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NUMERICAL SIMULATION OF BEAM NETWORK MODELS

MORGAN GÖRTZ§, MORITZ HAUCK∗, AXEL MÅLQVIST‡, ANDREAS RUPP†,
LUCIA SWOBODA‡

Abstract. Network models are used as efficient representation of materials

with complex, interconnected locally one-dimensional structures. They typi-
cally accurately capture the mechanical properties of a material, while sub-

stantially reducing computational cost by avoiding full three-dimensional res-
olution. Applications include the simulation of fiber-based materials, porous

media, and biological systems such as vascular networks. This article focuses

on two representative problems: a stationary formulation describing the elas-
tic deformation of beam networks, and a time-dependent formulation modeling

elastic wave propagation in such materials. We propose a two-level additive

domain decomposition method to efficiently solve the linear system associ-
ated with the stationary problem, as well as the linear systems that arise at

each time step of the time-dependent problem through implicit time discretiza-

tion. We present a rigorous convergence analysis of the domain decomposition
method when used as a preconditioner, quantifying the convergence rate with

respect to network connectivity and heterogeneity. The efficiency and robust-

ness of the proposed approach are demonstrated through numerical simulations
of the mechanical properties of commercial-grade paperboard.

1. Introduction

Many problems in science and engineering, modeled by partial differential equa-
tions (PDEs), are posed in complex domains, which can lead to significant compu-
tational challenges. For example, when the computational domain is locally very
slender, effectively one-dimensional, classical simulation techniques such as the fi-
nite element method (FEM) often require excessive spatial resolution and may pro-
duce nearly degenerate elements. As a computationally more tractable alternative
to applying the FEM directly on such domains, one can employ dimension-reduced
models of the underlying problem and discretize them. For instance, one may repre-
sent the geometry of a material with a locally effectively one-dimensional structure
by a graph, where edges correspond to the one-dimensional segments and nodes de-
fine their connections/joints. The mechanical behavior of these segments can then
be described by one-dimensional equations posed on the edges, which are suitably
coupled at the network nodes. Such models, hereafter referred to as spatial network
models, can substantially reduce computational complexity while preserving the es-
sential characteristics of the full model. Applications where this modeling approach
is feasible include porous media, in which the detailed pore geometry can be approxi-
mated by a network of nodes (pore cavities) and edges (throats) [BBD+13, JHE+13,
GVKH18, HZD20]. Similarly, fiber-based materials such as paper can be repre-
sented as networks of one-dimensional beams corresponding to fibers, connected
at nodes representing contact regions [Hey00, ILW10, KMM+20, GKM+24]. This

2020 Mathematics Subject Classification. 34B45, 65N12, 65N15, 65N30, 65N55.
Key words and phrases. spatial network model, Timoshenko beam network, elastic wave prop-

agation, finite element method, two-level domain decomposition.

1
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network-based modeling concept also extends to biological systems, such as vascu-
lar networks, where blood vessels can be represented as connected one-dimensional
edges forming a spatial network [RSK+09, MWT+23, FKO+22].

We emphasize that, despite using a locally dimension-reduced model, the linear
systems resulting from discretization often remain challenging to solve efficiently
due to very high condition numbers. This difficulty primarily stems from the mul-
tiscale character of the problem, reflected in strong material heterogeneity and
complex network geometries. In the context of PDEs with multiscale coefficients, a
setting closely related to our heterogeneous network problem, efficiently solving the
resulting linear systems typically requires leveraging multiple discretization scales
as well as parallelization. In what follows, we will highlight one prominent example
of such methods, domain decomposition methods, and then briefly mention alter-
native approaches such as multiscale methods and (algebraic) multigrid methods.

Domain decomposition methods iteratively improve the current approximation
by solving local error correction problems on subdomains, and update the cur-
rent approximation with the computed correction. Each correction is obtained
by solving a subdomain-restricted system matrix, using the residual restricted to
that subdomain as the right-hand side. The resulting updates are combined ei-
ther sequentially or simultaneously, corresponding to multiplicative and additive
subspace correction methods, respectively. The subspaces in which the error cor-
rections are solved are constructed by decomposing the computational domain into
a collection of local subdomains. To prevent iteration counts from increasing with
the number of subdomains, domain decomposition methods often incorporate a
coarse level, i.e., the corresponding subspace correction equations are solved in
a global low-dimensional, possibly problem-adapted, space. This allows infor-
mation to be exchanged across distant subdomains, and the resulting method is
referred to as a two-level scheme. Two main families of domain decomposition
methods are commonly distinguished: overlapping and non-overlapping methods.
In overlapping methods, subdomains partially overlap, enabling information ex-
change across the overlap regions. Examples of overlapping Schwarz methods
using problem-adapted coarse spaces for improved treatment of heterogeneities
include [GE10, NXDS11, EGLW12, SDH+14, GLR15, HKKR19, HS22, BSSS22,
ADJR23]. We also mention the works [SMS24, ABHS25], which reformulate the
Multiscale Spectral Generalized FEM, a multiscale method mentioned above, as a
two-level overlapping domain decomposition method. Representative examples for
non-overlapping domain decomposition methods include the Finite Element Tear-
ing and Interconnecting (FETI) and Neumann–Neumann methods [BKK01, SR13],
as well as their dual-primal and balancing variants, such as BDDC and FETI-
DP [MS07, MSS12, KKR16, PD17, KCW17].

In the context of spatial networks, domain decomposition techniques have, for
instance, been applied in [AB17] for a diffusion-type problem posed on a network,
and in [Leu17, LMSS17] for semilinear elliptic optimal control problems arising
in gas network models. The latter works employ non-overlapping, one-level do-
main decomposition methods. Since no coarse space is included, the convergence
rate generally deteriorates with an increased number of subdomains. Two-level
domain decomposition methods for spatial network models have been introduced
in [GHM24, GKM+24, HMR25], where Timoshenko beam networks serve as model
problems. In these works, coarse scales are artificially defined by a uniform Carte-
sian mesh overlaid on the network, with nodes assigned to mesh partitions ac-
cordingly. The uniform convergence of the preconditioned iteration, originally es-
tablished in the PDE setting, can be extended to the spatial network setting for
discretization scales coarser than a certain critical threshold. In this regime, it is
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reasonable to assume specific homogeneity and connectivity properties of the un-
derlying network. These properties enable the derivation of interpolation bounds
that are central to the analysis, particularly for establishing the existence of a stable
subspace decomposition required in the theory of additive Schwarz methods.

As an alternative to domain decomposition methods, also multiscale methods
can be employed to obtain accurate and reliable approximations of multiscale prob-
lems. Their key idea is to incorporate microscopic coefficient information, for exam-
ple through problem-adapted basis functions, by solving local fine-scale problems.
This enables accurate approximations on coarse meshes that do not fully resolve the
fine-scale structure of the coefficients. Typically, multiscale methods are one-shot
approaches, obtaining an accurate solution within a single Galerkin approximation
rather than iteratively improving it. For diffusion-type PDEs, numerous multiscale
methods construct problem-adapted basis functions, yielding optimal approxima-
tion orders under minimal assumptions on the coefficients. This comes at a moder-
ate computational overhead compared to classical FEMs, typically due to enlarged
basis function support or an increased number of basis functions per mesh entity.
Prominent methods include the Generalized Multiscale FEM [EGH13, CEL18],
the Multiscale Spectral Generalized FEM (MS-GFEM) [BL11, MSD22], Adap-
tive Local Bases [GGS12], the (Super-)Localized Orthogonal Decomposition (LOD)
method [MP14, HP13, MP20, HP23, FHKP24], and Gamblets or operator-adapted
wavelets [Owh17, OS19]; see also the review [AHP21]. Some concepts from PDE-
based multiscale methods have been adapted to spatial network models. For exam-
ple, [EGH+24, HM24, GLM23, HMM23] apply the methodology of (Super-)LOD
to spatial networks, defining coarse scales by superimposing a uniform Cartesian
mesh. Homogenization-based upscaling methods have also been applied to heat-
conducting networks [EIL+09, ILW10], stochastic network problems [MK22], traffic
flow [DRDQ10], and porous media models [CEPT12].

