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Abstract

In this paper we construct and analyze an implicit-explicit (IMEX) scheme for
the semilinear viscoacoustic wave equation with a retarded material law. It con-
tains a convolution term with exponential kernels and is thus nonlocal in time.
Furthermore, the wave equation is equipped with kinetic boundary conditions.
We treat the convolution term via additional variables. In order to make the
problem well-posed, it is essential to perform an appropriate shift to derive auxil-
iary differential equations which are coupled to the first–order formulation of the
wave equation. For the kinetic boundary conditions, we consider these equations
in weighted bulk-surface Sobolev spaces. Second–order error bounds in time are
proven for the IMEX scheme and are supported by numerical experiments, where
the IMEX scheme is combined with an isoparametric finite element discretization
in space.

Keywords: implicit-explicit time integration, IMEX, kinetic boundary condition,
nonlocal material laws, auxiliary differential equation, semilinear wave equation
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1 Introduction

In this paper, we consider the viscoacoustic wave equation with a convolution term of
the form

∂ttu(t)− c2∆u(t) +

∫ t

−∞
b(t− θ)∆u(θ) dθ = f(t, u), u(0) = u0, ut(0) = v0,

(1.1a)
in a domain Ω ⊂ Rd with smooth boundary Γ and we set u(θ) = u0 for θ < 0.
The viscoacoustic wave equation can be seen as a simplified model of the viscoelastic
wave equation. The convolutionary memory term is determined by physical properties
and describes the viscosity of the material. It makes the equation nonlocal in time,
which is numerically challenging. Here, we study convolution kernels given by a linear
combination of exponentials,

b(t) =

m∑
j=1

βje
−λjt, βj , λj > 0. (1.1b)

This model that can be found in geophysical literature, e.g., [1, Chap. 2] and more spe-
cific in seismology [2]. The model problem using exponential kernels describes the case
that most recent history has more influence on the materials reaction and diminishes
in the past further away, cf. [1, Sec. 2.1.1]. We say, the material has a fading memory.
In mechanical modeling this is used for the standard linear solid, where λ−1 is the
relaxation time, cf. [3, p. 32]. We assume that the material properties do not change
over time, cf. [1]. The kernels (1.1b) are of a special form, which enables us to derive
additional auxiliary differential equations, which are coupled to the wave equation.
For more general kernels, one can consider convolution quadrature, see e.g., [4–10].

To complement equation (1.1), we impose appropriate boundary conditions. In
particular, we consider both Dirichlet and kinetic boundary conditions in a general
framework. The latter are a special kind of dynamic boundary conditions, which take
the form of another differential equation posed on the boundary. In two dimensions,
kinetic boundary conditions admit the physical interpretation of a vibrating membrane
with boundary mass density exposed to linear tension, see [11, Sec. 5&6], [12, p.56];
An example is the membrane of a bass drum which has a hole in the interior that has a
thick border, cf. [7, Sec. 3.2]. In [11, 13], dynamic boundary conditions are considered
for modeling heat conduction, where heat is created on the boundary.

For the time integration of (1.1) we employ a new implicit-explicit scheme in order
to solve the stiff linear part implicitly and we avoid solving a nonlinear system in each
step by treating the inhomogeneity explicitly. Due to the smooth boundary we combine
this with a nonconforming space discretization with isoparametric finite elements.

In [14, 15] there are analytical results of wave equations with dynamic bound-
ary conditions. In [16], the authors show wellposedness of a parabolic equation with
dynamic boundary conditions. Other authors have investigated numerics for kinetic
boundary conditions. Examples are [17–19] for linear and semilinear equations without
nonlocal materials. A bulk-surface splitting method is proposed in [20].
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The authors of [21] consider the viscoelastic wave equation and simulate its solution
using a symmetric interior penalty discontinuous Galerkin method. In [22], space-
time methods are used for the linear viscoacoustic equation. Several authors have
investigated the viscoelastic or viscoacoustic wave equation as an inverse problem.
Examples are [23], [24] with a finite difference method, and [25]. The goal of the last
paper is a full wave form inversion of the viscoacoustic wave equation in a div-grad first-
order formulation. The viscoelastic wave equation with standard boundary conditions
is considered in [9] for several models. The authors show plots of the displacement
function, using convolution quadrature and the finite element method. Furthermore,
space-time plots are shown. However, this paper did not focus on the error analysis.

The literature on wave equations with auxiliary differential equations mostly deals
with the analysis and stability including a different variable and possibly a delay
term, cf. [26]. In [27], promising experiments for the viscoelastic wave equation with
a nonlinear stress-strain relation are shown. For the numerical simulation, the ADE
system of equations is discretized in time using a second order semi-implicit scheme. It
is combined with a second-order time-stepping algorithm and a fourth-order staggered
grid finite difference spatial discretization. However, the authors did not provide an
error analysis.

There is a broad literature on implicit-explicit (IMEX) schemes, e.g., [28–31]. The
authors of [32] propose an IMEX scheme combined with multiscale methods. A Crank-
Nicolson-leapfrog IMEX scheme was constructed in [33, 34]. However, the schemes
therein are not equivalent to our IMEX scheme.

The author of [35, 36] considers a related problem to (1.1), where the solution
to a Maxwell system with exponential non-locality is approximated. However, in the
setting there, the nonlocality is a bounded perturbation, which is not applicable in
our situation.

The main contribution of this paper is the construction and the rigorous error
analysis of a new IMEX scheme for a wave equation that has a nonlocality in time
and is equipped with dynamic boundary conditions. In contrast to the setting in [37],
the block structure of the operator in the first-order formulation has at least three
components, which is why the calculations here are more involved than in [37]. In
particular, we first derive a framework using weighted Sobolev spaces suitable for
the wellposedness as well as for the error analysis. Moreover, defining the auxiliary
variables is not straight forward, since an appropriate shift has to be included, cf. [26].
Finally, we show a uniform second-order error bound for the time discretization.

