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Abstract. This paper introduces weighted finite di!erence methods for nu-

merically solving dispersive evolution equations with solutions that are highly

oscillatory in both space and time. We consider a semiclassically scaled cubic

nonlinear Schrödinger equation with highly oscillatory initial data, first in the

single-phase case and then in the general multiphase case. The proposed meth-

ods do not need to resolve high-frequency oscillations in both space and time

by prohibitively fine grids as would be required by standard finite di!erence

methods. The approach taken here modifies traditional finite di!erence meth-

ods by appropriate exponential weights. Specifically, we propose the weighted

leapfrog and weighted Crank–Nicolson methods, both of which achieve second-

order accuracy with time steps and mesh sizes that are not restricted in mag-

nitude by the small semiclassical parameter. Numerical experiments illustrate

the theoretical results.
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1. Introduction
As a basic model problem of a dispersive evolution equation with solutions that

are highly oscillatory in both space and time, we consider the time-dependent
weakly nonlinear Schrödinger equation in semiclassical scaling [6, 7],

(1.1) iω Btu ` ω
2

2 !u “ ωε |u|2u,

where 0 ! ω ! 1 is the small semiclassical parameter, and ε is a fixed nonzero real
number.

This equation is to be solved for the complex-valued function u “ upt, xq under
periodic boundary conditions with x P Td “ pR{2ϑZqd over a bounded time interval
0 " t " T . The final time T is chosen independently of ω. On this time scale, the
nonlinearity has an Op1q e”ect on the solution.

We consider highly oscillatory initial data at t “ 0. A simple model problem is
the case of a single phase (also known as the monochromatic case) considered in
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the first part of this paper,

(1.2) up0, xq “ a
0pxq eiω¨x{ε

,

where ϖ P Rdzt0u is a fixed wave vector, and a
0 : Td Ñ C is a given profile function

that is assumed to be smooth in the sense of having arbitrarily many higher-order
derivatives bounded independently of ω.

The initial function up0, ¨q in (1.3) is required to be a 2ϑ-periodic continuous
function. This is satisfied if the small parameter ω is assumed to take only values
for which ϖ{ω P Zd and a

0 are 2ϑ-periodic. This assumption on ω is not a restriction,
since it can always be achieved with an Opωq modification of ϖ and a corresponding
smooth modification of a

0.
The single-phase problem (1.1)–(1.2) provides much insight into the construction

and analysis of the proposed numerical methods and so prepares the ground for the
numerical treatment of the more challenging multiphase problem with initial data

(1.3) up0, xq “
Mÿ

m“1
a

0
mpxq eiωm¨x{ε

,

where ϖm P Rdzt0u are fixed wave vectors, and a
0
m : Td Ñ C are given smooth

profile functions. This is considered in the second part of the paper, first illustrated
by the two-phase case M “ 2 with opposite wave numbers ϖ1 “ ϖ and ϖ2 “ ´ϖ

and then extended to the general multiphase case.
An analytical study of the multiphase problem was given by Carles, Dumas &

Sparber [7], where Opωq approximations to the solution are constructed that are
of the form (1.3) at every time. Here we prove a refined result (Theorem 7.1)
that provides a second-order expansion of the solution with an Opω2q error in the
maximum norm. As in [7], we derive error bounds in the stronger norm of the
Wiener algebra, which is particularly suitable for handling the nonlinearity. The
improved analytical approximation result is basic for the numerical analysis.

The solution upt, xq is highly oscillatory in both time and space at a scale pro-
portional to the small parameter ω. This poses significant challenges in the devel-
opment of e#cient numerical methods and their error analysis. Traditional finite
di”erence methods like the leapfrog and Crank–Nicolson schemes have been stud-
ied for Schrödinger equations in the semiclassical scaling in [21], where stringent
restrictions on the time step ϱ ! ω and mesh size h ! ω are required. Time-splitting
spectral discretizations, also known as split-step Fourier methods [3, 4, 17, 19], ease
these restrictions. For the stated initial value problem (1.1)–(1.2), using techniques
as in the cited papers, split-step Fourier methods can be shown to require no bound
of ϱ in terms of ω, but they still require small h “ Opω{| log ω|q to obtain at least
first-order accuracy in h, as is already needed for the approximation of the initial
data by trigonometric interpolation. Asymptotic-preserving methods have been
proposed in [1, 11, 5] by reformulating the Schrödinger equation using the WKB
expansion [14, 6] or the Madelung transform [20].

