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A HIGH-ORDER LOCALIZED ORTHOGONAL DECOMPOSITION
METHOD FOR HETEROGENEOUS STOKES PROBLEMS

MORITZ HAUCK*, ALEXEI LOZINSKI'

ABSTRACT. In this paper, we propose a high-order extension of the multiscale
method introduced by the authors in [SIAM J. Numer. Anal., 63(4) (2025),
pp. 1617-1641] for heterogeneous Stokes problems, while also providing several
other improvements, including a better localization strategy and a more pre-
cise pressure reconstruction. The proposed method is based on the Localized
Orthogonal Decomposition methodology and achieves optimal convergence or-
ders under minimal structural assumptions on the coefficients. A key feature
of our approach is the careful design of so-called quantities of interest, defin-
ing functionals of the solution whose values the multiscale approximation aims
to reproduce exactly. Their selection is particularly delicate in the context
of Stokes problems due to potential conflicts arising from the divergence-free
constraint. We prove the exponential decay of the problem-adapted basis func-
tions, justifying their localized computation in practical implementations. A
rigorous a priori error analysis proves high-order convergence for both veloc-
ity and pressure, if the basis supports grow logarithmically with the desired
accuracy. Numerical experiments confirm the theoretical findings.

1. INTRODUCTION

We consider a heterogeneous Stokes problem posed on a bounded Lipschitz poly-
tope Q C R™, n € {2,3}. For a given external force f, the problem is to find a
velocity u and a pressure p satisfying:

-V - (wVu)+ou+ Vp=f, in ,
(1.1) Vou=0, in®,
u =0, on 01,

where v and ¢ denote the viscosity and damping coefficients, respectively. These
coefficients encode the heterogeneity of the medium and may exhibit roughness or
oscillations across multiple, possibly non-separated, length scales. Heterogeneous
Stokes problems such as (1.1) arise naturally in a variety of applications. In magma
modeling, for example, the viscosity depends on temperature and may vary signifi-
cantly across the domain, cf. [GP10]. Another typical scenario occurs in slow flows
around many small obstacles, cf. [ABF99]. In this case, we set v to the physical
viscosity and o = 0 in the fluid region, while inside the obstacles both coeflicients
take large values, effectively modeling solid inclusions.

The numerical approximation of heterogeneous problems such as (1.1) by stan-
dard finite element methods (FEMs) typically suffers from reduced convergence
rates and pronounced pre-asymptotic effects when the computational mesh does
not resolve the fine-scale variations of the coefficients. Since globally resolving all
microscopic details is computationally prohibitive, it is desirable to design numer-
ical methods that yield accurate approximations even on coarse meshes that do
not necessarily resolve the coefficients’ heterogeneities. This is realized through
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2 M. HAUCK, A. LOZINSKI

the construction of problem-adapted basis functions, an approach underlying many
modern multiscale methods. For elliptic diffusion-type problems, examples include
the Heterogeneous Multiscale Method [EE03, EE05, AEEV12], the (Generalized)
Multiscale FEM [BO83, BC0O94, HW97, BL11, EGH13], the Multiscale Spectral
Generalized FEM [BL11, MSD22], rough polyharmonic splines [OZB14], the Lo-
calized Orthogonal Decomposition (LOD) [MP14, HP13], and gamblets [Owh17].
More recently, refined localization strategies within the LOD framework have been
proposed; see, e.g., [HP23, FHKP24]. Comprehensive overviews of multiscale meth-
ods are available in the textbooks [0S19, MP20] and the review article [AHP21].
Several of the above-mentioned multiscale methods for diffusion-type problems
have been successfully adapted to Stokes problems, which present additional dif-
ficulties due to the divergence-free constraint. For slowly varying perforated me-
dia, we refer, for instance, to [BEL*13, BEH13]. The Multiscale FEM based on
Crouzeix—Raviart elements, originally introduced in [LBLL14], has been applied to
Stokes flows in perforated domains [MNLD15, JL24, FAO22, Bal24]. Also a variant
of the Generalized Multiscale FEM for Stokes problems in perforated media was de-
veloped in [CHP21]. More recently, a lowest-order multiscale method for the Stokes
problem within the LOD framework was proposed in [HL25]. Finally, we mention
the generalization of the operator-adapted wavelet approach from [BOD19], which
treats general problems with differential constraints, including divergence-freeness.
While the techniques discussed above typically exhibit first-order convergence,
high-order multiscale methods have also been developed. For diffusion-type prob-
lems, such extensions have been proposed, for instance, for the Heterogeneous
Multiscale Method [LMT12, AB12] and for the Multiscale FEM [AB05, HZZ14].
Hybrid multiscale methods, which reduce global degrees of freedom to element
boundaries, have also gained popularity as a means to achieve high-order conver-
gence; see, e.g., [HPV13, AHPV13, CEL19]. For Stokes problems, a high-order
variant of the Multiscale FEM has been proposed in [FAO22, Bal24]. However,
all of these high-order approaches require certain smoothness assumptions on the
domain, the coefficients, and/or the exact solution to achieve convergence rates
beyond first order. In the presence of rough coefficients, as frequently encountered
in applications, such as composite materials with abrupt transitions between ma-
terial properties, these conditions are typically not satisfied, and the coefficients
are often only in L*°. Obtaining high-order convergence in this setting is non-
trivial and requires the careful design of problem-tailored approximation spaces,
together with appropriate orthogonality properties. For diffusion-type problems,
this is achieved in [Mai21, DHM23, HLM25], where high-order multiscale method
based on ideas of the LOD and gamblets were developed. In these works, quan-
tities of interest (QOIs), which are functionals of the solution that the multiscale
approximation aims to preserve exactly, were defined as integrals with piecewise
polynomials spaces. For Stokes problems, applying this approach directly would
lead to an ill-posed numerical method, since the divergence-free constraint is not
accounted for, and also the construction of a high-order method is more involved.
The construction of high-order multiscale methods for heterogeneous Stokes
problems based on the LOD methodology is the focus of the present article. To this
end, we employ a reformulation of Stokes problem as in [HL25], where the velocity
belongs to (H}(2))", with divergence piecewise constant on the underlying coarse
mesh, and the pressure Lagrange multiplier is chosen to be piecewise constant on
the same mesh. We then apply the LOD methodology to this reformulated problem.
For the method of degree m, our choice of QOIs is based on a suitable decompo-
sition of the space of polynomials of degree m into those that can be expressed as
gradients of scalar polynomials of degree m + 1 and a complementary space. For
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a suitably chosen complement space, the QOIs consist of weighted element inte-
grals, where the weights are given by its basis functions, together with weighted
normal face integrals, using weights given by polynomials of degree up to m on
the faces. This construction enables high-order convergence rates to be extracted
from the source term through appropriate orthogonality relations. The resulting
problem-adapted basis functions decay exponentially, which justifies their localized
computation in practical implementations.

The novel aspects of this article are summarized as follows:

e We provide a rigorous a priori error analysis of the proposed method, es-
tablishing its high-order convergence under minimal assumptions on the
coefficients.The velocity approximation converges at order m+2 in the H'-
norm and at order m + 3 in the L?-norm, provided the number of element
layers in the patches to which the basis functions are localized grows log-
arithmically with the desired accuracy. Moreover, the piecewise constant
pressure approximation is shown to converge exponentially to the corre-
sponding pressure averages as the number of element layers is increased.

e A novel post-processing step is introduced that reconstructs a pressure
approximation of order m + 2 in the L?-norm. Compared to the post-
processing in [HL25], this approach is more sophisticated, incorporating
appropriate coarse-scale piecewise polynomial corrections. In the lowest-
order case m = 0, it achieves second-order convergence, compared to first-
order convergence for the lowest-order method in [HL25].

e Special attention in the analysis of the method is paid to the fine-scale
discretization, which is essential for the practical computation of the local,
infinite-dimensional problems defining its basis functions. Taylor—-Hood and
Scott—Vogelius finite elements are employed for this purpose. We prove the
well-posedness of the fully discrete problems for the basis functions and
that the convergence results remain valid after fine-scale discretization.

e The stabilized localization strategy introduced in [HLM25] for diffusion-
type problems is adopted to the current setting of Stokes problems. This
eliminates the undesirable effect observed, for example, in [HL25], where,
for a fixed number of element layers in the basis localization, the error
increases again after reaching a certain level as the mesh is refined.

e In the lowest-order case, the proposed method requires fewer basis func-
tions than [HL25] without notably affecting its convergence or localization
behavior. Specifically, while [HL25] uses face integrals as its QOlIs, the
lowest-order version of the proposed method uses only normal face integrals,
reducing the number of basis functions by a factor of n in n dimensions.

The paper is organized as follows. In Section 2, we introduce the heterogeneous
Stokes model problem studied in this work. The prototypical multiscale method is
presented in Section 3. To obtain a practical variant, we show in Section 4 that
the method’s basis functions decay exponentially, motivating their localized com-
putation on subdomains. A localized version of the method is then introduced in
Section 5. The resulting local but still infinite-dimensional subdomain problems are
discretized in Section 6 using a fine-scale finite element method. Finally, numerical
experiments in Section 7 validate the theoretical findings of the article.

Notation. Throughout this work, we use the notation a < b (respectively b 2 a) to
indicate that a < C'b (respectively a > C'b), where C' > 0 denotes a generic constant
independent of the coarse mesh size H, the fine mesh size h, the localization pa-
rameter £, and the oscillations of the PDE solution u. The constant C' may depend
on the mesh regularity, the spatial dimension n, the coefficient bounds Vmin, Vmax
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and o min, Omax, and the method order m. The dependence of the constants on m is
not tracked explicitly, as no asymptotic behavior with respect to m is considered in
this work. Furthermore, we employ standard notation for Sobolev spaces and their
norms, denoting by || - ||x.o the H*(Q)-norm, by |- | the highest-order seminorm,
and, in the case k = 0, we simply write | - || for the L?(Q)-norm.

2. MODEL PROBLEM

This section introduces the weak formulation of the heterogeneous Stokes prob-
lem, along with classical results guaranteeing its well-posedness. The formulation
is based on the Sobolev space V = (Hg())", endowed with homogeneous Dirich-
let boundary conditions on 99, and the space Q = {q € L*(Q) : [,qdz = 0},
consisting of functions with zero integral mean. In the following, we will always
assume the existence of constants vmin, Vmax and omin, Omax such that

(21) 0 < Vmin S v S Vmax < o, 0 S Omin S g S Omax < oo,

holds almost everywhere in Q. Denoting by (-,-)q the L?(2)-inner product, the
problem’s bilinear forms a: V x V — R and b: V x @ — R are defined as

(2.2) a(u,v) = (vVu,Vv)q + (ou,v)q, b(u,q) = —(q,V - u)q.

