, total internal reflection, and
temporal guiding from a moving boundary have been revealed
[1]. For example, an optical fiber soliton permits to introduce,
via cross-phase-modulation, a traveling-wave refractive index
perturbation which acts on a weak dispersive wave propagat-
ing at a different wavelength [2, 3]. Moreover, the propagation
of either a soliton pair or a soliton train provides the temporal
analog of a waveguide or a Fabry—Perot resonator [4, 5] or a
spatiotemporal moving Bragg grating mirror [6].

In this work, we introduce a new example of a wave propa-
gation effect that can be explained in terms of space-time analo-
gies. Specifically, we show that dissipative (or cavity) Kerr soli-
tons (DKS) associated with a coherent frequency comb in the
anomalous dispersion regime of a microresonator may create
a Fabry-Perot resonator temporal cavity for dispersive waves
at different carrier frequencies. In the relevant case where the

microresonator has both quadratic and cubic nonlinearities, a
time-stationary dispersive wave is spontaneously generated by
the fundamental frequency (FF) soliton comb via phase-matched
intra-cavity second-harmonic (SH) generation. Based on numer-
ical experiments, we show that the usual sweeping of the fre-
quency detuning of the FF coherently injected CW laser across
the cavity resonance leads to the simultaneous generation of a
stable pair of coupled combs, comprising a FF soliton comb and
a dispersive SH comb.

Along with that, recent experimental demonstrations of two-
colors comb generation [7, 8] motivate deeper theoretical investi-
gations of nonlinear cavity systems with simultaneous x(?) and
X(3) nonlinearities [9-11]. In these systems, combs may result
from a strong nonlinear interaction of both types of nonlineari-
ties. Here we consider a different situation, where the properties
of the SH comb generated in the normal dispersion regime are
determined by the linear temporal waveguides, which are dy-
namically induced via cross-phase modulation by the train of
DKS at the FF in the anomalous dispersion regime.

Let us consider the set of coherently driven and damped
mean-field equations that describe propagation in a passive
cavity with both quadratic and cubic nonlinearities [9, 10, 12—
14]:
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Here A and B are the wave amplitudes at the FF (index 1) and
the SH (index 2), respectively. The CW laser source S coherently
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Fig. 1. (a) Temporal profile of a FF cavity soliton coupled to a
dispersive SH wave. (b) Intracavity energy of the FF and SH
field while sweeping the detuning A. (c-d) Temporal evolution
of the FF and SH fields. (e-f) Final spectrum for the field A and
B. The values used for this simulationare a1, = 1,171 = —1,
2 = 1,x =05, T1,12 = 0.5, V2,21 = 1,5 =12, tR = 30,d=0.

drives the passive cavity with distributed losses («17), with a
laser/cavity detuning (A), group-velocity walk-off (d) and group
velocity dispersion (GVD) (#1,2). The quadratic nonlinear coef-
ficient is x, whereas the self-phase (71 ») or cross-phase (y12,21)
modulation terms are associated with the cubic nonlinearity of
the cavity. For simplicity, Eqgs. (1-2) are written for the case of
phase-matched SH generation.

Following [9], we numerically simulated the generation of
coupled x® + x©® combs by using Egs. (1-2). As it is typically
done in experiments for the generation of DKS combs, we intro-
duced a linear ramp of the pump laser-cavity detuning A over
the first 25 round-trips (from A = —2 up to A = 20); we kept
A fixed for the subsequent 25 round trips to test the stability
of the numerically excited intracavity field solutions. For the
moment, let us consider the case of a vanishing linear group-
velocity walk-off between the FF and the SH, i.e.,, we setd = 0
in Egs. (1-2). However, in contrast with the case studied in [9],
which investigates anomalous dispersion for both fields, we now
consider a FF (SH) propagating in the anomalous (normal) GVD
regime, respectively.

The final state (Fig. 1(a)) in the temporal profile of the intra-
cavity intensity is very different for the FF and the SH. Three
DKSs per round-trip are formed at the FF. Whereas, a syn-
chronous dispersive wave with fast oscillating intensity, which

is trapped between the DKSs, forms at the SH. The intensity
of the SH dispersive wave is reduced by more than two orders
of magnitude with respect to the DKS at the FF. Observing the
intracavity energy build-up (computed as the fast time integrals
of |A|? and |B|?, Fig. 1(b)), it is evident that most of the energy is
carried by the FF wave. The dynamics results in the typical gen-
eration of a Kerr DKS emerging from a chaotic spatiotemporal
evolution (see panel (c)). Around the SH, though, the relatively
low energy state does not allow the formation of a localized
solution (panel (d)).