In this paper, for the sake of presentation, we do not carry out the full
discretization, since it can be done along the lines of [37].

Outline of the paper

In Section 2, we state the problem, introduce auxiliary variables and the corresponding
system of differential equations and investigate the wellposedness. In Section 3, we
construct and analyze the numerical approximation by an implicit-explicit (IMEX)
scheme in time. We conclude with numerical examples in Section 4.
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Notation

For the partial derivative with respect to time we use the notation ∂tu = u′ = ut.
In this paper, we will consider (1.1a) with Dirichlet boundary conditions (D) or with
kinetic boundary conditions (K). This will require different spaces, as defined next.
We introduce the following bulk-surface Sobolev spaces,

Hk(Ω,Γ) =
{
v ∈ Hk(Ω)

∣∣ γD(v) ∈ Hk(Γ)
}
, k ≥ 1,

of Hk(Ω)-functions with Hk(Γ)-traces, where γD denotes the Dirichlet trace operator,
cf. [13]. We further equip Hk(Ω,Γ) with the scalar product, which induces the norm

∥v∥2Hk(Ω,Γ) = ∥v∥2Hk(Ω) + ∥γD(v)∥2Hk(Γ) .

We denote the spaces

H =

{
L2(Ω), for (D)

L2(Ω)× L2(Γ), for (K)
and V =

{
H1

0 (Ω), for (D)

H1(Ω,Γ), for (K)
. (1.2a)

In [17, Cor. 6.7] it is shown, that H1(Ω,Γ) is dense in L2(Ω) × L2(Γ) and C∞(Ω) is
dense in H1(Ω,Γ).

We will make use of weighted spaces. Let V be a Hilbert space as defined in (1.2a)
with scalar product ⟨·, ·⟩, then we define the weighted Hilbert space Vα for some α > 0
as the space V combined with the weighted scalar product, i.e.,(

Vα, (·, ·)
)
, where (x, y) 7→ α⟨x, y⟩ for x, y ∈ V. (1.2b)

Let Γ be C1-regular. For a function v ∈ H1(Ω) and the outer unit normal vector
n, we define the surface gradient

∇Γv = (∂j,Γv)
d
j=1 = (I − nnT )∇v (1.3)

and the Laplace-Beltrami operator

∆Γv =

d∑
j=1

∂2
j,Γv. (1.4)

For the weak formulation of our PDEs we will make use of the well-known Gauss
theorem, which also holds for the above surface operators, see also [13, p. 111],

−
∫
Ω

(∆u)φdx =

∫
Ω

∇u∇φdx−
∫
Γ

(n · ∇u)φdx, (1.5a)

−
∫
Γ

(∆Γu)φdx =

∫
Γ

∇Γu∇Γφdx. (1.5b)
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2 Analytical framework

Throughout this paper, we consider (1.1a) with Dirichlet boundary conditions as well
as kinetic boundary conditions. In this section, we describe the framework for the
two types of boundary conditions and how both cases will be handled in the further
course of this paper. We will derive auxiliary differential equations for the treatment
of the convolution and investigate its wellposedness by means of evolution equations
in suitable spaces.

2.1 Problem statement

We assume Γ to be the smooth boundary of the domain Ω ⊂ Rd and impose kinetic
boundary conditions, i.e.,

∂ttu(t)− c2∆u(t) +

∫ t

−∞
b(t− s)∆u(s) ds = fΩ(t),

∂ttu(t)− c2∆Γu(t) + c2n · ∇u+

∫ t

−∞
b(t− s)∆Γu(s) ds

−
∫ t

−∞
b(t− s)n · ∇u(s) ds = fΓ(t)

u(0) = u0, ∂tu(0) = v0,

(2.1)

where we again set u(s) = u0 for s < 0. In order to abbreviate the notation, we further
define the extended Laplace operator

∆Ω,Γ =

{
∆, in Ω,

∆Γ − n · ∇, on Γ.
(2.2)

Note that for u ∈ H1
0 (Ω), the extended Laplace operator only acts on the inner domain.

Then, (1.1a) with Dirichlet or kinetic boundary conditions can be summarized as

∂ttu(t)− c2∆Ω,Γu(t) +

∫ t

−∞
b(t− s)∆Ω,Γu(s)ds = f(t). (2.3)

2.2 Auxiliary differential equations

In this subsection we derive auxiliary differential equations for the treatment of the
convolution in (2.3) and investigate its wellposedness in the setting of an evolution
equation. Following [26], we perform a shift of the variable in the convolution term
and obtain∫ t

−∞
βje
−λj(t−θ)∆Ω,Γu(θ) dθ =

βj

λj
∆Ω,Γu(t)− βj∆Ω,ΓMj(t), j = 1, . . . ,m,

5



with the auxiliary variables

Mj(t) =

∫ t

−∞
e−λj(t−θ)

(
u(t)− u(θ)

)
dθ, t ≥ 0.