Given a source term f € L?(Q), the weak formulation of the considered hetero-
geneous Stokes problem seeks a pair (u,p) € V X @ such that

(2.3a) alu,v) + blv,p) = (f,v)a,

for all (v,q) €V x Q.
Using the uniform coefficient bounds (2.1) one can show that the bilinear form a
is coercive and bounded, i.e., there exist constants ¢,, C, > 0 such that

(2.4) la(v,v)] = cal VOIS, lau,v)] < Cal Vullal Vo]l

for all functions u,v € V. By the Poincaré—Friedrichs inequality, the seminorm
|V - |l is equivalent to the full (H'(2))"-norm. The constants in (2.4) can be
specified as ¢, = Vmin and Cy = Vpax + C}%Fomax, where Cpr > 0 denotes the
Poincaré—Friedrichs constant of the domain €.

To establish the well-posedness of problem (2.3), we need a compatibility condi-
tion between the spaces V' and (@), expressed as the inf-sup condition

(2.5) inf sup [b(v, g)l

_bwal
1cq@uev [[Vollallglle ’

where ¢, > 0 is typically called the inf-sup constant. This condition is classical
and it is typically proved using the so-called Ladyzhenskaya lemma, cf. [Lad63]. It
states that for any q € @ there exists v € V such that

(2.6) Veov=gq, [Vvlla < Cilldlle,
—1

which directly implies the inf-sup stability with inf-sup constant ¢, = C[ ~. After
establishing conditions (2.4) and (2.5), the well-posedness of weak formulation (2.3)
can be concluded using classical inf-sup theory; see, e.g., [BBF13].

3. PROTOTYPICAL MULTISCALE METHOD

This section presents a prototypical multiscale method that achieves high-order
approximation rates without any pre-asymptotic effects, under minimal structural
assumptions on the coefficients. To this end, we introduce a hierarchy of simplicial
meshes Ty that are geometrically conforming, quasi-uniform, and shape-regular.
Each mesh is a finite decomposition of the closure of € into closed elements T,
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which are n-dimensional simplices'. The mesh size, denoted by H, is defined as the
maximum diameter of the elements in Ty, i.e., H := maxre, diam(7T). For a given
polynomial degree m € Ny, where Ny denotes the set of natural numbers including
zero, we introduce the space P"(T') consisting of polynomials of total degree at
most m defined on the element T' € Ty. Piecing together these local spaces in
a discontinuous manner gives the space P™(Ty) of Tg-piecewise polynomials of
total degree at most m. The corresponding L2-orthogonal projection is denoted by
7. L2(Q) — P™(Ty). Furthermore, we denote the set of all faces of the mesh Ty
by Fu and the subset of interior faces by F.

The construction of the prototypical high-order LOD method is based on an
equivalent reformulation of problem (2.3) using the spaces

(3.1) 7 = {UEV : V~UE]P’O(TH)}, Qu izQﬁPO(TH),

where the space Z partially integrates the divergence-free constraint into the ve-
locity space. Thus, the smaller space Qg is sufficient to enforce that the velocity
is divergence-free. The reformulation seeks (u,pr) € Z x Qg such that

(3.2a) a(u,v) 4+ blu,pr) = (f,v)q,
(3.2b) b(u, qg) = 0.

for all (v,qy) € Z x Qu. To prove the well-posedness of this reformulated prob-
lem, we verify the corresponding inf-sup condition for the bilinear form b, which
holds with the constant ¢, from (2.5), thanks again to the Ladyzhenskaya lemma,
cf. (2.6). It is readily seen that the first component of the solution to the reformu-
lated problem coincides with the velocity u from (2.3), while the second component
satisfies py = I1%p, where p is the pressure from (2.3).

3.1. Quantities of interest. Following the presentation of the LOD in [AHP21],
we introduce quantities of interest (QOIs) that will be preserved by the prototypical
method. We begin by introducing QOIs associated with faces F' € F&. Let P™(F)
denote the space of polynomials on F' of total degree at most m and {pp,; : j =
1,...,J} be a basis of P""(F'), where J := dim(P™(F)). We assume that pp; =1
on F and that fF pr;do = 0 for indices j > 1. For each face F' € F}; and index
j€A{l,...,J}, we define the corresponding QOI as

(3.3) qrj: Z = R, v H/ (v-n)pp, do,
F

where n denotes the unit normal vector to F, whose direction is fixed once for all.

To obtain a high-order method, it is not sufficient to consider QOIs only on the
faces. In addition, also QOIs on the elements must be introduced, similar to the
procedure for the MSFEM in [FAO22]. A natural choice for these would be the
moments against all polynomials in P (7). However, a closer look reveals that
one needs to eliminate the moments against the vector-valued polynomials, which
are gradients of scalar polynomials of degree at most m + 1. The space of such
polynomials is in the following denoted as

G™(T) :={Vp : p € P™(T)} C (P™(T))".

They must be excluded from the element QOIs, as they conflict with the face QOIs
defined in (3.3), as will be explained in more detail in Remark 3.5 and the proof of
Theorem 3.8. A similar phenomenon also occurs in the Virtual Element Method for
the Stokes problem; see [VLV17]. At the lowest order m = 0, we have the identity
(PY(T))™ = G*(T), i.e., no element QOIs need to be considered. For orders m > 1,
we have the strict subspace relation G™(T) € (P™(T))", so the complement of

IThe assumption of a simplicial mesh is made only for the simplicity of presentation. Quadri-
lateral /hexahedral meshes can be used equally well.
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G™(T) in (P™(T))™ is nontrivial, and element QOIs need to be defined by choosing
a suitable complement of G™(T') in (P"(T))™. The complement space should satisfy
certain conditions, summarized below.

Assumption 3.1 (Choice of complement space). Let m > 1. Then, for any
T € Ty, there exists a subspace Q™ (T) C (P™(T'))™ such that

(3.4) P =G™(T) e Q™(T).
Furthermore, for any p € (P™(T"))™ the decomposition p = g+ ¢, where g € G™(T)
and g € Q™(T') satisfies the following conditions:

(1) [plEn = lglgn + |q|3m, where | - |pm is a seminorm on P™(T') defined (in-
dependently of T') for any f € P™(T) as |f|3. = |DYf|? in the
usual notations with multi-indices o € N{;

(2) the homogeneous parts® of degree m of polynomials g and ¢ are determined
from the homogeneous part of degree m of polynomial p in a manner inde-
pendent of the mesh element T

3) llalr < lplz-

The above conditions on the complement space Q™ (T) are assumed to hold
throughout the manuscript. A possible construction of such a decomposition in
two and three spatial dimensions is given as follows.

alal=m

Example 3.2 (Construction of the complement space). We first consider the two-
dimensional case, i.e., n = 2. Let (x,y) denote the coordinate vector and (zT,yr)
the barycenter of T. To construct the subspaces G™(T) and Q™(T), we specify
their basis functions. These can be obtained by iterating over pairs (r,s) € N3 with
1<r+s<m+1, and performing the following operations:

e add to the basis of G™(T) the polynomial
V(z —z1)"(y —yr)°,

e ifr,s >0 add to the basis of Q™(T) the polynomial
(3.5) (—r(x—2r)"" Yy —yr)®, sz —20)"(y —yr)*~").
Any vector-valued polynomial of the form (a(x —zr) "y — yr)*, Blx —z1)" (y —
yr)* 1), with o, B € R and r,s > 0 as above, can be represented uniquely as a linear
combination of the basis functions in G™(T) and Q™(T). Since the span of all such
polynomials, plus the polynomials (r(xz —x7)" %, 0) and (0, s(y —yr)*~1) which are
in G™(T), equals (P™(T))?, we conclude that our choice of G™(T) and Q™(T) sat-
isfies the direct decomposition property (3.4). Properties (1)—(2) of Assumption 3.1

follow directly from the construction above. Property (3) can be inferred from the
following strengthened Cauchy—Schwarz inequality

(9 @) 2y < lglirlgllr,

for all g € G™(T) and q € Q™(T), with a constant v < 1 depending only on
the reqularity of the mesh. This, in turn, can be proved by maximizing the best
possible constant v over all polynomials g and q in the corresponding spaces and all
triangles T satisfying the mesh reqularity assumption. In this maximization, one
can assume, without loss of generality, that T has its barycenter at the origin and
diameter 1, and the L?-norms of g,q are equal to 1. The mazimum is thus attained
on some element T and some 4,4, and v < 1, since g and q are not collinear.

The construction in the three-dimensional case is very similar. The basis func-
tions of G™(T) are of the form NV (x —x1)"(y—yr)*(2 —27)* for triples (r,s,t) € N3

2The homogeneous part of degree m of a polynomial is the sum of all terms in the polynomial
whose total degree is exactly m.
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withl <r+s+t<m+1. Whenr,s,t >0, two basis functions analogous to those
in (3.5) are added to the basis of Q™ (T) instead of just one.

Denoting a basis of Q™(T) by {prx : k=1,..., K}, where K := dim(Q™(T)),
we introduce, for all T € Ty and k € {1,..., K}, the corresponding QOIs as
(3.6) qri  Z — R, v / v - prde.
T

Following the approach in [HLM25], we handle the QOIs using Lagrange multi-
pliers that belong to the space

57 MH::{u:(u,u):u:E—HR, plp € P™(F)VYF € Fi,
3.7
i Q>R ply € Q(T) VT € Ty |,

with the norm

(3-8) K13, = HlulE + el
where ¥ = | Jp Fi, F denotes the union of all interior faces. We further introduce
the bilinear form ¢: Z x Mg — R as

(3.9) c(v, ) ::H/(v-n)uda+/ v- pdz,
b Q

with the piecewise defined unit normal

(3.10) n: X — R", nlpi=n VF € F.

The bilinear form ¢ encodes the QOIs in the sense that ¢(v,H) = c¢(w, ) for all
M € My if and only if the functions v and w are indistinguishable with respect to
the ensemble of QOIs. The scaling with H is included in both the norm on Mgy
and in the form c to balance the contributions from the faces and the elements.

3.2. Bubble functions. Next, we introduce bubble functions, a theoretical tool
that will be used repeatedly throughout this manuscript. They play a central role in
establishing the inf-sup stability of the bilinear form ¢, which is crucial for the well-
posedness of the proposed method. We consider two types of bubble functions. The
first type is used to handle the divergence constraint on each mesh element. The
following lemma establishes their existence and summarizes their main properties.

Lemma 3.3 (Local Ladyzhenskaya-type bubble). For any T € Ty and any q €
L*(T) with [, q dz = 0, there exists v, € (H§(T))™ such that V - vy = q, [, vq-
pdz =0 for all p € Q™(T), and the following stability estimate holds:

(3.11) IVogllr < llallz

Proof. The proof of this lemma is deferred to Appendix A. O

The second type of bubble functions corresponds to the constraints associated
with the bilinear form ¢ defined in (3.9) and the space My. Their existence and
main properties are summarized in the lemma below.

Lemma 3.4 (Bubble functions). For any F € Fi and any gr € P™(F), there
exists a face bubble function b € Z N (HY (wr))™ with wr denoting the union of
the two mesh elements sharing F such that, for all g € My,

(3.12) c(bp,n) = H/ grudo,
F
and

(3.13) lorlloe S H 2 lgrlle,  IVbrllue S H2lgrllr.