Among available solvers for large linear systems from PDE discretizations, multi-
grid methods have proven particularly efficient. They recursively combine smooth-
ing via simple iterative methods, such as Jacobi or Gauss–Seidel, which reduce high-
frequency errors, with coarse-grid correction, which eliminates low-frequency errors
[Bra77, Hac85]. For multiscale problems, classical geometric multigrid may fail to
converge because standard smoothers and coarse spaces are not adapted to hetero-
geneous coefficients [ABDP81]. This challenge has motivated algebraic multigrid
(AMG) methods, where coarse scales and prolongation operators are derived from
the system matrix’s sparsity and connection strengths. Notable variants include
Smoothed Aggregation AMG [VMB96] and Energy-Minimizing AMG [MBV99,
WCS99], which can handle highly heterogeneous coefficients [XZ17].

Outline. In Section 2, we introduce the two model problems considered in this
article: stationary and time-dependent elastic beam network problems. Section 3
then presents their discretization using a classical high-order finite element method
applied to network problems. A two-level domain decomposition preconditioner
for the resulting, typically ill-conditioned, linear systems of equations is introduced
in Section 4. The numerical experiments presented in Section 5 demonstrate the
effectiveness of the proposed preconditioner for both model problems. Concluding
remarks and potential avenues for future research are discussed in Section 6.

2. Timoshenko beam network problems

The Timoshenko beam theory, originating from the work of Timoshenko [Tim21],
is widely used to describe the elastic deformation of beams. It extends the classical
Euler–Bernoulli beam theory by accounting for shear deformation. This broadens
its applicability, making it suitable not only for long, slender beams but also for
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short, thick beams, where cross-sectional rotation cannot be neglected. In this
article, we consider two model problems: (i) a stationary problem describing the
elastic deformation of a fiber network, and (ii) a time-dependent problem modeling
the propagation of elastic waves in a fiber network. These model problems are
subsequently introduced in two separate subsections.

2.1. Stationary elasticity. We represent the beam network as a graph G =
(N , E), where N is the set of zero-dimensional nodes and E the set of locally
one-dimensional, straight edges. The nodes correspond to the connection points
between fibers, while the edges represent the fiber segments connecting two nodes.
Throughout this work, we assume that the graph G is connected. The geometric
domain of the network is abbreviated by

(2.1) Σ :=
⋃
e∈E

e,

where · denotes the closure of a set. Furthermore, for each edge e ∈ E , we denote by
i : Σ → R3 the edge-wise constant function that assigns to an edge e the unit vector
pointing in its direction (sign fixed). The elastic behavior of the beams is described
by the two coefficient fields B,C : Σ → R3×3, which are assumed to be uniformly
positive definite and bounded. That is, there exist constants 0 < bmin ≤ bmax < ∞
and 0 < cmin ≤ cmax < ∞ such that, for almost every x ∈ Σ,

bmin|ξ|2 ≤ (B(x)ξ, ξ) ≤ bmax|ξ|2, ∀ξ ∈ R3,

cmin|ξ|2 ≤ (C(x)ξ, ξ) ≤ cmax|ξ|2, ∀ξ ∈ R3,
(2.2)

where (·, ·) is the Euclidean inner product and | · | :=
√
(·, ·) its induced norm.

The governing equations for the elastic deformation of a beam, expressed in
terms of the displacement and rotation u, r : Σ → R3, take for any e ∈ E the form

−∂x
(
B(∂xu+ i× r)

)
= f , in e,(2.3a)

−∂x
(
C ∂xr

)
− i× (B(∂xu+ i× r)) = g, in e,(2.3b)

where f , g : Σ → R3 denote given distributed forces and moments, ∂x is the deriv-
ative in the direction of the edge e parameterized with unit speed, and × denotes
the standard cross product in R3.

To couple these equations on each edge, we impose continuity and balance con-
ditions at the nodes. The problem is closed by Dirichlet boundary conditions at
nodes in the non-empty set ND ⊂ N . The continuity conditions require that dis-
placements and rotations at a node are identical for all incident edges. Specifically,
for each node n ∈ N \ ND and any two edges e, e′ ∈ E incident to n, we impose:

(2.3c) u|e(n) = u|e′(n), r|e(n) = r|e′(n).

The balance conditions enforce the equilibrium of forces and moments at non-
Dirichlet nodes. For each n ∈ N \ ND, these conditions read

(2.3d) [[B (∂xu+ i× r) ν]](n) = 0, [[C ∂xr ν]](n) = 0,

where the jump operator [[·]](n) denotes the sum over all values attained at n,
and ν is a function that assigns to the endpoints of each edge values in {+1,−1}.
Specifically, ν takes the value +1 at the endpoint of e if i|e points outward from
that node. The Dirichlet boundary conditions specify, for each node n ∈ ND, that

(2.3e) u(n) = uD(n), r(n) = rD(n),

where uD, rD : ND → R3 are prescribed functions defining the Dirichlet data.
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2.1.1. Weak formulation. To derive a weak formulation of problem (2.3), we first
introduce the function space for the displacement and rotation variables. We define

(2.4) V :=
{
v ∈ C0(Σ)3 : v|e ∈ H1(e)3, ∀e ∈ E , v(n) = 0, ∀n ∈ ND

}
,

where C0(Σ) denotes the space of continuous functions defined on the network
domain Σ. A Friedrichs-type inequality holds on the network:

(2.5)

ˆ
Σ

|v|2 dx ≤ C2
F

ˆ
Σ

|∂xv|2 dx, v ∈ V ,

where the constant CF > 0 depends on the geometry of the considered network,
specifically, the maximal intrinsic distance of a point x ∈ Σ to a Dirichlet node
n ∈ ND. The space V can be equipped with the norm

(2.6) ∥v∥V :=

(ˆ
Σ

|∂xv|2 dx
)1/2

, v ∈ V ,

which is equivalent to the full H1(Σ)3-norm by virtue of (2.5). In the same manner,
we equip the space V × V with the norm

(2.7) ∥(v,w)∥V ×V :=
(
∥v∥2V + ∥w∥2V

)1/2
, (v,w) ∈ V × V .

The bilinear and linear forms of the stationary problem read:

a((u, r), (φ,ψ)) :=

ˆ
Σ

(B(∂xu+ i× r)) · (∂xφ+ i×ψ) + (C∂xr) · ∂xψ dx,(2.8)

F (φ,ψ) :=

ˆ
Σ

f ·φ+ g ·ψ dx.(2.9)

Given source terms f , g ∈ L2(Σ)3, the weak formulation of the stationary beam
network elasticity problem seeks the pair (u, r) ∈ V × V such that

(2.10) a
(
(u, r), (φ,ψ)

)
= F (φ,ψ), ∀ (φ,ψ) ∈ V × V .

2.1.2. Well-posedness. To establish the well-posedness of this weak formulation, we
begin by proving the coercivity and continuity of the bilinear form a.

Lemma 2.1 (Coercivity and boundedness of a). We have

a((u, r), (u, r)) ≥ amin ∥(u, r)∥2V ×V ,(2.11)

a((u, r), (φ,ψ)) ≤ amax ∥(u, r)∥V ×V ∥(φ,ψ)∥V ×V ,(2.12)

for all (u, r), (φ,ψ) ∈ V × V , where the constants amin, amax > 0 depend only on
bmin, bmax, cmin, cmax from (2.2) and the Friedrichs constant CF from (2.5).

Proof. We begin proving the coercivity of the bilinear form a. Let (u, r) ∈ V ×V be
arbitrary. Applying the weighted Young’s inequality, we obtain, for any ϵ ∈ (0, 1),

a((u, r), (u, r))

=

ˆ
Σ

|B1/2∂xu|2 + 2(B1/2∂xu) · (B1/2(i× r)) + |B1/2(i× r)|2 + |C1/2∂xr|2 dx

≥ (1− ϵ)

ˆ
Σ

|B1/2∂xu|2 dx+

ˆ
Σ

|C1/2∂xr|2 dx− 1− ϵ

ϵ

ˆ
Σ

|B1/2(i× r)|2 dx.

Using the Friedrichs inequality from (2.5) and the uniform coefficient bounds (2.2),
we can estimate the last term on the right-hand side of the latter inequality asˆ

Σ

|B1/2(i× r)|2 dx ≤ bmax

ˆ
Σ

|r|2 dx ≤ C

ˆ
Σ

|C1/2∂xr|2 dx,

where we abbreviated C := bmaxc
−1
minC

2
F > 0. Choosing any ϵ ∈ ( C

1+C , 1) and again

invoking the uniform coefficient bounds from (2.2) establishes estimate (2.11).
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The boundedness of a, cf. (2.12), can be established by combining the Friedrichs
inequality from (2.5) with the uniform coefficient bounds in (2.2). □

Introducing the L2-norm for a tuple of L2(Σ)3-functions as

∥(f , g)∥L2×L2 :=
(
∥f∥2L2(Σ)3 + ∥g∥2L2(Σ)3

)1/2
, (f , g) ∈ L2(Σ)3 × L2(Σ)3,

we obtain the following well-posedness result.