We introduce the notation

M = (Mj)
m
j=1, β = (βj)

m
j=1, 1 = (1)mj=1, Λ = diag(λ1, . . . , λm). (2.4)

Then, we obtain the following first-order in time coupled PDE system for (2.3)

∂tu = v, u(0) = u0, (2.5a)

∂tv = α∆Ω,Γu+∆Ω,Γβ
TM + f, v(0) = v0, α = c2 −

m∑
j=1

βj

λj
, (2.5b)

∂tMj = −λjMj +
1

λj
v, Mj(0) = 0, j = 1, . . . ,m. (2.5c)

In a compact form, (2.5) can be written as

x′ +Ax = F, (2.6a)

where

x =

 u
v
M

 , A =

 0 −I 0
−α∆Ω,Γ 0 −β ⊗∆Ω,Γ

0 −Λ−11 Λ

 , F =

0
f
0

 . (2.6b)

Remark 1. In applications, we often know the Laplace transformation B rather than
the kernel b itself, see, e.g., [1, 2]. The Laplace transform of the differential equation
(1.1) with frequency variable s ∈ C is given as

(
s2 − (c2 −B(s))∆Ω,Γ

)
U(s) = F (s), B(s) =

m∑
j=1

βj

s+ λj
,

where U(s), F (s) denote the Laplace transformations of u, f , respectively. Since −∆Ω,Γ

is a positive semidefinite operator, assuming

α = c2 −
m∑
j=1

βj

λj
> 0 (2.7)

is sufficient to ensure that, for a given F (s), this equation has a unique solution U(s)
for all Re s = σ > 0. Hence we assume (2.7) in the remaining manuscript.
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2.3 Wellposedness

Next we consider the wellposedness of the coupled PDE system (2.5) for Dirichlet (D)
and for kinetic (K) boundary conditions. We will show that, in both cases, A generates
a strongly continuous semigroup on the respective Hilbert space

X = Vα ×H ×
m×
j=1

Vµj (2.8)

with Vα defined in (1.2) for α > 0 and µj = βjλj > 0. In particular, A is monotone,
i.e.,

(Ax, x)X ≥ −cm ∥x∥2X for all x ∈ X, (2.9)

cf. [12, Assumption 2.3]. For Dirichlet boundary conditions, we have cm = 0, which
means thatA generates a contractive semigroup, while for kinetic boundary conditions,
(2.9) holds for

cm >
1

2
, cm >

α+ 1Tβ

2
, λjcm >

1

2
− λ2

j , j = 1, . . . ,m. (2.10)

Theorem 1. Let A and x be given as in (2.6b), describing the first-order formulation
of (2.3).

(D) The operator −A with domain

D(A) =
{
x ∈ H1

0 (Ω)
m+2

∣∣αu+ βTM ∈ H2(Ω)
}

(2.11)

generates a contractive C0-semigroup on X defined in (2.8).

(K) For cm chosen such that (2.10) holds, the shifted operator −(A+cmI) with domain

D(A+ cmI) =
{
x ∈ H1(Ω,Γ)m+2

∣∣αu+ βTM ∈ H2(Ω,Γ)
}

generates a contractive C0-semigroup on X defined in (2.8).
In order to obtain local wellposedness of (2.6a) we make the following assumption

on the inhomogeneity.
Assumption 2. [37, Assumption 4.1] Let Θ ∈ {Ω,Γ}.
(a) The inhomogeneities f = fΘ, in (2.1) satisfy

fΘ ∈ C1([0, T ]×Θ× R;R)

and can be split into

f(t, ξ, u) = f1(t, ξ) + f2(ξ, u) or f(t, ξ, u) = f1(t, ξ) + f2(t, u).
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(b) Furthermore, we assume the growth conditions, that there exist

ζΩ

{
< ∞, d = 2,

≤ d
d−2 d ≥ 3,

and ζΓ

{
< ∞, d = 2, 3,

≤ d−1
d−3 d ≥ 4,

such that for all (t, ξ, u) ∈ [0, T ]×Θ× R it holds that

|fΘ(t, ξ, u)| ≤ C(1 + |u|ζΘ), |∇fΘ(t, ξ, u)| ≤ C(1 + |u|ζΘ−1).

Remark 2. If Assumption 2 holds, then, (2.6a) is locally wellposed, i.e., for every
initial value x0 ∈ X there exists t⋆(x0) > 0 such that for all T < t⋆(x0), (2.6a) has a
unique solution

x ∈ C1([0, T ], X) ∩ C([0, T ],D(A)).

The evolution equation (2.6a) fits into the framework of [12, 17, 38].

Proof of Theorem 1. For better readability, we only show the proof in the case m = 1,
i.e., the case of one exponential kernel. We demonstrate the calculations for the wave
equation with kinetic boundary conditions, the case of Dirichlet boundary condi-
tions works analogously. Employing the Gauss theorems (1.5), we see that the kinetic
boundary condition leads to solving (2.6b) on the space given in (2.8).

We will use the Lumer-Phillips theorem [39, Sec.1.3]. To this end, we show that
A+ cmI is densely defined, monotone, and has full range.

For the monotonicity we calculate by using partial integration (1.5) and Young

(Ax+ cmx, x)X

= − α⟨v, u⟩L2(Ω,Γ) + cmα∥∇u∥2L2(Ω,Γ) + cmα∥u∥2L2(Ω,Γ) + cm∥v∥2L2(Ω,Γ)

+ βλ2∥∇M∥2L2(Ω,Γ) + βλ2∥M∥2L2(Ω,Γ) − β⟨v,M⟩L2(Ω,Γ)

+ cmµ∥∇M∥2L2(Ω,Γ) + cmµ∥M∥2L2(Ω,Γ)

≥ − α

2

(
∥v∥2L2(Ω,Γ) + ∥u∥2L2(Ω,Γ)

)
− β

2

(
∥v∥2L2(Ω,Γ) + ∥M∥2L2(Ω,Γ)

)
+ cm∥v∥2L2(Ω,Γ) + cmα∥u∥2L2(Ω,Γ) + βλ2∥M∥2L2(Ω,Γ) + cmµ∥M∥2L2(Ω,Γ)

= α∥u∥2L2(Ω,Γ)

(
cm − 1

2

)
+ ∥v∥2L2(Ω,Γ)

(
cm − α+ β

2

)
+ ∥M∥2L2(Ω,Γ)

(
cmµ− β

2
+ βλ2

)
≥ 0.