~ ~
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Similarly, for any T € Ty and any gr € Q™(T), there exists an element bubble
function by € Z N (HY(T))™ such that, for all 4 € My,

(3.14) c(br, n) = / gr - pdz,
T
and
(3.15) lorllr S llgrllr, — IVorlr S H grllr-
Proof. The proof of this lemma is also deferred to Appendix A. O

The following remark shows that the construction of the element bubble func-
tions b7 in the above lemma would not be possible if gradients of scalar polynomials
were not excluded from the definition of the element QOIs in (3.6).

Remark 3.5 (Elimination of gradients in QOIs). If the definition of the element
QOIs in (3.6) were expanded to include all polynomial moments of degree at most m,
that is, if the space My were defined by replacing Q™ (T') in (3.7) with (P™(T))",
then the construction of the local element bubble function by in (3.14) would have
to accommodate any gr € (P™(T))". In particular, one would need to construct
an element bubble function by € Z N (H(T))™ associated with g = Vp for some
p € PMTY(T). Choosing = Vp on T in (3.14) would then yield

(316)  |IVpl2 = lgrl3 = / br - Vpdz = — / (V- br)pde =0,
T T

since V - by = 0 by the divergence theorem, noting that br € Z N (H(T))".
Identity (3.16) is evidently false unless the polynomial p is constant, which reveals
an inherent contradiction in such a construction.

3.3. Prototypical approximation space. For defining the prototypical LOD
multiscale method, we follow the standard approach in [AHP21], decomposing the
solution space Z into a direct sum of two subspaces. The first subspace, often called
the fine-scale space, is defined as the intersection of the kernels of the QOIs in (3.3)
and (3.6), which can be expressed using the bilinear form ¢ introduced in (3.9) as

(3.17) W:={veZ:cv,n)=0Vue My}.

This space contains functions that oscillate on scales smaller than H and cannot
be distinguished by the QOIs in (3.3) and (3.6). The second subspace of the de-
composition is finite-dimensional and will serve as the approximation space of the
prototypical high-order LOD method. It is defined as the orthogonal complement
of W with respect to the energy inner product a, i.e.,

(3.18) Zy = {ueZ:aluv)=0vveW}.

Note that, since Zy is constructed as the orthogonal complement of W with respect
to the problem-dependent inner product a, it encodes problem-specific information
that allows reliable approximations even on coarse scales. The tildes in the notation
of functions and spaces indicate that they are adapted to the problem at hand. The
following lemma provides a basis of the space Zy.

Lemma 3.6 (Prototypical basis). The space Zy is of finite dimension N = J -
#Fi + K - #Tu, where #(-) denotes the number of elements in a set. The basis
functions associated with faces, denoted by ¢r; for F € Fiy and j € {1,...,J},
are defined as the unique solution to the problem which seeks (Pr j,&r,j,N) € V X
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Xpg x My, with X ={q € Q : II%q =0}, such that

(3.19a) a(¢rj,v) + bw,€r;) + clv,A) = 0,
(3.19D) b(Pr.5:X) = 0,
(3.19¢) c(@rj: W) = H [ppripdo

for all (v,x, 1) €V x Xy X My.

Moreover, the basis functions associated with elements, denoted by @ty for all
TeTyg and k € {1,...,K}, are defined as the solution to a problem analogously
to (3.19), with the indices F' and j replaced by T and k, respectively, and the right-
hand side of the last equation replaced by fT pr.i - pde.

Proof. We interpret (3.19) as a standard saddle-point problem, combining the La-
grange multiplier spaces Xy and My into the product space Xy x My equipped
with the norm ||(¢, W = llq|lg + H?[ul3;, for (¢,n) € Xz x M. The well-
posedness of this problem then follows from the inf-sup condition:

| | ~

520 eyt S T9ulala.
To prove this, take any (¢q,[) € Xy x My, and, thanks to Lemma 3.3, introduce
vgr € (HY(T))" for each T € Ty such that b(vyr,q) = |lq/|%, c(vyr, 1) = 0 for
all @ € My, and ||Vugrlr < |lgllr. Similarly, for each F € F (resp. each
T € Ty), we introduce, thanks to Lemma 3.4, v, r € Z N (H} (wr))™ (resp. v €
Z0(HY(T))") such that c(v,,p, W) = Hul3 with [ Vo, ply < H V2 llp (resp.
c(vp,r, W) = [lpl7 with Vel S HHplr). Setting

V= Z vgr + H? Z v p + H? Z U, T

TeTu FeFy TeTH

we obtain b(v, q) + c(v, 1) = ||(g, W) ||* as well as

IVolg S D0 IVegrlz+HE Y IVourl2, +H D IVourlF S w7,
TeT FeF}, TeTH

which proves (3.20), the desired inf-sup condition.

By construction, the functions in the set {$r;}r; U {@ri}rs belong to Zg.
To verify that they in fact form a basis of this space, we consider any u € Zy
and observe that there exists a unique linear combination of {¢r ;} U {@r ]}, say
w € Zg, such that ¢(w,pn) = c(u, n) for all @ € My. The well-posedness of the
saddle-point problem for u — w, as above, then implies that © = w. O

The functions in the fine-scale space W satisfy an element-local Poincaré-like
property, as stated in the following lemma.

Lemma 3.7 (Local Poincare-type inequality). For all T € Ty and v € (H*(T))"
with fF v-ndo =0 for all faces F* C 9T, it holds that

(3.21) lollz S HI[Volz.

Proof. The proof of this Lemma is deferred to Appendix A. O
We emphasize that, unlike in [HL25], where face integrals of vector-valued func-

tions v were used as QOIs, we now consider only (suitably weighted) normal inte-
grals over faces in the definition of the face QOIs in (3.3).
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3.4. Prototypical method. Having introduced the prototypical approximation
space Zpg, we define the prototypical method by replacing Z in (3.2) with Zg.
Specifically, it seeks (ty,py) € Zg x Qu such that

(3.22&) a(ug,vg) + b(f}H,ﬁH) = (f,f}H)Q,
(3.22b) b(um,qm) = 0

for all (¥, Gm) € Zgr X Q.

To characterize the solution of the prototypical method and as a tool in its
analysis, we introduce the a-orthogonal projection operator R : Z — Zy. Given
any v € Z, its projection Ruv is defined as the unique element of Zy satisfying

a(v—Rv,w)=0 YweE Zy.
The a-orthogonality immediately yields the continuity of R. Indeed, for all v € Z,

(3.23) IVRvllo < v/ Ca/eal[Vola,

where ¢, and C, denote the constants from (2.4). Since Zy is the a-orthogonal
complement of the fine-scale subspace W, we also have, for any v € Z,

c(v—Ru,u)=0 VueE My

as v —Rv € W. Taking the face-based component of U above as piecewise constant
shows that the operator R preserves face normal fluxes, that is [,.(v—Rv)-ndo =0
on all faces F' € F};. Thus, using the divergence theorem and noting that functions
in Z have piecewise constant divergence (cf. (3.1)), we obtain, for all v € Z,

(3.24) (V . R’U)|T = (V : U)lT VT € Ty .

The following theorem provides a convergence result for the prototypical method,
valid under minimal structural assumptions on the coefficients.

Theorem 3.8 (Prototypical method). The prototypical multiscale method (3.22)
is well-posed, and its solution is given by (tp,pu) = (Ru, 1% p), where (u, p) solves
problem (2.3). Moreover, for any f € H™TY(Q), we have the error estimates

(3.25) IV(u—in)llo S H" | flmssa,
(3.26) lu—tnllo S H™ | flms0-

Proof. First, we prove the inf-sup condition

(3.27) inf  sup _1bCn.Gu)l > 1,

which implies the well-posedness of problem (3.22). Given any ¢y € Qg,let v eV
satisfy V-v = ¢ and | Vv|la < ||dullq, cf (2.6), and define 05 := Rv. Using (3.24),
we have |b(0m,Gn)| = |b(v,Gu)| = ||Gull3, and from (3.23) and the choice of v,
IViglla < IVvlla S |lGulle. inf-sup condition (3.27) follows after combing these
results. Since (u,1%p) solves (3.2), R: Z — Zy is the a-orthogonal projection,
and V-ay = 0 by (3.24), we observe that (Ru, I1%p) solves (3.22). The uniqueness
of the solution to (3.22) then implies that iy = Ru and py = % p.

Next, we show the convergence of the prototypical method. Let us denote the
error by e := u—tpg. It holds that e € W, and we have for the prototypical method
that V-ug = 0. Using the coercivity of a (cf. (2.4)), the orthogonality a(@m,e) = 0,
(3.2a) with e as the test function, and the fact that b(e, py) = 0, we obtain that

(3'28) CaHVeH% < a(ev 6) = a’(’u’v 6) = <f7 e)Q = (f - Hﬁf, e)Q + (Hﬁfa e)Q-
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The first term on the right-hand side above can be bounded using a classical ap-
proximation result for the L2-projection onto piecewise polynomials, cf. [DPE12,
Lem. 1.58], and the Poincaré-type inequality from Lemma 3.7 as

(3.29) (f =1 f.e)a < |If =g fllallelo S H™ | flmirol Velo.

To estimate the second term on the right-hand side of (3.28), we abbreviate
fr = 15 f)|r for each T' € Ty, and decompose fr = gr + qr with gr € G™(T)
and ¢gr € Q™(T) as in Assumption 3.1. By construction, gr = Vér for some
¢ € P™H(T). Since e is L?(T)-orthogonal to Q™ (T') on all elements and V-e = 0,
the divergence theorem, applied locally on T, gives

(3.30) (MHf.e)a= > (gr+ar.e)r= > (Vér.e)r= > ([dlr.e-n)r,

TET TeTH FG.F;'J

where [¢]F = ¢ — @1+ denotes the jump across face F' shared by elements T and 7",
ordered consistently with the normal n on F'.

