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A HIGH-ORDER LOCALIZED ORTHOGONAL DECOMPOSITION

METHOD FOR HETEROGENEOUS STOKES PROBLEMS

MORITZ HAUCK→, ALEXEI LOZINSKI†

Abstract. In this paper, we propose a high-order extension of the multiscale
method introduced by the authors in [SIAM J. Numer. Anal., 63(4) (2025),
pp. 1617–1641] for heterogeneous Stokes problems, while also providing several
other improvements, including a better localization strategy and a more pre-
cise pressure reconstruction. The proposed method is based on the Localized
Orthogonal Decomposition methodology and achieves optimal convergence or-
ders under minimal structural assumptions on the coe!cients. A key feature
of our approach is the careful design of so-called quantities of interest, defin-
ing functionals of the solution whose values the multiscale approximation aims
to reproduce exactly. Their selection is particularly delicate in the context
of Stokes problems due to potential conflicts arising from the divergence-free
constraint. We prove the exponential decay of the problem-adapted basis func-
tions, justifying their localized computation in practical implementations. A
rigorous a priori error analysis proves high-order convergence for both veloc-
ity and pressure, if the basis supports grow logarithmically with the desired
accuracy. Numerical experiments confirm the theoretical findings.

1. Introduction

We consider a heterogeneous Stokes problem posed on a bounded Lipschitz poly-
tope ! → Rn, n ↑ {2, 3}. For a given external force f , the problem is to find a
velocity u and a pressure p satisfying:

(1.1)






↓↔ · (ω↔u) + εu+↔p = f, in !,

↔ · u = 0, in !,

u = 0, on ϑ!,

where ω and ε denote the viscosity and damping coe”cients, respectively. These
coe”cients encode the heterogeneity of the medium and may exhibit roughness or
oscillations across multiple, possibly non-separated, length scales. Heterogeneous
Stokes problems such as (1.1) arise naturally in a variety of applications. In magma
modeling, for example, the viscosity depends on temperature and may vary signifi-
cantly across the domain, cf. [GP10]. Another typical scenario occurs in slow flows
around many small obstacles, cf. [ABF99]. In this case, we set ω to the physical
viscosity and ε = 0 in the fluid region, while inside the obstacles both coe”cients
take large values, e#ectively modeling solid inclusions.

The numerical approximation of heterogeneous problems such as (1.1) by stan-
dard finite element methods (FEMs) typically su#ers from reduced convergence
rates and pronounced pre-asymptotic e#ects when the computational mesh does
not resolve the fine-scale variations of the coe”cients. Since globally resolving all
microscopic details is computationally prohibitive, it is desirable to design numer-
ical methods that yield accurate approximations even on coarse meshes that do
not necessarily resolve the coe”cients’ heterogeneities. This is realized through
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the construction of problem-adapted basis functions, an approach underlying many
modern multiscale methods. For elliptic di#usion-type problems, examples include
the Heterogeneous Multiscale Method [EE03, EE05, AEEV12], the (Generalized)
Multiscale FEM [BO83, BCO94, HW97, BL11, EGH13], the Multiscale Spectral
Generalized FEM [BL11, MSD22], rough polyharmonic splines [OZB14], the Lo-
calized Orthogonal Decomposition (LOD) [MP14, HP13], and gamblets [Owh17].
More recently, refined localization strategies within the LOD framework have been
proposed; see, e.g., [HP23, FHKP24]. Comprehensive overviews of multiscale meth-
ods are available in the textbooks [OS19, MP20] and the review article [AHP21].

Several of the above-mentioned multiscale methods for di#usion-type problems
have been successfully adapted to Stokes problems, which present additional dif-
ficulties due to the divergence-free constraint. For slowly varying perforated me-
dia, we refer, for instance, to [BEL+13, BEH13]. The Multiscale FEM based on
Crouzeix–Raviart elements, originally introduced in [LBLL14], has been applied to
Stokes flows in perforated domains [MNLD15, JL24, FAO22, Bal24]. Also a variant
of the Generalized Multiscale FEM for Stokes problems in perforated media was de-
veloped in [CHP21]. More recently, a lowest-order multiscale method for the Stokes
problem within the LOD framework was proposed in [HL25]. Finally, we mention
the generalization of the operator-adapted wavelet approach from [BOD19], which
treats general problems with di#erential constraints, including divergence-freeness.

While the techniques discussed above typically exhibit first-order convergence,
high-order multiscale methods have also been developed. For di#usion-type prob-
lems, such extensions have been proposed, for instance, for the Heterogeneous
Multiscale Method [LMT12, AB12] and for the Multiscale FEM [AB05, HZZ14].
Hybrid multiscale methods, which reduce global degrees of freedom to element
boundaries, have also gained popularity as a means to achieve high-order conver-
gence; see, e.g., [HPV13, AHPV13, CEL19]. For Stokes problems, a high-order
variant of the Multiscale FEM has been proposed in [FAO22, Bal24]. However,
all of these high-order approaches require certain smoothness assumptions on the
domain, the coe”cients, and/or the exact solution to achieve convergence rates
beyond first order. In the presence of rough coe”cients, as frequently encountered
in applications, such as composite materials with abrupt transitions between ma-
terial properties, these conditions are typically not satisfied, and the coe”cients
are often only in L

→. Obtaining high-order convergence in this setting is non-
trivial and requires the careful design of problem-tailored approximation spaces,
together with appropriate orthogonality properties. For di#usion-type problems,
this is achieved in [Mai21, DHM23, HLM25], where high-order multiscale method
based on ideas of the LOD and gamblets were developed. In these works, quan-
tities of interest (QOIs), which are functionals of the solution that the multiscale
approximation aims to preserve exactly, were defined as integrals with piecewise
polynomials spaces. For Stokes problems, applying this approach directly would
lead to an ill-posed numerical method, since the divergence-free constraint is not
accounted for, and also the construction of a high-order method is more involved.

The construction of high-order multiscale methods for heterogeneous Stokes
problems based on the LOD methodology is the focus of the present article. To this
end, we employ a reformulation of Stokes problem as in [HL25], where the velocity
belongs to (H1

0 (!))
n, with divergence piecewise constant on the underlying coarse

mesh, and the pressure Lagrange multiplier is chosen to be piecewise constant on
the same mesh. We then apply the LOD methodology to this reformulated problem.
For the method of degree m, our choice of QOIs is based on a suitable decompo-
sition of the space of polynomials of degree m into those that can be expressed as
gradients of scalar polynomials of degree m + 1 and a complementary space. For
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a suitably chosen complement space, the QOIs consist of weighted element inte-
grals, where the weights are given by its basis functions, together with weighted
normal face integrals, using weights given by polynomials of degree up to m on
the faces. This construction enables high-order convergence rates to be extracted
from the source term through appropriate orthogonality relations. The resulting
problem-adapted basis functions decay exponentially, which justifies their localized
computation in practical implementations.

The novel aspects of this article are summarized as follows:

• We provide a rigorous a priori error analysis of the proposed method, es-
tablishing its high-order convergence under minimal assumptions on the
coe”cients.The velocity approximation converges at order m+2 in the H1-
norm and at order m+ 3 in the L

2-norm, provided the number of element
layers in the patches to which the basis functions are localized grows log-
arithmically with the desired accuracy. Moreover, the piecewise constant
pressure approximation is shown to converge exponentially to the corre-
sponding pressure averages as the number of element layers is increased.

• A novel post-processing step is introduced that reconstructs a pressure
approximation of order m + 2 in the L

2-norm. Compared to the post-
processing in [HL25], this approach is more sophisticated, incorporating
appropriate coarse-scale piecewise polynomial corrections. In the lowest-
order case m = 0, it achieves second-order convergence, compared to first-
order convergence for the lowest-order method in [HL25].

• Special attention in the analysis of the method is paid to the fine-scale
discretization, which is essential for the practical computation of the local,
infinite-dimensional problems defining its basis functions. Taylor–Hood and
Scott–Vogelius finite elements are employed for this purpose. We prove the
well-posedness of the fully discrete problems for the basis functions and
that the convergence results remain valid after fine-scale discretization.

• The stabilized localization strategy introduced in [HLM25] for di#usion-
type problems is adopted to the current setting of Stokes problems. This
eliminates the undesirable e#ect observed, for example, in [HL25], where,
for a fixed number of element layers in the basis localization, the error
increases again after reaching a certain level as the mesh is refined.

• In the lowest-order case, the proposed method requires fewer basis func-
tions than [HL25] without notably a#ecting its convergence or localization
behavior. Specifically, while [HL25] uses face integrals as its QOIs, the
lowest-order version of the proposed method uses only normal face integrals,
reducing the number of basis functions by a factor of n in n dimensions.

The paper is organized as follows. In Section 2, we introduce the heterogeneous
Stokes model problem studied in this work. The prototypical multiscale method is
presented in Section 3. To obtain a practical variant, we show in Section 4 that
the method’s basis functions decay exponentially, motivating their localized com-
putation on subdomains. A localized version of the method is then introduced in
Section 5. The resulting local but still infinite-dimensional subdomain problems are
discretized in Section 6 using a fine-scale finite element method. Finally, numerical
experiments in Section 7 validate the theoretical findings of the article.

Notation. Throughout this work, we use the notation a ↭ b (respectively b ↫ a) to
indicate that a ↗ C b (respectively a ↘ C b), where C > 0 denotes a generic constant
independent of the coarse mesh size H, the fine mesh size h, the localization pa-
rameter ϖ, and the oscillations of the PDE solution u. The constant C may depend
on the mesh regularity, the spatial dimension n, the coe”cient bounds ωmin, ωmax
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and εmin,εmax, and the method order m. The dependence of the constants on m is
not tracked explicitly, as no asymptotic behavior with respect to m is considered in
this work. Furthermore, we employ standard notation for Sobolev spaces and their
norms, denoting by ≃ · ≃k,! the Hk(!)-norm, by | · |k,! the highest-order seminorm,
and, in the case k = 0, we simply write ≃ · ≃! for the L

2(!)-norm.

2. Model problem

This section introduces the weak formulation of the heterogeneous Stokes prob-
lem, along with classical results guaranteeing its well-posedness. The formulation
is based on the Sobolev space V := (H1

0 (!))
n, endowed with homogeneous Dirich-

let boundary conditions on ϑ!, and the space Q := {q ↑ L
2(!) :

´
! q dx = 0},

consisting of functions with zero integral mean. In the following, we will always
assume the existence of constants ωmin, ωmax and εmin,εmax such that

(2.1) 0 < ωmin ↗ ω ↗ ωmax < ⇐, 0 ↗ εmin ↗ ε ↗ εmax < ⇐,

holds almost everywhere in !. Denoting by (·, ·)! the L
2(!)-inner product, the

problem’s bilinear forms a : V ⇒ V ⇑ R and b : V ⇒Q ⇑ R are defined as

(2.2) a(u, v) := (ω↔u,↔v)! + (εu, v)!, b(u, q) := ↓(q,↔ · u)!.

Given a source term f ↑ L
2(!), the weak formulation of the considered hetero-

geneous Stokes problem seeks a pair (u, p) ↑ V ⇒Q such that

a(u, v) + b(v, p) = (f, v)!,(2.3a)

b(u, q) = 0,(2.3b)

for all (v, q) ↑ V ⇒Q.
Using the uniform coe”cient bounds (2.1) one can show that the bilinear form a

is coercive and bounded, i.e., there exist constants ca, Ca > 0 such that

(2.4) |a(v, v)| ↘ ca≃↔v≃
2
!, |a(u, v)| ↗ Ca≃↔u≃!≃↔v≃!

for all functions u, v ↑ V . By the Poincaré–Friedrichs inequality, the seminorm
≃↔ · ≃! is equivalent to the full (H1(!))n-norm. The constants in (2.4) can be
specified as ca = ωmin and Ca = ωmax + C

2
PFεmax, where CPF > 0 denotes the

Poincaré–Friedrichs constant of the domain !.
To establish the well-posedness of problem (2.3), we need a compatibility condi-

tion between the spaces V and Q, expressed as the inf–sup condition

(2.5) inf
q↑Q

sup
v↑V

|b(v, q)|

≃↔v≃!≃q≃!
↘ cb,

where cb > 0 is typically called the inf–sup constant. This condition is classical
and it is typically proved using the so-called Ladyzhenskaya lemma, cf. [Lad63]. It
states that for any q ↑ Q there exists v ↑ V such that

(2.6) ↔ · v = q, ≃↔v≃! ↗ CL≃q≃!,

which directly implies the inf–sup stability with inf–sup constant cb = C
↓1
L . After

establishing conditions (2.4) and (2.5), the well-posedness of weak formulation (2.3)
can be concluded using classical inf–sup theory; see, e.g., [BBF13].

3. Prototypical multiscale method

This section presents a prototypical multiscale method that achieves high-order
approximation rates without any pre-asymptotic e#ects, under minimal structural
assumptions on the coe”cients. To this end, we introduce a hierarchy of simplicial
meshes TH that are geometrically conforming, quasi-uniform, and shape-regular.
Each mesh is a finite decomposition of the closure of ! into closed elements T ,
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which are n-dimensional simplices1. The mesh size, denoted by H, is defined as the
maximum diameter of the elements in TH , i.e., H := maxT↑TH

diam(T ). For a given
polynomial degree m ↑ N0, where N0 denotes the set of natural numbers including
zero, we introduce the space Pm(T ) consisting of polynomials of total degree at
most m defined on the element T ↑ TH . Piecing together these local spaces in
a discontinuous manner gives the space Pm(TH) of TH -piecewise polynomials of
total degree at most m. The corresponding L

2-orthogonal projection is denoted by
$m

H
: L2(!) ⇑ Pm(TH). Furthermore, we denote the set of all faces of the mesh TH

by FH and the subset of interior faces by F
i

H
.