To show that A has full range, let γ > cm, y := (f, g, h) ∈ X. We claim that there
exists x := (u, v,M) ∈ D(A) such that (γ +A)x = y

γu = v + f, (2.12a)

γv = α∆Ω,Γu+ β∆Ω,ΓM + g, (2.12b)

γM = −λM +
1

λ
v + h. (2.12c)
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We aim to insert

u =
1

γ
(v + f), M =

1

γ + λ
(
1

λ
v + h)

into (2.12b) and solve for v. To do so, we use the operator

∆Ω,Γ : H1(Ω,Γ) → H−1(Ω,Γ)

for the moment. Then, we have to solve

γv =
α

γ
∆Ω,Γ(v + f) +

β

γ + λ
∆Ω,Γ(

1

λ
v + h) + g

which is equivalent to

v − 1

γ2
(α+

β

γ + λ
)∆Ω,Γv =

α

γ2
∆Ω,Γf +

β

γ(γ + λ)
∆Ω,Γh+

1

γ
g. (2.13)

The weak formulation is given as: find v ∈ H1(Ω,Γ) such that

⟨v, φ⟩L2(Ω,Γ) +
1

γ2

(
α+ β

γ+λ

)
⟨∇v,∇φ⟩L2(Ω,Γ)

=− α

γ2
⟨∇f,∇φ⟩L2(Ω,Γ) −

β

γ(γ + λ)
⟨∇h,∇φ⟩L2(Ω,Γ) +

1

γ
⟨g, φ⟩L2(Ω,Γ),

for all φ ∈ H1(Ω,Γ). By the Lax–Milgram theorem we obtain a unique solution
v ∈ H1(Ω,Γ) of (2.13). Inserting this solution into (2.12a) and (2.12c) gives us u,M ∈
H1(Ω,Γ) such that

α∆Ω,Γu+ β∆Ω,ΓM =
α

γ
∆Ω,Γ(v + f) +

β

γ + λ
∆Ω,Γ(

1

λ
v + h)

In order to make sure, that x = (u, v,M) ∈ D(A), we test the above equation with
φ ∈ H1(Ω,Γ) which yields

⟨∇(αu+ βM),∇φ⟩L2(Ω,Γ) =
α

γ
⟨∇(v + f),∇φ⟩L2(Ω,Γ) +

β

γ + λ
⟨∇(

1

λ
v + h),∇φ⟩L2(Ω,Γ)

= ⟨g − γv, φ⟩L2(Ω,Γ),

and using g ∈ L2(Ω,Γ) and v ∈ H1(Ω,Γ) shows x = (u, v,M) ∈ D(A).
Note that the full range of γ + A was shown for arbitrary γ > cm. The fact that

A is densely defined therefore follows by [40, Prop. I.4.2].
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3 Implicit-explicit time integration

In this section, we introduce the IMEX scheme for the time discretization of the
solution to (1.1a) and its properties.

3.1 Construction of the IMEX scheme

Following [37], we set up the IMEX scheme as a perturbation of the Crank-Nicolson
scheme. The latter one computes xn ≈ x(tn) for tn = nτ , where τ > 0 denotes the
step size via

xn+1 = xn +
τ

2

(
−A(xn + xn+1) + Fn + Fn+1

)
, (3.1a)

where

Fn =

 0
fn

0

 , and fn = f(tn, u
n). (3.1b)

Equivalently we can write this as

R+x
n+1 = R−x

n +
τ

2

(
Fn + Fn+1

)
, R± = I± τ

2
A. (3.2)

With the parameters βj and λj of the convolution kernel (1.1b), we define the following
scalars, which will be used in the discretization of the differential equation of M,

γj,± = 1± τλj

2
, γj =

γj,−
γj,+

. (3.3)

Furthermore, we introduce a modification of the matrix Λ as

Λ̃ = diag(λ1γ1,+, . . . , λmγm,+), (3.4)

and the modified scalars

α̃ = α+ βT Λ̃−11 =

(
α+

m∑
j=1

βj

λjγj,+

)
> α. (3.5)

We further introduce the notation

β̃ =
1

2

(
β1(1 + γ1), . . . , βm(1 + γm)

)
, (3.6)

and note that βj(1 + γj)/2 ∈ [0, βj) for j = 1, . . . ,m.
Similarly to [37, Lem. 2.5] it can be shown that with j = 1, . . . ,m and fn defined

in (3.1b), the Crank-Nicolson scheme (3.1) is equivalent to

un+1 = un + τvn+
1
2 ,

vn+
1
2 = vn +

τ

2
α∆Ω,Γu

n +
τ

2
∆Ω,Γβ̃

TMn +
τ2

4
α̃∆Ω,Γv

n+ 1
2 +

τ

4
(fn + fn+1),
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Mn+1
j = γjM

n
j + γ−1j,+

τ

λj
vn+

1
2 ,

vn+1 = vn+
1
2 +

τ

2
α∆Ω,Γu

n +
τ

2
∆Ω,Γβ̃

TMn +
τ2

4
α̃∆Ω,Γv

n+ 1
2 +

τ

4
(fn + fn+1).

If the right hand side f is nonlinear, we will have to solve a nonlinear system in
each step of the Crank-Nicolson scheme, which is very expensive. To overcome this
difficulty, we use the IMEX scheme instead. The idea of the IMEX scheme is to treat
the stiff linear part implicitly and the non-stiff non-linear part explicitly, such that
the solution of one linear system of equations in each time step is sufficient.