One objective of this paper is to revive finite di”erence methods for dispersive
evolution equations with solutions that are highly oscillatory in both space and
time, modifying standard methods such as leapfrog and Crank–Nicolson methods
by changing the method coe#cients on the same stencil. Such weighted schemes

enable us to approximate the solution of (1.1)–(1.3) with second-order accuracy

even when using time steps ϱ and mesh sizes h that are not restricted by ω. Under
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mild assumptions, we prove an Opϱ2 ` h
2 ` ω

2q error bound for the multiphase
problem (Theorem 8.1). The proposed weighted methods tend to the standard
leapfrog and Crank–Nicolson schemes as the ratios of the time step and mesh size
to the semiclassical parameter ω approach zero, which is, however, not the regime
of principal interest in this paper. The methods can be extended to be not only
asymptotic-preserving as ω Ñ 0 but also uniformly accurate (of order 4{5 for the
multiphase problem) for 0 ! ω " 1.

Modulated Fourier expansions are a powerful tool for deriving and analyzing
numerical methods for highly oscillatory problems. They represent both the ex-
act and the numerical solution as sums of products of slowly varying modulation
functions and highly oscillatory exponentials, as is given here with the initial data
(1.3). Comparing the modulated Fourier expansions of the numerical and the exact
solution then yields asymptotically sharp error bounds; see [16, Chapter XIII] and,
e.g., [15] for oscillatory ordinary di”erential equations and, e.g., [9, 12] for evolu-
tionary partial di”erential equations. We will pursue such an approach also here,
as a novelty combined in both time and space. For the single-phase problem and
in some cases, depending on the numerical treatment of the nonlinearity, also for
the multiphase problem, the proposed weighted finite di”erence methods can be
reinterpreted as applying the corresponding standard finite di”erence schemes to
the equations for the non-oscillatory modulation functions of the modulated Fourier
expansion (here considered up to order 2). The approach of numerically approx-
imating the modulation functions has previously been used in the literature for
oscillatory ordinary di”erential equations, e.g., in [8, 10], and later for temporally
(though not spatially) oscillatory partial di”erential equations, e.g., in [2, 13].

We will formulate the weighted finite di”erence methods only in the spatially
one-dimensional case (d “ 1). This apparent limitation is introduced only for ease
of presentation. The methods and theoretical results extend directly to higher
dimensions. Furthermore, the extension to the full space Rd instead of the torus Td

is straightforward for the formulation of the methods and can be done analogously
in the theory.

The paper is organized as follows.
In Section 2, we introduce the weighted leapfrog and weighted Crank–Nicolson

algorithms for a single initial phase, with stepsizes ϱ and meshwidths h that can
be arbitrarily large compared to ω. For h " ω, there is a mild stepsize restriction
ϱ " ch for the weighted leapfrog method and no such restriction for the weighted
Crank–Nicolson method.

In Section 3, Theorem 3.1 states ω-uniform Opϱ2 ` h
2q error bounds for the

single-phase case for both numerical methods. Numerical experiments confirm these
theoretical results. The proof of the error bound is provided in Sections 4 and 5.
In Section 4, we study the consistency error, i.e., the defect obtained on inserting
the exact solution into the numerical scheme. Section 5 presents the linear Fourier
stability analysis, which is done in the Wiener algebra ApTq # CpTq, and then
gives a nonlinear stability analysis that bounds the error of the numerical solution
in terms of the defect.

In Section 6, we treat the case of two opposite phases. We formulate the modu-
lated Fourier expansion of the exact solution and extend both the weighted leapfrog
and weighted Crank–Nicolson methods to the two-phase case in several variants
that di”er in the treatment of the nonlinearity and in the attained accuracy. For
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the most accurate variant, we have an Opϱ2 ` h
2 ` ω

2q error bound. Numerical
experiments illustrate the theory.