Since e - n is L?(F)-orthogonal to P™(F) for all faces F' € Fi, we can subtract
from [¢]p any Ap € P™(F) in the right-hand side of equation (3.30). Taking
Ar as the L?(F)-projection of [¢]r to P™(F), and using standard approximation
properties of the L2-projection, cf. [DPE12, Lem. 1.58], we can estimate (3.30) as

331) > (dlre-nmr= Y ([olr —Are-n)p

FeFi FeFy,
1
SH™ N ([@lelmsnrle nle < H™ 3 [F|Fgr — groloulel s,
FeFy FeFy
where | - |pm is the seminorm on P™(T) defined in property (1) of Assumption 3.1.
We also have

2
Pm

B+ lar — 4z

B = lgr — 917

|fr — fr
by properties (1)—(2) of the same assumption. Thus,

1 1
IFI2|gr — g1 lem < |FIZ|fr — frolem = |If = TE )l gmsn ey S VEH | Flmstoe

where wp = T'UT" and the seminorm |- | gm s (py includes all partial derivatives of
order m, not only those tangential to F'. The last inequality follows from a stan-
dard approximation result in L?(T) and L?(7") and the trace inequality. Finally,
inserting the latter estimate into (3.31), and using the bound |le||r < VH|Ve|lwy,
which can be derived from Lemma 3.7 and a standard trace inequality, we obtain

(3.32) (IEfe)a < H™? Z | flmt1,wr IVeEllwe S Hm+2‘f|m+1,f!”ve||9~
FeFy

The desired H'-estimate (3.25) follows by inserting (3.29) and (3.32) into (3.28).
The L2-estimate (3.26) is obtained by applying Lemma 3.7 once again. O

4. EXPONENTIAL DECAY AND LOCALIZATION

We emphasize that the prototypical LOD basis functions defined in (3.19) are
globally supported. Consequently, computing them would require solving global
problems, which we consider infeasible in practice. In this section, we show that
the prototypical LOD basis functions decay exponentially, which motivates their
approximation by locally computable counterparts. A practical multiscale method
based on such local approximations is presented in Section 5.
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The localization strategy used below was first introduced in [HLM25] and is
highly flexible, making it suitable for applications such as Stokes problems that go
beyond standard elliptic diffusion-type problems. Its key idea is to decompose

(4.1) R=TIy+K,

where K: V — V is characterized below, and Zy: V — Vg with Vg C V is a
quasi-interpolation operator onto the standard conforming finite element space of
(vector-valued) piecewise affine functions on 7. The operator Zy is assumed to
depend only on the normal face integrals [ v-n do for each F € Fi of an input v,
and to satisfy the standard approximation and stability properties:

(4.2) |lv=Zuvlle S H|[Vliney,  [Zavie S lving,  IVZavllr S 1Vl

for all functions v € V and for any element 7' € Ty. Here, for a union of coarse
elements S, N(S) denotes the first-order patch consisting of all coarse elements that
share at least one node with an element in S. We emphasize that Vg is fixed as
the first-order finite element space, independent of the polynomial order m.

Remark 4.1 (Possible construction of Zp). A possible definition of Zy in the two-
dimensional case is given by prescribing its nodal values at interior nodes z as

-1 —
|:Tl}71 n%1:| [|F1 1fF1U'nF1 ds

ng, N, 1Bo| ™ [, v npy ds]?

(Zav)(2) =
where F; and F5 are any two faces adjacent to z whose normal vectors ng, and ng,
(with superscripts denoting their components) are linearly independent. For bound-
ary nodes z we set (Zgv)(z) := 0. This definition can be extended to the three-
dimensional case by selecting, for all interior nodes z, three faces adjacent to z with
linearly independent normal vectors. The stability and approximation properties

in (4.2) can be verified for this operator following the approach of [EG04, Ch. 1.6].

The operator K: V — V| as introduced in (4.1), is characterized for each v € V'
as the unique solution (Kv,&,A) € V x Xy x My satisfying

a(Kv,w) + bw,&) + c(w,A) = —aZgv,w),
b(’CU5X) = - b(IHU7X)a
(Ko, ) = c¢(v—Tgv,|)

for all (w, x, ) € V x Xy x Mp. The operator K can be represented as the following
sum of localizable element contributions:

(4.3) K= Z Kr,
TETu

where Cp: V' — V is defined, for any T' € Ty and all v € V, as the unique solution
to the problem, which seeks (Krv,ér,Ar) € V x Xy x My such that

(4.4a) a(Krv,w) + bw,ér) + clw,Ar) = —ar(Zpv,w),
(4.4b) b(Krv, X) = —br(Zuv,X),
(4.4c) (Ko, W) = cr(v—ZTyv, W)

for all (w, x,H) € V x Xy x Mpy. Here, ar and by denote the restrictions of a and b
to T (i.e., integrals over Q are replaced by integrals over T'), and cr is defined as

(4.5) cr(v, W) = H kr(v-n)udo +/ v- pde,
oT T

where the function kp: ¥ — R is piecewise defined, with xk7|r > 0 nonzero only
for faces satisfying wgp D T, and such that ET@;F kr|p =1 for all F € .7:}1. The
unit normal n: 3 — R™ is defined in (3.10).
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To quantify the decay of the operators K7, we introduce the notion of patches
with respect to the mesh 7z. Given an localization parameter £ € N, the /-th order
patch of a set of elements S C Ty is defined by
(4.6) NY(S) = N(S), Nf(S) .= N} (NT1(S)), £>2,
where we recall that N(S) denotes the first-order patch of elements around S. The
following theorem shows that the operators K exhibit an exponential decay.

Theorem 4.2 (Exponential decay). There exists a constant ¢ > 0 independent of
H, ¢, T, such that, for any v € V and £ € N, it holds that

IVErvllowe(r) S exp(—cl) [VErvl|q.
Proof. This proof follows the arguments used in the proof of [HL25, Thm. 4.1] for
the lowest-order case. Let n € WH>°() be a cut-off function such that:

n=0 in N“~1(T),

n=1 in Q\ NYT),

0<p<1  inR:=N{(T)\N-YT),
satisfying the Lipschitz bound supg, |Vn| < H~!, where we used - to denote the

closure of a set. The notation * will be used to denote the interior of a set.
Abbreviating 1 := Krv and choosing 71 as a test function in (4.4a), we obtain

(47) a(¢7 mﬁ) = b(m/’, 5) - 6(771;/}3 )\) - aT(IH'Ua 771/J)a

where, for simplicity, we have omitted the subscript 7" on {7 and Ar. Note that
ar(Zgv,mp) = 0. Moreover, supp(ny) C (2 \ NY(T)) U R, V- (nv) is piecewise
constant on Q\ R, fE np-nudo = 0 for all 4 € P™(F) on any face E not contained

in R, and fK mp - wdr = 0 for all p € Q™(K) on any element K not contained
in R. Using these properties, together with bound (2.4), we can rewrite (4.7) as

(4.8) o [IVO[Epne(ry < aane(r) (¥, 9) = — ar(®,m) = br(m,€) — cr(nw,N) .

Here, the restricted forms a, b, and ¢ are obtained by restricting the integrals in (2.2)
to the corresponding subdomain, and by restricting the sums in (3.9) to the faces
in R and the elements in R for ¢g, which should not be confused with (4.5).

To estimate =1, we note that the Poincaré-type inequality from Lemma 3.7 can
be applied locally to the function ¢ on all elements K C R for ¢ > 2, since,
by (4.4¢), fE 1 -ndo = 0 for all faces E C K. Using this property, together with
the definition of bilinear form « in (2.2) and the L*°- and Lipschitz bounds of 7,
we obtain the following estimate for ¢ > 2:

Z1 S IVelr (IVelR + H [WllR) + vl% S 1VEIE.

For the term Z;, we again apply the L*°- and Lipschitz bounds of n together
with the local Poincaré-type inequality from Lemma 3.7 for % to obtain that

(4.9) Zo <[IV-(m)l[rlEllr S IV R[] A-

We continue the previous estimate by deriving a bound for ||€]|x on any element
K C R. To this end, we test (4.4a) with ve € (Hj(K))™ chosen such that V-ve = &
holds locally in K, gk (ve) = 0 for all indices [, and ||Vug||x < |||l x, where the
existence of such a function ve is guaranteed by Lemma 3.3. This yields

€17 = —b(ve, &) = a(w, ve) + c(ve, N) + ar(Zrv, ve) S [VYlk €]k

using that c(ve,A) = 0 by the construction of ve, and that ar(Zgv,ve) = 0 since T
is not contained in R. Summing the above bound over all K C R yields an estimate
for ||€||r, which can be inserted into (4.9) to conclude that =5 < ||V [|%.

~
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The term Z3 can be estimated as
(4.10) Es SH Y InelelMe+ Y lndllx A«
ECR KCR

To estimate ||A||g for any face E C R, we consider a bubble function by € Z N
(Hj(wp))™ satisfying ¢(bp, M) = —H [, Apdo for all p € My, whose existence is
guaranteed by Lemma 3.4. Testing (4.4a) with bg yields

H|[% = —c(bg.N) = a(¥,b5) +b(bp, &) + ar(Zrv.bp) S H 2 Vllwp I 2,

where we have used that b(bg, p) = 0, since bg has piecewise constant divergence
and ¢ has zero element averages, and that ar(Zgv,bg) = 0 because wg, which is
contained in R, has only a trivial intersection with 7.

To estimate ||A||x for any element K C R, we consider a bubble function bx €
ZN(Hg(K))™ that satisfies ¢(bg, 1) = — [ A+ p da for all p € My Testing (4.4a)
with by, we obtain, similarly to the previous estimate, that

A% = —c(br,N) = a(ih,bg) + b(bx, &) + ar(Zpv,bx) S H VY| k|| A&,

noting that by € Z N (H(K))™ already implies that by is divergence-free.

We can now combine the previous two estimates for | A|| g and ||A| x to continue
estimate (4.10). Using a standard trace inequality and the Poincaré-type inequality
from Lemma 3.7 applied to 1, we then obtain, for £ > 2, that

Es S Y (H V2l + HY2IVellwp) H 2V |lwp + I VEIR S IV
ECR
Inserting the above estimates for Z;-Z3 into (4.8) gives

IVelE\xecry < CIVEIE = C(IVIE -y = IV IR ey )

where the constant C' > 0 is independent of H, ¢, and T'. This immediately yields

c o\ Y2
IVlloywer) < (ch) IVYllo\ve-r(T),

and, after iterating, it follows that

o \Y2
IVelloywer) < <1+C> [Villo = exp(—cl) [V o,

with ¢ := 3 log 2£€ > 0. O

The exponential decay result from the previous theorem motivates the localiza-
tion of the operators KCp to ¢-th order patches around 7T'. To this end, we introduce,
for all T € Ty and a given £ € N, local versions of the spaces V, Xg, and My as

fo ={v eV :supp(v) C NK(T)},
X ={q€ Xu : supp(q) C NYT)},
M= {u = (u, ) € My : supp(p) C S, supp(p) C N(T)},

where ¥4 denotes the part of 3 contained in the interior of N¢(T"). For any T € Tg,
a localized version of the operator Cr can be defined as the map lCéT: V — Vfﬁ,
which assigns to each v € V the value K%v given by the unique solution to the
following problem: find (K40, &5, ) € Vi x X{; 7 x Mf; 1 such that

(4.11a) a(Kfv,w) + bw, &) + c(w ) = —ar(Tyv,w),
(4.11b) b(K5v, x) = —br(Znv, Xx),
(4.11c) c(Khv, 1) = cp(v—Tgv, W)
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for all (w, x, M) € Vif X X1 X M{; 1.
We now define a localized counterpart of the operator I as the sum of the
localized element contributions K4 over all elements T € Ty, cf. (4.3):

(4.12) Kf= " K.
TETH

With this, a localized version of the a-orthogonal projection operator R can be
defined, recalling its decomposition in (4.1), as

(4.13) R' =TIy + K"

The following theorem shows that the operator R¢ approximates R exponentially
well in the operator norm as the localization parameter ¢ is increased.
Lemma 4.3 (Exponential approximation). For allv € V and ¢ € N, there holds
(4.14) V(R — R )v|la < 197172 exp(—cl) |[VRY||q,
where ¢ is the constant from Theorem 4.2.