Following [37, Section 2.2.], we derive the scheme via a combination of the Crank-
Nicolson and with the leapfrog scheme and, with j = 1, . . . ,m, arrive at

vn+
1
2 = vn +

τ

2
α∆Ω,Γu

n +
τ

2
∆Ω,Γβ̃

TMn +
τ2

4
α̃∆Ω,Γv

n+ 1
2 +

τ

2
fn, (3.7a)

un+1 = un + τvn+
1
2 , (3.7b)

Mn+1
j = γjM

n
j + γ−1j,+

τ

λj
vn+

1
2 , (3.7c)

vn+1 = vn+
1
2 +

τ

2
α∆Ω,Γu

n +
τ

2
∆Ω,Γβ̃

TMn +
τ2

4
α̃∆Ω,Γv

n+ 1
2 +

τ

2
fn+1. (3.7d)

An equivalent way to compute vn+1 is obtained by subtracting (3.7a) and (3.7d) as

vn+1 = −vn + 2vn+1/2 +
τ

2
(fn+1 − fn), (3.7e)

see also [37, Remark 2.6]. In the scheme (3.7), the nonlinearity f is treated explicitly.

3.2 Wellposedness and reformulation of the IMEX scheme

To prove wellposedness of the IMEX scheme, we define the operators

Q± = I ±
(
− τ2

4
α̃∆Ω,Γ

)
, (3.8)

with weak formulation: for given z ∈ V find y ∈ H such that

⟨z, w⟩H ± ⟨∇z,∇w⟩H = ⟨y, w⟩H for all w ∈ V,

we define y = Q±z. With this notation, we can characterize the half step vn+
1
2 via

Q+v
n+ 1

2 = vn +
τ

2
∆Ω,Γ

(
αun + β̃TMn

)
+

τ

2
fn.

For our error analysis we will use bounds on the operators Q± using the spaces
defined in (1.2a). Up to the weighting constants the following lemma was given in [37,
Lemma 2.7].
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Lemma 3. Let Q± be defined as in (3.8) with α̃ as in (3.5). Then Q+ : D(∆Ω,Γ) → H
is invertible and we have ∥∥∥∥τ24 α̃∆Ω,ΓQ

−1
+

∥∥∥∥
H←H

≤ 1, (3.9a)

where ∥·∥H←H denotes the operator norm. Furthermore, for τ > 0 in case (D) and

0 < τ <
√

2
α̃ in case (K), we have the bounds

∥∥Q−1+

∥∥
V←H

≤ 1

τ

√
2

α̃
, (3.9b)∥∥Q−Q−1+

∥∥
H←H

≤ e
τ2

2 . (3.9c)

Employing the invertibility of Q+ we obtain wellposedness of the IMEX scheme as
in [12, Cor. 4.7] and [37, Cor. 2.8].

Lemma 4. The IMEX scheme is wellposed. We define β̂ = (β̂j)
m
j=1 with β̂j ∈

[−βj , βj ]. Then for initial values u0, v0 ∈ V and M0 = 0m, we have for j = 1, . . . ,m
that

un,Mn
j ∈ V, vn+

1
2 ∈ D(∆Ω,Γ), vn+1 ∈ H, ∆Ω,Γ(αu

n + β̂TMn) ∈ H.

Proof. As in [37, Cor. 2.8], the claim is proven by induction over n ∈ N0. Due to

M0
j = 0, the statement is true for n = 0. Then, exploiting the fact that β̃j ∈ [0, βj)

for each j = 1, . . . ,m, such that α∆Ω,Γu
n +∆Ω,Γβ̃

TMn ∈ H, the claim follows.

We derive an equivalent first–order formulation for the IMEX scheme, cf. [12,
Lemma 4.8] and [37, Lemma 2.10], where we make use of the notation introduced in
(3.4) and (3.6).

Lemma 5. Let τcm < 2 and if we have kinetic boundary conditions let τ <
√

2
α̃ . Then,

the matrix R+ from (3.2) is invertible and, with S+ = Q−1+ ∆Ω,Γ and R = R−1+ R− we
have

R =


1 + τ2

2 αS+ τQ−1+
τ2

2 β̃T ⊗ S+

ταS+ Q−Q
−1
+ ταβ̃T ⊗ S+

τ2

2 αΛ̃−1 ⊗ S+1 τ Λ̃−1 ⊗Q−1+ 1 Λ + τ2

2

(
(Λ̃−1β̃)T ⊗ 1

)
⊗ S+



12



and

R−1+ =


I+ τ2

4 αS+
τ
2Q
−1
+

τ2

4 βTΛΛ̃−1 ⊗ S+

τ
2αS+ Q−1+

τ
2β

TΛΛ̃−1 ⊗ S+

τ2

4 αΛ̃−1 ⊗ S+1
τ
2 Λ̃
−1 ⊗Q−1+ 1 ΛΛ̃−1 + τ2

4 Λ̃−11βTΛΛ̃−1 ⊗ S+

 .

Furthermore, the matrix R−1+ : X → D(A) satisfies
∥∥R−1+

∥∥ ≤ 1 and R has a continuous
extension on X and ∥R∥ ≤ eτcm .

The IMEX scheme is equivalent to the first-order formulation

xn+1 = Rxn +
τ

2
R−1+ yn +

τ2

4
R−1+ zn, (3.10a)

where

yn =

 0
1
0m

⊗ (fn + fn+1), zn =

 1
0

Λ−11

⊗ (fn − fn+1). (3.10b)