In Section 7, we present the modulated Fourier expansion of the exact solution
for general multiphase initial conditions (1.3), and we prove that the remainder
term is of order Opω2q in the maximum norm (Theorem 7.1).

In Section 8, we extend the weighted leapfrog and Crank-Nicolson methods to the
general multiphase setting and prove an Opϱ2`h

2`ω
2q error bound in Theorem 8.1,

based on Theorems 3.1 and 7.1. We further obtain ω-uniform convergence of order
4{5 by combining the above error bound with the standard error bound obtained
from Taylor expansion of the solution, which is Opϱ2 ` h

2q{ω
3. The latter bound

is smaller only for ϱ
2 ` h

2 À ω
5, which is not the situation of main interest here,

where we aim for large stepsizes ϱ " ω and meshsizes h " ω for small ω.

Part I. Case of a single phase

2. Weighted finite difference methods for a single initial phase
For simplicity of presentation, we restrict the presentation to the case of one

spatial dimension, 0 " x " 2ϑ, with periodic boundary conditions. The proposed
numerical methods and their analysis extend to higher dimensions in a straightfor-
ward way.

2.1. Preparation: Weighted finite di!erences of modulated exponentials.
We expect that the solution to (1.1) with initial data (1.2) can be approximated
by a modulated plane wave

vpt, xq “ bpt, xq eipωx´ϑtq{ε
, where ς “ 1

2 ϖ
2

in view of the dispersion relation iωp´iς{ωq ` 1
2 ω

2piϖ{ωq2 “ 0 of the free linear
Schrödinger equation, and bpt, xq is a smooth modulation function with derivatives
bounded independently of ω. We then have

Btvpt, xq “
´

Bt ´ iς
ω

¯
bpt, xq ¨ eipωx´ϑtq{ε

,

B2
xvpt, xq “

´
Bx ` iϖ

ω

¯2
bpt, xq ¨ eipωx´ϑtq{ε

.

We approximate the partial derivatives of b by symmetric finite di”erences, with
a temporal step size ϱ and a spatial grid size h, up to errors of Opϱ2q and Oph2q
resulting from the Taylor expansion of the smooth function b at pt, xq,

Btvpt, xq «
ˆ

bpt ` ϱ, xq ´ bpt ´ ϱ, xq
2ϱ

´ iς
ω

bpt, xq
˙

eipωx´ϑtq{ε

“ eiϑϖ{ε
vpt ` ϱ, xq ´ e´iϑϖ{ε

vpt ´ ϱ, xq
2ϱ

´ iς
ω

vpt, xq
and

B2
xvpt, xq «

ˆ
bpt, x ` hq ´ 2bpt, xq ` bpt, x ´ hq

h2 ` 2 iϖ
ω

bpt, x ` hq ´ bpt, x ´ hq
2h

´ϖ
2

ω2 bpt, xq
˙

eipωx´ϑtq{ε “

p1 ` iϖh{ωq e´iωh{ε
vpt, x ` hq ´ 2vpt, xq ` p1 ´ iϖh{ωq eiωh{ε

vpt, x ` hq
h2 ´ ϖ

2

ω2 vpt, xq.
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We will use the so obtained exponentially weighted finited di”erences in the nu-
merical schemes to be proposed next. We further note that up to an Opϱ2q error,

vpt, xq “ bpt, xq eipωx´ϑtq{ε « 1
2

`
bpt ` ϱ, xq ` bpt ´ ϱ, xq

˘
eipωx´ϑtq{ε

“ 1
2

`
eiϑϖ{ε

vpt ` ϱ, xq ` e´iϑϖ{ε
vpt ´ ϱ, xq

˘
.