Proof. Let e :== (R — R%)v. It follows from (4.4c) and (4.11c) that e € W, which,
together with the definition of the space Z in (3.1), implies that V - e = 0. Thus,
by the coercivity of a, cf. (2.4), the definition of Zy in (3.18), and the definitions
of K* and R in (4.12) and (4.13), respectively, we obtain

(4.15)  ¢o||[V(R = RYv||3 < —a(Rfv,e) = — Z (ar(Zpv,e) + a(lCeTv,e)).
TETH
Next, we estimate each term on the right-hand side of (4.15) separately. For
a fixed element T' € Ty, we use the cut-off function 5 defined as in the proof of
Theorem 4.2, now with subscript T'. Noting that ar(Zgv,nre) = 0 and using the
function (1 —nr)e € V4 as a test function in (4.11a), yields
—ar(Zgv,e) — a(Kiv,e) = —ar(Zgv, (1 —nr)e) — a(Ksv, (1 — nr)e + nre)

= — a(K7v,nre) +b((1 —nr)e, &) +c((1 —nr)e, Ap) -

== == =E3

For the estimate of the term Z;, we note that
supp(K5v) Nsupp(nre) € Ry == N¢(T) \ Ne—1(T).

Recalling the L°°- and Lipschitz bounds of i, and applying, for £ > 2, the Poincaré-
type inequality from Lemma 3.7 to the functions e and ICZTU locally on the ring Ry
(noting from (4.11c) that [, Kfv-ndo = 0 for all faces E C Ry), we obtain

1 S IVELollr IV (7€) | e + IKT0 ] R lnrell Re S VKTV Ry | Vel R

To estimate the term ||V45v| g, on the right-hand side of the above inequality, we
apply Theorem 4.2 to K5v on N*(T) instead of Q, yielding
(4.16) IVKTollre S exp(—cO)|VETv]Inecr)-

To continue the above estimate, we apply standard inf-sup theory to the saddle-
point problem (4.11), ¢f. [BBF13, Cor. 4.2.1], recalling the combined inf-sup con-
dition in (3.20), now restricted to the spaces on N*(T'). This yields

ar(Zygv,w br(Zhv, x
(@17) VS lwr) $ sup LEEHR0L gy, [ortdi )
T Ivele P e
1 -7
vl s ler(v —Znov, )|
0¥ S T

SZuvllir + H v — Zyvllr + H Y2 v — Zyvllor < o

|1, (T
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where we used the interpolation estimates from (4.2) together with a standard trace
inequality, and || - |1, denotes the H'(T)-norm. Noting that K%Rv = K5v, since
IC[T depends on v only through its QOIs, which remain unchanged under the action
of R, and combining the previous estimates, we obtain the following bound for =y:

(4.18) E1 S exp(—cO)||Rulluneny Vel ry-

To estimate the term =5, we proceed analogously to the proof of Theorem 4.2,
following the treatment of the corresponding term Z, therein. This yields

Z2 < IV (1 =nr)e)lr rllr S IVKTV] Ry Vel Ry

After applying (4.16) and (4.17), we obtain for 25 an estimate of exactly the same
form as (4.18) for the term Z;. Also for 3, analogous arguments can be employed,
constructing suitable bubble functions using Lemma 3.4. The resulting estimate
for 23 is again of the same form as (4.18); see also the estimate of the structurally
similar term Z3 in the proof of Theorem 4.2.

Returning to (4.15) and using the bounds for =;—=3 derived above, yields

IV(R = R)ll3, S exp(—ct) Y |Rvlliner Vel ry

TeTu
<ep(-ct) [ 3 IR0 wry | S IVel,
TeT TeET

< 9D exp(—cl) [ VRu|o || Vel|o,

where we have used the fact that each element K € Tz belongs to at most O(¢471)
rings Ry for different T' € Ty, as well as the Poincaré—Friedrichs inequality on €.
The assertion follows after dividing by [|Ve|q = [|[V(R — R)v|q. O

5. LOCALIZED MULTISCALE METHOD

In this section, we introduce the proposed multiscale method for heterogeneous
Stokes problems. The localized multiscale space is defined as Z¢ = R!Z. Noting
that the operator RY depends on its argument only through the QOIs introduced
in (3.3) and (3.6), the approximation space can be written as

(5.1) Zp=span{@h,;  FEFy, j=1,...,J; ¢ : TE€Tu, k=1,...,K},
where @fm’ ; and <,5/‘T’ . are basis functions of qu defined as

(5.2) Py =R'Grjs  Frp=R'Grp

Although this definition involves the global prototypical basis functions, these are

not needed for the actual computation of the localized basis functions, recalling

that R’ depends on its input only through its readily available QOIs. A practical

implementation of the proposed method, including a fine-scale discretization of the

local but still infinite-dimensional patch problems in (4.11), is discussed in Section 6.
The proposed multiscale method seeks (ﬂfq, ;5@) € Zﬁl X Qg such that

(5.3a) a(iy, 0y) + by By) = (f.0k)e

(5.3b) iy, @) - 0

for all (o, d5) € Z4 x Qu.

The following theorem proves the well-posedness of the proposed multiscale
method and its uniform convergence properties for the velocity approximations un-
der minimal regularity assumptions, provided that the £ is chosen sufficiently large.
In addition, it is proved that the piecewise constant pressure approximation ]5%
converges exponentially to I1%p as the localiaztion parameter ¢ is increased.
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Theorem 5.1 (Localized method). The localized multiscale method (5.3) is well-
posed. Moreover, for any f € H™T1(Q), we have the following error estimates:

(5-4) IV (u—af)lle S H™?| flmsr.0 + 702 exp(—e0) | flo,
(5.5) lu — @l lle S (H + €992 exp(—c0))[|V (u = @) o,
(5.6) 1180 — Flle S €97D72 exp(—c0)] flle,

where ¢ is the constant from Theorem 4.2.

Proof. The proofs of estimates (5.4) and (5.5) follow exactly the same steps as in
[HL25, Thm. 5.1], with the main difference being the use of the high-order error
estimates from Theorem 3.8 for the prototypical approximation. For brevity, details
are omitted, and we refer to the corresponding proof in [HL25]. The same holds
true for the proof of the pressure estimate (5.6). O

Remark 5.2 (Stabilized approximation). Compared to the corresponding result for
the lowest-order method in [HL25, Thm. 5.1], the exponentially decaying terms in
(5.4)—(5.6), representing the localization error, do not include a prefactor of H~!.
As observed, for example, in the numerical experiments in [HL25], such a prefactor
can significantly degrade the quality of the localized approximation. Here, we avoid
this prefactor by adapting the strategy from [HLM25] to the present setting. Note
that alternative strategies exist to avoid this prefactor, as detailed, for example, in
[HP22, DHM23, HMM23], and they yield quantitatively similar results in practice.
However, these approaches require the bubble functions from Lemma 3.4 not only
as a theoretical tool but also in the actual implementation. This is undesirable,
especially when the bubbles are difficult to construct, as for the Stokes problem.

As shown in Theorem 5.1, the piecewise constant pressure approximation p%;
closely matches the average of the exact pressure p on each mesh element, but
does not capture the fine-scale oscillations present in heterogeneous settings. To
address this, we introduce a post-processing step for the pressure approximation.
We start by introducing the operator Rf; that gathers fine-scale information about
the pressure. For an input v € V, this operator is defined by

(5.7) Rivi= Y &,
TETu

where &5 € XfiLT is the second component of the solution to (4.11). The post-
processed pressure approximation is defined by

(5.8) PR = By + P + it
where ﬁi}osc = Rf’,ﬂ%, and plo¢ € P+ (Ty) is defined on each T € Ty by
(5.9) (% f)lr = Vogele + ar,

with g7 € Q™(T) (cf. (3.4)) and [}, p}3°dz = 0. A high-order approximation result
for the post-processed presbure approximation is stated in the following theorem.

Theorem 5.3 (Post-processed pressure). For any f € H™T1(Q), we have
(5.10) lp = 55 lo S H™ | flmsr,0 + 97072 exp(—cO)| flla.

Proof. Consider a fixed element K € Ty. Testing (4.11a) with any w € (Hg(K))"
and summing the resulting equations over all elements T' € Ty, while recalling that
= R4, and pz % = REaYy, yields, for some ¢f € Q™(K), the identity

(5~11) ax (g, w) + br (w, 5™) = (w, 4 )k
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Next, we use the same test function w in the reformulation of the Stokes prob-
lem (3.2). Using (5.9) to expand the right-hand side and noting that for py = I1%p
it holds b (w, pr) = —pu|k [, V-wdz = 0 by the divergence theorem, we obtain

(5.12) ax (u,w) + bi (w,p — pr) = (f = Wi fow)x + (VP + ax, w) k.
Taking the difference of (5.11) and (5.12) and rearranging the terms yields

b (w,p — prr — 5> = Pi°) = ar (@l — u,w) — (G — ar, W) + (f — IF fw) k.

~0,08C loc

Applying Lemma 3.3 on the element K to the function pd := p—ppy — 57> —plse,
which has zero mean on K, noting that

/(p—pH)dx=/ﬁﬁ}°S°dm=/plﬁcdeO,
K K K

we obtain that there exists a function w € (HJ(K))™ such that —V - w = pf and
(G% — qrc,w)x = 0. Using the corresponding stability estimate ||Vw|x < [[p%f| &
together with the Poincaré-Friedrichs inequality |w| x < H||Vw| i, we obtain

deiffHK < HH’&’% —ul|x + HV('&% —u)llx + H|f = fllx -

Summing the latter inequality over all mesh elements K € Ty, and applying the
convergence results for the velocity approximation from Theorem 5.1 together with
standard approximation estimates for the L2-projection, yields

16 o S H™ 2 flmg1,0 + €970 exp(=c)|| flo -

To derive the desired estimate (5.10), we write p — pﬁpp = %p — p% + p8f and

apply the triangle inequality, combining the above estimate with (5.6). O

diff

6. FINE-SCALE DISCRETIZATION

In this section, we discuss the practical implementation of the proposed mul-
tiscale method, including the computation of the localized basis functions via a
fine-scale discretization of the local infinite-dimensional patch problems in (6.3).
Let 7, be a mesh of  fine enough to resolve all microscopic features of the co-
efficients, and let V;, C V denote the corresponding finite element space for the
velocity. We assume that the fine mesh 7, is compatible with the coarse mesh Ty,
in the sense that the restriction of 7, to any element T' € Tg, denoted T, (T'), forms
a valid mesh itself. For any T € Ty, let V,,(T') denote the restriction of V}, to T,
that is, Vi,(T) == {vn|r : vn € Vi}, and let Qn(T) C L?(T) be the associated local
pressure space. The global pressure approximation space is then defined by

Qn={an€Q : anlr € Qun(T), VT € Ty }.