Proof. The proof of the invertibility and the bounds follow along the lines of [37,
Lemma 2.10] and [17, Lemma 2.14]. For the ease of presentation we only treat the
case m = 1. A direct calculation shows that R and R−1+ are given as above. Let
x = (u, v,M)T ∈ X and we will first use ∆Ω,Γ mapping from V to its dual, this means
that S+ : V → V . Then we have that the components of

w := R−1+ x

are given by

w1 =
(
I + α

τ2

4
S+

)
u+

τ

2
Q−1+ v +

τ2

4

β

γ+
S+M,

w2 = α
τ

2
S+u+Q−1+ v + α

τ

2

β

γ+
S+M,

w3 = α
τ

4λγ+
S+u+

τ

2λγ+
Q−1+ v +

1

γ+

(
Q−1+ − α

τ2

4
S+

)
M,

and lie in V . We further obtain

∆Ω,Γ

(
αw1 + βw3

)
= α∆Ω,ΓQ

−1
+ u+

(ατ
2

+
βτ

2λγ+

)
∆Ω,ΓQ

−1
+ v +

β

γ+
∆Ω,ΓQ

−1
+ M ∈ H,

by Lemma 3, i.e., we verified that R−1+ : X → D(A).
The proof of the equivalence is done analogously to [12, Lemma 4.8].
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3.3 Error analysis of the IMEX scheme

We now turn to the error estimation of the IMEX scheme. The main idea is, that the
defect of the IMEX scheme can be written as the defect of the Crank-Nicolson scheme
with an additional term. By Assumption 2, the inhomogeneity f is locally Lipschitz
continuous, i.e., for ∥u∥V , ∥v∥V ≤ ρ it holds

∥f(·, ·, u)− f(·, ·, v)∥H ≤ Lρ ∥u− v∥V , Lρ = C(1 + ρζΩ−1 + ρζΓ−1), (3.11)

where C is a constant which is independent of ρ.
The following result can be found for the wave equation without retarded material

laws in [37], for the more detailed version we reference to [41].
Theorem 6 (Error bound IMEX scheme). Assume that the solution x = (u, v,M)
of (2.6) satisfies u ∈ C4([0, T ], H) ∩ C3([0, T ], V ) and x ∈ C2([0, T ],D(A)) and that
τ > 0 is sufficiently small. Then, the approximation xn ≈ x(tn), tn = nτ given in
(3.10) satisfies the error bound

∥xn − x(tn)∥X ≤ CeKtnτ2,

where K = cm +
Lρ(1+

√
2)√

α−Lρτ(1+
√
2)

and the constant C only depends on u and T , and Lρ

defined in (3.11).

Proof. For the ease of presentation we only present the case m = 1. During this proof
we again use a ∼ for an exact evaluation, e.g., we write x̃n = x(tn).

(1) Error recursion. Denote the first-order error by

en = xn − x̃n.

We insert the exact solution into the IMEX scheme (3.10) and obtain as in [12, (4.29)]
that

x̃n+1 = Rx̃n +
τ

2
R−1+ ỹn +

τ2

4
R−1+ z̃n − δn+1

IMEX, (3.12)

with

δn+1
IMEX = R−1+ δn+1

CN + δ̃n+1, δ̃n+1 =
τ2

4

 1
τ
2 α̃∆Ω,Γ

1
λγ+

⊗Q−1+ (f̃n − f̃n+1) (3.13)

and δn+1
CN is the defect from the Crank-Nicolson scheme (3.1). As in [12, Thm. 4.3], it

can be seen that
∥∥δn+1

CN

∥∥ ≤ Cτ3. Substracting (3.12) from (3.10) we obtain the error
recursion

en+1 = Ren +
τ

2
R−1+ (yn − ỹn) +

τ2

4
R−1+ (zn − z̃n) + δn+1

IMEX,

cf. [12, (4.31)]. With

△fn = fn − f̃n − fn+1 + f̃n+1 (3.14)
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we have

yn − ỹn =

0
1
0

△fn and zn − z̃n =

1
0
1
λ

△fn.

(2) Stability. For e0 = 0 it holds that

en =

n∑
ℓ=1

Rn−ℓ
(
τ

2
R−1+ (yℓ−1 − ỹℓ−1) +

τ2

4
R−1+ (zℓ−1 − z̃ℓ−1) + δℓIMEX

)
.

Analogously to [12, (4.32)], taking the norm and using the triangle inequality, we
obtain the estimate

∥en∥X ≤ τ

n∑
ℓ=1

e(n−ℓ)τcm
(
1

2

∥∥yℓ−1 − ỹℓ−1
∥∥
X
+

τ

4

∥∥R−1+ (zℓ−1 − z̃ℓ−1)
∥∥
X

)

+

∥∥∥∥∥
n∑

ℓ=1

Rn−ℓδℓIMEX

∥∥∥∥∥
X

, (3.15)

Recalling the spaces from (1.2), we estimate similarly to [12, (4.33)]∥∥yℓ − ỹℓ
∥∥
X

=
∥∥△f ℓ

∥∥
H

≤ Lρ

( ∥∥uℓ − ũℓ
∥∥
V
+
∥∥uℓ+1 − ũℓ+1

∥∥
V

)
≤ Lρ√

α

( ∥∥eℓ∥∥
X
+
∥∥eℓ+1

∥∥
X

)
.

Therefore, we obtain

1

2

n∑
ℓ=1

e(n−ℓ)τcm
∥∥yℓ−1 − ỹℓ−1

∥∥
X

≤
n∑

ℓ=1

e(n−ℓ)τcm
Lρ

2
√
α

( ∥∥eℓ∥∥
X
+
∥∥eℓ−1∥∥

X

)
≤

n∑
ℓ=0

Lρ√
α
e(n−ℓ)τcm

∥∥eℓ∥∥
X
.

From

R−1+ zn =

 1
α̃τ
2 ∆Ω,Γ

1
λγ+

⊗Q−1+ (fn − fn+1),

and the notation (3.14) we obtain

τ

4

∥∥R−1+ (zℓ − z̃ℓ)
∥∥
X

=
1

2

(
α
∥∥∥τ
2
Q−1+ △f ℓ

∥∥∥2
V
+

∥∥∥∥τ24 α̃∆Ω,ΓQ
−1
+ △f ℓ

∥∥∥∥2
H

+ µ

∥∥∥∥τ2 1

λγ+
Q−1+ △f ℓ

∥∥∥∥2
V

) 1
2
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and from (3.9a) and (3.9b) we conclude

α
∥∥∥τ
2
Q−1+ w

∥∥∥2
V
≤ α

2α̃
∥w∥2H ,

µ

∥∥∥∥τ2 1

λγ+
Q−1+ w

∥∥∥∥2
V

≤ µ

2(λγ+)2α̃
∥w∥2H .