The construction of the prototypical high-order LOD method is based on an
equivalent reformulation of problem (2.3) using the spaces

(3.1) Z :=
{
v ↑ V : ↔ · v ↑ P0(TH)

}
, QH := Q ⇓ P0(TH),

where the space Z partially integrates the divergence-free constraint into the ve-
locity space. Thus, the smaller space QH is su”cient to enforce that the velocity
is divergence-free. The reformulation seeks (u, pH) ↑ Z ⇒QH such that

a(u, v) + b(v, pH) = (f, v)!,(3.2a)

b(u, qH) = 0.(3.2b)

for all (v, qH) ↑ Z ⇒ QH . To prove the well-posedness of this reformulated prob-
lem, we verify the corresponding inf–sup condition for the bilinear form b, which
holds with the constant cb from (2.5), thanks again to the Ladyzhenskaya lemma,
cf. (2.6). It is readily seen that the first component of the solution to the reformu-
lated problem coincides with the velocity u from (2.3), while the second component
satisfies pH = $0

H
p, where p is the pressure from (2.3).

3.1. Quantities of interest. Following the presentation of the LOD in [AHP21],
we introduce quantities of interest (QOIs) that will be preserved by the prototypical
method. We begin by introducing QOIs associated with faces F ↑ F

i

H
. Let Pm(F )

denote the space of polynomials on F of total degree at most m and {pF,j : j =
1, . . . , J} be a basis of Pm(F ), where J := dim(Pm(F )). We assume that pF,1 ⇔ 1
on F and that

´
F
pF,j dε = 0 for indices j > 1. For each face F ↑ F

i

H
and index

j ↑ {1, . . . , J}, we define the corresponding QOI as

qF,j : Z ⇑ R, v ↖⇑ H

ˆ
F

(v · n)pF,j dε,(3.3)

where n denotes the unit normal vector to F , whose direction is fixed once for all.
To obtain a high-order method, it is not su”cient to consider QOIs only on the

faces. In addition, also QOIs on the elements must be introduced, similar to the
procedure for the MsFEM in [FAO22]. A natural choice for these would be the
moments against all polynomials in Pm(T ). However, a closer look reveals that
one needs to eliminate the moments against the vector-valued polynomials, which
are gradients of scalar polynomials of degree at most m + 1. The space of such
polynomials is in the following denoted as

Gm(T ) := {↔p : p ↑ Pm+1(T )} → (Pm(T ))n.

They must be excluded from the element QOIs, as they conflict with the face QOIs
defined in (3.3), as will be explained in more detail in Remark 3.5 and the proof of
Theorem 3.8. A similar phenomenon also occurs in the Virtual Element Method for
the Stokes problem; see [VLV17]. At the lowest order m = 0, we have the identity
(P0(T ))n = G0(T ), i.e., no element QOIs need to be considered. For orders m ↘ 1,
we have the strict subspace relation Gm(T ) ⊋ (Pm(T ))n, so the complement of

1The assumption of a simplicial mesh is made only for the simplicity of presentation. Quadri-
lateral/hexahedral meshes can be used equally well.
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Gm(T ) in (Pm(T ))n is nontrivial, and element QOIs need to be defined by choosing
a suitable complement of Gm(T ) in (Pm(T ))n. The complement space should satisfy
certain conditions, summarized below.

Assumption 3.1 (Choice of complement space). Let m ↘ 1. Then, for any
T ↑ TH , there exists a subspace Qm(T ) → (Pm(T ))n such that

(3.4) (Pm(T ))n = Gm(T )↙Qm(T ).

Furthermore, for any p ↑ (Pm(T ))n the decomposition p = g+ q, where g ↑ Gm(T )
and q ↑ Qm(T ) satisfies the following conditions:

(1) |p|
2
Pm = |g|

2
Pm + |q|

2
Pm , where | · |Pm is a seminorm on Pm(T ) defined (in-

dependently of T ) for any f ↑ Pm(T ) as |f |
2
Pm :=

∑
ω:|ω|=m

|D
ω
f |

2 in the
usual notations with multi-indices ϱ ↑ Nn

0 ;
(2) the homogeneous parts2 of degree m of polynomials g and q are determined

from the homogeneous part of degree m of polynomial p in a manner inde-
pendent of the mesh element T ;

(3) ≃q≃T ↭ ≃p≃T .

The above conditions on the complement space Qm(T ) are assumed to hold
throughout the manuscript. A possible construction of such a decomposition in
two and three spatial dimensions is given as follows.

Example 3.2 (Construction of the complement space). We first consider the two-
dimensional case, i.e., n = 2. Let (x, y) denote the coordinate vector and (xT , yT )
the barycenter of T . To construct the subspaces Gm(T ) and Qm(T ), we specify
their basis functions. These can be obtained by iterating over pairs (r, s) ↑ N2

0 with
1 ↗ r + s ↗ m+ 1, and performing the following operations:

• add to the basis of Gm(T ) the polynomial

↔(x↓ xT )
r(y ↓ yT )

s
,

• if r, s > 0 add to the basis of Qm(T ) the polynomial

(3.5)
(
↓r(x↓ xT )

r↓1(y ↓ yT )
s
, s(x↓ xT )

r(y ↓ yT )
s↓1

)
.

Any vector-valued polynomial of the form (ϱ(x↓ xT )r↓1(y ↓ yT )s, ς(x↓ xT )r(y ↓
yT )s↓1), with ϱ,ς ↑ R and r, s > 0 as above, can be represented uniquely as a linear
combination of the basis functions in Gm(T ) and Qm(T ). Since the span of all such
polynomials, plus the polynomials (r(x↓xT )r↓1

, 0) and (0, s(y↓yT )s↓1) which are
in Gm(T ), equals (Pm(T ))2, we conclude that our choice of Gm(T ) and Qm(T ) sat-
isfies the direct decomposition property (3.4). Properties (1)–(2) of Assumption 3.1
follow directly from the construction above. Property (3) can be inferred from the
following strengthened Cauchy–Schwarz inequality

(g, q)L2(T ) ↗ φ≃g≃T ≃q≃T ,

for all g ↑ Gm(T ) and q ↑ Qm(T ), with a constant φ < 1 depending only on
the regularity of the mesh. This, in turn, can be proved by maximizing the best
possible constant φ over all polynomials g and q in the corresponding spaces and all
triangles T satisfying the mesh regularity assumption. In this maximization, one
can assume, without loss of generality, that T has its barycenter at the origin and
diameter 1, and the L

2-norms of g, q are equal to 1. The maximum is thus attained
on some element T̂ and some ĝ, q̂, and φ < 1, since ĝ and q̂ are not collinear.

The construction in the three-dimensional case is very similar. The basis func-
tions of Gm(T ) are of the form ↔(x↓xT )r(y↓yT )s(z↓zT )t for triples (r, s, t) ↑ N3

0

2The homogeneous part of degree m of a polynomial is the sum of all terms in the polynomial
whose total degree is exactly m.
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with 1 ↗ r+ s+ t ↗ m+1. When r, s, t > 0, two basis functions analogous to those
in (3.5) are added to the basis of Qm(T ) instead of just one.

Denoting a basis of Qm(T ) by {pT,k : k = 1, . . . ,K}, where K := dim(Qm(T )),
we introduce, for all T ↑ TH and k ↑ {1, . . . ,K}, the corresponding QOIs as

qT,k : Z ⇑ R, v ↖⇑

ˆ
T

v · pT,k dx.(3.6)

Following the approach in [HLM25], we handle the QOIs using Lagrange multi-
pliers that belong to the space

MH :=
{

µ = (µ,µ) : µ : % ⇑ R, µ|F ↑ Pm(F ) ∝F ↑ F
i

H
,

µ : ! ⇑ Rn
, µ|T ↑ Qm(T ) ∝T ↑ TH

}
,

(3.7)

with the norm

(3.8) ≃µ≃2
MH

:= H≃µ≃
2
” + ≃µ≃2!,

where % :=
⋃

F↑Fi

H

F denotes the union of all interior faces. We further introduce

the bilinear form c : Z ⇒MH ⇑ R as

(3.9) c(v,µ) := H

ˆ
”
(v · n)µ dε +

ˆ
!
v · µ dx,

with the piecewise defined unit normal

(3.10) n : % ⇑ Rn
, n|F := n ∝F ↑ F

i

H
.

The bilinear form c encodes the QOIs in the sense that c(v,µ) = c(w,µ) for all
µ ↑ MH if and only if the functions v and w are indistinguishable with respect to
the ensemble of QOIs. The scaling with H is included in both the norm on MH

and in the form c to balance the contributions from the faces and the elements.

3.2. Bubble functions. Next, we introduce bubble functions, a theoretical tool
that will be used repeatedly throughout this manuscript. They play a central role in
establishing the inf–sup stability of the bilinear form c, which is crucial for the well-
posedness of the proposed method. We consider two types of bubble functions. The
first type is used to handle the divergence constraint on each mesh element. The
following lemma establishes their existence and summarizes their main properties.

Lemma 3.3 (Local Ladyzhenskaya-type bubble). For any T ↑ TH and any q ↑

L
2(T ) with

´
T
q dx = 0, there exists vq ↑ (H1

0 (T ))
n such that ↔ · vq = q,

´
T
vq ·

p dx = 0 for all p ↑ Qm(T ), and the following stability estimate holds:

(3.11) ≃↔vq≃T ↭ ≃q≃T .

Proof. The proof of this lemma is deferred to Appendix A. ↬
The second type of bubble functions corresponds to the constraints associated

with the bilinear form c defined in (3.9) and the space MH . Their existence and
main properties are summarized in the lemma below.

Lemma 3.4 (Bubble functions). For any F ↑ F
i

H
and any gF ↑ Pm(F ), there

exists a face bubble function bF ↑ Z ⇓ (H1
0 (↼F ))n with ↼F denoting the union of

the two mesh elements sharing F such that, for all µ ↑ MH ,

(3.12) c(bF ,µ) = H

ˆ
F

gFµ dε,

and

(3.13) ≃bF ≃εF
↭ H

1/2
≃gF ≃F , ≃↔bF ≃εF

↭ H
↓1/2

≃gF ≃F .
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Similarly, for any T ↑ TH and any gT ↑ Qm(T ), there exists an element bubble
function bT ↑ Z ⇓ (H1

0 (T ))
n such that, for all µ ↑ MH ,

(3.14) c(bT ,µ) =
ˆ
T

gT · µ dx,

and

(3.15) ≃bT ≃T ↭ ≃gT ≃T , ≃↔bT ≃T ↭ H
↓1

≃gT ≃T .

Proof. The proof of this lemma is also deferred to Appendix A. ↬

The following remark shows that the construction of the element bubble func-
tions bT in the above lemma would not be possible if gradients of scalar polynomials
were not excluded from the definition of the element QOIs in (3.6).

Remark 3.5 (Elimination of gradients in QOIs). If the definition of the element
QOIs in (3.6) were expanded to include all polynomial moments of degree at mostm,
that is, if the space MH were defined by replacing Qm(T ) in (3.7) with (Pm(T ))n,
then the construction of the local element bubble function bT in (3.14) would have
to accommodate any gT ↑ (Pm(T ))n. In particular, one would need to construct
an element bubble function bT ↑ Z ⇓ (H1

0 (T ))
n associated with gT = ↔p for some

p ↑ Pm+1(T ). Choosing µ = ↔p on T in (3.14) would then yield

(3.16) ≃↔p≃
2
T
= ≃gT ≃

2
T
=

ˆ
T

bT ·↔p dx = ↓

ˆ
T

(↔ · bT ) p dx = 0,

since ↔ · bT = 0 by the divergence theorem, noting that bT ↑ Z ⇓ (H1
0 (T ))

n.
Identity (3.16) is evidently false unless the polynomial p is constant, which reveals
an inherent contradiction in such a construction.

3.3. Prototypical approximation space. For defining the prototypical LOD
multiscale method, we follow the standard approach in [AHP21], decomposing the
solution space Z into a direct sum of two subspaces. The first subspace, often called
the fine-scale space, is defined as the intersection of the kernels of the QOIs in (3.3)
and (3.6), which can be expressed using the bilinear form c introduced in (3.9) as

(3.17) W := {v ↑ Z : c(v,µ) = 0 ∝µ ↑ MH} .

This space contains functions that oscillate on scales smaller than H and cannot
be distinguished by the QOIs in (3.3) and (3.6). The second subspace of the de-
composition is finite-dimensional and will serve as the approximation space of the
prototypical high-order LOD method. It is defined as the orthogonal complement
of W with respect to the energy inner product a, i.e.,

(3.18) Z̃H :=
{
u ↑ Z : a(u, v) = 0 ∝v ↑ W

}
.