Theorem 2.2 (Well-posedness of stationary elasticity). The weak formulation of
the beam network problem (2.10) is well-posed. Specifically, there exist a unique
solution (u, r) ∈ V ×V satisfying (2.10) and the following stability estimate holds:

(2.13) ∥(u, r)∥V ×V ≤ a−1
minCF∥(f , g)∥L2×L2 .

Proof. Let us first show the boundedness of the linear form F . Using Friedrichs
inequality from (2.5), we obtain the following bound:

(2.14) sup
(φ,ψ)∈V ×V

F (φ,ψ)

∥(φ,ψ)∥V ×V
≤ CF∥(f , g)∥L2×L2 .

Well-posedness then follows directly from the Riesz representation theorem, and the
stability estimate (2.13) is obtained by combining the coercivity estimate (2.11),
the fact that (u, r) solves (2.10), and (2.14). □

2.2. Elastic wave propagation. For the elastic wave propagation problem, in
addition to the coefficients B and C from (2.2), we introduce one further coefficient
field D : Σ → R3×3. We assume that D is uniformly positive definite and bounded,
i.e., there exist constants 0 < dmin ≤ dmax < ∞ such that, for almost every x ∈ Σ,

(2.15) dmin|ξ|2 ≤ (D(x)ξ, ξ) ≤ dmax|ξ|2, ∀ξ ∈ R3.

We suppose that the elastic wave propagation problem is posed on the time in-
terval (0, T ) with end time T > 0. The governing equations for the elastic wave
propagation in a beam, expressed in terms of the (now time-dependent) displace-
ment and rotation u, r : (0, T )× Σ → R3, then take for any e ∈ E the form

cü− ∂xB
(
∂xu+ i× r

)
= f , in (0, T )× e,(2.16a)

Dr̈ − ∂x(C∂xr)− i×B(∂xu+ i× r) = g, in (0, T )× e,(2.16b)

where f , g : (0, T ) × Σ → R3 are given distributed forces and moments, c > 0 is a
constant and ü denotes the second-order time derivative of u; the same notation
applies for r. In addition, analogously to the stationary problem, for almost all
t ∈ (0, T ), we impose the coupling conditions (2.3c) and (2.3d), and the Dirichlet
boundary conditions (2.3e). The system is supplemented with the initial conditions

(2.16c) u(0, ·) = u0, u̇(0, ·) = v0, r(0, ·) = r0, ṙ(0, ·) = p0.

2.2.1. Weak formulation. To derive a weak formulation of the elastic wave prop-
agation problem, we first introduce some additional notation for time-dependent
function spaces. We identify a function v : (0, T )×Σ → R3 with the corresponding
mapping v : (0, T ) → X, where X is a suitable Banach space, and employ the
standard definition and notation for the Bochner spaces Lp(0, T ;X), 1 ≤ p ≤ ∞,
see, e.g., [Eva10]. Moreover, we denote by V ∗ the dual of V , and by ⟨·, ·⟩V ∗×V the
canonical duality pairing. For v, q ∈ V ∗ and φ,ψ ∈ V , we define the bilinear form

(2.17) m
(
(v, q), (φ,ψ)

)
:= ⟨cv,φ⟩V ∗×V + ⟨Dq,ψ⟩V ∗×V ,

where the constant c was introduced above in (2.16a). Furthermore, we define
the constants mmin := min(c, dmin) and mmax := max(c, dmax). Note that V ⊂
L2(Σ)3 ⊂ V ∗ forms a Gelfand triple, and the duality pairing coincides with the
L2-inner product whenever both functions lie in L2(Σ)3.



NUMERICAL SIMULATION OF BEAM NETWORK MODELS 7

Given source terms f , g ∈ L2(0, T ;L2(Σ)3), the weak formulation of the elastic
wave propagation problem seeks the pair (u, r) ∈ L2(0, T ;V × V ) with first-order
time derivatives (u̇, ṙ) ∈ L2(0, T ;L2(Σ)3 × L2(Σ)3) and second-order time deriva-
tives (ü, r̈) ∈ L2(0, T ;V ∗ × V ∗), such that, for almost all t ∈ (0, T ),

(2.18a) m
(
(ü, r̈), (φ,ψ)

)
+ a

(
(u, r), (φ,ψ)

)
= F (φ,ψ), ∀(φ,ψ) ∈ V × V ,

with the initial conditions (2.16c), now expressed as

(2.18b) (u, r)(0) = (u0, r0), (u̇, ṙ)(0) = (v0,p0),

where u0, r0 ∈ V and v0,p0 ∈ L2(Σ)3.

2.2.2. Well-posedness. The well-posedness result stated in the following theorem
relies on energy techniques. In the present context, the energy is defined for a pair
of functions (v, q) ∈ L∞(0, T ;V × V ) with first-order time derivatives (v̇, q̇) ∈
L∞(0, T ;L2(Σ)3 × L2(Σ)3), for almost every t ∈ (0, T ), by

E(v, q)(t) := 1

2
m
(
(v̇(t), q̇(t)), (v̇(t), q̇(t))

)
+

1

2
a
(
(v(t), q(t)), (v(t), q(t))

)
.

Theorem 2.3 (Well-posedness of elastic wave propagation). The weak formula-
tion (2.18) is well-posed. In particular, there exists a unique solution (u, r) ∈
L∞(0, T ;V ×V ) with (u̇, ṙ) ∈ L∞(0, T ;L2(Σ)3×L2(Σ)3) and (ü, r̈) ∈ L2(0, T ;V ∗×
V ∗), satisfying (2.18). Moreover, the following stability estimate holds:

∥(u, r)∥L∞(0,T ;V ×V ) + ∥(u̇, ṙ)∥L∞(0,T ;L2×L2)

≤ C(∥(v0,p0)∥L2×L2 + ∥(u0, r0)∥V ×V + ∥(f , g)∥L2(0,T ;L2×L2)),(2.19)

where the constant C depends only on the end time T and the constants amin, amax,
mmin, mmax.

Proof. To prove the existence of a solution, we consider a Galerkin approximation
in the space L2(0, T ;V h × V h), where V h denotes a conforming finite element
subspace of V , and prove the existence of the solution for the discrete problem. We
choose a finite-dimensional space V h of dimension N ∈ N such that

lim
h→0

inf
vh∈V h

∥v − vh∥V = 0, ∀v ∈ V .

This yields the finite-dimensional problem: find (uh, rh) ∈ L2(0, T ;V h×V h), such
that, for almost all t ∈ (0, T ) and all (φh,ψh) ∈ V h × V h,

m
(
(üh(t), r̈h(t)), (φh,ψh)

)
+ a

(
(uh(t), rh(t)), (φh,ψh)

)
= F (φh,ψh),(2.20)

with the initial conditions

(uh, rh)(0) = (u0h, r0h), (u̇h, ṙh)(0) = (v0h,p0h),(2.21)

where u0h, r0h, v0h, and p0h are defined as

u0h := argmin
wh∈V h

∥u0 −wh∥L2(Σ)3 , r0h := argmin
wh∈V h

∥r0 −wh∥L2(Σ)3 ,

v0h := argmin
wh∈V h

∥v0 −wh∥L2(Σ)3 , p0h := argmin
wh∈V h

∥p0 −wh∥L2(Σ)3 .

Problem (2.20) can be equivalently written in matrix-vector form as

Mhξ̈(t) +Ahξ(t) = F h(t),

where ξ(0) is the coefficient vector of (u0h, r0h) and ξ̇(0) is the coefficient vector
of (v0h,p0h). Since Mh is invertible, this system admits a unique solution with
absolutely continuous time derivative. The energy estimates of the discrete solution
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follow from the conservation of energy and an application of Gronwall’s inequality
in differential form, which yields the estimate

E(uh, rh)(t) ≤ em
−1
mint

(
E(uh, rh)(0) +

1

2

ˆ t

0

∥(f(s), g(s))∥2L2×L2 ds

)
.