2.2. Exponentially weighted leapfrog algorithm. Let the time step be ϱ “
T {N $ 0 and the mesh size h “ 2ϑ{M $ 0, where N and M are positive integers.
We denote by u

n
j the numerical approximation of uptn, xjq, where tn “ nϱ for

0 " n " N , and xj “ jh for 0 " j " M . Using weighted finite di”erences as
derived above, we introduce an explicit algorithm, which has the symmetric two-
step formulation

(2.1) iω
eiϱ

u
n`1
j ´ e´iϱ

u
n´1
j

2ϱ
` ω

2

2
e´iςp1 ` iφqun

j`1 ´ 2u
n
j ` eiςp1 ´ iφqun

j´1
h2

“ ωε|un
j |2u

n
j

with
↼ “ ςϱ

ω
, φ “ ϖh

ω
.

Note that the terms ςu
n
j and ´ 1

2 ϖ
2
u

n
j , which would appear in the weighted finite

di”erence approximations to iωBtuptn, xjq and 1
2 ω

2B2
xuptn, xjq, respectively, cancel

thanks to the dispersion relation ς “ 1
2 ϖ

2.
The weighted leapfrog scheme tends to the classical leapfrog scheme in the limit

ϱ{ω Ñ 0 and h{ω Ñ 0. Our main interest here is, however, to use the weighted
scheme with large ratios ϱ{ω and h{ω.

For the weighted leapfrog method we need the following CFL-type condition.

Stability condition:

(2.2) ωϱ ! h
2{↽ with ↽ “ ↽pφq “ 1 ` maxp|φ|, 1q.

Equivalently, ↼{φ
2 ! 1{p2↽q. For large φ we note 1{↽ « 1{|φ| “ ω{|ϖh|. This yields

the condition ϱ ! h{|ϖ|, which is the CFL condition for the advection equation
Bta ` ϖBxa “ 0.

On the other hand, for small |φ|, (2.2) becomes the CFL condition ωϱ ! 1
2 h

2

of the classical unweighted leapfrog method applied to (1.1), which in our highly
oscillatory situation requires in addition ϱ ! ω and h ! ω to have a small consistency
error.

As a starting step, we use a step of the weighted explicit Euler method

(2.3) iω
eiϱ

u
1
j ´ u

0
j

ϱ
` ω

2

2
e´iςp1 ` iφqu0

j`1 ´ 2u
0
j ` eiςp1 ´ iφqu0

j´1
h2 “ ωε|u0

j |2u
0
j ,

with initial data u
0
j “ up0, xjq given by (1.2).

2.3. Exponentially weighted Crank–Nicolson algorithm. We further present
the following implicit scheme:

(2.4)
iω

eiϱ
u

n`1
j ´ e´iϱ

u
n´1
j

2ϱ
` ω

2

2
e´iςp1 ` iφqũn

j`1 ´ 2ũ
n
j ` eiςp1 ´ iφqũn

j´1
h2

“ ωε
p|un´1

j |2 ` |un`1
j |2qũn

j

2
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with ũ
n
j “ peiϱ

u
n`1
j ` e´iϱ

u
n´1
j q{2. Scheme (2.4) implicitly gives the map u

n´1 %Ñ
u

n`1, since u
n does not appear; using half the time step ϱ Ñ ϱ{2, it can be written

and implemented as a one-step method u
n %Ñ u

n`1.
Note that as ϱ{ω Ñ 0 and h{ω Ñ 0, this scheme tends to the classical Crank–

Nicolson scheme. We are, however, interested in using the weighted scheme with
large ratios ϱ{ω and h{ω.

No stability condition is needed for the weighted Crank–Nicolson algorithm.

3. Error bound and numerical experiments
Writing the exact solution of (1.1) as

(3.1) upt, xq “ apt, xq eipωx´ϑtq{ε with ς “ 1
2 ϖ

2
,

we find, on inserting this function u into the Schrödinger equation (1.1), that apt, xq
solves the advected nonlinear Schrödinger equation

(3.2) Bta ` ϖ Bxa ´ iω
2 B2

xa “ ´iε|a|2a, ap0, xq “ a
0pxq,

with initial data a
0 that are assumed to be smooth in the sense of having arbitrarily

many partial derivatives bounded independently of ω. By standard arguments, the
solution apt, xq of (3.2) is then also smooth on any closed time interval 0 " t " T

with T smaller than a possible blowup time.
Our first main result shows that the dominant oscillatory term of the numerical

solution of (2.1) and (2.4) is the same as for the exact solution, and it provides a
second-order error bound in the maximum norm that is uniform in ω.