This yields

n∑
ℓ=1

τe(n−ℓ)τcm

4

∥∥R−1+ (zℓ−1 − z̃ℓ−1)
∥∥
X

≤
n∑

ℓ=1

Lρe
(n−ℓ)τcm
√
2α

( ∥∥uℓ − ũℓ
∥∥
Vα

+
∥∥uℓ−1 − ũℓ−1∥∥

Vα

)
≤

n∑
ℓ=0

Lρ

√
2√

α
e(n−ℓ)τcm

∥∥eℓ∥∥
X
.

Inserting these bounds yields

∥en∥X ≤ τLρ√
α
(1 +

√
2)

n∑
ℓ=0

e(n−ℓ)τcm
∥∥eℓ∥∥

H
+

∥∥∥∥∥
n∑

ℓ=1

Rn−ℓδℓIMEX

∥∥∥∥∥
X

.

(3) Bound of defects from (3.13). Since we already know that the Crank-Nicolson

defect is bounded by Cτ3, it remains to bound δ̃ℓ+1. We follow [12, p. 41] and split it
into two parts

δ̃ℓ+1 = δ̃ℓ+1
1 + δ̃ℓ+1

2

with

δ̃ℓ+1
1 =

τ

4

 τQ−1+

Q−Q
−1
+

τ
λγ+

Q−1+

⊗ (f̃ ℓ − f̃ ℓ+1), δ̃ℓ+1
2 =

τ

4

 0

−(f̃ ℓ − f̃ ℓ+1)
0

 ,

and then combine terms from two different steps to gain an extra order of τ . We
observe that

δ̃ℓ+1
1 +Rδ̃ℓ2 =

τ

2

 τ
2Q
−1
+

1
2Q−Q

−1
+

τ
2λγ+

Q−1+

⊗ (−f̃ ℓ−1 + 2f̃ ℓ − f̃ ℓ+1). (3.16)

For the difference quotients we have the bounds∥∥∥δ̃ℓ+1
2

∥∥∥
X

=
τ

4

∥∥∥f̃ ℓ − f̃ ℓ+1
∥∥∥
H

≤ Cτ2, τ
∥∥∥f̃ ℓ−1 − 2f̃ ℓ + f̃ ℓ+1

∥∥∥
H

≤ Cτ3. (3.17)
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To be more precise, we denote by Iℓ = [tℓ−1, tℓ+1] and as in [12, (4.36)] we obtain,
due to the regularity assumptions on u, that

τ
∥∥∥f̃ ℓ−1 − 2f̃ ℓ + f̃ ℓ+1

∥∥∥
H

≤ Cτ3
∥∥∂2

t

(
u′′ −∆Ω,Γ(αu− βTM)

)∥∥
L∞(Iℓ,H)

≤ Cτ3
(∥∥∥u(4)

∥∥∥
L∞(Iℓ,H)

+
∥∥∂2

t

(
αu+ βTM

)∥∥
L∞(Iℓ,H2)

)
.

where H2 = H2(Ω) for (D) and H2 = H2(Ω,Γ) in the case (K). Using the same

arguments, we find that defects δ̃11 , δ̃
n
2 are of order τ2. Therefore, we estimate

τ
∥∥∥f̃ ℓ − f̃ ℓ+1

∥∥∥
H

≤ Cτ2
∥∥∂t(u′′ −∆Ω,Γ(αu− βTM)

)∥∥
L∞(Iℓ,H)

≤ C ′τ2
(∥∥∥u(3)

∥∥∥
L∞(Iℓ,H)

+
∥∥∂t(αu+ βTM

)∥∥
L∞(Iℓ,H2)

)
.

Then, using (3.13) we split∥∥∥∥∥
n∑

ℓ=1

Rn−ℓδℓIMEX

∥∥∥∥∥
X

≤

∥∥∥∥∥
n∑

ℓ=1

Rn−ℓδℓCN

∥∥∥∥∥
X

+

∥∥∥∥∥
n∑

ℓ=1

Rn−ℓ(δ̃ℓ1 + δ̃ℓ2)

∥∥∥∥∥
X

and with an index shift and the previous calculations, we see∥∥∥∥∥
n∑

ℓ=1

Rn−ℓ(δ̃ℓ1 + δ̃ℓ2)

∥∥∥∥∥
X

=

∥∥∥∥∥
n∑

ℓ=1

Rn−ℓδ̃ℓ1 +Rn−ℓ−1Rδ̃ℓ2

∥∥∥∥∥
X

=

∥∥∥∥∥Rn−1δ̃11 + δ̃n1 +

n∑
ℓ=2

Rn−ℓ(δ̃ℓ1 +Rδ̃ℓ2)

∥∥∥∥∥
X

≤ enτcm

(∥∥∥δ̃11∥∥∥
X
+
∥∥∥δ̃n2 ∥∥∥

X
+

n∑
ℓ=2

∥∥∥δ̃ℓ1 +Rδ̃ℓ2

∥∥∥
X

)
≤ CeT cmτ2.