Note that, since Z̃H is constructed as the orthogonal complement of W with respect
to the problem-dependent inner product a, it encodes problem-specific information
that allows reliable approximations even on coarse scales. The tildes in the notation
of functions and spaces indicate that they are adapted to the problem at hand. The
following lemma provides a basis of the space Z̃H .

Lemma 3.6 (Prototypical basis). The space Z̃H is of finite dimension N := J ·

#F
i

H
+ K · #TH , where #(·) denotes the number of elements in a set. The basis

functions associated with faces, denoted by ↽̃F,j for F ↑ F
i

H
and j ↑ {1, . . . , J},

are defined as the unique solution to the problem which seeks (↽̃F,j , ⇀F,j , !) ↑ V ⇒
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XH ⇒MH , with XH := {q ↑ Q : $0
H
q = 0}, such that

a(↽̃F,j , v) + b(v, ⇀F,j) + c(v, !) = 0,(3.19a)

b(↽̃F,j ,⇁) = 0,(3.19b)

c(↽̃F,j ,µ) = H
´
F
pF,jµ dε(3.19c)

for all (v,⇁,µ) ↑ V ⇒XH ⇒MH .
Moreover, the basis functions associated with elements, denoted by ↽̃T,k for all

T ↑ TH and k ↑ {1, . . . ,K}, are defined as the solution to a problem analogously
to (3.19), with the indices F and j replaced by T and k, respectively, and the right-
hand side of the last equation replaced by

´
T
pT,k · µ dx.

Proof. We interpret (3.19) as a standard saddle-point problem, combining the La-
grange multiplier spaces XH and MH into the product space XH ⇒MH equipped
with the norm ≃(q,µ)≃2 := ≃q≃

2
! + H

2
≃µ≃2

MH
for (q,µ) ↑ XH ⇒ M . The well-

posedness of this problem then follows from the inf–sup condition:

(3.20) inf
(q,µ)↑XH↔MH

sup
v↑V

b(v, q) + c(v,µ)
≃↔v≃!≃(q,µ)≃

↫ 1.

To prove this, take any (q,µ) ↑ XH ⇒MH , and, thanks to Lemma 3.3, introduce
vq,T ↑ (H1

0 (T ))
n for each T ↑ TH such that b(vq,T , q) = ≃q≃

2
T
, c(vq,T ,µ) = 0 for

all µ ↑ MH , and ≃↔vq,T ≃T ↭ ≃q≃T . Similarly, for each F ↑ F
i

H
(resp. each

T ↑ TH), we introduce, thanks to Lemma 3.4, vµ,F ↑ Z ⇓ (H1
0 (↼F ))n (resp. vµ,T ↑

Z ⇓ (H1
0 (T ))

n) such that c(vµ,F ,µ) = H≃µ≃
2
F
with ≃↔vµ,F ≃εF

↭ H
↓1/2

≃µ≃F (resp.
c(vµ,T ,µ) = ≃µ≃2

T
with ≃↔vµ,T ≃T ↭ H

↓1
≃µ≃T ). Setting

v :=
∑

T↑TH

vq,T +H
2

∑

F↑Fi

H

vµ,F +H
2

∑

T↑TH

vµ,T ,

we obtain b(v, q) + c(v,µ) = ≃(q,µ)≃2 as well as

≃↔v≃
2
! ↭

∑

T↑TH

≃↔vq,T ≃
2
T
+H

4
∑

F↑Fi

H

≃↔vµ,F ≃
2
εF

+H
4

∑

T↑TH

≃↔vµ,T ≃
2
T
↭ ≃(q,µ)≃2,

which proves (3.20), the desired inf–sup condition.
By construction, the functions in the set {↽̃F,j}F,j ′ {↽̃T,k}T,k belong to Z̃H .

To verify that they in fact form a basis of this space, we consider any u ↑ Z̃H

and observe that there exists a unique linear combination of {↽̃F,j} ′ {↽̃T,k}, say
w ↑ Z̃H , such that c(w,µ) = c(u,µ) for all µ ↑ MH . The well-posedness of the
saddle-point problem for u↓ w, as above, then implies that u = w. ↬

The functions in the fine-scale space W satisfy an element-local Poincaré-like
property, as stated in the following lemma.

Lemma 3.7 (Local Poincare-type inequality). For all T ↑ TH and v ↑ (H1(T ))n

with
´
F
v · n dε = 0 for all faces F → ϑT , it holds that

(3.21) ≃v≃T ↭ H≃↔v≃T .

Proof. The proof of this Lemma is deferred to Appendix A. ↬

We emphasize that, unlike in [HL25], where face integrals of vector-valued func-
tions v were used as QOIs, we now consider only (suitably weighted) normal inte-
grals over faces in the definition of the face QOIs in (3.3).
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3.4. Prototypical method. Having introduced the prototypical approximation
space Z̃H , we define the prototypical method by replacing Z in (3.2) with Z̃H .
Specifically, it seeks (ũH , p̃H) ↑ Z̃H ⇒QH such that

a(ũH , ṽH) + b(ṽH , p̃H) = (f, ṽH)!,(3.22a)

b(ũH , q̃H) = 0(3.22b)

for all (ṽH , q̃H) ↑ Z̃H ⇒QH .
To characterize the solution of the prototypical method and as a tool in its

analysis, we introduce the a-orthogonal projection operator R : Z ⇑ Z̃H . Given
any v ↑ Z, its projection Rv is defined as the unique element of Z̃H satisfying

a(v ↓Rv, w) = 0 ∝w ↑ Z̃H .

The a-orthogonality immediately yields the continuity of R. Indeed, for all v ↑ Z,

(3.23) ≃↔Rv≃! ↗

√
Ca/ca ≃↔v≃!,

where ca and Ca denote the constants from (2.4). Since Z̃H is the a-orthogonal
complement of the fine-scale subspace W , we also have, for any v ↑ Z,

c(v ↓Rv,µ) = 0 ∝µ ↑ MH

as v↓Rv ↑ W . Taking the face-based component of µ above as piecewise constant
shows that the operator R preserves face normal fluxes, that is

´
F
(v↓Rv)·n dε = 0

on all faces F ↑ F
i

H
. Thus, using the divergence theorem and noting that functions

in Z have piecewise constant divergence (cf. (3.1)), we obtain, for all v ↑ Z,

(3.24) (↔ · Rv)|T = (↔ · v)|T ∝T ↑ TH .

The following theorem provides a convergence result for the prototypical method,
valid under minimal structural assumptions on the coe”cients.

Theorem 3.8 (Prototypical method). The prototypical multiscale method (3.22)
is well-posed, and its solution is given by (ũH , p̃H) = (Ru,$0

H
p), where (u, p) solves

problem (2.3). Moreover, for any f ↑ H
m+1(!), we have the error estimates

≃↔(u↓ ũH)≃! ↭ H
m+2

|f |m+1,!,(3.25)

≃u↓ ũH≃! ↭ H
m+3

|f |m+1,!.(3.26)

Proof. First, we prove the inf–sup condition

(3.27) inf
q̃H↑QH

sup
ṽH↑Z̃H

|b(ṽH , q̃H)|

≃↔ṽH≃!≃q̃H≃!
↫ 1,

which implies the well-posedness of problem (3.22). Given any q̃H ↑ QH , let v ↑ V

satisfy↔·v = q̃H and ≃↔v≃! ↭ ≃q̃H≃!, cf. (2.6), and define ṽH := Rv. Using (3.24),
we have |b(ṽH , q̃H)| = |b(v, q̃H)| = ≃q̃H≃

2
!, and from (3.23) and the choice of v,

≃↔ṽH≃! ↭ ≃↔v≃! ↭ ≃q̃H≃!. inf–sup condition (3.27) follows after combing these
results. Since (u,$0

H
p) solves (3.2), R : Z ⇑ Z̃H is the a-orthogonal projection,

and ↔ · ũH = 0 by (3.24), we observe that (Ru,$0
H
p) solves (3.22). The uniqueness

of the solution to (3.22) then implies that ũH = Ru and p̃H = $0
H
p.

Next, we show the convergence of the prototypical method. Let us denote the
error by e := u↓ ũH . It holds that e ↑ W , and we have for the prototypical method
that ↔·ũH = 0. Using the coercivity of a (cf. (2.4)), the orthogonality a(ũH , e) = 0,
(3.2a) with e as the test function, and the fact that b(e, pH) = 0, we obtain that

(3.28) ca≃↔e≃
2
! ↗ a(e, e) = a(u, e) = (f, e)! = (f ↓$m

H
f, e)! + ($m

H
f, e)!.
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The first term on the right-hand side above can be bounded using a classical ap-
proximation result for the L

2-projection onto piecewise polynomials, cf. [DPE12,
Lem. 1.58], and the Poincaré-type inequality from Lemma 3.7 as

(3.29) (f ↓$m

H
f, e)! ↗ ≃f ↓$m

H
f≃!≃e≃! ↭ H

m+2
|f |m+1,!≃↔e≃!.

To estimate the second term on the right-hand side of (3.28), we abbreviate
fT := ($m

H
f)|T for each T ↑ TH , and decompose fT = gT + qT with gT ↑ Gm(T )

and qT ↑ Qm(T ) as in Assumption 3.1. By construction, gT = ↔φT for some
φT ↑ Pm+1(T ). Since e is L2(T )-orthogonal to Qm(T ) on all elements and ↔ ·e = 0,
the divergence theorem, applied locally on T , gives

(3.30) ($m

H
f, e)! =

∑

T↑TH

(gT + qT , e)T =
∑

T↑TH

(↔φT , e)T =
∑

F↑Fi

H

([φ]F , e · n)F ,

where [φ]F = φT ↓φT → denotes the jump across face F shared by elements T and T
↗,

ordered consistently with the normal n on F .
Since e · n is L2(F )-orthogonal to Pm(F ) for all faces F ↑ F

i

H
, we can subtract

from [φ]F any λF ↑ Pm(F ) in the right-hand side of equation (3.30). Taking
λF as the L

2(F )-projection of [φ]F to Pm(F ), and using standard approximation
properties of the L

2-projection, cf. [DPE12, Lem. 1.58], we can estimate (3.30) as

(3.31)
∑

F↑Fi

H

([φ]F , e · n)F =
∑

F↑Fi

H

([φ]F ↓ λF , e · n)F

↭ H
m+1

∑

F↑Fi

H

|[φ]F |m+1,F ≃e · n≃F ↗ H
m+1

∑

F↑Fi

H

|F |
1
2 |gT ↓ gT → |Pm≃e≃F ,

where | · |Pm is the seminorm on Pm(T ) defined in property (1) of Assumption 3.1.
We also have

|fT ↓ fT → |
2
Pm = |gT ↓ gT → |

2
Pm + |qT ↓ qT → |

2
Pm ,

by properties (1)–(2) of the same assumption. Thus,

|F |
1
2 |gT ↓ gT → |Pm ↗ |F |

1
2 |fT ↓ fT → |Pm = |[f ↓$m

H
f ]|Hm,full(F ) ↭

∞

H |f |m+1,εF
,

where ↼F = T ′T
↗ and the seminorm | · |Hm,full(F ) includes all partial derivatives of

order m, not only those tangential to F . The last inequality follows from a stan-
dard approximation result in L

2(T ) and L
2(T ↗) and the trace inequality. Finally,

inserting the latter estimate into (3.31), and using the bound ≃e≃F ↭
∞
H≃↔e≃εF

,
which can be derived from Lemma 3.7 and a standard trace inequality, we obtain

(3.32) ($m

H
f, e)! ↭ H

m+2
∑

F↑Fi

H

|f |m+1,εF
≃↔e≃εF

↭ H
m+2

|f |m+1,!≃↔e≃!.

The desired H
1-estimate (3.25) follows by inserting (3.29) and (3.32) into (3.28).

The L
2-estimate (3.26) is obtained by applying Lemma 3.7 once again. ↬

4. Exponential decay and localization

We emphasize that the prototypical LOD basis functions defined in (3.19) are
globally supported. Consequently, computing them would require solving global
problems, which we consider infeasible in practice. In this section, we show that
the prototypical LOD basis functions decay exponentially, which motivates their
approximation by locally computable counterparts. A practical multiscale method
based on such local approximations is presented in Section 5.
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The localization strategy used below was first introduced in [HLM25] and is
highly flexible, making it suitable for applications such as Stokes problems that go
beyond standard elliptic di#usion-type problems. Its key idea is to decompose

(4.1) R = IH +K,

where K : V ⇑ V is characterized below, and IH : V ⇑ VH with VH → V is a
quasi-interpolation operator onto the standard conforming finite element space of
(vector-valued) piecewise a”ne functions on TH . The operator IH is assumed to
depend only on the normal face integrals

´
F
v ·n dε for each F ↑ F

i

H
of an input v,

and to satisfy the standard approximation and stability properties:

(4.2) ≃v ↓ IHv≃T ↭ H≃↔v≃N(T ), ≃IHv≃T ↭ ≃v≃N(T ), ≃↔IHv≃T ↭ ≃↔v≃N(T ),

for all functions v ↑ V and for any element T ↑ TH . Here, for a union of coarse
elements S, N(S) denotes the first-order patch consisting of all coarse elements that
share at least one node with an element in S. We emphasize that VH is fixed as
the first-order finite element space, independent of the polynomial order m.