We obtain

1

2
min(amin,mmin)

(
∥(u̇h, ṙh)∥2L2×L2 + ∥(uh, rh)∥2V ×V

)
≤ E(uh, rh)(t),

and

max
t∈[0,T ]

E(uh, rh)(t) ≤ α(∥(v0,p0)∥2L2×L2 + ∥(u0, r0)∥2V ×V + ∥(f , g)∥2L2(0,T ;L2×L2)),

where α := 1
2e

m−1
minTmax(amax,mmax, 1). Moreover, we conclude the boundedness of

(üh, r̈h). Namely, for (φh,ψh) denoting the L2-projection of (φ,ψ) onto V h×V h,
we obtain the estimate

∥(üh(t), r̈h(t))∥V ∗×V ∗ ≲ ||(f(t), g(t))||L2×L2 + ||(uh(t), rh(t))||V ×V .

Here, we have used Friedrichs’ inequality and the H1-stability of the L2-projection
in one dimension. Since the families (uh, rh)h>0, (u̇h, ṙh)h>0 and (üh, r̈h)h>0 are
bounded in L2(0, T ;V ×V ), L2(0, T ;L2×L2), and L2(0, T ;V ∗×V ∗), respectively,
there exists a subsequence that converges weakly in these spaces. Assuming nested
meshes, it follows by a standard limit argument that the weak limit is a solution
of problem (2.18). The uniqueness of the solution follows since, for f = g = 0 and
zero initial data, the only weak solution is u = r = 0. □

A direct consequence of this proof is the following energy conservation property.

Corollary 2.4 (Energy conservation). For the solution pair (u, r) to problem (2.18),
the following holds for almost every t ∈ (0, T ):

d

dt
E(u, r)(t) =

ˆ
Σ

f(t) · u̇(t) + g(t) · ṙ(t) dx.

Therefore, for f = g = 0, the initial energy of the system is preserved over time.

3. Discretization

In this section, we first introduce a high-order finite element discretization of the
stationary problem. For the elastic wave propagation problem, we then combine
this space discretization with an appropriate time discretization.

3.1. Stationary elasticity. As usual, a finite element discretization is based on a
mesh Th of the domain. In our network setting, the domain is Σ defined in (2.1),
and the mesh Th is obtained by subdividing each fiber into elements. The mesh
parameter h > 0 is the maximum element length in Th. For a fixed polynomial
degree p ≥ 1, the discrete approximation space associated with Th is given by

V h :=
{
v ∈ V : v|K ∈ (Pp(K))3, ∀K ∈ Th

}
,(3.1)

where Pp(K) denotes the space of univariate polynomials on K of degree at most p.
The finite element approximation of the network elasticity problem (2.10) then

seeks a discrete pair (uh, rh) ∈ V h × V h satisfying

(3.2) a
(
(uh, rh), (φh,ψh)

)
= F (φh,ψh), ∀ (φh,ψh) ∈ V h × V h.

Note that, by the conformity of V h, the well-posedness of (3.2) follows directly
from the continuous case, and also the stability estimate (2.13) remains valid in the
discrete setting with the same constant.
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In the convergence analysis of the finite element method, the best-approximation
error is estimated by introducing a suitable interpolation operator Ih : V → V h,
satisfying the following approximation error estimate:

(3.3) ∥v − Ihv∥V ≤ CIh
p|v|Hp+1(Th)3 , v ∈ V ∩Hp+1(Th)3,

where CI > 0 is a constant independent of h and | · |Hk(Th)3 denotes the broken

Hk-seminorm; see, e.g., [EG04, Cor. 1.110]. Introducing the notation,

|(u, r)|Hk×Hk :=
(
|u|2Hk(Th)3

+ |r|2Hk(Th)3

)1/2
,

we obtain the following convergence theorem.

Theorem 3.1 (Convergence for stationary elasticity). Assume that the solution
pair satisfies the piecewise regularity requirement (u, r) ∈ Hp+1(Th)3 ×Hp+1(Th)3.
Then, we have the following error estimate:

∥(u− uh, r − rh)∥V ×V ≤ a−1
minamaxCIh

p|(u, r)|Hp+1×Hp+1 .(3.4)

Proof. The convergence analysis follows the classical approach. First, Céa’s lemma
bounds the approximation error of the finite element solution, cf. (3.2), by the
best-approximation error in the space V h × V h. Applying the interpolation error
estimate (3.3) then yields the desired error bound. □

3.2. Elastic wave propagation. Next, we discuss the discretization of the elastic
wave propagation problem (2.16). We begin by performing a spatial discretization,
followed by a temporal discretization. Applying the same spatial discretization as
for the stationary problem above, we obtain the following semi-discrete formulation:
Seek (uh, rh) ∈ H2(0, T ;V h × V h) such that, for almost all t ∈ (0, T ),

(3.5) m
(
(üh, r̈h), (φh,ψh)

)
+ a

(
(uh, rh), (φh,ψh)

)
= F (φh,ψh),

for all (φh,ψh) ∈ V h × V h.
To introduce the temporal discretization, we first fix some notation. Let {vn}Nn=0

be a sequence of functions with vn ∈ V for n ∈ {0, . . . , N}. We define the average
of two consecutive functions by

vn+
1
2 := vn+1+vn

2 ,

for n ∈ {0, . . . , N − 1}. For such a sequence and the uniform time step τ = T
N , we

define the first- and second-order discrete time derivatives by

Dτv
n+ 1

2 := vn+1−vn

τ , D2
τv

n := vn+1−2vn+vn−1

τ2 .

In the following, the initial conditions are given by

(3.6) (u0
h, r

0
h) := Pm(u0, r0),

where Pm denotes the m-orthogonal projection onto the finite element space. Fur-
thermore, the fictitious pair (u−1

h , r−1
h ) is defined implicitly through

(3.7)
(u1

h, r
1
h)− (u−1

h , r−1
h )

2τ
:= Pm(v0,p0)

for θ ̸= 1
12 , and by

(3.8)
(u1

h, r
1
h)− (u−1

h , r−1
h )

2τ
:= Pm(v0,p0) +

τ2

6
Pm(∂3

tu(0), ∂
3
t r(0))

for θ = 1
12 . We employ the θ-scheme for the time discretization of the semi-discrete

wave propagation problem using a uniform time step; see, e.g., [Jol03, KM24]. This
leads to the following discrete formulation. Find {(un

h, r
n
h)}Nn=0 with (un

h, r
n
h) ∈

V h × V h, such that, for 1 ≤ n ≤ N ,

(3.9) m
(
(D2

τu
n
h, D

2
τr

n
h), (φh,ψh)

)
+ a

(
(un;θ

h , rn;θh ), (φh,ψh)
)
= Fn;θ(φh,ψh),
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for all (φh,ψh) ∈ V h × V h and appropriately chosen initial data, where θ ∈ [0, 1
2 ]

is fixed. The weighted θ-difference is defined by

(3.10) (un;θ
h , rn;θh ) := θ(un+1

h , rn+1
h ) + (1− 2θ)(un

h, r
n
h) + θ(un−1

h , rn−1
h ).

Further, the right-hand side functional Fn;θ is given by

(3.11) Fn;θ(φh,ψh) :=

ˆ
Σ

fn;θ ·φh + gn;θ ·ψh dx,

where fn;θ and gn;θ are defined analogously to (3.10) with fn = f(nτ) and gn =
g(nτ), provided that f and g can be evaluated pointwise. Note that this time
discretization generalizes classical schemes: for θ = 0 it reduces to the leapfrog
method, while θ = 1

4 yields the Crank–Nicolson scheme.

3.2.1. Stability. The sequence of discrete solution pairs satisfies, analogously to
the time-continuous case in Corollary 2.4, certain energy conservation or stability
properties, depending on the specific choice of θ. For the θ-method (3.9) as temporal
discretization, we define the discrete energy

(3.12)

En+ 1
2 := 1

2

[
m
(
(Dτu

n+ 1
2

h , Dτr
n+ 1

2

h ), (Dτu
n+ 1

2

h , Dτr
n+ 1

2

h )
)

+ a
(
(u

n+ 1
2

h , r
n+ 1

2

h ), (u
n+ 1

2

h , r
n+ 1

2

h )
)

+ τ2
(
θ − 1

4

)
a
(
(Dτu

n+ 1
2

h , Dτr
n+ 1

2

h ), (Dτu
n+ 1

2

h , Dτr
n+ 1

2

h )
)]
,

where the last term is a numerical correction appearing for θ ̸= 1
4 . With regard to

the discrete energy conservation, it suffices to show that the discrete energy of the
θ-method is non-negative at all times to obtain stability.