In the last estimate we used tn ≤ T , (3.16), (3.17), and that
∥∥τQ−1+

∥∥
V←H

≤ C and∥∥Q−Q−1+

∥∥
H←H

≤ C by Lemma 3.
With the stability bound (3.15), we see

e−tncm ∥en∥X ≤ τLρ√
α

(
1 +

√
2
) n∑
ℓ=0

e−ℓτcm
∥∥eℓ∥∥

X
+ e−tncm

∥∥∥∥∥
n∑

ℓ=1

Rn−ℓδℓIMEX

∥∥∥∥∥
X

≤ τLρ√
α

(
1 +

√
2
) n∑
ℓ=0

e−ℓτcm
∥∥eℓ∥∥

X
+ Cτ2.
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Finally, the desired error bound follows from applying Grönwall’s Lemma provided
that xn is uniformly bounded in X. The latter follows along the lines of [41, Thm. 4.9].

Remark 3. The full discretization can be done analogously to [37] with isoparametric
finite elements, see also [42]. Using the time discretization error analysis from the
previous section, the full error estimate is a combination thereof with the one shown in
[37]. When it comes to lift and reference operators for the error of space discretization,
the additional variables Mj are treated in the same manner as u.

4 Numerical experiments

In this section we show numerical examples to support our theoretical results. We
consider the wave equation (1.1) with kinetic boundary conditions on the unit disc
B(0, 1) ⊂ R2. In order to measure exact numerical errors, we extend an example
from [37] by including a convolution with m = 4 and the parameters α = 1, β1 =
1, β2 = 1.5, β3 = 2, β4 = 1.25 and λ1 = 0.2, λ2 = 1, λ3 = 1.5, λ4 = 2. We choose the
nonlinearities

fΩ(t, ξ, u) = |u|u+ ηΩ(t, ξ),

fΓ(t, ξ, u) = |u|2 u+ ηΓ(t, ξ),

where

ηΩ(t, ξ) = −
(
4π2 + |sin(2πt)ξ1ξ2|

)
sin(2πt)ξ1ξ2,

ηΓ(t, ξ) = (6c2 − 4π2)ξ1ξ2 sin(2πt)−
(
sin(2πt)ξ1ξ2

)3
− 12π

m∑
j=1

βj

4π2 + λj

(
e−λjt − cos(2πt) +

λj

2π
sin(2πt)

)
.

The initial values are set to be

u(0, ξ) = 0, ∂tu(0, ξ) = 2πξ1ξ2,

and the exact solution to this example is given by

u(t, ξ) = sin(2πt)ξ1ξ2.

The codes to reproduce our results are available at
https://github.com/MalikScheifinger/WaveKineticBC.git

The space discretization software is based on the FEM library deal.II [43] version
9.5.0, using quadrilateral mesh elements and isoparametric finite elements with poly-
nomial degree p = 2 and maximal mesh width hmax ≈ 0.014. Our implementation
follows [12, Chapter 6.2]. We shortly specify the notation we use and state our in space
discretized IMEX scheme. We denote by M ∈ RN×N the mass matrix, by S ∈ RN×N
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the stiffness matrix and the load vector by fn after choosing the standard nodal basis.
Then the scheme reads

Mvn+ 1
2 = Mvn − τ

2
S(αun + β̃TMn)− τ2

4
α̃Svn+ 1

2 +
τ

2
fn, (4.1a)

un+1 = un + τvn+ 1
2 , (4.1b)

Mn+1
j = γjM

n
j + γ−1j,+

τ

λj
vn+ 1

2 , (4.1c)

Mvn+1 = −Mvn + 2Mvn+ 1
2 +

τ

2
(fn+1 − fn). (4.1d)

The linear system (4.1a) is equivalent to

Q+v
n+ 1

2 = Mvn − τ

2
S(αun + β̃TMn) +

τ

2
fn, Q+ = M+

τ2

4
α̃S.

We solve this linear system with the conjugate gradient method and SSOR precondi-
tioning.

In Figure 1 we show the numerical approximation of (1.1) using the data given in
Section 4 at four different time stamps.

Fig. 1: Snapshots of the solution at times t = 0, 0.2, 0.4, 0.6 (from top left to bottom
right) using the IMEX method with time stepsize τ = 0.1.
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In Figure 2 we illustrate the error of our method against the time stepsize τ . The
error is measured at the endtime T = 0.8 in the Vα×H norm. We observe second-order
convergence in time.

10−3 10−2
10−4

10−3

10−2

10−1

2

time stepsize τ

V
α
×
H

er
ro
r

Fig. 2: Error evaluated at the endtime T = 0.8 in the Vα ×H norm plotted against
time stepsize τ .
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[8] Nick, J., Kovács, B., Lubich, C.: Correction to: Stable and convergent fully dis-
crete interior-exterior coupling of Maxwell’s equations. Numer. Math. 147(4),
997–1000 (2021) https://doi.org/10.1007/s00211-021-01196-6

[9] Brown, T.S., Du, S., Eruslu, H., Sayas, F.-J.: Analysis of models for viscoelastic
wave propagation. Appl. Math. Nonlinear Sci. 3(1), 55–96 (2018) https://doi.
org/10.21042/AMNS.2018.1.00006

[10] Banjai, L., Sayas, F.-J.: Integral Equation Methods for Evolutionary PDE.
Springer Series in Computational Mathematics, p. 268. Springer, ???
(2022). https://doi.org/10.1007/978-3-031-13220-9 . https://doi.org/10.1007/
978-3-031-13220-9

[11] Goldstein, G.R.: Derivation and physical interpretation of general boundary
conditions. Adv. Differential Equations 11(4), 457–480 (2006)

[12] Leibold, J.: A unified error analysis for the numerical solution of nonlinear wave-
type equations with application to kinetic boundary conditions. PhD thesis,
Karlsruhe Institute of Technology (KIT) (Feb 2021). https://doi.org/10.5445/IR/
1000130222

[13] Kashiwabara, T., Colciago, C.M., Dedè, L., Quarteroni, A.: Well-posedness,
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