Remark 4.1 (Possible construction of IH). A possible definition of IH in the two-
dimensional case is given by prescribing its nodal values at interior nodes z as

(IHv)(z) :=

[
n
1
F1

n
2
F1

n
1
F2

n
2
F2

↓1 [
|F1|

↓1
´
F1

v · nF1 ds
|F2|

↓1
´
F2

v · nF2 ds


,

where F1 and F2 are any two faces adjacent to z whose normal vectors nF1 and nF2

(with superscripts denoting their components) are linearly independent. For bound-
ary nodes z we set (IHv)(z) := 0. This definition can be extended to the three-
dimensional case by selecting, for all interior nodes z, three faces adjacent to z with
linearly independent normal vectors. The stability and approximation properties
in (4.2) can be verified for this operator following the approach of [EG04, Ch. 1.6].

The operator K : V ⇑ V , as introduced in (4.1), is characterized for each v ↑ V

as the unique solution (Kv, ⇀, !) ↑ V ⇒XH ⇒MH satisfying

a(Kv, w) + b(w, ⇀) + c(w, !) = ↓ a(IHv, w),

b(Kv,⇁) = ↓ b(IHv,⇁),

c(Kv,µ) = c(v ↓ IHv,µ)

for all (w,⇁,µ) ↑ V ⇒XH⇒MH . The operator K can be represented as the following
sum of localizable element contributions:

(4.3) K =
∑

T↑TH

KT ,

where KT : V ⇑ V is defined, for any T ↑ TH and all v ↑ V , as the unique solution
to the problem, which seeks (KT v, ⇀T , !T ) ↑ V ⇒XH ⇒MH such that

a(KT v, w) + b(w, ⇀T ) + c(w, !T ) = ↓ aT (IHv, w),(4.4a)

b(KT v,⇁) = ↓ bT (IHv,⇁),(4.4b)

c(KT v,µ) = cT (v ↓ IHv,µ)(4.4c)

for all (w,⇁,µ) ↑ V ⇒XH ⇒MH . Here, aT and bT denote the restrictions of a and b

to T (i.e., integrals over ! are replaced by integrals over T ), and cT is defined as

(4.5) cT (v,µ) := H

ˆ
ϑT

▷T (v · n)µ dε +

ˆ
T

v · µ dx,

where the function ▷T : % ⇑ R is piecewise defined, with ▷T |F ↘ 0 nonzero only
for faces satisfying ↼F ∈ T , and such that

∑
T↑εF

▷T |F = 1 for all F ↑ F
i

H
. The

unit normal n : % ⇑ Rn is defined in (3.10).
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To quantify the decay of the operators KT , we introduce the notion of patches
with respect to the mesh TH . Given an localization parameter ϖ ↑ N, the ϖ-th order
patch of a set of elements S → TH is defined by

(4.6) N1(S) := N(S), Nϖ(S) := N1(Nϖ↓1(S)), ϖ ↘ 2,

where we recall that N(S) denotes the first-order patch of elements around S. The
following theorem shows that the operators KT exhibit an exponential decay.

Theorem 4.2 (Exponential decay). There exists a constant c > 0 independent of
H, ϖ, T , such that, for any v ↑ V and ϖ ↑ N, it holds that

≃↔KT v≃!\Nω(T ) ↭ exp(↓cϖ) ≃↔KT v≃!.

Proof. This proof follows the arguments used in the proof of [HL25, Thm. 4.1] for
the lowest-order case. Let ◁ ↑ W

1,→(!) be a cut-o# function such that:





◁ ⇔ 0 in Nϖ↓1(T ),

◁ ⇔ 1 in ! \ Nϖ(T ),

0 ↗ ◁ ↗ 1 in R := Nϖ(T ) \ Nϖ↓1(T ),

satisfying the Lipschitz bound sup! |↔◁| ↭ H
↓1, where we used · to denote the

closure of a set. The notation ·̊ will be used to denote the interior of a set.
Abbreviating 0 := KT v and choosing ◁0 as a test function in (4.4a), we obtain

(4.7) a(0, ◁0) = ↓ b(◁0, ⇀)↓ c(◁0, !)↓ aT (IHv, ◁0),

where, for simplicity, we have omitted the subscript T on ⇀T and !T . Note that
aT (IHv, ◁0) = 0. Moreover, supp(◁0) → (! \ Nϖ(T )) ′ R, ↔ · (◁0) is piecewise
constant on !\R,

´
E
◁0 ·nµ dε = 0 for all µ ↑ Pm(F ) on any face E not contained

in R̊, and
´
K
◁0 · µ dx = 0 for all µ ↑ Qm(K) on any element K not contained

in R. Using these properties, together with bound (2.4), we can rewrite (4.7) as

(4.8) ca ≃↔0≃
2
!\Nω(T ) ↗ a!\Nω(T )(0,0) = ↓ aR(0, ◁0)  

=:#1

↓ bR(◁0, ⇀)  
=:#2

↓ cR(◁0, !)  
=:#3

.

Here, the restricted forms a, b, and c are obtained by restricting the integrals in (2.2)
to the corresponding subdomain, and by restricting the sums in (3.9) to the faces
in R̊ and the elements in R for cR, which should not be confused with (4.5).

To estimate &1, we note that the Poincaré-type inequality from Lemma 3.7 can
be applied locally to the function 0 on all elements K → R for ϖ ↘ 2, since,
by (4.4c),

´
E
0 · n dε = 0 for all faces E → ϑK. Using this property, together with

the definition of bilinear form a in (2.2) and the L
→- and Lipschitz bounds of ◁,

we obtain the following estimate for ϖ ↘ 2:

&1 ↭ ≃↔0≃R

(
≃↔0≃R +H

↓1
≃0≃R

)
+ ≃0≃

2
R
↭ ≃↔0≃

2
R
.

For the term &2, we again apply the L
→- and Lipschitz bounds of ◁ together

with the local Poincaré-type inequality from Lemma 3.7 for 0 to obtain that

(4.9) &2 ↗ ≃↔ · (◁0)≃R≃⇀≃R ↭ ≃↔0≃R≃⇀≃R.

We continue the previous estimate by deriving a bound for ≃⇀≃K on any element
K → R. To this end, we test (4.4a) with vϱ ↑ (H1

0 (K))n chosen such that ↔ ·vϱ = ⇀

holds locally in K, qK,l(vϱ) = 0 for all indices l, and ≃↔vϱ≃K ↭ ≃⇀≃K , where the
existence of such a function vϱ is guaranteed by Lemma 3.3. This yields

≃⇀≃
2
K

= ↓b(vϱ, ⇀) = a(0, vϱ) + c(vϱ, !) + aT (IHv, vϱ) ↭ ≃↔0≃K≃⇀≃K ,

using that c(vϱ, !) = 0 by the construction of vϱ, and that aT (IHv, vϱ) = 0 since T

is not contained in R. Summing the above bound over all K → R yields an estimate
for ≃⇀≃R, which can be inserted into (4.9) to conclude that &2 ↭ ≃↔0≃

2
R
.
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The term &3 can be estimated as

&3 ↭ H

∑

E↘R̊

≃◁0≃E≃λ≃E +
∑

K↘R

≃◁0≃K≃ω≃K .(4.10)

To estimate ≃λ≃E for any face E → R̊, we consider a bubble function bE ↑ Z ⇓

(H1
0 (↼E))n satisfying c(bE ,µ) = ↓H

´
E
λµ dε for all µ ↑ MH , whose existence is

guaranteed by Lemma 3.4. Testing (4.4a) with bE yields

H≃λ≃
2
E
= ↓c(bE , !) = a(0, bE) + b(bE , ⇀) + aT (IHv, bE) ↭ H

↓1/2
≃↔0≃εE

≃λ≃E ,

where we have used that b(bE , p) = 0, since bE has piecewise constant divergence
and ⇀ has zero element averages, and that aT (IHv, bE) = 0 because ↼E , which is
contained in R, has only a trivial intersection with T .

To estimate ≃ω≃K for any element K → R, we consider a bubble function bK ↑

Z ⇓ (H1
0 (K))n that satisfies c(bK ,µ) = ↓

´
K
ω ·µ dx for all µ ↑ MH . Testing (4.4a)

with bK , we obtain, similarly to the previous estimate, that

≃ω≃2
K

= ↓c(bK , !) = a(0, bK) + b(bK , ⇀) + aT (IHv, bK) ↭ H
↓1

≃↔0≃K≃ω≃K ,

noting that bK ↑ Z ⇓ (H1
0 (K))n already implies that bK is divergence-free.

We can now combine the previous two estimates for ≃λ≃E and ≃ω≃K to continue
estimate (4.10). Using a standard trace inequality and the Poincaré-type inequality
from Lemma 3.7 applied to 0, we then obtain, for ϖ ↘ 2, that

&3 ↭
∑

E↘R̊

(
H

↓1/2
≃0≃εE

+H
1/2

≃↔0≃εE

)
H

↓1/2
≃↔0≃εE

+ ≃↔0≃
2
R
↭ ≃↔0≃

2
R
.

Inserting the above estimates for &1–&3 into (4.8) gives

≃↔0≃
2
!\Nω(T ) ↗ C≃↔0≃

2
R
= C


≃↔0≃

2
!\Nω↑1(T ) ↓ ≃↔0≃

2
!\Nω(T )


,

where the constant C > 0 is independent of H, ϖ, and T . This immediately yields

≃↔0≃!\Nω(T ) ↗


C

1 + C

1/2

≃↔0≃!\Nω↑1(T ),

and, after iterating, it follows that

≃↔0≃!\Nω(T ) ↗


C

1 + C

ϖ/2

≃↔0≃! = exp(↓cϖ) ≃↔0≃!,

with c := 1
2 log

1+C

C
> 0. ↬

The exponential decay result from the previous theorem motivates the localiza-
tion of the operators KT to ϖ-th order patches around T . To this end, we introduce,
for all T ↑ TH and a given ϖ ↑ N, local versions of the spaces V , XH , and MH as

V
ϖ

T
:= {v ↑ V : supp(v) → Nϖ(T )},

X
ϖ

H,T
:= {q ↑ XH : supp(q) → Nϖ(T )},

M
ϖ

H,T
:= {µ = (µ,µ) ↑ MH : supp(µ) → %ϖ

T
, supp(µ) → Nϖ(T )},

where %ϖ

T
denotes the part of % contained in the interior of Nϖ(T ). For any T ↑ TH ,

a localized version of the operator KT can be defined as the map K
ϖ

T
: V ⇑ V

ϖ

T
,

which assigns to each v ↑ V the value K
ϖ

T
v given by the unique solution to the

following problem: find (Kϖ

T
v, ⇀

ϖ

T
, !ϖ

T
) ↑ V

ϖ

T
⇒X

ϖ

H,T
⇒M

ϖ

H,T
such that

a(Kϖ

T
v, w) + b(w, ⇀ϖ

T
) + c(w, !ϖ

T
) = ↓ aT (IHv, w),(4.11a)

b(Kϖ

T
v,⇁) = ↓ bT (IHv,⇁),(4.11b)

c(Kϖ

T
v,µ) = cT (v ↓ IHv,µ)(4.11c)
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for all (w,⇁,µ) ↑ V
ϖ

T
⇒X

ϖ

H,T
⇒M

ϖ

H,T
.

We now define a localized counterpart of the operator K as the sum of the
localized element contributions Kϖ

T
over all elements T ↑ TH , cf. (4.3):

(4.12) K
ϖ :=

∑

T↑TH

K
ϖ

T
.

With this, a localized version of the a-orthogonal projection operator R can be
defined, recalling its decomposition in (4.1), as

(4.13) R
ϖ := IH +K

ϖ
.

The following theorem shows that the operatorRϖ approximatesR exponentially
well in the operator norm as the localization parameter ϖ is increased.

Lemma 4.3 (Exponential approximation). For all v ↑ V and ϖ ↑ N, there holds

(4.14) ≃↔(R↓R
ϖ)v≃! ↭ ϖ

(d↓1)/2 exp(↓cϖ) ≃↔Rv≃!,

where c is the constant from Theorem 4.2.

Proof. Let e := (R ↓R
ϖ)v. It follows from (4.4c) and (4.11c) that e ↑ W , which,

together with the definition of the space Z in (3.1), implies that ↔ · e = 0. Thus,
by the coercivity of a, cf. (2.4), the definition of Z̃H in (3.18), and the definitions
of Kϖ and R

ϖ in (4.12) and (4.13), respectively, we obtain

(4.15) ca≃↔(R↓R
ϖ)v≃2! ↗ ↓a(Rϖ

v, e) = ↓

∑

T↑TH

(
aT (IHv, e) + a(Kϖ

T
v, e)

)
.

Next, we estimate each term on the right-hand side of (4.15) separately. For
a fixed element T ↑ TH , we use the cut-o# function ◁T defined as in the proof of
Theorem 4.2, now with subscript T . Noting that aT (IHv, ◁T e) = 0 and using the
function (1↓ ◁T )e ↑ V

ϖ

T
as a test function in (4.11a), yields

↓aT (IHv, e)↓ a(Kϖ

T
v, e) = ↓aT (IHv, (1↓ ◁T )e)↓ a(Kϖ

T
v, (1↓ ◁T )e+ ◁T e)

= ↓ a(Kϖ

T
v, ◁T e)  

=:#1

+ b((1↓ ◁T )e, ⇀
ϖ

T
)  

=:#2

+ c((1↓ ◁T )e, !ϖT )  
=:#3

.

