ﬂ(IT \/ya\/e phenomena

Karlsruhe Institute of Technology ana I YS | San d numer | CS

A non-iterative domain decomposition time
integrator combined with discontinuous
Galerkin space discretizations for acoustic
wave equations

Tim Buchholz, Marlis Hochbruck

CRC Preprint 2025/51, October 2025

CRC 1173

phenomena

KIT — The Research University in the Helmholtz Association DI:

mmmmmmmmmmmmm
nnnnnn



Participating universities

4

UNIVERSITAT

Universitat Stuttgart

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Funded by

VFG

ISSN 2365-662X



A non-iterative domain decomposition time
integrator combined with discontinuous
Galerkin space discretizations for acoustic wave
equations

Tim Buchholz[0009700007038970983] and
Marlis Hochbruck[0()00—0002—5968—0480]

Abstract We propose a novel non-iterative domain decomposition time integrator
for acoustic wave equations using a discontinuous Galerkin discretization in space.
It is based on a local Crank-Nicolson approximation combined with a suitable
local prediction step in time. In contrast to earlier work using linear continuous
finite elements with mass lumping, the proposed approach enables higher-order
approximations and also heterogeneous material parameters in a natural way.

1 Introduction

We construct a novel non-iterative domain decomposition time integrator for acoustic
wave equations which uses a discontinuous Galerkin (DG) space discretization.
Employing a DG discretization offers two key advantages. First, it easily allows us to
use higher-order polynomials on the mesh elements and second, it works very well for
spatially varying material parameters, e.g., piecewise constant material coefficients
modeling composite materials. The construction is inspired by the work of [2, 6] for
parabolic problems and [3], where we proposed and analyzed this method for linear
acoustic wave equations using a space discretization based on linear finite elements
combined with mass lumping.

The linear acoustic wave equation is posed on an open, bounded, and polyhedral
domain Q ¢ R? with a non-empty Dirichlet boundary I', € dQ and Neumann
boundary I'y = dQ\T'p. The material coefficient x € L*(Q) satisfies @ < k(x) < 8
almost everywhere for some constants @, 8 > 0, and may in particular be piecewise
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constant. Let Lu = V - (kVu) be the differential operator applied to a function u
in the domain D(L) = H'(Q) N {u € L*(Q) | Lu € L*(Q) }. Given initial data
u® € D(L) and v° € H'(Q), the linear acoustic wave equation is given by

ou=vo, ov=Lu+f, inQx(0,T] (1a)
u(x,0) =u’(x), v(x,0) ="%), nQ (1b)
u=g, onI'p x (0,7T] (1c)

Opu =0, on 'y x (0,T] (1d)

where T > 0 denotes the final time. For the inhomogeneity f we assume
f € C([0,T], H'(Q)). However, the precise necessary conditions on g to get well-
posedness of the problem are quite delicate, and lie outside the scope of this work. We
just demand g € C%([0,T], C>(T'p)), which is sufficient to lift the problem into one
with homogeneous mixed boundary conditions. Moreover, we assume compatibility
of g at the transition between I'p and I'y, as well as MO’FD = g| (0

The remainder of the paper is structured as follows. In Section 2, we review
relevant preliminaries, including the space discretization, global time integrators,
and cell extensions within a mesh. Section 3 presents the construction and details of
the proposed domain splitting method. In Section 4, we highlight some key aspects to
be considered for an efficient implementation. Finally, Section 5 presents numerical
experiments that demonstrate the method’s performance.

2 Preliminaries
2.1 Discretization in space

For the spatial discretization, we consider a shape- and contact-regular, matching
simplicial mesh 7, = 75, () of the domain Q, cf. [8, Definition 8.11]. We denote by
Frn = Frn(Q) the set of all mesh faces, decomposed into the set of boundary faces
7—';’“‘1 = ﬁb“d (€2) and the set of interior faces ﬁim = 7—7;'“ (). Further, we assume that
0Q is the distinct union of the Dirichlet boundary I'p and the Neumann boundary
I'y and that all faces are contained either in I'p or in I'y. The wave propagation
speed « is piecewise constant, and the mesh 7, is matched to «, i.e., |, is constant
for every element K € 7},. For each element K € 7}, let hg denote its diameter and
h the maximal element diameter in the mesh.
For any subset 75, C 7}, of the mesh, we define the corresponding spatial domain
as R R
Q = dom(7;,) = int U KcQ. 2)
Ke 7’;

If a domain Q Ais defined in this way as a union of cells, then the set of mesh elements
belonging to Q is denoted by
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T(@) ={K e | Kc Q).