Theorem 3.1 (ω-uniform second-order convergence in the maximum norm). Let u
n
j

be the numerical solution obtained by applying the weighted leapfrog algorithm (2.1)
under the stability condition (2.2) or by the weighted Crank–Nicolson method (2.4)
without requiring a stability condition. Assume (3.1) with a P C

4pr0, T s ˆTq having

fourth-order partial derivatives bounded independently of ω. Then, the numerical

solution u
n
j can be written as

u
n
j “ aptn, xjq eipωxj ´ϑtnq{ε ` e

n
j “ uptn, xjq ` e

n
j

for tn “ nϱ " T , xj “ jh, where apt, xq is the solution of (3.2) and the error is

bounded in the maximum norm by

max
n,j

|en
j | " Cpϱ2 ` h

2q.

Here, C is independent of ϱ, h and 0 ! ω " 1, but depends on the final time T and

on ⇀ “ ↽ωϱ{h
2 ! 1 with ↽ of (2.2) in the case of the weighted leapfrog method.

The proof will be given in the following two sections.

Remark 3.2. The numerical scheme yields approximations to the oscillatory solution
only at the grid points, with many oscillations between neighboring grid points when
ϱ " ω or h " ω. An interpolant capturing these oscillations is readily obtained by
interpolating the values a

n
j “ u

n
j e´ipωxj ´ϑtnq{ε that are Opϱ2 ` h

2q approximations
to the grid values of the smooth function apt, xq “ upt, xqe´ipωx´ϑtq{ε.

Remark 3.3. The weighted leapfrog method (2.1) for the Schrödinger equation (1.1)
with single-phase oscillatory initial data (1.2) turns out to be equivalent to applying
the standard leapfrog method to the initial value problem (3.2) with smooth initial
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data a
0. A possible proof of Theorem 3.1 could be based on this observation. In

the proof given below, we will not directly use this interpretation, since it does
not simplify the analysis. It is, however, helpful to have both interpretations as
approximations to both u and a in mind, as will become evident in the multiphase
case. The same remark applies to the weighted Crank–Nicolson method (2.4).

Numerical experiments. In this numerical test, we consider the one-dimensional
semiclassical nonlinear Schrödinger equation

iωBtu ` ω
2

2 Bxxu “ ω|u|2u

with the initial condition
up0, xq “ e´x2

eix{ε
.

We set the spatial domain to x P r´6, 6s with periodic boundary conditions. The
numerical error is measured at the final time T “ 0.5 using the discrete L

8 norm
over the domain r´6, 6s.
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Figure 1. Error and time stepsize vs. ω with di”erent h for the
weighted leapfrog method (top row) and weighted Crank-Nicolson
method (bottom row).
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Figure 1 displays the absolute error in u at time T “ 0.5 plotted against ω

for several fixed values of h. The top row corresponds to results obtained using
the weighted leapfrog method. For all values of ω, the error levels o” at a value
proportional to h

2. The corresponding time step ϱ as a function of ω is shown in the
right panel. We chose ϱ “ minph{2, h

2{p2ω↽qq so that the stability condition (2.2)
is satisfied for all h and ω. We observe that for large ω, the time step ϱ scales with
h

2, whereas for small ω, a linear dependence between ϱ and h su#ces. Similarly,
we test the weighted Crank–Nicolson method with time step ϱ “ h{2 for all values
of ω, and the results, presented in the bottom row of Figure 1, are consistent with
the theoretical prediction in Theorem 3.1.

4. Consistency
We consider the defect obtained on inserting upt, xq “ apt, xqeipωx´ω2t{2q{ε into

the weighted leapfrog scheme (2.1),

(4.1)

dpt, xq :“ iω eiϱ
upt ` ϱ, xq ´ e´iϱ

upt ´ ϱ, xq
2ϱ

` ω
2

2
e´iςp1 ` iφqupt, x ` hq ´ 2upt, xq ` eiςp1 ´ iφqupt, x ´ hq

h2

´ ωε|upt, xq|2upt, xq,
again with ↼ “ ςϱ{ω and φ “ ϖh{ω.