For the estimate of the term &1, we note that

supp(Kϖ

T
v) ⇓ supp(◁T e) → RT := Nϖ(T ) \ Nϖ↓1(T ).

Recalling the L→- and Lipschitz bounds of ◁T , and applying, for ϖ ↘ 2, the Poincaré-
type inequality from Lemma 3.7 to the functions e and K

ϖ

T
v locally on the ring RT

(noting from (4.11c) that
´
E
K

ϖ

T
v · n dε = 0 for all faces E → RT ), we obtain

&1 ↭ ≃↔K
ϖ

T
v≃RT

≃↔(◁T e)≃RT
+ ≃K

ϖ

T
v≃RT

≃◁T e≃RT
↭ ≃↔K

ϖ

T
v≃RT

≃↔e≃RT
.

To estimate the term ≃↔K
ϖ

T
v≃RT

on the right-hand side of the above inequality, we
apply Theorem 4.2 to K

ϖ

T
v on N

ϖ(T ) instead of !, yielding

≃↔K
ϖ

T
v≃RT

↭ exp(↓cϖ)≃↔K
ϖ

T
v≃Nω(T ).(4.16)

To continue the above estimate, we apply standard inf–sup theory to the saddle-
point problem (4.11), cf. [BBF13, Cor. 4.2.1], recalling the combined inf–sup con-
dition in (3.20), now restricted to the spaces on Nϖ(T ). This yields

(4.17) ≃↔K
ϖ

T
v≃Nω(T ) ↭ sup

w↑V
ω

T

|aT (IHv, w)|

≃↔w≃!
+ sup

ς↑X
ω

H,T

|bT (IHv,⇁)|

≃⇁≃!

+
1

H
sup

µ↑M
ω

H,T

|cT (v ↓ IHv,µ)|
≃µ≃MH

↭ ≃IHv≃1,T +H
↓1

≃v ↓ IHv≃T +H
↓1/2

≃v ↓ IHv≃ϑT ↭ ≃v≃1,N(T ),
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where we used the interpolation estimates from (4.2) together with a standard trace
inequality, and ≃ · ≃1,T denotes the H

1(T )-norm. Noting that Kϖ

T
Rv = K

ϖ

T
v, since

K
ϖ

T
depends on v only through its QOIs, which remain unchanged under the action

of R, and combining the previous estimates, we obtain the following bound for &1:

(4.18) &1 ↭ exp(↓cϖ)≃Rv≃1,N(T )≃↔e≃RT
.

To estimate the term &2, we proceed analogously to the proof of Theorem 4.2,
following the treatment of the corresponding term &2 therein. This yields

&2 ↗ ≃↔ ·
(
(1↓ ◁T )e

)
≃R ≃⇀

ϖ

T
≃R ↭ ≃↔K

ϖ

T
v≃RT

≃↔e≃RT
.

After applying (4.16) and (4.17), we obtain for &2 an estimate of exactly the same
form as (4.18) for the term &1. Also for &3, analogous arguments can be employed,
constructing suitable bubble functions using Lemma 3.4. The resulting estimate
for &3 is again of the same form as (4.18); see also the estimate of the structurally
similar term &3 in the proof of Theorem 4.2.

Returning to (4.15) and using the bounds for &1–&3 derived above, yields

≃↔(R↓R
ϖ)v≃2! ↭ exp(↓cϖ)

∑

T↑TH

≃Rv≃1,N(T )≃↔e≃RT

↭ exp(↓cϖ)

 ∑

T↑TH

≃Rv≃21,N(T )

 ∑

T↑TH

≃↔e≃2
RT

↭ ϖ
(d↓1)/2 exp(↓cϖ)≃↔Rv≃!≃↔e≃!,

where we have used the fact that each element K ↑ TH belongs to at most O(ϖd↓1)
rings RT for di#erent T ↑ TH , as well as the Poincaré–Friedrichs inequality on !.
The assertion follows after dividing by ≃↔e≃! = ≃↔(R↓R

ϖ)v≃!. ↬

5. Localized multiscale method

In this section, we introduce the proposed multiscale method for heterogeneous
Stokes problems. The localized multiscale space is defined as Z̃

ϖ

H
= R

ϖ
Z. Noting

that the operator R
ϖ depends on its argument only through the QOIs introduced

in (3.3) and (3.6), the approximation space can be written as

(5.1) Z̃
ϖ

H
:= span

{
↽̃
ϖ

F,j
: F ↑ F

i

H
, j = 1, . . . , J ; ↽̃ϖ

T,k
: T ↑ TH , k = 1, . . . ,K

}
,

where ↽̃
ϖ

F,j
and ↽̃

ϖ

T,k
are basis functions of Z̃ϖ

H
defined as

(5.2) ↽̃
ϖ

F,j
= R

ϖ
↽̃F,j , ↽̃

ϖ

T,k
= R

ϖ
↽̃T,k.

Although this definition involves the global prototypical basis functions, these are
not needed for the actual computation of the localized basis functions, recalling
that Rϖ depends on its input only through its readily available QOIs. A practical
implementation of the proposed method, including a fine-scale discretization of the
local but still infinite-dimensional patch problems in (4.11), is discussed in Section 6.

The proposed multiscale method seeks (ũϖ

H
, p̃

ϖ

H
) ↑ Z̃

ϖ

H
⇒QH such that

a(ũϖ

H
, ṽ

ϖ

H
) + b(ṽϖ

H
, p̃

ϖ

H
) = (f, ṽϖ

H
)!,(5.3a)

b(ũϖ

H
, q̃

ϖ

H
) = 0(5.3b)

for all (ṽϖ
H
, q̃

ϖ

H
) ↑ Z̃

ϖ

H
⇒QH .

The following theorem proves the well-posedness of the proposed multiscale
method and its uniform convergence properties for the velocity approximations un-
der minimal regularity assumptions, provided that the ϖ is chosen su”ciently large.
In addition, it is proved that the piecewise constant pressure approximation p̃

ϖ

H

converges exponentially to $0
H
p as the localiaztion parameter ϖ is increased.
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Theorem 5.1 (Localized method). The localized multiscale method (5.3) is well-
posed. Moreover, for any f ↑ H

m+1(!), we have the following error estimates:

≃↔(u↓ ũ
ϖ

H
)≃! ↭ H

m+2
|f |m+1,! + ϖ

(d↓1)/2 exp(↓cϖ)≃f≃!,(5.4)

≃u↓ ũ
ϖ

H
≃! ↭ (H + ϖ

(d↓1)/2 exp(↓cϖ))≃↔(u↓ ũ
ϖ

H
)≃!,(5.5)

≃$0
H
p↓ p̃

ϖ

H
≃! ↭ ϖ

(d↓1)/2 exp(↓cϖ)≃f≃!,(5.6)

where c is the constant from Theorem 4.2.

Proof. The proofs of estimates (5.4) and (5.5) follow exactly the same steps as in
[HL25, Thm. 5.1], with the main di#erence being the use of the high-order error
estimates from Theorem 3.8 for the prototypical approximation. For brevity, details
are omitted, and we refer to the corresponding proof in [HL25]. The same holds
true for the proof of the pressure estimate (5.6). ↬

Remark 5.2 (Stabilized approximation). Compared to the corresponding result for
the lowest-order method in [HL25, Thm. 5.1], the exponentially decaying terms in
(5.4)–(5.6), representing the localization error, do not include a prefactor of H↓1.
As observed, for example, in the numerical experiments in [HL25], such a prefactor
can significantly degrade the quality of the localized approximation. Here, we avoid
this prefactor by adapting the strategy from [HLM25] to the present setting. Note
that alternative strategies exist to avoid this prefactor, as detailed, for example, in
[HP22, DHM23, HMM23], and they yield quantitatively similar results in practice.
However, these approaches require the bubble functions from Lemma 3.4 not only
as a theoretical tool but also in the actual implementation. This is undesirable,
especially when the bubbles are di”cult to construct, as for the Stokes problem.

As shown in Theorem 5.1, the piecewise constant pressure approximation p̃
ϖ

H

closely matches the average of the exact pressure p on each mesh element, but
does not capture the fine-scale oscillations present in heterogeneous settings. To
address this, we introduce a post-processing step for the pressure approximation.
We start by introducing the operator Rϖ

p
that gathers fine-scale information about

the pressure. For an input v ↑ V , this operator is defined by

(5.7) R
ϖ

p
v :=

∑

T↑TH

⇀
ϖ

T
,

where ⇀
ϖ

T
↑ X

ϖ

H,T
is the second component of the solution to (4.11). The post-

processed pressure approximation is defined by

(5.8) p̃
ϖ,pp
H

:= p̃
ϖ

H
+ p̃

ϖ,osc
H

+ p
loc
H

,

where p̃
ϖ,osc
H

:= R
ϖ

p
ũ
ϖ

H
, and p

loc
H

↑ Pm+1(TH) is defined on each T ↑ TH by

(5.9) ($m

H
f)|T = ↔p

loc
H

|T + qT ,

with qT ↑ Qm(T ) (cf. (3.4)) and
´
T
p
loc
H

dx = 0. A high-order approximation result
for the post-processed pressure approximation is stated in the following theorem.

Theorem 5.3 (Post-processed pressure). For any f ↑ H
m+1(!), we have

(5.10) ≃p↓ p̃
ϖ,pp
H

≃! ↭ H
m+2

|f |m+1,! + ϖ
(d↓1)/2 exp(↓cϖ)≃f≃!.

Proof. Consider a fixed element K ↑ TH . Testing (4.11a) with any w ↑ (H1
0 (K))n

and summing the resulting equations over all elements T ↑ TH , while recalling that
ũ
ϖ

H
= R

ϖ
ũ
ϖ

H
and p̃

ϖ,osc
H

= R
ϖ

p
ũ
ϖ

H
, yields, for some q

ϖ

K
↑ Qm(K), the identity

(5.11) aK(ũϖ

H
, w) + bK(w, p̃ϖ,osc

H
) = (w, qϖ

K
)K .
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Next, we use the same test function w in the reformulation of the Stokes prob-
lem (3.2). Using (5.9) to expand the right-hand side and noting that for pH = $0

H
p

it holds bK(w, pH) = ↓pH |K

´
K
↔ ·w dx = 0 by the divergence theorem, we obtain

(5.12) aK(u,w) + bK(w, p↓ pH) = (f ↓$m

H
f, w)K + (↔p

loc
H

+ qK , w)K .

Taking the di#erence of (5.11) and (5.12) and rearranging the terms yields

bK

(
w, p↓ pH ↓ p

ϖ,osc
H

↓ p
loc
H

)
= aK(ũϖ

H
↓ u,w)↓ (q̃ϖ

K
↓ qK , w)K + (f ↓$m

H
f, w)K .

Applying Lemma 3.3 on the element K to the function p
di$ := p↓pH ↓ p̃

ϖ,osc
H

↓p
loc
H

,
which has zero mean on K, noting thatˆ

K

(p↓ pH) dx =

ˆ
K

p̃
ϖ,osc
H

dx =

ˆ
K

p
loc
H

dx = 0,

we obtain that there exists a function w ↑ (H1
0 (K))n such that ↓↔ · w = p

di$ and
(q̃ϖ

K
↓ qK , w)K = 0. Using the corresponding stability estimate ≃↔w≃K ↭ ≃p

di$
≃K

together with the Poincaré–Friedrichs inequality ≃w≃K ↭ H≃↔w≃K , we obtain

≃p
di$

≃K ↭ H≃ũ
ϖ

H
↓ u≃K + ≃↔(ũϖ

H
↓ u)≃K +H≃f ↓$m

H
f≃K .

Summing the latter inequality over all mesh elements K ↑ TH , and applying the
convergence results for the velocity approximation from Theorem 5.1 together with
standard approximation estimates for the L

2-projection, yields

≃p
di$

≃! ↭ H
m+2

|f |m+1,! + ϖ
(d↓1)/2 exp(↓cϖ)≃f≃! .

To derive the desired estimate (5.10), we write p ↓ p̃
ϖ,pp
H

= $0
H
p ↓ p̃

ϖ

H
+ p

di$ and
apply the triangle inequality, combining the above estimate with (5.6). ↬

6. Fine-scale discretization

In this section, we discuss the practical implementation of the proposed mul-
tiscale method, including the computation of the localized basis functions via a
fine-scale discretization of the local infinite-dimensional patch problems in (6.3).
Let Th be a mesh of ! fine enough to resolve all microscopic features of the co-
e”cients, and let Vh → V denote the corresponding finite element space for the
velocity. We assume that the fine mesh Th is compatible with the coarse mesh TH ,
in the sense that the restriction of Th to any element T ↑ TH , denoted Th(T ), forms
a valid mesh itself. For any T ↑ TH , let Vh(T ) denote the restriction of Vh to T ,
that is, Vh(T ) := {vh|T : vh ↑ Vh}, and let Qh(T ) → L

2(T ) be the associated local
pressure space. The global pressure approximation space is then defined by

Qh =
{
qh ↑ Q : qh|T ↑ Qh(T ), ∝T ↑ TH

}
.