Theorem 3.2 (Stability). For 1
4 ≤ θ ≤ 1

2 , the θ-method (3.9) is unconditionally

stable. For 0 ≤ θ < 1
4 , the θ-method (3.9) is stable if the CFL condition

(3.13) τ ≤ 1− δ

CCFL
hmin, CCFL =

√
amax

mmin

(
1

4
− θ

)
Cinv

holds for some δ ∈ (0, 1), where Cinv is the constant from the inverse inequality

∥(vh,wh)∥V ×V ≤ Cinvh
−1
min∥(vh,wh)∥L2×L2 .

In both cases, there exists a constant Cs > 0 depending on δ, amin, amax,mmin and
mmax such that, for all n ∈ {0, . . . , N − 1},

(3.14)

∥∥(Dτu
n+ 1

2

h , Dτr
n+ 1

2

h )
∥∥
L2×L2 +

∥∥(un+ 1
2

h , r
n+ 1

2

h )
∥∥
V ×V

≤ Cs

(∥∥(Dτu
1
2

h , Dτr
1
2

h )
∥∥
L2×L2 +

√
∥(u1

h, r
1
h)∥V ×V ∥(u0

h, r
0
h)∥V ×V

+ τ
√
θ
∥∥(Dτu

1
2

h , Dτr
1
2

h )
∥∥
V ×V +

n∑
k=1

τ
∥∥(fk;θ, gk;θ)

∥∥
L2×L2

)
.

Proof. For θ ≥ 1
4 , it is immediate that the method is unconditionally stable, since

the last term in (3.12) is nonnegative. For θ < 1
4 , the CFL condition yields

(3.15) En+ 1
2 ≥ 1

2
a
(
(u

n+ 1
2

h , r
n+ 1

2

h ), (u
n+ 1

2

h , r
n+ 1

2

h )
)
+

1

2
cδ∥(u

n+ 1
2

h , r
n+ 1

2

h )∥2L2×L2 ≥ 0,

for some δ > 0, where cδ := mmin(1− (1− δ)2). Furthermore, we obtain

(3.16)
∥∥(Dτu

n+ 1
2

h , Dτr
n+ 1

2

h )
∥∥
L2×L2 +

∥∥(un+ 1
2

h , r
n+ 1

2

h )
∥∥
V ×V ≤ 2α

√
En+ 1

2 ,
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where α :=
√
max(a−1

min, c
−1
δ ). The inequality

(3.17)
√
En+ 1

2 −
√
En− 1

2 ≤ τα
∥∥(fn;θ, gn;θ)

∥∥
L2×L2

and a bound on the initial energy (that depends on amax, mmax, τ and θ) completes
the proof. □

Corollary 3.3 (Discrete energy conservation). The discrete energy En+ 1
2 satisfies

(3.18) Fn;θ(un+1
h − un−1

h , r n+1
h − r n−1

h ) = 2
(
En+ 1

2 − En− 1
2

)
.

In particular, if (f , g) ≡ 0, then the θ-method conserves the discrete energy in the
sense:

En+ 1
2 = En− 1

2 = E
1
2 .

Proof. We choose (φh,ψh) = (un+1
h −un−1

h , rn+1
h −rn−1

h ) as a test function in (3.9)
and obtain (3.18) with direct calculations. □

3.2.2. Convergence. To establish the convergence of the fully discrete approxima-
tion (3.9) to the elastic wave propagation problem (2.16), we follow the arguments
presented in [GS09, Kar11], resulting in the following convergence theorem.

Theorem 3.4 (Error estimate). Assume that the solution pair (u, r) to (2.16)
satisfies the following regularity assumptions:

(u, r) ∈ C2([0, T ];V p+1 × V p+1),

(∂3
tu, ∂

3
t r) ∈ C([0, T ];L2 × L2),

(∂4
tu, ∂

4
t r) ∈ L1(0, T ;L2 × L2),

if θ ̸= 1
12 and

(u, r) ∈ C2([0, T ];V p+1 × V p+1),

(∂5
tu, ∂

5
t r) ∈ C([0, T ];L2 × L2),

(∂6
tu, ∂

6
t r) ∈ L1(0, T ;L2 × L2),

for θ = 1
12 , where we have used the definition

V k :=
{
v ∈ C0(Σ)3 : v|e ∈ Hk(e)3, ∀e ∈ E , v(n) = 0, ∀n ∈ ND

}
.

Let the CFL condition (3.13) hold and assume the initial conditions are defined
by (3.6). Then, the fully discrete scheme given by (3.9), where we use (3.7), if
θ ̸= 1

12 , and (3.8) for θ = 1
12 to determine the fictitious values (u−1

h , r−1
h ), is

uniquely defined in V h × V h and fulfills the L2-error estimate

max
0≤n≤N

∥(un
h, r

n
h)− (u(tn), r(tn))∥L2×L2 ≤ Cc

(
hp+1 + τs

)
,

with temporal order s = 2 if θ ̸= 1
12 and s = 4 if θ = 1

12 , where the constant Cc > 0
is independent of both h and τ , but depends linearly on T .

Proof. The proof follows analogously to the arguments in [Kar11], where the L2-
scalar product on the left-hand side is replaced by the bilinear form m, the L2-
projection by the m-orthogonal projection and the discontinuous Galerkin space by
the continuous finite element space defined in (3.1). □

Remark 3.5 (Alternative choices of projections). Assuming additional regularity
on the initial data, the m-orthogonal projection Pm can by replaced by a local
projection or interpolant satisfying standard interpolation error bounds.
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4. Subspace decomposition preconditioner

A practical implementation of the proposed method requires solving linear sys-
tems of equations arising from problem (3.2) in the stationary setting, or from
problem (3.9) (for θ > 0) in the time-dependent setting. In engineering appli-
cations, these systems are typically large, sparse, and ill-conditioned. Efficient
numerical solvers therefore rely on parallelization and on representations of the dis-
cretization across multiple scales. This principle underlies iterative methods such
as geometric [Bra77] and algebraic [XZ17] multigrid, as well as domain decomposi-
tion techniques [TW05]. These approaches construct multilevel representations of
the underlying graph (coarsening), which are then used to precondition the linear
system. Spectral bounds for such multilevel preconditioners often yield proofs of
optimal convergence rates. However, linear systems of equations originating from
geometrically complex beam-network models typically require specially designed
preconditioners that account for the intricacies of the geometry.

In the following, we consider a two-level overlapping additive Schwarz precon-
ditioner, employing a direct solver for the local subproblems. This choice allows
us to establish optimal convergence of the conjugate gradient method under mild
assumptions on the underlying graph, following the analysis in [GHM24]. In this
section, we focus on the case of linear finite element methods, i.e., k = 1 in Sec-
tion 3. An integral part of the convergence proof of the preconditioned iteration
is the formulation of a spectral equivalence result. To this end, we introduce two
bilinear forms on the space V := V × V × V, where V denotes the space of real-
valued functions on the node set N that vanish at Dirichlet nodes. Throughout,
the value of a function λ ∈ V at a node n is denoted by λn. The first bilinear form
corresponds to a mass-type operator, while the second defines a weighted graph
Laplacian operator. They are for any functions λ,µ ∈ V defined by

M(λ,µ) :=
∑
n∈N

1

2

∑
e∼n

λnµnhe,(4.1)

L(λ,µ) :=
∑
n∈N

1

2

∑
e∼n

e=(n,n′)

(λn − λn′) · (µn − µn′)

he
,(4.2)

where the weighting with the edge length he is chosen to be the same as for the
mass and stiffness operators in a one-dimensional finite element implementation.

Lemma 4.1 (Spectral equivalence). Denote by ξ = (ξn)n∈N the vector of nodal
values of the P1 finite element function uh, and similarly by η = (ηn)n∈N the
vector of nodal values of the function rh. Then,

L(ξ, ξ) + L(η,η) ≲ a
(
(uh, rh), (uh, rh)

)
≲ L(ξ, ξ) + L(η,η),(4.3)

M(ξ, ξ) +M(η,η) ≲ m
(
(uh, rh), (uh, rh)

)
≲ M(ξ, ξ) +M(η,η).(4.4)

Proof. To prove estimate (4.3), we first note that the gradient of a linear finite
element function is piecewise constant. Consequently, it follows that

∥uh∥2V =
∑
e∈E

ˆ
e

|∂xuh|2 dx =
∑

(n,n′)=e∈E

(ξn − ξn′)2

he
= L(ξ, ξ).

Combining this identity with Lemma 2.1 then yields the desired spectral equivalence
between the stiffness operator and the component-wise graph Laplacian.
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For the proof of estimate (4.4), we explicitly compute the relevant one-dimensional
integrals, which gives

∥uh∥2L2 =
∑
e∈E

ˆ
e

|uh|2 dx =
∑

(n,n′)=e∈E

he

3

(
ξ2n + ξnξn′ + ξ2n′

)
.