We assume that the discrete spaces satisfy the following natural conditions. First,
the discrete velocity—pressure inf-sup condition should hold not only globally be-
tween the spaces V; and @y, but also locally on each coarse element T between
VAUT) = Vi(T) N HYT)™ and X, (T) = Qu(T) N L3(T), that is,

b
(6.1) inf sup MN ]
qn€Xn(T) v eV2(T) IVorllrllgn 7

Second, the spaces provide order k + 1 approximation for velocity and pressure:

Yo e HY@) N HHQ), inf (IV@ = w)lla+ 570 = onlle) S B olszn

Vg e L3(Q)NH*(Q), inf |l¢—anllo <P glkr10
qh€QnR
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This convention covers the two cases:

e Velocity—pressure pairs with a discontinuous pressure approximation, such
as the Scott—Vogelius pair Pckg 1/ Péfg, cf. [SV85]. For the barycentric refine-
ment of a mesh, both the global inf-sup stability and its local version (6.1)
hold for any polynomial degree k > 1; see, e.g., [GN18].

e Velocity—pressure pairs with pressure continuous on each coarse element,
closely related to the Taylor-Hood pair P /PE; cf. [GR86]. The global
pair V;,/Qy, allows discontinuities of the pressure across coarse elements
and is therefore not a standard Taylor—-Hood pair. Nevertheless, both the
global inf-sup condition for V4, /Qp and its local version (6.1) follow from the
stability of the local pairs V,(T)/Qr(T), which is guaranteed by standard
Taylor-Hood theory; we refer to Appendix B for a proof.

In both cases, the space Zj, a fully discrete counterpart of Z from (3.1) appearing
in the reformulation (3.2) of the Stokes problem, can be defined as

Zp ={vn € Vi, : b(un,qn) =0 Van € Xunt,
where the fine-scale discretized version of Xy is given by
Xun = {qn € Qn : Mgy =0}

With these spaces at hand, we can define fully discrete versions of the fine-scale
space W}, and the prototypical approximation space ZHﬁh, analogous to (3.17)
and (3.18), respectively. Moreover, a fine-scale discretization of the prototypical
method can be defined analogous to (3.22).

To define a fully discrete version of the localized method (5.3), the local patch
problems for the element contributions K% in (4.11) must be discretized. For this,
we introduce fully discrete counterparts of the spaces Vfi and X é;T in (4.11), namely

Vi =VENV, X4rn=Xbr N Xun

Having defined these spaces, a fully discrete version of the operator R’ from (4.13)
can be introduced, and the fully discrete basis functions can be constructed analo-
gously to (5.2). To make this definition suitable for a practical use, we reformulate
them taking into the account that the fully discrete localized basis functions should
have the same QOIs as the corresponding prototypical basis functions.

For example, the fully discrete basis function cﬁ% ;. associated with a face F' and
an index j € {1,..., J} should satisty, for all p € My,

C(Qb%,j,hvp-) = H/FpF,j/,LdO'.

To compute the fully discrete basis function @%J in practice, we first introduce
coefficients 6, € R" for each interior node z such that

Tu@p,n =Y 0:A.,

where A, denotes the standard (scalar-valued) finite element hat function associated
with the node z. The coefficients 6, can be directly obtained from the definition of
the operator Zy, which depends only on the normal face integrals of its argument.
Indeed, for any face E € Fi;, we have |E|~! I ¢§7j,h -ndo = 0grdj1. Although
the coefficients 6, depend on F' and j, this dependence is omitted for notational
simplicity (and likewise for the forthcoming functions 1/)%) n). The fully discrete
localized basis function, together with the corresponding pressure contribution (to
be used in the implementation of operator Rf, in (5.7), needed for the pressure
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post-processing), can then be computed as
(6.2) @F]h*ZQA + Z Vs 5F]h* Zme
TETH TETH

where (¢§",h7 5%,;7,,}\%) € Vfiﬁh X XH7T7h X MIK_LT solves the saddle-point problem

(6.3a) a(pp,wn) + blwn,&py) 4 c(wn,Np) ==Y, arp(fAs,wh),
(63b) b(¢§1,h7 Xh) = - Zz bT(ezAza Xh)a
(6.3¢) (v, M) = gr(W)

for all (wp, xn,H) € VTeyh X Xf;’T’h X MI’;)T, and

gr(W) =H [, krppjpudo —HY", fBT kA0, -npdo =3 [(0:A;) - pdx

with unit normal n: ¥ — R™ defined in (3.10). We emphasize that only a few
local problems of the form (6.3) need to be solved for each basis function. For
j = 1, the functions w% 5, are nonzero only for elements 1" sharing a node with F'.
Furthermore, for j > 1, they are nonzero only for elements 7" sharing the face F'.

For an element T' € Ty and index k € {1,..., K'}, the fully discrete basis func-
tions cpT k. and their corresponding pressure contrlbutlons ST k.p are computed
similarly, but more simply, since only one problem of the form (6. 3) must be solved
per basis function. Since IHcﬁék)h =0, both géfip)kﬁ and gf},,%h can be obtained by
solving (6.3) directly with 8, = 0 for all nodes z and gr(H) = fT pr.k - Hdz.

The fully discrete approximation space is then given by

Zﬁl,h ::span{(ﬁ%j,h : Fe]—"}q,jzl,...,J; <,5%,€7h T €Ty, k‘:l,...,K},

and the fully discrete multiscale method then seeks (ﬁfq,h, ﬁ%’h) € Zﬁ’h X Qm,
solving (5.3) with the corresponding notational changes. Its solution is given by

UHh— Z ZUF,7<10F]h + Z ZUTICQDTI@M

FeFj i=1 TeTy k=1

for some coefficients {ur ;}r; and {uri}r k. These coefficients can then be used
to compute the oscillatory pressure contribution, cf. (5.7)7(5.8) by setting

~€0507 Z Z“FJfth + Z ZUkaTkh

FeFi j=1 TeTy k=1

The post-processed pressure is then defined as the fully discrete analogue of (5.8):

~/,0sC loc

th '_th+th +p

For this fully discrete approximation, a convergence result analogous to Theo-
rem 5.1 is stated below, with the error measured against the fine-scale finite element
reference solution (up, pp) obtained from (2.3) using the pair V3, /Qp.

Theorem 6.1 (Fully discrete localized method). There exists v > 0 depending
only on the regularity of meshes Ty and Ty, such that the fully discrete version of
the localized multiscale method (5.3) is well-posed provided % < 7. Moreover, for
any f € H™Y(Q), we have the following error estimates:

(6.4) IV(un — @)l S H™ 2| flmira + B flro + 09702 exp(—c0) | £l o,
(6.5) lun — iy plle S (H + 097D exp(—c0)||V (un — @5y 1) llos
(6.6) lpn — D5l S H™ 2| flmsr.o + B fleo + 097D/ 2 exp(—ct) | f] -



A HIGH-ORDER LOD METHOD FOR HETEROGENEOUS STOKES PROBLEMS 21

The term h**Y| f|r.q in the above error estimates can be omitted if the fine-scale
discretization is divergence-free or if k > m + 1.

Proof. We recall that the proof of the error estimates in Theorems 5.1 and 5.3 boils
down to the following essential steps: the well-posedness of the saddle-point prob-
lems for the prototypical basis functions in Lemma 3.6, the error estimate for the
prototypical method in Theorem 3.8, the proof of the exponential decay in Theo-
rem 4.2, and the estimate of the error due to localization in Lemma 4.3. Examining
the proofs of these results, one realizes that they are all based on the existence of
bubble functions, as constructed in Lemmas 3.3 and 3.4. In order to transfer these
proofs to the fully discrete setting, one should thus first construct the discrete ana-
logues of these Lemmas. This is done in Appendix A, cf. Lemmas A.2 and A.3.
Using the fully discrete bubble functions from these Lemmas, one can directly re-
cast the proofs of Lemmas 3.6 and 4.3 and Theorem 4.2 to the fully discrete setting,
replacing the continuous functions spaces by their discrete counterparts.

It remains to adapt the proof of Theorem 3.8, i.e. to bound the error of the fully
discrete prototypical approximation @z j, against the fine-scale velocity approxima-
tion wy. For this, we revisit the proof of Theorem 3.8, setting e := up, — g 5. The
only modification in the proof occurs in (3.30), where we must account for V-e # 0
which is the case if the fine-scale discretization is not exactly divergence-free (oth-
erwise, the proof carries over unchanged). Thus, (3.30) becomes

Mgfe)a= > (dlre-n)p— > (¢r—¢rn V-e)r,

FeFi TETu

Here we could subtract any ¢ € Qn(T) since b(am,n,qn) = 0 for all gn, € Q.
Note that ¢ is a polynomial of degree m + 1, while ¢, is a piecewise polynomial
of degree k. Hence, the second term above vanishes if kK > m + 1.

Otherwise, proceeding as in the continuous case in the proof of Theorem 3.8 and
additionally choosing ¢7;, as a suitable interpolant of ¢, we conclude

(5 £, )l S H™ | flmiralVela + B> [érlkar ol Vel
TET

S H™" | flnrlVelo + P51 Y gzl r|Vellr
TeETH

S H™ 2| flmrra + B flra) [ Velo

This leads to the discrete analogue of Theorem 3.8. Putting all the above mentioned
ingredients together leads to the estimates (6.4)—(6.6). O

The error estimates in Theorem 6.1 are against the fine-scale finite element solu-
tion. To obtain an error estimate against the continuous solution to problem (2.3),
we apply the triangle inequality, together with the classical convergence result

IV(u—un)lle + Ip = prlle < 2° (Juliss.a + llplls.0),

where we make the regularity assumption u € H'**(Q2) and p € H*(2) for some
parameter 0 < s < k + 1. We emphasize that, for heterogeneous Stokes prob-
lems, the solution seminorms on the right-hand side may be large or the regularity
parameter s may be close to zero, leading to reduced convergence rates.

7. NUMERICAL EXPERIMENTS

In this section, we numerically investigate the proposed multiscale method.
For all numerical experiments, we consider the domain = (0,1)? and a hier-
archy of meshes generated by uniform red refinement of the initial mesh shown
in Figure 7.1 (left). For simplicity, the meshes in the hierarchy are denoted by
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FIGURE 7.1. Initial mesh 75-o for the mesh generation (left),
barycentric refinement of mesh 75-3, and multiscale coefficient used
in all numerical experiments (right).

T20,Ta-1, ..., where the subscript indicates the side length of the squares formed
by joining opposing triangles. We choose the viscosity coefficient v of the Stokes
problem (1.1) to be piecewise constant on the mesh 7. with € = 278, and we draw
its element values as independent uniform random variables in [0.1,1]. For ele-
ments whose midpoints lie within a distance 4e of some prescribed parabola, the
corresponding element values are set to 10; see Figure 7.1 (right). The damping
coefficient o is set to zero for simplicity. The source term is chosen as

fla,y) = (=y,2a") "

For the fine-scale discretization, we use the Scott—Vogelius pair Pfg‘" L/ P(’fg with
k =1 on a mesh obtained by uniform barycentric refinement of T5-s. Figure 7.1
(center) illustrates such a refinement using a rather coarse mesh for clarity. For
barycentrically refined meshes, the inf-sup stability of the Scott—Vogelius element
is guaranteed for any polynomial degree k > 1; see, e.g., [GN18]. Note that all
numerical experiments presented below can be reproduced using the code available
at https://github.com/moimmahauck/Stokes_HO_LOD.