We assume that the discrete spaces satisfy the following natural conditions. First,
the discrete velocity–pressure inf–sup condition should hold not only globally be-
tween the spaces Vh and Qh, but also locally on each coarse element T between
V

0
h
(T ) = Vh(T ) ⇓H

1
0 (T )

n and Xh(T ) = Qh(T ) ⇓ L
2
0(T ), that is,

(6.1) inf
qh↑Xh(T )

sup
vh↑V

0
h
(T )

bT (vh, qh)

≃↔vh≃T ≃qh≃T
↫ 1.

Second, the spaces provide order k + 1 approximation for velocity and pressure:

∝v ↑ H
1
0 (!) ⇓H

k+2(!), inf
vh↑Vh

(
≃↔(v ↓ vh)≃! + h

↓1
≃v ↓ vh≃!

)
↭ h

k+1
|v|k+2,!,

∝q ↑ L
2
0(!) ⇓H

k+1(!), inf
qh↑Qh

≃q ↓ qh≃! ↭ h
k+1

|q|k+1,!.
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This convention covers the two cases:

• Velocity–pressure pairs with a discontinuous pressure approximation, such
as the Scott–Vogelius pair Pk+1

cg /P
k

dg, cf. [SV85]. For the barycentric refine-
ment of a mesh, both the global inf–sup stability and its local version (6.1)
hold for any polynomial degree k ↘ 1; see, e.g., [GN18].

• Velocity–pressure pairs with pressure continuous on each coarse element,
closely related to the Taylor–Hood pair Pk+1

cg /P
k

cg; cf. [GR86]. The global
pair Vh/Qh allows discontinuities of the pressure across coarse elements
and is therefore not a standard Taylor–Hood pair. Nevertheless, both the
global inf–sup condition for Vh/Qh and its local version (6.1) follow from the
stability of the local pairs Vh(T )/Qh(T ), which is guaranteed by standard
Taylor–Hood theory; we refer to Appendix B for a proof.

In both cases, the space Zh, a fully discrete counterpart of Z from (3.1) appearing
in the reformulation (3.2) of the Stokes problem, can be defined as

Zh = {vh ↑ Vh : b(vh, qh) = 0 ∝qh ↑ XH,h},

where the fine-scale discretized version of XH is given by

XH,h = {qh ↑ Qh : $0
H
qh = 0}.

With these spaces at hand, we can define fully discrete versions of the fine-scale
space Wh and the prototypical approximation space Z̃H,h, analogous to (3.17)
and (3.18), respectively. Moreover, a fine-scale discretization of the prototypical
method can be defined analogous to (3.22).

To define a fully discrete version of the localized method (5.3), the local patch
problems for the element contributions Kϖ

T
in (4.11) must be discretized. For this,

we introduce fully discrete counterparts of the spaces V ϖ

T
andX

ϖ

H;T in (4.11), namely

V
ϖ

T,h
= V

ϖ

T
⇓ Vh, X

ϖ

H,T,h
:= X

ϖ

H,T
⇓XH,h.

Having defined these spaces, a fully discrete version of the operator Rϖ from (4.13)
can be introduced, and the fully discrete basis functions can be constructed analo-
gously to (5.2). To make this definition suitable for a practical use, we reformulate
them taking into the account that the fully discrete localized basis functions should
have the same QOIs as the corresponding prototypical basis functions.

For example, the fully discrete basis function ↽̃
ϖ

F,j,h
associated with a face F and

an index j ↑ {1, . . . , J} should satisfy, for all µ ↑ MH ,

c(↽̃ϖ

F,j,h
,µ) = H

ˆ
F

pF,jµ dε.

To compute the fully discrete basis function ↽̃
ϖ

F,j
in practice, we first introduce

coe”cients 1z ↑ Rn for each interior node z such that

IH ↽̃
ϖ

F,j,h
=

∑

z

1z’z,

where ’z denotes the standard (scalar-valued) finite element hat function associated
with the node z. The coe”cients 1z can be directly obtained from the definition of
the operator IH , which depends only on the normal face integrals of its argument.
Indeed, for any face E ↑ F

i

H
, we have |E|

↓1
´
E
↽̃
ϖ

F,j,h
· n dε = 2EF 2j1. Although

the coe”cients 1z depend on F and j, this dependence is omitted for notational
simplicity (and likewise for the forthcoming functions 0

ϖ

T,h
). The fully discrete

localized basis function, together with the corresponding pressure contribution (to
be used in the implementation of operator R

ϖ

p
in (5.7), needed for the pressure
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post-processing), can then be computed as

(6.2) ↽̃
ϖ

F,j,h
=

∑

z

1z’z +
∑

T↑TH

0
ϖ

T,h
, ⇀̃

ϖ

F,j,h
=

∑

T↑TH

⇀
ϖ

T,h
,

where (0ϖ

T,h
, ⇀

ϖ

T,h
, !ϖ

T
) ↑ V

ϖ

T,h
⇒X

ϖ

H,T,h
⇒M

ϖ

H,T
solves the saddle-point problem

a(0ϖ

T,h
, wh) + b(wh, ⇀

ϖ

T,h
) + c(wh, !ϖT ) =↓

∑
z
aT (1z’z, wh),(6.3a)

b(0ϖ

T,h
,⇁h) =↓

∑
z
bT (1z’z,⇁h),(6.3b)

c(0ϖ

T,h
,µ) = gT (µ)(6.3c)

for all (wh,⇁h,µ) ↑ V
ϖ

T,h
⇒X

ϖ

H,T,h
⇒M

ϖ

H,T
, and

gT (µ) := H
´
F
▷T pF,jµ dε ↓H

∑
z

´
ϑT

▷T’z1z · nµ dε ↓
∑

z

´
T
(1z’z) · µ dx

with unit normal n : % ⇑ Rn defined in (3.10). We emphasize that only a few
local problems of the form (6.3) need to be solved for each basis function. For
j = 1, the functions 0

ϖ

T,h
are nonzero only for elements T sharing a node with F .

Furthermore, for j > 1, they are nonzero only for elements T sharing the face F .
For an element T ↑ TH and index k ↑ {1, . . . ,K}, the fully discrete basis func-

tions ↽̃
ϖ

T,k,h
and their corresponding pressure contributions ⇀̃

ϖ

T,k,h
are computed

similarly, but more simply, since only one problem of the form (6.3) must be solved
per basis function. Since IH ↽̃

ϖ

T,k,h
= 0, both ↽̃

ϖ

T,k,h
and ⇀̃

ϖ

T,k,h
can be obtained by

solving (6.3) directly with 1z = 0 for all nodes z and gT (µ) =
´
T
pT,k · µ dx.

The fully discrete approximation space is then given by

Z̃
ϖ

H,h
:= span

{
↽̃
ϖ

F,j,h
: F ↑ F

i

H
, j = 1, . . . , J ; ↽̃ϖ

T,k,h
: T ↑ TH , k = 1, . . . ,K

}
,

and the fully discrete multiscale method then seeks (ũϖ

H,h
, p̃

ϖ

H,h
) ↑ Z̃

ϖ

H,h
⇒ QH ,

solving (5.3) with the corresponding notational changes. Its solution is given by

ũ
ϖ

H,h
=

∑

F↑Fi

H

J∑

j=1

uF,j↽̃
ϖ

F,j,h
+

∑

T↑TH

K∑

k=1

uT,k↽
ϖ

T,k,h
,

for some coe”cients {uF,j}F,j and {uT,k}T,k. These coe”cients can then be used
to compute the oscillatory pressure contribution, cf. (5.7)–(5.8), by setting

p̃
ϖ,osc
H,h

=
∑

F↑Fi

H

J∑

j=1

uF,j ⇀̃
ϖ

F,j,h
+

∑

T↑TH

K∑

k=1

uT,k⇀
ϖ

T,k,h
.

The post-processed pressure is then defined as the fully discrete analogue of (5.8):

p̃
ϖ,pp
H,h

:= p̃
ϖ

H,h
+ p̃

ϖ,osc
H,h

+ p
loc
H

.

For this fully discrete approximation, a convergence result analogous to Theo-
rem 5.1 is stated below, with the error measured against the fine-scale finite element
reference solution (uh, ph) obtained from (2.3) using the pair Vh/Qh.

Theorem 6.1 (Fully discrete localized method). There exists φ > 0 depending
only on the regularity of meshes TH and Th, such that the fully discrete version of
the localized multiscale method (5.3) is well-posed provided h

H
↗ φ. Moreover, for

any f ↑ H
m+1(!), we have the following error estimates:

≃↔(uh ↓ ũ
ϖ

H,h
)≃! ↭ H

m+2
|f |m+1,! + h

k+1
|f |k,! + ϖ

(d↓1)/2 exp(↓cϖ)≃f≃!,(6.4)

≃uh ↓ ũ
ϖ

H,h
≃! ↭ (H + ϖ

(d↓1)/2 exp(↓cϖ))≃↔(uh ↓ ũ
ϖ

H,h
)≃!,(6.5)

≃ph ↓ p̃
ϖ,pp
H,h

≃! ↭ H
m+2

|f |m+1,! + h
k+1

|f |k,! + ϖ
(d↓1)/2 exp(↓cϖ)≃f≃!.(6.6)
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The term h
k+1

|f |k,! in the above error estimates can be omitted if the fine-scale
discretization is divergence-free or if k ↘ m+ 1.

Proof. We recall that the proof of the error estimates in Theorems 5.1 and 5.3 boils
down to the following essential steps: the well-posedness of the saddle-point prob-
lems for the prototypical basis functions in Lemma 3.6, the error estimate for the
prototypical method in Theorem 3.8, the proof of the exponential decay in Theo-
rem 4.2, and the estimate of the error due to localization in Lemma 4.3. Examining
the proofs of these results, one realizes that they are all based on the existence of
bubble functions, as constructed in Lemmas 3.3 and 3.4. In order to transfer these
proofs to the fully discrete setting, one should thus first construct the discrete ana-
logues of these Lemmas. This is done in Appendix A, cf. Lemmas A.2 and A.3.
Using the fully discrete bubble functions from these Lemmas, one can directly re-
cast the proofs of Lemmas 3.6 and 4.3 and Theorem 4.2 to the fully discrete setting,
replacing the continuous functions spaces by their discrete counterparts.

It remains to adapt the proof of Theorem 3.8, i.e. to bound the error of the fully
discrete prototypical approximation ũH,h against the fine-scale velocity approxima-
tion uh. For this, we revisit the proof of Theorem 3.8, setting e := uh ↓ ũH,h. The
only modification in the proof occurs in (3.30), where we must account for ↔ ·e ∋= 0
which is the case if the fine-scale discretization is not exactly divergence-free (oth-
erwise, the proof carries over unchanged). Thus, (3.30) becomes

($m

H
f, e)! =

∑

F↑Fi

H

([φ]F , e · n)F ↓

∑

T↑TH

(φT ↓ φT,h, ↔ · e)T ,

Here we could subtract any φT,h ↑ Qh(T ) since b(ũH,h, qh) = 0 for all qh ↑ Qh.
Note that φT is a polynomial of degree m+1, while φT,h is a piecewise polynomial
of degree k. Hence, the second term above vanishes if k ↘ m+ 1.

Otherwise, proceeding as in the continuous case in the proof of Theorem 3.8 and
additionally choosing φT,h as a suitable interpolant of φT , we conclude

|($m

H
f, e)!| ↭ H

m+2
|f |m+1,!≃↔e≃! + h

k+1
∑

T↑TH

|φT |k+1,T ≃↔e≃T

↭ H
m+2

|f |m+1,!≃↔e≃! + h
k+1

∑

T↑TH

|gT |k,T ≃↔e≃T

↭ (Hm+2
|f |m+1,! + h

k+1
|f |k,!)≃↔e≃!

This leads to the discrete analogue of Theorem 3.8. Putting all the above mentioned
ingredients together leads to the estimates (6.4)–(6.6). ↬

The error estimates in Theorem 6.1 are against the fine-scale finite element solu-
tion. To obtain an error estimate against the continuous solution to problem (2.3),
we apply the triangle inequality, together with the classical convergence result

≃↔(u↓ uh)≃! + ≃p↓ ph≃! ↭ h
s
(
|u|1+s,! + ≃p≃s,!

)
,

where we make the regularity assumption u ↑ H
1+s(!) and p ↑ H

s(!) for some
parameter 0 < s ↗ k + 1. We emphasize that, for heterogeneous Stokes prob-
lems, the solution seminorms on the right-hand side may be large or the regularity
parameter s may be close to zero, leading to reduced convergence rates.

7. Numerical experiments

In this section, we numerically investigate the proposed multiscale method.
For all numerical experiments, we consider the domain ! = (0, 1)2 and a hier-
archy of meshes generated by uniform red refinement of the initial mesh shown
in Figure 7.1 (left). For simplicity, the meshes in the hierarchy are denoted by
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Figure 7.1. Initial mesh T2↑0 for the mesh generation (left),
barycentric refinement of mesh T2↑3 , and multiscale coe”cient used
in all numerical experiments (right).

T20 , T2↑1 , . . . , where the subscript indicates the side length of the squares formed
by joining opposing triangles. We choose the viscosity coe”cient ω of the Stokes
problem (1.1) to be piecewise constant on the mesh Tφ with 3 = 2↓8, and we draw
its element values as independent uniform random variables in [0.1, 1]. For ele-
ments whose midpoints lie within a distance 43 of some prescribed parabola, the
corresponding element values are set to 10; see Figure 7.1 (right). The damping
coe”cient ε is set to zero for simplicity. The source term is chosen as

f(x, y) := (↓y, x
4)≃.