In Fig. 1(e-f) we report the final spectra for both the FF and
SH waves, respectively. Once the DKS comb is established at
the FF, a symmetric double-peaked comb is generated around
the SH. Interestingly, the dominant spectral component of the
SH wave slightly mismatches its nominal central frequency vgyy.
This result may suggest a dynamical oscillatory behavior which
requires an attentive analysis.

In order to understand what determines the temporal fre-
quency of the SH comb, we perform a loop of numerical sim-
ulations by sweeping the value of #,, while keeping all other
parameters constant. While increasing 7,, the oscillation fre-
quency k; of the SH wave diminishes. This is evident by looking
at both the temporal (Fig. 2(a-b)) and spectral (Fig. 2(c)) profiles.
In panel (d) we show how k, strictly depends on dispersive ef-
fects and it decreases with the inverse square root of #,. Because
of the much reduced intensity of the SH comb, it is expected that
its properties can be described in terms of a linearized model.
As we are going to confirm by an approximate but analytical
solution of this model, the temporal period of the oscillation of
the field intensity at the SH remains fixed all across the round-
trip time. Moreover, below we present a simple explicit formula
for k. which matches our numerical experiments as shown in
Fig. 2(d).

To systematically study the standing- and traveling-wave
solutions of Egs. (1-2) observed in the direct numerical simula-
tions, one sets A(t,T) = a(t — ct), and B(t, T) = b(t — ct). This
leads to a system of ordinary differential equations for the wave
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Fig. 2. (a-b) temporal profiles of the FF and SH field for two
different values of 77, iy = 0.5 and 2.5, respectively, and (c)
their associated spectra. (d) Comparison between the numer-
ical simulations and theory. Other simulation parameters are:
X12 = 1, m = *1, K = 1, Y1,12 = 05, Y221 = 1, S= 12, fR =50
,d=0.
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Fig. 3. (a) Bifurcation diagram for Eq. (1-2). In red, we report
the CW solution connected with the black branches consisting
of coupled combs. (b-c) Temporal profiles of the two solutions
indicated in panel (a) corresponding to one and two DKSs

in the FF field. The values of the parameters are &y, = 1,

m = —-0.1, Ny = 0.1, x = 0.1, Y1,12,212 = 1,S =2,tg = 2m,
d=0.

profiles a, b, where the wave speed c is part of the unknowns.
For this system, we performed a numerical bifurcation analysis
using the MATLAB package pde2path [15], which is designed
to treat systems of coupled differential equations. Choosing the
detuning A as the bifurcation parameter, we computed the curve
of steady-state solutions of Eqgs. (1-2), along with the bifurcation
points on this curve. Retaining the assumption of zero walk-
off, the system is reversible in 7, i.e., invariant with respect to
the transformation 7 +— —7. Thus, we may find bifurcations
of symmetric coupled standing-wave solutions with ¢ = 0. In
Fig. 3 panel (a) we report the bifurcation diagram, and in pan-
els (b) and (c) we show the coupled combs that bifurcate from
the steady-state solution of Egs. (1-2), in the case when either
only one or two DKSs are present in each round-trip time of the
FF comb. States with three DKSs per round-trip, such as those
shown in Fig. 1(a), emerge from the third bifurcation branch in
Fig. 3(a). The steady-state solutions exhibit, in the presence of
multiple DKSs per round-trip, a much larger amplitude of the
oscillations of the SH intracavity field; cf. Fig. 3(b-c).

Next, we numerically investigated the robustness of the dy-
namical w & 2w interplay in the presence of a nonzero group-
velocity walk-off d. Fig. 4(a) shows two FF DKSs coupled to
a dispersive SH wave for a finite walk-off (d = 1.5). Panels
(b—c) illustrate the corresponding FF and SH temporal dynamics:
when d # 0, the solitons undergo a drift, yet the overall w = 2w
coupling remains qualitatively unchanged. This observation is
consistent with the numerical bifurcation analysis, as for d # 0,
traveling-wave solutions with ¢ # 0 emerge near Hopf bifur-
cations. Quantitatively, the resulting bifurcation diagrams are
almost identical to the d = 0 case displayed in Fig. 3(a), since
the walk-off primarily affects the weak SH field, and has a negli-
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Fig. 4. (a) Zoom on the temporal profiles of two drifting FF
solitons coupled to a SH dispersive wave with 77,=1 (normal
dispersion) and group-velocity walk-off d = 1.5. (b-c) The
associated FF and SH dynamics. Other simulation parameters
arewip =1,m = -Lm=1Lx=1"y,12=057929 =1
S =12, tg = 50.

gible impact on the total intracavity energy Err + Egy. For this
reason, we decided not to display the corresponding bifurcation
diagrams. To analyze the effect of the walk-off on the coupled
combs in more detail, we performed a path continuation in d
using the solution displayed in Fig. 3(c) as the starting point.
We first observe in Fig. 5(a) that the dominant SH frequencies
+k, undergo a symmetry breaking into asymmetrically spaced
frequencies k1. This symmetry breaking occurs in both the
temporal and the spectral profiles displayed in Fig. 5, and it is
explained by the fact that for d # 0 the system loses reversibility
inT.