We further denote by Th(ﬁ) the set of all faces in ﬁ(ﬁ), which we split into the
interior faces ¥, mt(Q) and boundary faces F, bn‘J‘(Q) The Dirichlet and Neumann

parts of the boundary of Q are denoted by I'p and Ty, respectively. Analogously,
for a generic interface T we denote its associated set of faces by ﬂ(F) C Fn.

Next, we introduce the discrete function spaces. For each element K € 7y, let
Py (K) denote the set of all polynomials in d variables of total degree at most k. The
associated broken polynomial space on a domain € is then defined as

PP (Th(Q)) = {wn € L"(QR) | ¥n|, € Pr(K), VK € T(Q) }.

This broken space serves as the approximation space in the discontinuous Galerkin
method, allowing discontinuities of the functions across element interfaces. We
denote the standard L? inner product on Q by

( )ﬁ = (, ’)LZ(Q)'

The corresponding L? projection Ilg : L2(Q) — Pf(‘i;,(ﬁ)) is defined for any
¢ € L*(Q) by _
(Mg¢ = 6. ¥n)g =0, Vo € PL(Th(Q). 3)

We follow the symmetric weighted interior penalty (SWIP) approach as described in
[7, Section 4.5.2.3], where jumps are denoted by [ ]| and weighted averages by {-} ¢
with weights defined as in [7, Definition 4.46]. The corresponding SWIP bilinear
form on Q is denoted by ag( -) and induces the associated SWIP norm ||- ||2 ~, see

[7, eq. (4.69)]. In this context, we also recall the definition of the local 1ength scale
hr, cf. [7, Definition 4.5], the x-dependent penalty parameter y, r introduced in [7,
below eq. (4.64)], and the penalty parameter n > O. _ _

We now introduce the linear operator '£h,§ : SD]‘(’(’EL(Q)) — P;(’ (7,(L)) associ-
ated with the SWIP bilinear form. It is defined by

(L, 00n.¥n)g = ag(bn¥n),  Von v € P (Th(Q)). )

For the case Q = Q, we write simply L, = Ly q. For the treatment of inhomoge-
neous Dirichlet boundary conditions we refer to [7, Section 4.2.2]. Specifically, the
boundary data g on a set of faces [is weakly enforced by an additional term on the
right-hand side of the discrete problem: We thus define

(Gr(8)-¥n)g Z ny”/g:,phda—/FgKvwh.nda, )

Fe7, (D)

forall ), € 7),1(’ (Tn (SA!)) We abbreviate Gr(g") = Gr(g(t,)) foragivent, € [0,T].
The initial values and the right-hand side are approximated using the L? projection
onto the broken polynomial space. Specifically, on a domain Q we set
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WO = Hﬁuo,

"o 0 =Ti50°, Fra(®) =g f(1). (©)

v
h,Q

Whenever the domain is clear from the context, we omit the subscript ﬁ, and we
also abbreviate f}' = f, 5(t,) for a given t, € [0,T]. With these definitions, the

semi-discrete problem in 50;(’ (Tn (ﬁ)) X Pf (T (ﬁ)) reads

Up\ _ 0 1 up 0 0
o () - (1: 0) () * (fh,am) * (g <g<r>>) ' @

2.2 Time integrators on o

We consider a generic subdomain Q and a given time-step size 7 > 0 with
t, = nt, n=0,...,Nr, T =Nrt.

Starting from the semi-discrete problem (7), we present two standard second-order
accurate time integration methods to obtain full-discretizations on Q x [0,T]. As
described in Section 2 the boundary data g(t,,) is incorporated weakly through the
operator QFD defined in (5). The Crank-Nicolson discretization of (7) is given by

= w4 S (0 o), (8a)
T T
oyt = v = 5 L g )+ S (1) (8b)

+3 (61, (8" + 1, (8")-

Moreover, we also consider the leapfrog method, which reads

1/2 T T T
v =0 = 5L, g+ S £ + 567, (8") Ga)
”ZH =up + TUZ+1/2 ©b)
12 T T T
o = S L T 4 S+ 56, (6. 0

In the discontinuous Galerkin setting, the leapfrog method has the advantage that
the resulting mass matrix is block-diagonal. There, each block in the mass matrix
corresponds to the degrees of freedom in a single cell K € 7j,.
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Fig. 1 Extension A3 (Q) b SOANNNNNNNAL
4 i 2 laye:s Zfo a sul?)domaii]l ‘VAVAVAVAVAVAVAVAVAV;
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2.3 Cell extensions