Applying Young’s inequality, we obtain the following bounds for each summand:

he

6

(
ξ2n + ξ

2
n′

)
≤ he

3

(
ξ2n + ξnξn′ + ξ2n′

)
≤ he

2

(
ξ2n + ξ

2
n′

)
.

As a direct consequence, we have

M(ξ, ξ) ≲ ∥uh∥2L2 ≲ M(ξ, ξ),

from which the desired spectral equivalence of the mass operator follows by (2.15).
□

Remark 4.2 (Higher-order). The spectral equivalence extends to polynomial degrees
beyond k = 1. For simplicity, however, we consider only the lowest-order case.

For the two-level overlapping additive Schwarz preconditioner, we introduce a
coarse representation of the Timoshenko beam network on an artificial (coarse)
mesh TH over the bounded domain Ω ⊂ R3, as illustrated in Figure 4.1 (left)
for the two-dimensional case. For simplicity, we assume that Ω is a box [0, l1] ×

Figure 4.1. An artificial mesh TH over a network (left) and a
basis function φi with the boundary of its support marked in red
(right), both in a two-dimensional setting.

[0, l2]× [0, l3] equipped with a uniform Cartesian mesh. Let {φi}mi=1 denote the set
of trilinear basis functions, where m is the number of nodes of the coarse mesh,
with corresponding supports denoted by Ui := supp(φi). We further define U i :=
Ui × Ui × Ui. An illustration of a coarse-scale basis function in two dimensions is
shown in Figure 4.1 (right). The space of continuous piecewise trilinear functions
on TH that satisfy Dirichlet boundary conditions on boundary segments where
network nodes are fixed is denoted by VH . Note that the domain of a function
in VH is considered to be the set of nodes of the spatial network.

We treat both the stationary problem and a single step of the time-dependent
problem simultaneously by introducing a bilinear form a∗, which equals a in the
stationary case and m+ τ2θa in the time-dependent case. To this end, we employ
a preconditioner based on the following subspace decomposition:

V = V0 + V1 + · · ·+ Vm

with the coarse space V0 := VH × VH × VH and the local subspaces defined for
i = 1, . . . ,m by Vi := {v ∈ V : supp(v) ⊂ U i}. Given this decomposition, we
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define, for each subspace, a corresponding subspace projection operator Pi : V ×
V → Vi × Vi satisfying, for all (w, z) ∈ Vi × Vi,

(4.5) a∗
(
Pi(v, s), (w, z)

)
= a∗

(
(v, s), (w, z)

)
.

Note that the well-posedness of the subspace correction operator Pi follows directly
from the fact that a∗ defines an inner product on V × V . We then define the
preconditioned operator P : V × V → V × V as

P := P0 + P1 + · · ·+ Pm.

The corresponding preconditioner, denoted by B, is defined via the relation P =
BA∗, where A∗ is the matrix representation of the bilinear form a∗. We emphasize
that the preconditioner B is never explicitly formed; its application only requires
evaluating the action of P . This, in turn, involves the direct solution of one coarse
global problem and m local problems of the form (4.5). These subproblems are
decoupled and can be solved in parallel. In the following, we employ this precondi-
tioner within the conjugate gradient method.

We can establish optimal convergence of the preconditioned conjugate gradient
method using the preconditioner B, provided that the coarse mesh size H exceeds
a critical length scale R0. To formalize this, we introduce additional notation. Let
us consider the boxes centered at x = (x1, x2, x3), defined as

BR(x) := [x1 −R, x1 +R)× [x2 −R, x2 +R)× [x3 −R, x3 +R),

where the half-open intervals are replaced by closed ones if xi +R = li. Moreover,
let us denote the total length of all beams adjacent to the nodes in BR(x) by

|1|2M,BR(x) :=
∑

n∈N∩BR(x)

1

2

∑
e∼n

he.

We also denote by d̄x the degree (i.e., the number of incident edges) of a node x
in a subgraph Ḡ = (N̄ , Ē). For any subset of nodes X ⊂ N̄ , we define its volume as

vol(X) :=
∑
x∈X

d̄x,

and we write Ē(X,X ′) ⊂ Ē for the set of edges in the subgraph having one endpoint
in X and the other in X ′. The network assumptions under which we establish the
convergence of the preconditioned conjugate gradient method can now be formu-
lated as follows; see also [GHM24, Lem. 3.7].

Assumption 4.3 (Network assumptions). There is a length-scale R0, a uniformity
constant σ, and connectivity constants ν1 and ν2 so that:

(1) (homogeneity) for all R ≥ R0,

max
BR(x)⊂Ω

|1|2M,BR(x) ≤ σ min
BR(x)⊂Ω

|1|2M,BR(x);

(2) (connectivity) for all R ≥ R0 and x ∈ Ω, there is a connected subgraph
of nodes Ḡ = (N̄ , Ē) (where N̄ denotes nodes and Ē edges connecting the
nodes) of G containing
(a) all edges with one or both endpoint in BR(x),
(b) only edges with endpoints contained in BR+R0(x),
(c)

vol(N̄ ) ≤ ν1

(
R

R0

)d

,
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(d) the following d-dimensional isoperimetric inequality holds,

(vol(X))
(d−1)/d ≤ ν2|Ē(X, N̄ \X)|

for all X ⊂ N̄ assuming vol(X) ≤ vol(N̄ \X);
(3) (locality) for all edges in the network {x, y} ∈ E , the edge length satisfies

|x− y| < R0;
(4) (boundary density) for every y ∈ ND, there is an x ∈ ND \ {y} such that

|x− y| < R0.

The homogeneity assumption puts a bound on the density variation of the net-
work on scales larger than R0. The connectivity assumption requires that any
subset of the network is well connected to the rest of the network. Under these two
assumptions, the network behaves essentially as a continuous material on scales
larger than R0. The locality condition can be ensured by further discretization,
and the boundary density assumption guarantees the presence of a sufficient num-
ber of fixed nodes on the constrained boundary segments.

We now apply [GHM24, Thm. 4.4] to show convergence of the preconditioned
conjugate gradient iteration. This result requires a sparse, symmetric system matrix
and that the network satisfies Assumption 4.3. Additionally, the system matrix
must be spectrally equivalent to the reciprocal edge-weighted graph Laplacian L.
In the stationary case, this follows directly from Lemma 4.1. For the wave equation,
we follow the argument of [GHM24, Lem. 4.2] with L replaced by M+ τ2θL, again
using the spectral equivalence from Lemma 4.1. In both cases, we obtain the same
optimal convergence result, with condition number κ independent of H and h.

Theorem 4.4 (Preconditioned conjugate gradient method). If H ≥ 2R0, the pre-

conditioned conjugate gradient iterate (u
(ℓ)
h , r

(ℓ)
h ) satisfies

∥(uh, rh)− (u
(ℓ)
h , r

(ℓ)
h )∥V ×V ≤ 2

(√
κ− 1√
κ+ 1

)ℓ

∥(uh, rh)− (u
(0)
h , r

(0)
h )∥V ×V ,

where the condition number κ of the preconditioned operator depends only on the
constants in Lemma 4.1 and on ν1 and ν2 from the network assumptions.

The proof of the theorem is inspired by classical Schwarz theory (see, e.g., [Xu92,
KY16]) and involves constructing a quasi-interpolation operator in the spatial net-
work setting, whose approximation and stability properties can be established using
Poincaré and Friedrichs inequalities on subgraphs. In practice, this preconditioner
has proven effective in handling the typically complex geometry of spatial networks
and highly varying material properties; see, e.g., [GKM+24].

Remark 4.5 (Time-dependent case). Note that in the time-dependent case, all oc-
currences of (uh, rh) in the preceding section should be understood as (un

h , r
n
h ).

The solution from the previous time step provides a natural initial guess for the
iteration. Moreover, if the time step and the material parameters are constant in
time, the same matrices appear in the local problems at each step, allowing their
factorizations to be saved and reused to further accelerate the computations.

5. Numerical examples

We consider two engineering applications to verify our theoretical findings.

5.1. Elliptic h-convergence. In the first numerical example, we investigate the
theoretical error bound from Theorem 3.1 by simulating a small piece of expanded
metal. Expanded metal is a mesh material produced by perforating a metal sheet.
Figure 5.1 shows illustrations of the manufacturing process and the corresponding
network model. The large diamonds in the model measure 80 mm in width and
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Figure 5.1. The first two figures from the left are illustrations
of the production of expanded metal, as well as the optional roll
flattening post processes [KW07]. The right figure presents the
network structure of a two-dimensional rolled expanded metal.