4.1. Defect bound in the maximum norm.

Lemma 4.1. In the situation of Theorem 3.1, the defect (4.1) is bounded in the

maximum norm by

}d}Cpr0,T sˆTq " cωpϱ2 ` h
2q,

where c is independent of ω, ϱ , h and n with tn “ nϱ " T .

Proof. The Opϱ2q and Oph2q error bounds of the weighted finite di”erences in
Section 2.1 yield, omitting the omnipresent argument pt, xq on the right-hand side,

dpt, xq “
´

iω Btu ` 1
2 ω

2B2
xu ´ ωε |u|2u

¯
´

´
ςu ´ 1

2 ϖ
2
u

¯
` O

`
ωpϱ2 ` h

2q
˘
.

The terms in big brackets vanish by the nonlinear Schrödinger equation (1.1) and
the dispersion relation ς “ 1

2 ϖ
2. This proves the result. ↭

However, the maximum norm in the defect bound of Lemma 4.1 turns out to be
too weak a norm for the proof of Theorem 3.1.

4.2. Defect bound in the Wiener algebra norm. Let ApTq be the space
of 2ϑ-periodic complex-valued functions with absolutely convergent Fourier series
fpxq “ !8

k“´8 pfpkq eikx, equipped with the ⇁
1pZq norm of the sequence of Fourier

coe#cients. For the pointwise product of two functions f, g P ApTq we then have
(see, e.g., [18, Section I.6])

(4.2) }fg}ApTq " }f}ApTq }g}ApTq,

which makes ApTq a Banach algebra, known as the Wiener algebra. Note that the
maximum norm of a function in ApTq is bounded by its ApTq-norm, and conversely,
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the ApTq-norm is bounded by the maximum norm of the function and its derivative,
see [18, Section I.6]:

(4.3) }f}CpTq " }f}ApTq and }f}ApTq " c1 }f}C1pTq.

The space Cpr0, T s, ApTqq is the Banach space of ApTq-valued continuous functions
on the interval r0, T s, with }d}Cpr0,T s,ApTqq “ max0!t!T }dpt, ¨q}ApTq.

Lemma 4.2. In the situation of Theorem 3.1, the defect (4.1) is bounded in the

Wiener algebra norm by

}d}Cpr0,T s,ApTqq " cωpϱ2 ` h
2q,

where c is independent of ω, ϱ , h, and n with tn “ nϱ " T .

Proof. We define
rdpx, tq :“ dpx, tq e´ipωx´ϑtq{ε

“ iω apt ` ϱ, xq ´ apt ´ ϱ, xq
2ϱ

` 1
2 ω

2
ˆ

apt, x ` hq ´ 2apt, xq ` apt, x ´ hq
h2 ` 2 iϖ

ω

apt, x ` hq ´ apt, x ´ hq
2h

˙

´ ωε|apt, xq|2apt, xq
and note that

} rdpt, ¨q}ApTq “ }dpt, ¨q}ApTq.

For the temporal finite di”erence we have by Taylor expansion

apt ` ϱ, xq ´ apt ´ ϱ, xq
2ϱ

“ Btapt, xq ` ϱ
2
R

p1q
ϖ pt, xq

with the continuously di”erentiable remainder in integral form,

R
p1q
ϖ pt, xq “

" 1

´1

1
2 p1 ´ |⇀|q2 B3

t apt ` ⇀ϱ, xq d⇀,

and similarly for the spatial finite di”erences with Oph2q remainder terms in integral
form. In view of the partial di”erential equation (3.2) for a, this yields

rdpt, xq “ iωϱ
2
R

p1q
ϖ pt, xq ` 1

2 ω
2
h

2
R

p2q
h pt, xq ` iϖωh

2
R

p1q
h pt, xq

with continuously di”erentiable remainder terms, which have partial derivatives
bounded independently of ω, ϱ and h. So we obtain, uniformly for 0 " t " T ,