7.1. High-order convergence. First, we study the convergence of the proposed
high-order multiscale method (5.3) under mesh refinement. To this end, we intro-
duce the following error measures for the velocity and pressure approximations:
erry g (H, 0) = ||V (up — ity )|, err, r2(H, ) = |lup, — @y p ||,
erry r2(H, l) = ||pn — ﬁfw}ﬁllﬂ, errr,p r2 (H,0) = |upn — by plle-
For the L2- and H'-errors of the velocity approximation, Figure 7.2 shows con-
vergence orders of m+2 and m+3, respectively, provided the localization parameter
is sufficiently large. Since the source term f is smooth, these convergence rates agree
with the theoretical predictions from Theorem 5.1. For a fixed localization param-
eter, we observe that, once the error reaches a error level, it stagnates as the mesh
is further refined. This error level is determined by the localization error for the
chosen localization parameter. The distance between these plateaus increases for
higher polynomial degrees, indicating that the localization properties of the method
improve with increasing polynomial order. This behavior is consistent with earlier
observations for elliptic diffusion-type problems; see, e.g., [Mai21, DHM23, HLM25].
In Figure 7.3, we observe that the piecewise constant pressure approximation
of the proposed method converges exponentially towards I1gpp, in agreement with
the theoretical prediction of Theorem 6.1. Note that the blue curves reach machine
accuracy for localization parameters £ > 3. This is because, for the corresponding
mesh size H = 27! and ¢ > 3, the patches on which the basis functions are defined
already cover the entire domain €2, so the exponentially decaying localization error is
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FIGURE 7.2. Error plots of the velocity approximation for polyno-
mial degrees m € {0, 1,2} (from left to right). For fixed localization
parameters ¢, the H'-norm (top row) and L?-norm (bottom row)
errors are plotted as functions of the coarse mesh size H.
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FI1GURE 7.3. Error plots of the pressure approximation for poly-
nomial degrees m € {0, 1,2} (from left to right). For fixed coarse
mesh sizes H, the L?-norm error relative to Ilgpy, is shown as a
function of the localization parameter £.

zero. In Figure 7.3, one also observes the improved localization properties obtained
by increasing the order m of the method. Note that for the dashed, exponentially
decaying reference lines, the decay rates increase as m becomes larger.

Figure 7.4 shows that the post-processing step yields a highly accurate pressure
approximation, despite originating from an inaccurate piecewise constant coarse-
scale approximation. The error levels and convergence behavior are, for all orders m,
comparable to those of the H'-approximation of the velocity, which converges with
order m + 2. This is consistent with the theoretical prediction of Theorem 6.1.

7.2. Comparison with lowest-order method from [HL25]. Finally, we nu-
merically compare the proposed method with the lowest-order multiscale method
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FIGURE 7.4. Error plots of the post-processed pressure approxi-
mation for polynomial degrees m € {0,1,2} (from left to right).
For fixed localization parameters ¢, the L?-norm errors are plotted
as functions of the coarse mesh size H.

107! T T T 1072

1072 =y AT 4 1074 4
P — -1

1078 gt - E 107t 1

-1l . ] 1077 F E

- 1079 ¢ E

1070 —a— H s e, (1) |
i 1051 ]

—A—H s err, g

107 F H o erry s ]
—A—H > e, 1079 E|
A H s erry,

1078 H s e, E 10-10 b ]
— - H HY,

1079 — - - ® . 101

10-9 L L L - I

FiGURE 7.5. Error plots for the lowest-order multiscale method
from [HL25]: velocity H'-error, velocity L?-error, pressure L2-
error with respect to Il py, and post-processed pressure L2-error
(arranged from left to right, top to bottom).

introduced in [HL25] for heterogeneous Stokes problems. We consider exactly the
same problem setup, including the domain, coefficient, source term, and meshes.
Note, however, that the fine-scale discretization differs: in [HL25] a Crouzeix—
Raviart method is used to this end. This difference does not affect the quantitative
behavior of the observed errors, since the error of the multiscale method is also
measured with respect to the fine-scale Crouzeix—Raviart solution.

The main difference between the multiscale method in [HL25] and the lowest-
order version of the present method (m = 0) lies in the choice of QOIs: [HL25] uses
edge integrals, whereas our method relies solely on normal face integrals; see (3.3).
This reduces the dimension of the approximation space by a factor of two in two
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dimensions. Despite this smaller space, the achievable error levels for large local-
ization parameters are comparable for both lowest-order methods; cf. Figure 7.5.
Their localization properties also appear to be similar.

For fixed localization parameters, however, the method from [HL25] exhibits the
issue that, after reaching a certain error level, the error increases again as the mesh
is further refined. This phenomenon is well-known in the LOD community (see
also Remark 5.2 and [MP14, Mai21]) and is caused by the rather naive localization
strategy used in these methods. In contrast, the more sophisticated localization
strategy employed here, relying on a quasi-interpolation operator Zg (cf. (4.2)) and
defining the operator R’ as a sum of element contributions (cf. (4.12) and (4.13)),
eliminates this effect. For the proposed method, the error stagnates as the mesh is
refined, once the localization parameter-dependent error level is reached.

Another improvement compared to the method in [HL25], which also appears in
the lowest-order case of the method proposed here, is the refined post-processing
strategy. In [HL25], post-processing consisted solely of adding the oscillatory term
ﬁ(Ec’é (see (5.8)) to the piecewise constant pressure approximation. As a result, as
proved in [HL25, Thm. 5.1], the post-processed pressure achieves only first-order
convergence; see Figure 7.5 (bottom left) for a numerical confirmation. In this work,
we prove that by adding an additional coarse, locally polynomial term, denoted
by p'°° in (5.8), the post-processed pressure can attain the same convergence order
as the H!-velocity approximation (see Theorem 5.3). In the lowest-order case
m = 0, this corresponds to second-order convergence.

ACKNOWLEDGMENTS

M. Hauck acknowledges funding from the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) — Project-ID 258734477 — SFB 1173.

APPENDIX A. PROOFS OF SOME TECHNICAL LEMMAS

Proof of Lemma 3.7. Note that if v € (H'(T))" satisfies [, v-ndo = 0 for all
faces F' C 9T, then [|[Vv||r = 0 implies that v = 0. More precisely, such v is a
constant vector satisfying v - n = 0 for all normal vectors n associated with faces
F C OT. Since we have at least n linearly independent vectors for each element T,
this implies that v = 0. This observation together with the Peetre-Tartar lemma,
cf. [EG04, Lem. A.38], and a scaling argument concludes the assertion. O

We now turn to the proofs of Lemmas 3.3 and 3.4. Both results follow as corol-
laries of the lemma stated below.

Lemma A.1 (Compliance with element constraints). For any element T € Ty and
any linear functional L: (P™(T))™ — R satisfying Lg = 0 for all g € G™(T), there
exists a local function vy, € (Hg(T))"™ such that V - vy, = 0,

(A1) /T’UL cwdr = Lw, Yw € (P™(T))",

and the following stability estimate holds:

(A.2) loclle + H|Vorlle SILI, Ll = sup [ Lwllz.
we@P™(T))" : |lw|r=1

Proof. First, we consider the two-dimensional case, i.e., n = 2, where the construc-

tion of vy, is based on the rotated gradient operator, defined as V* := (—=0,,0,)".

Specifically, let n € H(T) denote the classical polynomial bubble function associ-

ated with T', obtained as the product of the corresponding hat functions and scaled

such that n(z7) = 1 at the barycenter xr of T. We then make the ansatz

vp = V+(n’p)
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with the polynomial p € P™~(T) to be determined. This ansatz ensures that
V-vp =0on T and vy, = 0 on JT. Using the ansatz and integrating by parts,
condition (A.1) can be rewritten, for any ¢ € (P™(T))", as

(A.3) / n’pV* - wdr = —Lw.
T

We decompose the polynomial space as (P™(T))" = G™(T) @ (G™(T))*, where
(G™(T))* denotes the L?(T)-orthogonal complement of G™(T). Since for any
q € G™(T) it holds that V* - ¢ = Lq = 0, it suffices to verify equation (A.3) only
for ¢ € (G™(T))*. It was shown in [VBMR15, Eq. (2.7)] that the operator V+- :
(G™(T))*+ — P™~1(T) is an isomorphism. Denoting its inverse by J: P~ 1(T) —
(G™(T))*, we can then equivalently rewrite equation (A.3) as

(A4) / n*prdez = —LJr,
T

for all r € P™~1(T). The left-hand side of this equation is a weighted L?(T')-inner
product and, therefore, the Riesz representation theorem ensures the existence of
a unique p. Using the equivalence of norms in finite dimensions and a scaling
argument, we obtain, after testing equation (A.4) with p, that

Iplle S WL T2z -2 S HIL-

Using a classical inverse estimate for polynomials, the stability estimate (A.2) for
vr, = V1 (nZp) can be concluded.

In the three-dimensional case, i.e., n = 3, one proceeds similarly, but using the
curl operator instead of the rotated gradient. Specifically, we make the ansatz
v, = V X (n°p), where n € Hi(T) is the classical polynomial bubble function
associated with T, scaled such that n(zr) = 1 at the barycenter xr, and p is a
polynomial in D"~Y(T) := {v € (P"~Y(T))? : V-v =0}. According to [VBMR15,
Eq. (2.9)], the curl operator is an isomorphism from (G™(7T))* to D™~1(T), and
the equation for p € D™~ 1(T) can be written for all w € (P™(T))" as

/n%p-wadx:Lw,
T

which allows us to conclude the proof as in the two-dimensional case. O

Proof of Lemma 3.3. For the proof, we use an element-local version of Ladyzhen-
skaya’s lemma. That is, for any T’ € Ty and any q € L*(T) with [ ¢dz = 0, there
exists v € (H}(T))™ such that V-v = ¢ and ||Vo||r < ¢z, where the hidden con-
stant depends only on the shape regularity of the mesh. This result can be derived,
for example, from [BCDG16], where the shape-dependence of the Ladyzhenskaya
constant is investigated. We further define a linear functional L: (P™(T))" — R
by setting Lr = [, v -rdz for all € Q™(T), and L(G™(T)) = 0. Using prop-
erty (3) of Assumption 3.1, we obtain, for any polynomial p € (P™(T))", with the
decomposition p = r + g into r € Q™(T') and g € G™(T),

(A.5) ILpllr = [ Lrllr < plz llvlle S Hlplz gl
where we used the Poincaré-Friedrichs inequality locally on T'. Finally, we define

vy =v—vr, where vy, € (Hj(T))™ is given by Lemma A.1. Thanks to (A.5), which
gives an estimate for ||L||, cf. (A.2), the function v, has the desired properties. O

Proof of Lemma 3.4. Let us first construct the element bubble functions by satis-
fying (3.14) and (3.15) for a given gr € Qm( ) To this end, consider the linear
functional L: (P™(T))" — R efined by L(q) = [, gr - qdx for ¢ € Q™(T) and
L(G™(T)) := 0. Using property (3) of Assumptlon 3.1, as in the preceding proof,
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we obtain the bound ||L|| < |lgr|lr, where we recall the definition of the opera-
tor norm ||L|| in (A.2). We then set br to be the function vy, € (H}(T))" from
Lemma A.1, extended by 0 outside 7. This construction ensures that by satis-
fies (3.14) and (3.15), and its divergence vanishes, so that by € Z.