Figure 5.2. The left figure shows the elliptic solution for G10,
while the right figure displays the convergence of the method with
respect to the spatial discretization parameter hi.

40 mm in height, while the slender mesh strands are 6 mm wide and 3 mm thick, and
are modeled as cold-rolled steel (isotropic, E = 210 GPa, ν = 0.3, ρ = 7850 kg/m3).

To analyze the elliptic error bound, we consider a 32 cm × 32 cm metal mesh
consisting of 4 × 8 diamonds. The network model is generated in the xy-plane,
with the coarsest network, G0, containing the minimal number of nodes required
to capture the geometry. The longest edge in this network, h0, is approximately
45 mm. Higher-resolution models are obtained by subdividing the edges of the
coarse network. Specifically, we consider networks Gi with minimal components
such that the largest edge length is hi = h0/2

i, for i = 0, 1, . . . , 6, and i = 10.
The mesh is bent out of the plane by clamping the right boundary and imposing
Dirichlet conditions only on the displacement in the z-direction on the opposite side
to achieve roughly a 15◦ bend (tan(15◦) · 32 cm). The elliptic solutions (uhi

, rhi
) are

then found by solving the corresponding linear systems of equations for each of the
networks Gi. The coefficients in the linear system of equations are based on the units
(metric ton, cm, s). The solution of the detailed model, (uh, rh) := (u10

h10
, r10h10

),
is treated as the reference solution. The coarser solutions are upscaled via linear
interpolation, consistent with the P1 finite element basis used in the discretization,
and then compared to the reference.

Illustrations of the elliptic solution and the error convergence are shown in Fig-
ure 5.2. The results clearly exhibit the theoretical h-scaling in the V × V norm
predicted by Theorem 3.1, as well as h2-scaling with respect to the L2 × L2 norm.

5.2. Numerical estimate of the CFL condition. In the second numerical ex-
ample, we study elastic wave propagation in a network, focusing on the CFL con-
dition for the leapfrog method (θ = 0). The condition is evaluated using the coarse
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Figure 5.3. The solutions of the two (similar) elastic waves are
shown at approximately t = 0 ms (yellow), 7 ms (pink), and 14 ms
(purple). The left figure is the response obtained by removing the
displacement condition in Figure 5.2, while the right figure shows
the first (scaled) eigenmode with the clamped boundary condition.

Table 1. Stability analysis of the leapfrog method for different
time steps.

τ 287 ns 297 ns 308 ns
Time steps 98 000 94 000 91 000

Stable Yes Yes No

network model G0 from the previous example. The initial values (u0
h, r

0
h) are taken

from the elliptic solution in Figure 5.2, and we set (v0,p0) = (0, 0) in (3.7).
The specific wave problem considered is the response when the displacement

conditions are released. This response is computed using the leapfrog method,
starting with (u0

h, r
0
h) = (uh0

, rh0
), while (u1

h, r
1
h) is obtained using (3.9), solving

2

τ2
m
(
(u1

h, r
1
h), (φh,ψh)

)
=

2

τ2
m
(
(u0

h, r
0
h), (φh,ψh)

)
− a

(
(u0

h, r
0
h), (φh,ψh)

)
for all (φh,ψh) ∈ V h×V h. Figure 5.3 shows the state of the mesh at various times
after the displacement condition is released. In this example, roughly one periodic
cycle is simulated (T = 28 ms).

The CFL condition for the leapfrog method in (3.13) is evaluated as

CCFL =

√
amax

mmin
· 1
4
Cinv, τ <

hmin

CCFL
= 41 ns,

where Cinv =
√
12 in the present setting of linear finite elements in one dimension,

and hmin denotes the length of the smallest edge. Based on this bound, the leapfrog
method was tested for τ near the CFL condition, and the τ at which the method
became unstable was isolated. The results are presented in Table 1 and show that
the instability occurs for τ roughly 7 times larger than the theoretical bound in
Theorem 3.2. The unconditionally stable Crank–Nicolson method produced stable
results for all of these cases, as well as for much larger τ , confirming Theorem 3.2.

5.3. Crank–Nicolson τ-convergence. Next, the time discretization error is as-
sessed by comparing iterations for various τ with the Crank–Nicolson method, using
a known semi-discrete solution. The network model is the same as in the previous
two examples, and a semi-discrete problem is constructed using the first eigenmode

of the corresponding elliptic operator. Specifically, we seek (ϕ̂
1

h, ν̂
1
h) ∈ V h × V h

associated with the smallest (positive) eigenvalue λ such that

a
(
(ϕ̂

1

h, ν̂
1
h), (φh,ψh)

)
= λm

(
(ϕ̂

1

h, ν̂
1
h), (φh,ψh)

)
, ∀(φh,ψh) ∈ V h × V h.
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Figure 5.4. Temporal convergence of Crank–Nicolson for a wave
problem with a semi-discrete analytical solution.

The eigenvector (ϕ̂
1

h, ν̂
1
h) is computed numerically and, after rescaling, closely re-

sembles the steady-state solution in Figure 5.2. The smallest eigenvalue, approx-
imately λ1 ≈ 0.0584, determines the resonance period 2π/

√
0.0584 ms ≈ 26 ms,

which agrees well with the period observed above in the CFL example (28 ms).
The semi-discrete solution we consider is

(uh(t), rh(t)) = (ϕ̂
1

h, ν̂
1
h) cos(

√
λ1 t).

This function satisfies the semi-discrete problem

(5.1a) m
(
(üh, r̈h), (φh,ψh)

)
+a

(
(uh, rh), (φh,ψh)

)
= 0, ∀(φh,ψh) ∈ V h×V h,

with the initial conditions

(5.1b) (uh(0), rh(0)) = (ϕ̂
1

h, ν̂
1
h), (u̇h(0), ṙh(0)) = (0, 0).

This problem is then solved using the Crank–Nicolson method, with (u0
h, r

0
h) =

(uh(0), rh(0)), and the first time step (u1
h, r

1
h) computed by solving

2

τ2
m
(
(u1

h, r
1
h), (φh,ψh)

)
+

1

2
a
(
(u1

h, r
1
h), (φh,ψh)

)
=

2

τ2
m
(
(u0

h, r
0
h), (φh,ψh)

)
− 1

2
a
(
(u0

h, r
0
h), (φh,ψh)

)
for all (φh,ψh) ∈ V h × V h. The latter problem corresponds to (3.9) with zero
initial velocities (v0,p0) = (0, 0) in (3.7).

We evaluate the temporal discretization error for various τ via

max
1≤n≤N

∥(un
h, r

n
h)− (uh(tn), rh(tn))∥,

max
1≤n≤N

∥(Dτu
n+1/2
h , Dτr

n+1/2
h )− (u̇h(tn+1/2), ṙh(tn+1/2))∥,

both measured in the V × V norm and the L2 × L2 norm. The results, which
numerically confirm the temporal convergence rates of the Crank–Nicolson method
predicted in Theorem 3.4, are shown in Figure 5.4.

5.4. Paper example. In the fourth numerical example, we consider a small piece
of printing paper with a typical surface weight of 70 g/m2. The material is modeled
by generating paper fibers (unbleached kraft) from geometrical distributions ob-
tained via image analysis, including fiber lengths, widths, and curvature [GKM+24].
In [GKM+24], the mechanical properties of paperboard (tensile stiffness, bending
resistance) were studied using a network model with Timoshenko beams, with some
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Table 2. Model properties

Surface weight 70 g/m2

Density (ρs) 770 kg/m3

Thickness (ts) [ Surface weight/ρs] 91 µm
Model tensile stiff. (MD,CD) (12.0, 2.80) GPa,
Num. beams 1.45 million
Num. nodes 0.808 million
Degrees of freedom 4.85 million

Figure 5.5. The left figure shows the 8 mm×8 mm paper model,
while the right figure displays the solution of an elliptic problem
simulating a two-point bending experiment.

simulations requiring the domain decomposition method from [GHM24]. The Tim-
oshenko beam model is appropriate here because the fibers are densely packed,
making the beam length (between intersections) small relative to the total fiber
length. Paper is an orthotropic material, being substantially stiffer in one direction
due to the papermaking process. This direction is called the Machine Direction
(MD), while the perpendicular Cross Direction (CD) is least stiff. In this example,
the paper model captures orthotropy through biased fiber orientations. The follow-
ing simulations consider only the machine direction; details on fiber properties and
cross-direction simulations are provided in [GKM+24].