For the fine-scale discretization, we use the Scott–Vogelius pair Pk+1
cg /P

k

dg with
k = 1 on a mesh obtained by uniform barycentric refinement of T2↑8 . Figure 7.1
(center) illustrates such a refinement using a rather coarse mesh for clarity. For
barycentrically refined meshes, the inf–sup stability of the Scott–Vogelius element
is guaranteed for any polynomial degree k ↘ 1; see, e.g., [GN18]. Note that all
numerical experiments presented below can be reproduced using the code available
at https://github.com/moimmahauck/Stokes_HO_LOD.

7.1. High-order convergence. First, we study the convergence of the proposed
high-order multiscale method (5.3) under mesh refinement. To this end, we intro-
duce the following error measures for the velocity and pressure approximations:

erru,H1(H, ϖ) := ≃↔(uh ↓ ũ
ϖ

H,h
)≃!, erru,L2(H, ϖ) := ≃uh ↓ ũ

ϖ

H,h
≃!,

errp,L2(H, ϖ) := ≃ph ↓ p̃
ϖ,pp
H,h

≃!, err%Hp,L2(H, ϖ) := ≃$Hph ↓ p̃
ϖ

H,h
≃!.

For the L
2- and H

1-errors of the velocity approximation, Figure 7.2 shows con-
vergence orders ofm+2 andm+3, respectively, provided the localization parameter
is su”ciently large. Since the source term f is smooth, these convergence rates agree
with the theoretical predictions from Theorem 5.1. For a fixed localization param-
eter, we observe that, once the error reaches a error level, it stagnates as the mesh
is further refined. This error level is determined by the localization error for the
chosen localization parameter. The distance between these plateaus increases for
higher polynomial degrees, indicating that the localization properties of the method
improve with increasing polynomial order. This behavior is consistent with earlier
observations for elliptic di#usion-type problems; see, e.g., [Mai21, DHM23, HLM25].

In Figure 7.3, we observe that the piecewise constant pressure approximation
of the proposed method converges exponentially towards $Hph, in agreement with
the theoretical prediction of Theorem 6.1. Note that the blue curves reach machine
accuracy for localization parameters ϖ ↘ 3. This is because, for the corresponding
mesh size H = 2↓1 and ϖ ↘ 3, the patches on which the basis functions are defined
already cover the entire domain !, so the exponentially decaying localization error is

https://github.com/moimmahauck/Stokes_HO_LOD
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Figure 7.2. Error plots of the velocity approximation for polyno-
mial degreesm ↑ {0, 1, 2} (from left to right). For fixed localization
parameters ϖ, the H

1-norm (top row) and L
2-norm (bottom row)

errors are plotted as functions of the coarse mesh size H.
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Figure 7.3. Error plots of the pressure approximation for poly-
nomial degrees m ↑ {0, 1, 2} (from left to right). For fixed coarse
mesh sizes H, the L

2-norm error relative to $Hph is shown as a
function of the localization parameter ϖ.

zero. In Figure 7.3, one also observes the improved localization properties obtained
by increasing the order m of the method. Note that for the dashed, exponentially
decaying reference lines, the decay rates increase as m becomes larger.

Figure 7.4 shows that the post-processing step yields a highly accurate pressure
approximation, despite originating from an inaccurate piecewise constant coarse-
scale approximation. The error levels and convergence behavior are, for all ordersm,
comparable to those of the H1-approximation of the velocity, which converges with
order m+ 2. This is consistent with the theoretical prediction of Theorem 6.1.

7.2. Comparison with lowest-order method from [HL25]. Finally, we nu-
merically compare the proposed method with the lowest-order multiscale method
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Figure 7.4. Error plots of the post-processed pressure approxi-
mation for polynomial degrees m ↑ {0, 1, 2} (from left to right).
For fixed localization parameters ϖ, the L2-norm errors are plotted
as functions of the coarse mesh size H.
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Figure 7.5. Error plots for the lowest-order multiscale method
from [HL25]: velocity H

1-error, velocity L
2-error, pressure L

2-
error with respect to $Hph, and post-processed pressure L

2-error
(arranged from left to right, top to bottom).

introduced in [HL25] for heterogeneous Stokes problems. We consider exactly the
same problem setup, including the domain, coe”cient, source term, and meshes.
Note, however, that the fine-scale discretization di#ers: in [HL25] a Crouzeix–
Raviart method is used to this end. This di#erence does not a#ect the quantitative
behavior of the observed errors, since the error of the multiscale method is also
measured with respect to the fine-scale Crouzeix–Raviart solution.

The main di#erence between the multiscale method in [HL25] and the lowest-
order version of the present method (m = 0) lies in the choice of QOIs: [HL25] uses
edge integrals, whereas our method relies solely on normal face integrals; see (3.3).
This reduces the dimension of the approximation space by a factor of two in two
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dimensions. Despite this smaller space, the achievable error levels for large local-
ization parameters are comparable for both lowest-order methods; cf. Figure 7.5.
Their localization properties also appear to be similar.

For fixed localization parameters, however, the method from [HL25] exhibits the
issue that, after reaching a certain error level, the error increases again as the mesh
is further refined. This phenomenon is well-known in the LOD community (see
also Remark 5.2 and [MP14, Mai21]) and is caused by the rather naive localization
strategy used in these methods. In contrast, the more sophisticated localization
strategy employed here, relying on a quasi-interpolation operator IH (cf. (4.2)) and
defining the operator Rϖ as a sum of element contributions (cf. (4.12) and (4.13)),
eliminates this e#ect. For the proposed method, the error stagnates as the mesh is
refined, once the localization parameter-dependent error level is reached.

Another improvement compared to the method in [HL25], which also appears in
the lowest-order case of the method proposed here, is the refined post-processing
strategy. In [HL25], post-processing consisted solely of adding the oscillatory term
p̃
osc,ϖ
H

(see (5.8)) to the piecewise constant pressure approximation. As a result, as
proved in [HL25, Thm. 5.1], the post-processed pressure achieves only first-order
convergence; see Figure 7.5 (bottom left) for a numerical confirmation. In this work,
we prove that by adding an additional coarse, locally polynomial term, denoted
by p

loc in (5.8), the post-processed pressure can attain the same convergence order
as the H

1-velocity approximation (see Theorem 5.3). In the lowest-order case
m = 0, this corresponds to second-order convergence.
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Appendix A. Proofs of some technical lemmas

Proof of Lemma 3.7. Note that if v ↑ (H1(T ))n satisfies
´
F
v · n dε = 0 for all

faces F → ϑT , then ≃↔v≃T = 0 implies that v = 0. More precisely, such v is a
constant vector satisfying v · n = 0 for all normal vectors n associated with faces
F → ϑT . Since we have at least n linearly independent vectors for each element T ,
this implies that v = 0. This observation together with the Peetre-Tartar lemma,
cf. [EG04, Lem. A.38], and a scaling argument concludes the assertion. ↬

We now turn to the proofs of Lemmas 3.3 and 3.4. Both results follow as corol-
laries of the lemma stated below.

Lemma A.1 (Compliance with element constraints). For any element T ↑ TH and
any linear functional L : (Pm(T ))n ⇑ R satisfying Lg = 0 for all g ↑ Gm(T ), there
exists a local function vL ↑ (H1

0 (T ))
n such that ↔ · vL = 0,

(A.1)

ˆ
T

vL · w dx = Lw, ∝w ↑ (Pm(T ))n,

and the following stability estimate holds:

(A.2) ≃vL≃T +H≃↔vL≃T ↭ ≃L≃, ≃L≃ := sup
w↑(Pm(T ))n : ⇐w⇐T=1

≃Lw≃T .

Proof. First, we consider the two-dimensional case, i.e., n = 2, where the construc-
tion of vL is based on the rotated gradient operator, defined as ↔⇒ := (↓ϑy, ϑx)≃.
Specifically, let ◁ ↑ H

1
0 (T ) denote the classical polynomial bubble function associ-

ated with T , obtained as the product of the corresponding hat functions and scaled
such that ◁(xT ) = 1 at the barycenter xT of T . We then make the ansatz

vL = ↔
⇒(◁2p)
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with the polynomial p ↑ Pm↓1(T ) to be determined. This ansatz ensures that
↔ · vL = 0 on T and vL = 0 on ϑT . Using the ansatz and integrating by parts,
condition (A.1) can be rewritten, for any q ↑ (Pm(T ))n, as

(A.3)

ˆ
T

◁
2
p↔

⇒
· w dx = ↓Lw.

We decompose the polynomial space as (Pm(T ))n = Gm(T )↙ (Gm(T ))⇒, where
(Gm(T ))⇒ denotes the L

2(T )-orthogonal complement of Gm(T ). Since for any
q ↑ Gm(T ) it holds that ↔⇒

· q = Lq = 0, it su”ces to verify equation (A.3) only
for q ↑ (Gm(T ))⇒. It was shown in [VBMR15, Eq. (2.7)] that the operator ↔

⇒
· :

(Gm(T ))⇒ ⇑ Pm↓1(T ) is an isomorphism. Denoting its inverse by J : Pm↓1(T ) ⇑
(Gm(T ))⇒, we can then equivalently rewrite equation (A.3) as

(A.4)

ˆ
T

◁
2
pr dx = ↓LJ r,

for all r ↑ Pm↓1(T ). The left-hand side of this equation is a weighted L
2(T )-inner

product and, therefore, the Riesz representation theorem ensures the existence of
a unique p. Using the equivalence of norms in finite dimensions and a scaling
argument, we obtain, after testing equation (A.4) with p, that

≃p≃T ↭ ≃L≃ ≃J ≃L2⇑L2 ↭ H≃L≃.

Using a classical inverse estimate for polynomials, the stability estimate (A.2) for
vL = ↔

⇒(◁2
T
p) can be concluded.

In the three-dimensional case, i.e., n = 3, one proceeds similarly, but using the
curl operator instead of the rotated gradient. Specifically, we make the ansatz
vL = ↔ ⇒ (◁2p), where ◁ ↑ H

1
0 (T ) is the classical polynomial bubble function

associated with T , scaled such that ◁(xT ) = 1 at the barycenter xT , and p is a
polynomial in Dm↓1(T ) := {v ↑ (Pm↓1(T ))3 : ↔ · v = 0}. According to [VBMR15,
Eq. (2.9)], the curl operator is an isomorphism from (Gm(T ))⇒ to Dm↓1(T ), and
the equation for p ↑ Dm↓1(T ) can be written for all w ↑ (Pm(T ))n asˆ

T

◁
2
T
p ·↔⇒ w dx = Lw,

which allows us to conclude the proof as in the two-dimensional case. ↬

Proof of Lemma 3.3. For the proof, we use an element-local version of Ladyzhen-
skaya’s lemma. That is, for any T ↑ TH and any q ↑ L

2(T ) with
´
T
q dx = 0, there

exists v ↑ (H1
0 (T ))

n such that ↔ · v = q and ≃↔v≃T ↭ ≃q≃T , where the hidden con-
stant depends only on the shape regularity of the mesh. This result can be derived,
for example, from [BCDG16], where the shape-dependence of the Ladyzhenskaya
constant is investigated. We further define a linear functional L : (Pm(T ))n ⇑ R
by setting Lr :=

´
T
v · r dx for all r ↑ Qm(T ), and L(Gm(T )) := 0. Using prop-

erty (3) of Assumption 3.1, we obtain, for any polynomial p ↑ (Pm(T ))n, with the
decomposition p = r + g into r ↑ Qm(T ) and g ↑ Gm(T ),

≃Lp≃T = ≃Lr≃T ↭ ≃p≃T ≃v≃T ↭ H≃p≃T ≃q≃T ,(A.5)

where we used the Poincaré–Friedrichs inequality locally on T . Finally, we define
vq := v↓vL, where vL ↑ (H1

0 (T ))
n is given by Lemma A.1. Thanks to (A.5), which

gives an estimate for ≃L≃, cf. (A.2), the function vq has the desired properties. ↬

Proof of Lemma 3.4. Let us first construct the element bubble functions bT satis-
fying (3.14) and (3.15) for a given gT ↑ Qm(T ). To this end, consider the linear
functional L : (Pm(T ))n ⇑ R efined by L(q) :=

´
T
gT · q dx for q ↑ Qm(T ) and

L(Gm(T )) := 0. Using property (3) of Assumption 3.1, as in the preceding proof,
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we obtain the bound ≃L≃ ↭ ≃gT ≃T , where we recall the definition of the opera-
tor norm ≃L≃ in (A.2). We then set bT to be the function vL ↑ (H1

0 (T ))
n from

Lemma A.1, extended by 0 outside T . This construction ensures that bT satis-
fies (3.14) and (3.15), and its divergence vanishes, so that bT ↑ Z.

Next, we construct the face bubble function bF satisfying (3.12) and (3.13) for
a given gF ↑ Pm(F ). Let b

↗
F

↑ H
1
0 (↼F ) denote the classical piecewise polynomial

bubble function on F , scaled so that b↗
F
(xF ) = 1, where xF is the barycenter of F .