To define overlapping subdomains and cell neighborhoods, we introduce the concept
of cell extensions. For a given subdomain © c Q and a fixed integer £ > 1, we define
its extension by ¢ layers of neighboring cells recursively as

No(Q) = Th(Q),

—~ -~ — _ (10)
Ni(Q) ={KeTh(Q) | 3Ky e N;_1(Q) : KNK,#0},
for j =1,...,¢, see also Figure 1. Similarly, for a generic interface f, we define the
interface cell extension as
NT) ={KeT(Q) |IF, e Fu(T) : KNF, 0}, (11)

which contains all elements which share a face or a corner with T.

3 Domain splitting method

To construct our new method, we first decompose the spatial domain € into J
distinct, non-overlapping subdomains €2;, i.e.

I
§=U§i, QNQ;=0 fori#j. (12)
~

4

Based on the definitions (2) and (10), we then introduce overlapping subdomains Qf
by extending each Q; with ¢ layers of elements

Qf i=dom N, (Q;), i=1,...1. (13)

Similarly, using (11), we define domains based on the cells around the interface
Ff = 6Qf k9
Qf ;=domN(IY), i=1,...1, (14)

which we will refer to as prediction domain for the interface Ff of Qf. An overview
of this subdomain notation is given in Figure 2. Let § be the minimal physical width
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Fig. 2 Overlapping subdomain Qf (left, dark and light red area) and prediction domain Ql{’i (right,
yellow area). The interface Ff is shown in dark red in both pictures.

of the overlap Q" \ Q;, which satisfies 6 ~ £h, given the underlying mesh 75, is
shape- and contact regular. We denote by Ff the portion of the boundary of Qf
that coincides with the Dirichlet boundary of Q. ie.,

4 _ —
Iip=IpNnQ;.
Next, we describe the construction of the domain-splitting approximations
un
n
Xpg = (UEDS)’ forn=0,...,Nr. (15)
For the initial values we use L? projections
uODS = u% = HQI,{O, U%S = 02 = HQUO. (16)
Note, that we can also replace this by local L? projections on the subdomains
0 _ 0 _ 0
“Ds|§f = (HS!“ )|§f’ = HQf” ’

since we are using a discontinuous Galerkin discretization. Given an approximation
xgs at time #,,, the method advances to the next time step as described below:
First, we loop overi = 1, ..., 1 and perform for each subdomain:

Prediction on strip Q. . of the interface I'f

A leapfrog step is carried out on Q" ; to compute an approximation ut+l;

1/2 T T T
U:"’ / = vIrSS|*[ ) - _Lh Ql’ »Mgs|§f—"i + Ef;:’ﬁl{l 2 [‘)mg (gn) (173)
utl = ”Ds|4 + Tv"+l/2 (17b)

Using u”*! we define a boundary term Gre (fu "+1}) on the interface I'¢.
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Local calculation on Qf

On Qf , we perform a Crank-Nicolson step in which the interface and boundary data
are weakly imposed. This results in a boundary term of the form

Gorth = %(gr; ") + Gre | (8" + Gre (Qups}) + Gre | (g")). (18a)

n+l

. . . . = .
The resulting subdomain approximations x/'** on €; are then given by

M:Hl — ugs|§f + %(U;Hl + U]gs’ﬁf)’ (18b)
opt! = Ugs'aj - %Lh,gf (uf*! + ”gs|§f) + %( i +fi:l)|§f + QS?I" (18¢)
The two steps (17) and (18) are independent for each i = 1, ..., and can thus

be performed in parallel across all subdomains. Then, after completion of the loop
over all subdomains we exchange data among neighboring subdomains:

Exchange approximations in overlap regions

If two subdomains ;, Q; are adjacent, i.e., S;; = Qf N Qj. # (0, then the local
approximations are exchanged across the overlap. For the efficiency, it is important
that this does not require global communication. Specifically, we replace

n+l

n+l n+l
X _ X = .
S,’jﬂQ{ y ! S[jﬂQ[

n+l
i Si_,'ﬂQj y J and i

X —
S,’jﬂQj J

We store these updated values in

n+

1 n+l
XDs |§‘" and  xpg |§l’ii
locally on each subdomain fori = 1,..., 7 for the next time step.