The problem considered models an 8 mm × 8 mm piece of paper, composed
of 13,630 individual fibers. These fibers are initially discretized into 0.1 mm seg-
ments, with cross-sections derived from experimental data. The fiber cross-sections
are either hollow (elliptic, 3 µm wall thickness) or collapsed (rectangular). After
deposition, the network consists of thousands of disconnected chains of edges. To
form a connected network, all contacts are identified based on the 3D volume of
the fibers. Beams are placed between each pair of contacting fibers by further dis-
cretizing the fibers at the closest points. The beams have rectangular cross-sections,
determined by projecting the intersection outline onto a contact plane and fitting
an appropriately oriented rectangle. Finally, any remaining disconnected edges are
removed. The resulting network is well connected with small density variation on
the scales H used in the subspace decomposition for the numerical simulations.
A visualization of the considered fiber network model is shown in Figure 5.5, and
some general properties are summarized in Table 2.

Optimality of the preconditioner with respect to H. An elliptic problem is considered
to evaluate the H-invariance of the domain decomposition method in terms of its
number of iterations. The setup is similar to Figure 5.2, with one side clamped
and the other bent out of plane by 15◦ through z-directional Dirichlet conditions
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Figure 5.6. Relative error as a function of the number of conju-
gate gradient iterations (left) and the error reduction factor versus
the number of iterations (right).

(tan(15◦) · 8 mm). The steady-state solution is computed in units (kg, µm, ms)
using a direct linear solver and shown in Figure 5.5.

The convergence rate predicted in Theorem 4.4 is assessed by applying the do-
main decomposition method to the elliptic problem for several H. The initial guess

(u
(0)
h , r

(0)
h ) ∈ Vh × Vh, consistent with the boundary conditions, is obtained by

modeling the sheet as a continuum with straight Timoshenko beams, solving the
continuum steady-state problem, and interpolating to the network. The results,
presented in Figure 5.6, show linear convergence with no deterioration as H de-
creases, confirming that Theorem 4.4 applies for this example.

Domain decomposition with Crank–Nicolson. Next, we simulate the response of the
paper after releasing the displacement Dirichlet condition by solving (5.1) using
the Crank–Nicolson method. The material response closely resembles the first
eigenmode, allowing an estimate of the period using data from Table 2:

Period−1 =
(1.875)2

2π(8 mm)2

√
EsIx

ρs(ts · (8 mm))
≈ (1.1 ms)−1,

Ix =
t3s(8 mm)

12
, Es = 12 GPa,

cf. [Gib16, p. 484]. We set T = 1.1 ms and simulate the response with time step
τ = T/100 using a direct linear solver. Figure 5.7 shows the solution at three points
in the first half of the period. The simulation is then repeated using the domain
decomposition method with 64 × 64 × 1 elements. The domain decomposition
iterations are compared with the direct solver results, as shown in Figure 5.8. We
again observe linear convergence of the preconditioned conjugate gradient method,
essentially independent of the chosen time step.

6. Conclusions and future work

We established optimal a priori error estimates for the proposed θ-finite-element
scheme applied to elastic wave propagation in Timoshenko beam network models
with rigid joints. The theoretical results were validated through engineering numer-
ical examples. For the explicit leapfrog method (θ = 0), we also investigated the
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Figure 5.7. The figure shows the solution at three time-steps in
the simulation (yellow 0 ms, purple 0.242 ms, blue 0.484 ms).

Figure 5.8. The left figure shows the relative error at each it-
eration for the four time steps. The right figure shows the error
reduction per domain decomposition iteration (64×64×1 elements)
over the same four time steps.

CFL condition both theoretically and numerically. Additionally, we proposed a sub-
space decomposition preconditioner for the efficient iterative solution of the arising
linear systems (θ > 0) and analyzed its convergence properties. Future work will
focus on multilevel preconditioners with algebraic coarsening and reduced overlap.
A natural extension of the model is the inclusion of non-linear effects, incorporating
geometrically non-linear formulations to account for large deformations, as well as
non-linear constitutive laws to capture plasticity.
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[BL11] I. Babuška and R. Lipton. Optimal local approximation spaces
for generalized finite element methods with application to mul-
tiscale problems. Multiscale Model. Simul., 9(1):373–406, 2011.
10.1137/100791051.

[Bra77] A. Brandt. Multi-level adaptive solutions to boundary-value prob-
lems. Math. Comp., 31(138):333–390, 1977. 10.1090/s0025-5718-1977-
0431719-x.

[BSSS22] P. Bastian, R. Scheichl, L. Seelinger, and A. Strehlow. Multilevel spec-
tral domain decomposition. SIAM J. Sci. Comput., 45(3):S1–S26, 2022.
10.1137/21M1427231.

[CEL18] E. T. Chung, Y. Efendiev, and W. T. Leung. Constraint energy mini-
mizing generalized multiscale finite element method. Comput. Methods
Appl. Mech. Engrg., 339:298–319, 2018. 10.1016/j.cma.2018.04.010.

[CEPT12] J. Chu, B. Engquist, M. Prodanović, and R. Tsai. A multiscale method
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[KKR16] A. Klawonn, M. Kühn, and O. Rheinbach. Adaptive coarse
spaces for FETI-DP in three dimensions. SIAM J. Sci. Comput.,
38(5):A2880–A2911, 2016. 10.1137/15m1049610.

[KM24] F. Krumbiegel and R. Maier. A higher order multiscale method for
the wave equation. IMA J. Numer. Anal., 45(4):2248–2273, 2024.
10.1093/imanum/drae059.
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[MP20] A. Målqvist and D. Peterseim. Numerical Homogenization by Lo-
calized Orthogonal Decomposition. SIAM, Philadelphia, PA, 2020.
10.1137/1.9781611976458.

[MS07] J. Mandel and B. Sousedik. Adaptive selection of face coarse degrees
of freedom in the BDDC and the FETI-DP iterative substructuring
methods. Comput. Methods Appl. Mech. Eng., 196(8):1389–1399, 2007.
10.1016/j.cma.2006.03.010.

[MSD22] C. Ma, R. Scheichl, and T. Dodwell. Novel design and analysis of
generalized finite element methods based on locally optimal spec-
tral approximations. SIAM J. Numer. Anal., 60(1):244–273, 2022.
10.1137/21m1406179.

[MSS12] J. Mandel, B. Sousedik, and J. Sistek. Adaptive BDDC in
three dimensions. Math. Comput. Simul., 82(10):1812–1831, 2012.
10.1016/j.matcom.2011.03.014.

[MWT+23] L. O. Müller, S. M. Watanabe, E. F. Toro, R. A. Feijóo, and
P. J. Blanco. An anatomically detailed arterial-venous network
model. cerebral and coronary circulation. Front. Physiol., 14, 2023.
10.3389/fphys.2023.1162391.

[NXDS11] F. Nataf, H. Xiang, V. Dolean, and N. Spillane. A coarse space con-
struction based on local dirichlet-to-neumann maps. SIAM J. Sci.
Comput., 33(4):1623–1642, 2011. 10.1137/100796376.

[OS19] H. Owhadi and C. Scovel. Operator-Adapted Wavelets, Fast Solvers,
and Numerical Homogenization, volume 35 of Cambridge Monographs
on Applied and Computational Mathematics. Cambridge University
Press, 2019. 10.1017/9781108594967.

[Owh17] H. Owhadi. Multigrid with rough coefficients and multiresolution oper-
ator decomposition from hierarchical information games. SIAM Rev.,
59(1):99–149, 2017. 10.1137/15M1013894.

https://doi.org/10.1016/j.matdes.2005.08.013
https://doi.org/10.1137/15M1028510
https://doi.org/10.4236/am.2017.88082
https://doi.org/10.1007/s006070050022
https://doi.org/10.1016/b978-0-12-822207-2.00014-3
https://doi.org/10.1016/b978-0-12-822207-2.00014-3
https://doi.org/10.1090/S0025-5718-2014-02868-8
https://doi.org/10.1090/S0025-5718-2014-02868-8
https://doi.org/10.1137/1.9781611976458
https://doi.org/10.1016/j.cma.2006.03.010
https://doi.org/10.1137/21m1406179
https://doi.org/10.1016/j.matcom.2011.03.014
https://doi.org/10.3389/fphys.2023.1162391
https://doi.org/10.1137/100796376
https://doi.org/10.1017/9781108594967
https://doi.org/10.1137/15M1013894
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