Next, we construct the face bubble function bp satisfying (3.12) and (3.13) for
a given gp € P™(F). Let bl. € H(wr) denote the classical piecewise polynomial
bubble function on F, scaled so that 0z (zr) = 1, where zp is the barycenter of F.
By the Riesz representation theorem, there exists A € P™(F) such that

(A.6) / ’F)\,udaz/gpﬂdo
F F

for all u € P"™(F'). By scaling, we have ||b% A||r < |lgrllp. Extending A from F'
to wr as a polynomial constant in the direction normal to F', and multiplying the
extension by b, we obtain a piecewise polynomial function vy € H} (wr) satisfying
vp = bp XA on F. A scaling argument then shows that ||[vp|lw, + H||VUF|wyr S
H'?||gp| r. Finally, the desired face bubble function bz is defined locally on the
two elements T, s € {1, 2}, that compose wp as

br

with nr denoting the normal chosen on F'. Here, by, are the element bubble func-
tions constructed above, associated with Ty and corresponding to gr, € Q™(T)
such that [ gr. - pde = [, vpnp - pda for all p € Q™ (Ty). Moreover, vy 1, €
(H}(Ts))™ are the local Ladyzhenskaya-type bubble functions on each Ty, con-
structed in Lemma 3.3 with ¢ = V - (vpnp) — ‘T—ll fTs V - (vpnp)dz. Tt can be
readily verified that this by satisfies the desired properties (3.12) and (3.13) and
has piecewise constant divergence with respect to the mesh Ty, i.e., bp € Z. O

T, = vp|T,nF — br, — V4,1,

We now turn to the fully discrete analogues of Lemmas 3.3 and 3.4. Note that
the constant v appearing in the lemma below is the same as in Theorem 6.1.

Lemma A.2 (Fully discrete Ladyzhenskaya-type bubble). Assume that % <~ for
some constant v > 0, depending only on the regularity of the meshes Ty and Ty,.
Then, for any T € Ty and any qn, € Qn(T) with fT gndx = 0, there exists vqp €
Vi(T) N (Hy(T))™ satisfying br(vgn, xn) = [7an xndz for all x, € Qu(T) and
J7rvgn -pdz =0 for all p e Q™(T), and the following stability estimate holds:

IVvgnllr < llgnllr-

Lemma A.3 (Fully discrete bubble functions). Under the same assumption as in
Lemma A.2, for any F € Fi; and any gr € P, (F), there ezists a fully discrete
facce bubble function bry, € Z, N (HE (wr))™ such that, for all W € My,

(A7) c(bpp ) = H / grpdo,
F

and
lbrpllr S H llgelle,  IVOrllwr S H V2 llgrlle.
Similarly, for any T € Ty and any gr € Q™(T), there exists a fully discrete

element bubble function by, € Zp N (HL(T))™ such that, for allp € My,

(A.8) c(br,n, 1) = / gr - pdz,
T
and
(A.9) lor.nlr < llgrlr, IVbranlle S H 'erlr

Before proving the two lemmas above, we first establish a specific local inf-sup
condition, from which they follow as corollaries.



28 M. HAUCK, A. LOZINSKI

Lemma A.4 (Local inf-sup result). For any T € Ty, there holds

(A.10) inf  sup (vn, ) >

g (1) vnezg(r) (vnllz + H2[Vonli7) 2 lglle ~

where Z) == Zp N (H(T))".

Proof. For any ¢ € Q™(T), there exists, thanks to Lemma 3.4, an element bubble
function by € H}(T)™ satisfying V - by = 0 on T, (br, q)7 = ||q||%, and

Ibrllz + H|[Vbrllr + H[brl2r < llallr-
The estimate for |br|2 7, although not stated explicitly in (3.15), follows directly
from the construction of by. Denoting VX(T) = Vi, N (H(T))™ and X,(T) =

Xunlr, we construct a fine-scale discrete version of by by solving the following
Stokes-like problem: seek (vp, ) € V,P(T) x X3 (T) such that

(A.11a) (Vop,Vwp)r — (e, Veowp)r = (Vbr, Vwr)r,
(Allb) (qh, V . ’Uh)T = 0
for all (wp,qn) € V2(T) x X,(T). Note that this problem is well-posed thanks to

the assumed inf-sup condition (6.1). Then, by standard approximation theory for
Stokes problems, cf. [GR86], we obtain the error estimate

lon = brllz S B2[brler S h2H 2| ql|r-
If we now choose the constant v so that the hidden constant in the previous in-
equality equals ley then, using the assumption % < 7, we obtain
(0n @)1 = (br, @) = llbr — onllr lallr > 3 lallF-
Testing (A.11a) with v, gives the stability estimate ||Vuy || < ||Vbr||7. Using this
bound, we immediately obtain
(lonliF + H*|[Vor|3)"? < H|[Vorllr S HI[Vbrlr S llallr,
and inf-sup condition (A.10) then follows noting that v, € Z2(T). O
Proof of Lemmas A.2 and A.3. Let us first construct the element bubble functions
bry € Z)(T) on any T € Ty, as announced in Lemma A.3. Given gr € Q™(T),
we define (brp, A) € Z)(T) x Q™(T) as the solution to
(brp,vn)r + H*(Vbrn,Vu)r + (op, N7 = 0,
(b1,ns )T = (gr,u)r
for all (vp,p) € Z)(T) x Q™(T). Note that this saddle-point problem is well-
posed thanks to the inf-sup condition (A.10). Moreover, standard inf-sup theory,
cf. [BBF13, Cor. 4.2.1], implies the stability estimate (A.9). Extending by by 0
outside T then gives the desired fully discrete element bubble function.
Let us now construct vy, € V2(T) as announced in Lemma A.2. Given T € Ty
and g, € Qn(T), we define (v] ,, &) € V)(T) x X4 (T) as the solution to
(A.12a) (VU;)h, Vwp)r — (&, V - wp)T = 0,
(A.12b) (xXn, V-0 )1 = (Xnqn)r
for all (wp,xn) € VP(T) x X4(T). This problem is well-posed thanks to the as-

sumed inf-sup condition (6.1). Moreover, standard inf-sup theory, cf. [BBF13,
Cor. 4.2.1], implies the stability estimate ||[Vo! 7 < llgnllz. Let brn € ZY(T)

~

be the element bubble function constructed as above for gr € Q™(T') such that
(g7, )7 = (v} 4, p)7 for all p € Q™(T). Then, we obtain

IVorplle < H  igrllr < H g allr < 1V a T,
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where we have used the stability estimate (A.9) and the Poincaré-Friedrichs in-
equality on 7. The function defined by vy = v, — br,, then satisfies all the
properties stated in Lemma A.2.

Finally, the fully discrete face bubble function brj; from Lemma A.3 can be
constructed analogously to the continuous case in Lemma 3.4, using the previously
defined fully discrete element bubbles bz and the fully discrete functions v,
supported on the two mesh elements adjacent to F. O

APPENDIX B. INF-SUP STABILITY OF MODIFIED TAYLOR-HOOD

Lemma B.1 (Modified Taylor—-Hood). The finite element pair V;,/Qy,, with Vi, =
{vn € (H3(Q)" : vplx € PFY(K) VK € Tp} and Qn = (®re7,, Qn(T)) N LF(Q)
with Qn(T) = {qn € HYT) : qu|x € P*(T) VK € Ti(T)} on each coarse element
T € Ty, satisfies the following inf-sup property:

b
inf sup (n, Pn)

__OWnPr)
pneQn unevi, [IVurllallpalle

Proof. Take any p, € Q and decompose it as p, = pY + p, with p) € Xy, and
pn € PO(Ty). By the inf-sup stability of the pair V3, (T)/Qn(T) on each T € Ty,
and recalling that [ p}) dz = 0, there exists v{ € V,(T) such that

Whovn)r = Ioallz, Vil S llphllr

with the hidden constant related to the inf-sup constant of this finite element pair,
which depends only on the regularity of the fine and coarse meshes (through the
shape of T'). We define 1)2 € Vj, such that 02|T = vg for every T € Tg.

To handle p,, we first recall that there exists v € (Hg(2))™ such that V-v = p,
and ||Vvlla S ||prlla- Let o, € Vi be a suitably chosen interpolant of v (to be
constructed) such that [, o do = [, vdo on every interior facet E of the coarse
mesh Tg, and ||[Vip|la < |[Volla S ||P)|lo. Then, on every element T € Ty,

br (Ph, Un) Zﬁh|T/ 17h'n=ﬁh\T/ v-n=|pnllF.
aT T
Let vp, = v} + A\vp,, where A = sgn (b(p%, @;L)), with the sign function sgn(-). Then,

b(ph,vn) = b(p) + P, vy + Aon) = [IpAl1& + AIDrllE + Ab(ph, 0r) > llpnlld-
We also have

1o S lIphlle + IBnlle < llonle,

which implies the announced inf-sup inequality.

It remains to construct an interpolant v, € Vj, for v € H ()%, which preserves
the integrals on the faces of the coarse mesh and satisfies |vpl1.0 S |v]1,0. We
describe this construction in the two-dimensional case (i.e., n = 2). We start from
the usual Clément-type interpolant Iv € Vj,, which satlsﬁes IVIvlg S IVU|lwk
and v — Iv||g < VA | Voll., on any fine mesh element K € 7Tj, and any interior
edge I of the fine mesh 7. Let £y denote the set of edges of 7, lying on an
edge of the coarse mesh 7y. For any E € £, let ¢ € V), denote the piecewise
quadratic polynomial on 7; equal to 1 at the midpoint of E and vanishing at all
other edge midpoints and nodes of the fine mesh. We set

— Iv)d
oy = Ipv + Z fE w)do

E
do
EcEun ‘fE £
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so that [, ¥pdo = [Lvdo for all E € £y . Note that 7, € Vj, since the finite
element space is of at least quadratic order. Moreover, we also have

IVORlla S IVInolla+ D IVel2, IVesll, SIVela+ D IVoll2, S IVelg.
EegH,h EegH,h

Thus, the interpolant v, has indeed the announced properties.

The proof in the three-dimensional case (i.e., n = 3) is similar for polynomial
degrees k > 2. In that case, it suffices to replace the quadratic functions ¢. by
cubic functions associated with the barycenters of faces in £x . The construction
for n = 3 and k£ = 1 is more involved, since the cubic functions are no longer
contained in V},. Nevertheless, the desired properties can still be achieved using
suitable combinations of quadratic basis functions associated with edges rather
than faces. We omit the details of this more tedious construction. O
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