In Fig. 5(b) we report the solution branch parametrized by d
but we only display the energy of the SH field, which decreases
after a few oscillations; the energy of the FF field remains nearly
constant along the branch. Panels (c-h) of Fig. 5 show the gradual
change of the temporal and spectral profiles of the traveling
coupled comb and the SH field, respectively. For d = 1 (panels
(c-d)), the negative carrier frequency slightly approaches the
CW component, while its positive counterpart loses energy and
moves towards higher frequency. This trend is confirmed for
d = 10 (panels (e-f)) and d = 20 (panels (g-h)). Finally, we note
that Fig. 5 shows that, as d increases, the dispersive wave in
the SH field undergoes a smooth transition toward a waveform
similar to a dark pulse.

In order to obtain better theoretical insight in the properties
of the dispersive wave comb, we now derive a simple analyt-
ical model for the SH field. When neglecting the self-phase-
modulation term for the weak SH field, one obtains the linear
equation for B:

2

zx2+2iA+di+i;728 B —2iyyn |A|®B = ixA2.  (3)

ot ot2
Let us assume now that the FF field forms a localized DKS, which
can be approximated by the formula A ~ Aysech(A,T) —iS/A,
where the amplitude is |A1| = v2A and Ay = \/—A/1; > 0
(see [16, 17]). Applying the discrete Fourier transform, denoted
by (-)~, for 2rt-periodic functions to Eq. (3) yields
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Here, By, = B(k) denotes the k-th Fourier mode of the SH field.
Since we consider a localized DKS at the FF field, its spectral
envelope is locally flat when subtracting the CW contribution.
This means that the spectrum of |A|> — S?/A? decays slowly in
|k|. Consequently, the right-hand side of Eq. (4) is almost locally
constant in k, with the exception of the 0-th Fourier mode, which
typically dominates the spectrum due to the strong 0-th spectral
component of A% caused by the CW pump. We deduce that the
SH field has dominant Fourier modes B ~ By, =7, where k4
minimizes the modulus of the Fourier multiplier

. . . . S?
a4 2iA + idk — inpk? — iy A (5)
The real part of (5) equals the distributed loss a, which is inde-
pendent of k. Thus, equating the imaginary part of (5) to 0, we
readily obtain the explicit expressions

d+ \/dZ + 8112 A — 8112721 %i

ki = . (6)
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This indicates the presence of two spectral peaks in the SH field
at the frequencies k+, which are clearly discernible in our nu-
merical simulations; see Fig. 1(f) and Fig. 5(d,f,h). Since the
distributed loss a; equals the minimal modulus of the Fourier
multiplier (5), one naturally expects that these peaks become in-
creasingly pronounced as & tends to 0. When d = 0, system (1-2)
is reversible in T, resulting in symmetric spectra; see Fig. 1(e-
f). Consequently, By = B_j and the dominant Fourier mode is
B ~ By cos(k«T), where k. = k4 = —k_. Fig. 2(d) shows an
excellent agreement between theory, as predicted by Eq. (6), and
results of direct numerical simulations for d = 0. Notably, the
observation that k. decreases with the inverse square root of 7,
for d = 0 is confirmed by Eq. (6). Furthermore, Eq. (6) implies
that k_ tends to 0 as d — oo, while k. diverges to co, which
is consistent with the findings in Fig. 5. In particular, Fig. 5(a)
shows that Eq. (6) yields accurate predictions for the positions
of spectral peaks for increasing values of d.

In conclusion, we propose a novel space-time analogy, pre-
dicting a temporal Fabry-Perot formed by a dominant Kerr dy-
namics coupled towards a dispersive second harmonic wave.
The w & 2w interaction produces a second-harmonic wave that
becomes trapped between the mirrored solitons formed around
the pump wavelength, with its oscillatory behavior tightly gov-
erned by dispersion. We observe a spectral symmetry break-
ing by considering a non-zero walk-off, which connects double
peaked spectra to standard dark solitons solutions. Our findings
open the path towards a novel class of octave-spanning comb
generation sources based on promising material platforms such
as AlGaAs-on-insulator [18].
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Fig. 5. Continuation of the coupled comb of Fig. 3 (c) in d. (a)
Comparison between theory (solid lines) and numerics of the
dominant frequency components. (b) Numerical computation
of the intracavity energy of the SH field for increasing values
of d; red dots refer to the cases of panels (c-h). (c-h) Temporal
profiles of the traveling FF and SH field with the spectral pro-
files of the SH field for d = 1, 10, 20. The dashed lines in panels
(c-h) display the values of k+ according to Eq. (6).
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