These local updates are equivalent to assembling the global approximation via

I
n+l ._ n+l
*ps '—in |§,-’ (19)

i=1

but it is not necessary to act globally here. Moreover, unlike in the mass-lumped finite
element setting (cf. [3]), no averaging at the non-overlapping interfaces is required.
We summarize the method in Algorithm 3.1.
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Algorithm 3.1 Domain splitting for DG discretizations (one time step)

{given x[ig |§,[ and x[g |§[f ,- }
fori=1:7do '
{on each subdomain}
calculate prediction u’*! by leapfrog step (17) on Qfﬁj

calculate xlf’“ by Crank-Nicolson step (18) on Qf with boundary term g;;;'l’" (18a)
end for
update overlap regions with values from x?*' |§_ yi=1,...,1
n+l n+l '

— prepare xpe | and x5 o for the next step
i i

{only if desired build a global approximation xggl on Q by (19)}

4 Implementation

The method is implemented within the FEniCSx framework [1], using its PETSc
interface via petscd4py [5]. The global mesh is generated with Gmsh [9], which is
subsequently partitioned into non-overlapping subdomains using PT-Scotch [4], cf.
Figure 6. For each subdomain, we construct the corresponding local meshes of the
overlapping subdomain Qf and the leapfrog prediction domain QI‘:J, as illustrated in

Figure 2. The implementation is consistently based on these local meshes 77, (Qf) and
N (Ff), while direct access to the global mesh 7;,(Q) is avoided whenever possible.

Communication between subdomains is performed using point-to-point MPI rou-
tines. Since a subdomain can only communicate with one neighbor at a time, the
exchanges must be organized into rounds in order to avoid deadlocks. To structure
these rounds, we construct a weighted undirected graph whose nodes correspond
to subdomains and whose edges represent the messages (value exchanges) between
neighboring subdomains; the weights encode the number of values to be transmitted,
see Figure 3.

Fig.3 Example for a weighted
undirected communication
graph for 7 = 6 subdomains.
Weights correspond to the
number of values, which need
to get exchanged between two
subdomains.

The sequence of communication rounds is determined by a greedy algorithm with
two objectives: minimizing the total number of rounds and balancing the message
sizes within each round. To this end, the edges are first sorted by message size and
then by the maximal node degree (i.e., the largest number of edges incident to either
endpoint). Rounds are then built by selecting edges from the front of the sorted list,
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ensuring that no node appears more than once per round. This procedure yields a
communication schedule that is both efficient and well-balanced.

For the example graph in Figure 3, the algorithm produces the following sequence
of communication rounds:

(3,5,130), (2,4,90)
(1,3,120), (4,6,85)
(3,4,100), (5,6,110), (1,2, 100)
(4,5,20), (2,3,15)
(1,4,10),  (3,6,10)

hn AW N =

Here, a tuple (i,7,M) denotes an exchange of M values between subdomains i and j.

The exchange of values in the overlap regions requires particular care in the
implementation. To organize this process, we construct a dofmap that associates
local DoFs with their corresponding global DoFs in 7,(Q), see Figure 4. This

Fig. 4 For each local mesh
we build a *dofmap’, which

maps the local DoFs to the index 0 1 2 3 4
global DoFs in 7, (€2). Here l

the index denotes the local

DoF, while the value stores value 121 128 122 125 124
the global DoF. Note, that the

size of the map is only related

to the local mesh. local-sized array

mapping allows us to identify exactly which DoFs in a subdomain require updated
values from which neighbor. Moreover, it enables us to directly relate the DoFs of
one subdomain to the DoFs of another subdomain, so that the communication can
be set up locally and efficiently between neighboring subdomains.

These preparatory steps — global meshing, partitioning, dofmap setup, and
scheduling — are carried out once in a preprocessing phase. During the actual sim-
ulation, communication then proceeds directly between neighboring subdomains,
without any further global operations on 7, (£2), except when a global reconstruction
as in (19) is explicitly required.

5 Numerical experiments

We simulate the propagation of a linear wave crossing a triangular inclusion, rep-
resenting the cross-section of a prism, in two dimensions. The example features a
spatially varying coefficient x(x) and mixed inhomogeneous boundary conditions.
The computational domain is Q = [0, 8] x [0,4] c R?, with a piecewise constant
coefficient « taking values «; = 1.0 inside of the prism and «, = 1.5 outside, corre-
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sponding to a refractive index of 1.5 which is typical for glass. An inhomogeneous
Dirichlet condition is imposed on the inflow boundary I'p = 6Q|x=0 to generate an
incoming wave of frequency w = 0.0125,

glx,y, 1) = Sin(é)W(y),

where W € C2(R) satisfies W(y) = 1 for y € [1,3] and W(y) = O for y €
[0,0.5] U [3.5,4.0]. Homogeneous Neumann conditions d,u = O are applied on
I'y =0Q\TIp.