By the Riesz representation theorem, there exists λ ↑ Pm(F ) such that

(A.6)

ˆ
F

b
↗
F
λµ dε =

ˆ
F

gFµ dε

for all µ ↑ Pm(F ). By scaling, we have ≃b
↗
F
λ≃F ↭ ≃gF ≃F . Extending λ from F

to ↼F as a polynomial constant in the direction normal to F , and multiplying the
extension by b

↗
F
, we obtain a piecewise polynomial function vF ↑ H

1
0 (↼F ) satisfying

vF = b
↗
F
λ on F . A scaling argument then shows that ≃vF ≃εF

+ H≃↔vF ≃εF
↭

H
1/2

≃gF ≃F . Finally, the desired face bubble function bF is defined locally on the
two elements Ts, s ↑ {1, 2}, that compose ↼F as

bF |Ts
:= vF |Ts

nF ↓ bTs
↓ vq,Ts

with nF denoting the normal chosen on F . Here, bTs
are the element bubble func-

tions constructed above, associated with Ts and corresponding to gTs
↑ Qm(Ts)

such that
´
Ts

gTs
· µdx =

´
Ts

vFnF · µdx for all µ ↑ Qm(Ts). Moreover, vq,Ts
↑

(H1
0 (Ts))n are the local Ladyzhenskaya-type bubble functions on each Ts, con-

structed in Lemma 3.3 with q = ↔ · (vFnF ) ↓
1

|Ts|
´
Ts

↔ · (vFnF ) dx. It can be

readily verified that this bF satisfies the desired properties (3.12) and (3.13) and
has piecewise constant divergence with respect to the mesh TH , i.e., bF ↑ Z. ↬

We now turn to the fully discrete analogues of Lemmas 3.3 and 3.4. Note that
the constant φ appearing in the lemma below is the same as in Theorem 6.1.

Lemma A.2 (Fully discrete Ladyzhenskaya-type bubble). Assume that h

H
↗ φ for

some constant φ > 0, depending only on the regularity of the meshes TH and Th.
Then, for any T ↑ TH and any qh ↑ Qh(T ) with

´
T
qh dx = 0, there exists vq,h ↑

Vh(T ) ⇓ (H1
0 (T ))

n satisfying bT (vq,h,⇁h) =
´
T
qh ⇁h dx for all ⇁h ↑ Qh(T ) and´

T
vq,h · p dx = 0 for all p ↑ Qm(T ), and the following stability estimate holds:

≃↔vq,h≃T ↭ ≃qh≃T .

Lemma A.3 (Fully discrete bubble functions). Under the same assumption as in
Lemma A.2, for any F ↑ F

i

H
and any gF ↑ Pm(F ), there exists a fully discrete

facce bubble function bF,h ↑ Zh ⇓ (H1
0 (↼F ))n such that, for all µ ↑ MH ,

(A.7) c(bF,h,µ) = H

ˆ
F

gFµ dε,

and
≃bF,h≃εF

↭ H
1/2

≃gF ≃F , ≃↔bF,h≃εF
↭ H

↓1/2
≃gF ≃F .

Similarly, for any T ↑ TH and any gT ↑ Qm(T ), there exists a fully discrete
element bubble function bT,h ↑ Zh ⇓ (H1

0 (T ))
n such that, for all µ ↑ MH ,

(A.8) c(bT,h,µ) =
ˆ
T

gT · µ dx,

and

(A.9) ≃bT,h≃T ↭ ≃gT ≃T , ≃↔bT,h≃T ↭ H
↓1

≃gT ≃T

Before proving the two lemmas above, we first establish a specific local inf–sup
condition, from which they follow as corollaries.



28 M. HAUCK, A. LOZINSKI

Lemma A.4 (Local inf–sup result). For any T ↑ TH , there holds

(A.10) inf
q↑Qm(T )

sup
vh↑Z

0
h
(T )

(vh, q)T
(≃vh≃2T +H2≃↔vh≃

2
T
)1/2≃q≃T

↫ 1,

where Z
0
h
:= Zh ⇓ (H1

0 (T ))
n.

Proof. For any q ↑ Qm(T ), there exists, thanks to Lemma 3.4, an element bubble
function bT ↑ H

1
0 (T )

n satisfying ↔ · bT = 0 on T , (bT , q)T = ≃q≃
2
T
, and

≃bT ≃T +H≃↔bT ≃T +H
2
|bT |2,T ↭ ≃q≃T .

The estimate for |bT |2,T , although not stated explicitly in (3.15), follows directly
from the construction of bT . Denoting V

0
h
(T ) := Vh ⇓ (H1

0 (T ))
n and Xh(T ) =

XH,h|T , we construct a fine-scale discrete version of bT by solving the following
Stokes-like problem: seek (vh, rh) ↑ V

0
h
(T )⇒Xh(T ) such that

(↔vh,↔wh)T ↓ (rh,↔ · wh)T = (↔bT ,↔wh)T ,(A.11a)

(qh,↔ · vh)T = 0(A.11b)

for all (wh, qh) ↑ V
0
h
(T ) ⇒Xh(T ). Note that this problem is well-posed thanks to

the assumed inf–sup condition (6.1). Then, by standard approximation theory for
Stokes problems, cf. [GR86], we obtain the error estimate

≃vh ↓ bT ≃T ↭ h
2
|bT |2,T ↭ h

2
H

↓2
≃q≃T .

If we now choose the constant φ so that the hidden constant in the previous in-
equality equals 1

2↼2 , then, using the assumption h

H
↗ φ, we obtain

(vh, q)T ↘ (bT , q)T ↓ ≃bT ↓ vh≃T ≃q≃T ↘
1
2 ≃q≃

2
T
.

Testing (A.11a) with vh gives the stability estimate ≃↔vh≃T ↗ ≃↔bT ≃T . Using this
bound, we immediately obtain

(≃vh≃
2
T
+H

2
≃↔vh≃

2
T
)1/2 ↭ H≃↔vh≃T ↭ H≃↔bT ≃T ↭ ≃q≃T ,

and inf–sup condition (A.10) then follows noting that vh ↑ Z
0
h
(T ). ↬

Proof of Lemmas A.2 and A.3. Let us first construct the element bubble functions
bT,h ↑ Z

0
h
(T ) on any T ↑ TH , as announced in Lemma A.3. Given gT ↑ Qm(T ),

we define (bT,h,ω) ↑ Z
0
h
(T )⇒Qm(T ) as the solution to

(bT,h, vh)T + H
2(↔bT,h,↔vh)T + (vh,ω)T = 0,

(bT,h,µ)T = (gT ,µ)T

for all (vh,µ) ↑ Z
0
h
(T ) ⇒ Qm(T ). Note that this saddle-point problem is well-

posed thanks to the inf–sup condition (A.10). Moreover, standard inf–sup theory,
cf. [BBF13, Cor. 4.2.1], implies the stability estimate (A.9). Extending bT,h by 0
outside T then gives the desired fully discrete element bubble function.

Let us now construct vq,h ↑ V
0
h
(T ) as announced in Lemma A.2. Given T ↑ TH

and qh ↑ Qh(T ), we define (v↗
q,h

, ⇀h) ↑ V
0
h
(T )⇒Xh(T ) as the solution to

(↔v
↗
q,h

,↔wh)T ↓ (⇀h,↔ · wh)T = 0,(A.12a)

(⇁h,↔ · v
↗
q,h

)T = (⇁h, qh)T(A.12b)

for all (wh,⇁h) ↑ V
0
h
(T ) ⇒ Xh(T ). This problem is well-posed thanks to the as-

sumed inf–sup condition (6.1). Moreover, standard inf–sup theory, cf. [BBF13,
Cor. 4.2.1], implies the stability estimate ≃↔v

↗
q,h

≃T ↭ ≃qh≃T . Let bT,h ↑ Z
0
h
(T )

be the element bubble function constructed as above for gT ↑ Qm(T ) such that
(gT ,µ)T = (v↗

q,h
,µ)T for all µ ↑ Qm(T ). Then, we obtain

≃↔bT,h≃T ↭ H
↓1

≃gT ≃T ↭ H
↓1

≃v
↗
q,h

≃T ↭ ≃↔v
↗
q,h

≃T ,
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where we have used the stability estimate (A.9) and the Poincaré–Friedrichs in-
equality on T . The function defined by vq,h := v

↗
q,h

↓ bT,h then satisfies all the
properties stated in Lemma A.2.

Finally, the fully discrete face bubble function bF,h from Lemma A.3 can be
constructed analogously to the continuous case in Lemma 3.4, using the previously
defined fully discrete element bubbles bT,h and the fully discrete functions vq,h

supported on the two mesh elements adjacent to F . ↬

Appendix B. Inf–sup stability of modified Taylor–Hood

Lemma B.1 (Modified Taylor–Hood). The finite element pair Vh/Qh, with Vh =
{vh ↑ (H1

0 (!))
n : vh|K ↑ Pk+1(K) ∝K ↑ Th} and Qh = (↙T↑TH

Qh(T )) ⇓ L
2
0(!)

with Qh(T ) = {qh ↑ H
1(T ) : qh|K ↑ Pk(T ) ∝K ↑ Th(T )} on each coarse element

T ↑ TH , satisfies the following inf–sup property:

inf
ph↑Qh

sup
vh↑Vh

b(vh, ph)

≃↔vh≃!≃ph≃!
↫ 1.

Proof. Take any ph ↑ Qh and decompose it as ph = p
0
h
+ p̄h with p

0
h
↑ XH,h and

p̄h ↑ P0(TH). By the inf–sup stability of the pair Vh(T )/Qh(T ) on each T ↑ TH ,
and recalling that

´
T
p
0
h
dx = 0, there exists vT

h
↑ Vh(T ) such that

(p0
h
, v

T

h
)T = ≃p

0
h
≃
2
T
, ≃↔v

T

h
≃T ↭ ≃p

0
h
≃T

with the hidden constant related to the inf–sup constant of this finite element pair,
which depends only on the regularity of the fine and coarse meshes (through the
shape of T ). We define v

0
h
↑ Vh such that v0

h
|T = v

T

h
for every T ↑ TH .

To handle p̄h, we first recall that there exists v ↑ (H1
0 (!))

n such that ↔ · v = p̄h

and ≃↔v≃! ↭ ≃p̄h≃!. Let v̄h ↑ Vh be a suitably chosen interpolant of v (to be
constructed) such that

´
E
v̄h dε =

´
E
v dε on every interior facet E of the coarse

mesh TH , and ≃↔v̄h≃! ↭ ≃↔v≃! ↭ ≃p
0
h
≃!. Then, on every element T ↑ TH ,

bT (p̄h, v̄h) = p̄h|T

ˆ
ϑT

v̄h · n = p̄h|T

ˆ
ϑT

v · n = ≃p̄h≃
2
T
.

Let vh = v
0
h
+ λv̄h, where λ = sgn

(
b(p0

h
, v̄h)

)
, with the sign function sgn(·). Then,

b(ph, vh) = b(p0
h
+ p̄h, v

0
h
+ λv̄h) = ≃p

0
h
≃
2
! + λ≃p̄h≃

2
! + λb(p0

h
, v̄h) ↘ ≃ph≃

2
!.

We also have

|vh|1,! ↗ |v
0
h
|1,! + |v̄h|1,! ↭ ≃p

0
h
≃! + ≃p̄h≃! ↭ ≃ph≃!,

which implies the announced inf–sup inequality.
It remains to construct an interpolant v̄h ↑ Vh for v ↑ H

1
0 (!)

d, which preserves
the integrals on the faces of the coarse mesh and satisfies |v̄h|1,! ↭ |v|1,!. We
describe this construction in the two-dimensional case (i.e., n = 2). We start from
the usual Clément-type interpolant Ihv ↑ Vh, which satisfies ≃↔Ihv≃K ↭ ≃↔v≃εK

and ≃v ↓ Ihv≃E ↭
∞
h ≃↔v≃εE

on any fine mesh element K ↑ Th and any interior
edge E of the fine mesh Th. Let EH,h denote the set of edges of Th lying on an
edge of the coarse mesh TH . For any E ↑ EH,h, let φE ↑ Vh denote the piecewise
quadratic polynomial on Th equal to 1 at the midpoint of E and vanishing at all
other edge midpoints and nodes of the fine mesh. We set

v̄h = Ihv +
∑

E↑EH,h

´
E
(v ↓ Ihv) dε´
E
φE dε

φE
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so that
´
E
v̄h dε =

´
E
v dε for all E ↑ EH,h. Note that v̄h ↑ Vh, since the finite

element space is of at least quadratic order. Moreover, we also have

≃↔v̄h≃
2
! ↭ ≃↔Ihv≃

2
!+

∑

E↑EH,h

≃↔v≃
2
εE

≃↔φE≃
2
εE

↭ ≃↔v≃
2
!+

∑

E↑EH,h

≃↔v≃
2
εE

↭ ≃↔v≃
2
!.

Thus, the interpolant v̄h has indeed the announced properties.
The proof in the three-dimensional case (i.e., n = 3) is similar for polynomial

degrees k ↘ 2. In that case, it su”ces to replace the quadratic functions φe by
cubic functions associated with the barycenters of faces in EH,h. The construction
for n = 3 and k = 1 is more involved, since the cubic functions are no longer
contained in Vh. Nevertheless, the desired properties can still be achieved using
suitable combinations of quadratic basis functions associated with edges rather
than faces. We omit the details of this more tedious construction. ↬
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