The mesh 75, (Q) is generated in Gmsh [9] with a local refinement (factor 2)
around the prism and partitioned into eight subdomains using PT-Scotch [4], cf.
Figures 5 and 6. The simulation runs over [0, T] with T = 3.0.

Fig. 5 Example grid on
[0.8] x [0, 4] for the prism
example with quite coarse h.
Red area «(x) = k;, white
area K = K,,. Dirichlet bound-
ary I'p (green) and Neumann
boundary I'y; (blue). For sim-
ulations much finer & were
used.

Fig. 6 Mesh from Figure 5
partitioned into 8 non-
overlapping subdomains using
the PT-Scotch partitioner [4].
The red area depicts the prism,
where «(x) = ;.

AVAVAYAVAS
ORI
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SVAVAVAVAVAY

To evaluate the accuracy of the domain splitting method, we compare its results
with a reference solution obtained from a leapfrog simulation on a refined mesh
with 1,163,020 cells. A DG discretization with polynomial degree p = 2 yields
6,978,120 DoFs per component for the reference mesh. The domain splitting method
is applied on a coarser mesh with 812,298 cells (4,873,788 DoFs per component,
hmin = 0.00446) using 8 subdomains. We consider different overlap parameters
¢ € {2,4, 8}, denoted by DS;, DSy, and DSg, respectively. For comparison, a global
Crank-Nicolson (CN) simulation is performed on the same mesh. The relative L>-
error of the u-component, [lups — will;2(q) /Il ;2 (@) measured at T = 3.0, is
shown in Figure 7.

Next, we compare the domain splitting approximation directly to the global Crank-
Nicolson (CN) solution. Both methods are run on the same mesh with 4,873,788
DoFs and Ay, = 0.00446. For the CN reference, we employ a Cholesky decomposi-
tion (chol), while the domain splitting systems are solved iteratively using a conjugate
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Fig. 7 Relative L2-error of u at final time T = 3.0 for the domain splitting method (DS;) with
different overlap parameter £, compared to a reference leapfrog solution on a refined mesh. The
Crank-Nicolson method (CN) is shown for comparison.

gradient (cg) method preconditioned with an incomplete Cholesky (icc) factoriza-
tion. For this problem size, no speedup was observed when solving the global CN

system iteratively. The relative difference between both solutions is measured in the
combined ||-[|4,q X ||l 12(q) norm; see Figure 8.

Fig. 8 Difference of domain
splitting approximation to
Crank-Nicolson approxima-
tion at the end time 7 = 3.0.
We measure the first compo-
nentin |||, o and the second
component in ||-|| .2 (q)-

relative difference to CN

0 —-©-DSg —e— DSy DSy ------ O(TZ)
107"V = I Lol Lol
1074 1073 10-2

T

Finally, Table 1 reports run times and solver performance for DS4 and the global
Crank-Nicolson (CN) method, parallelized via the MPI interfaces of FEniCSx and
petsc4py. All simulations were carried out on the same workstation using 8 cores, a
time step 7 = 0.001, and the mesh from Figure 8. A visualization of both solutions at
T =3.01is given in Figure 9. The results indicate that the proposed domain splitting
method attains accuracy comparable to global time integration while providing
structural benefits for parallelization.

DS4 (chol) DS4 (cg + icc) CN (chol)
rel. L error in u against ref 7.545e-2 7.545e-2 7.547e-2
rel. difference to CN (chol) 3.639e-5 3.639e-5 -
time for meshing 94.9 s 949s 70.8 s
setup time for solvers 112.2s 0.17 s 479 s
wall time per time step 0.94 s 1.21s 1.52s
total simulation time 3021 s 3739 s 4669 s

Table 1 Detailed comparison between the domain splitting method with different solver configu-
rations and the global (parallelized) Crank-Nicolson method for a simulation with 3000 time steps.
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Fig. 9 Snapshots of the do-
main splitting approximation
DSy (chol, left) and Crank-
Nicolson approximation (chol,
right) at the end time 7" = 3.0
on the subarea [0, 4] x [0, 4].

A more detailed theoretical study and large-scale experiments are planned as part
of future work. The code corresponding to this section is made publicly available at

https://gitlab.kit.edu/tim.buchholz/dsdg-acoustic-wave.git.
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