}dpt, ¨q}ApTq “ } rdpt, ¨q}ApTq " c1 } rdpt, ¨q}C1pTq " cωpϱ2 ` h
2q,

which is the desired bound. ↭

5. Stability
5.1. Linear stability analysis in the Wiener algebra. In this subsection we
give linear stability results for the weighted leapfrog and Crank–Nicolson schemes.
We bound numerical solutions corresponding to the linear Schrödinger equation
(1.1) (without the nonlinearity) in the Wiener algebra norm, using Fourier analysis.
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We momentarily omit the nonlinearity and interpolate the weighted leapfrog
scheme (2.1) from discrete spatial points xj “ jh to arbitrary x P T by setting

iω eiϱ
u

n`1pxq ´ e´iϱ
u

n´1pxq
2ϱ

(5.1)

` ω
2

2
e´iςp1 ` iφqunpx ` hq ´ 2u

npxq ` eiςp1 ´ iφqunpx ´ hq
h2 “ 0.

We clearly have u
npxjq “ u

n
j of (2.1) for all n & 2 if this holds true for n “ 0 and

n “ 1. In particular, we have maxj |un
j | " maxxPT |unpxq| " }u

n}ApTq.

Lemma 5.1 (Linear stability of the weighted leapfrog method). Under condition

(2.2), the weighted leapfrog algorithm (5.1) without the nonlinear term is stable:

There exists a norm ~ ¨ ~ on ApTq ˆ ApTq, equivalent to the norm } ¨ }ApTqˆApTq
uniformly in ω, ϱ, h subject to the stability condition (2.2), such that

~U
n~ “ ~U

n´1~, where U
n “

ˆ
u

n`1

u
n

˙
.

Proof. Let û
n “ pûn

k q be the sequence of Fourier coe#cients of u
n, i.e.,

u
npxq “

8ÿ

k“´8
eikx

û
n
k .

Substituting this into (5.1) yields, for all j,
ÿ

k

eikxj

˜
iω eiϱ

û
n`1
k ´ e´iϱ

û
n´1
k

2ϱ
` ω

2 ↽k

h2 û
n
k

¸
“ 0,

where
↽k “ pcospφq ` φ sinpφqq cospkhq ` psinpφq ´ φ cospφqq sinpkhq ´ 1

“ cospφ ´ khq ` φ sinpφ ´ khq ´ 1,

which is bounded by
|↽k| " ↽ :“ 1 ` maxp|φ|, 1q for all k.

We then have

iω eiϱ
û

n`1
k ´ e´iϱ

û
n´1
k

2ϱ
` ω

2 ↽k

h2 û
n
k “ 0,

which is equivalent to the system
ˆ

û
n`1
k
û

n
k

˙
“ Gk

ˆ
û

n
k

û
n´1
k

˙
,

where

Gk “
ˆ

2iµke´iϱ e´2iϱ

1 0

˙
with µk “ ωϱ

h2 ↽k.(5.2)

Let ε
`
k , ε

´
k be the two roots of the characteristic polynomial

ρkpζq “ ζ
2 ´ 2iµke´iϱ

ζ ´ e´2iϱ
,

i.e.,
ε

˘
k “

´
iµk ˘ p1 ´ µ

2
kq1{2

¯
e´iϱ

.
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Condition (2.2) ensures that |µk| ! 1 and thus |ε˘
k | “ 1. The vectors pε`

k , 1qJ and
pε´

k , 1qJ are eigenvectors of Gk with eigenvalue ε
`
k and ε

´
k , respectively. This is

because (similar for ε
´
k )

ˆ
2iµke´iϱ e´2iϱ

1 0

˙ ˆ
ε

`
k
1

˙
“

ˆ
2iµke´iϱ

ε
`
k ` e´2iϱ

ε
`
k

˙
“ ε

`
k

ˆ
ε

`
k
1

˙
.

Therefore Gk is diagonalizable,
P

´1
k GkPk “ $k “ diagtε

`
k , ε

´
k u,

and $k is a unitary matrix. Using the transformation matrix Pk, we have, for any
vector y P C2,

|P ´1
k Gky|2 “ |$kP

´1
k y|2 “ |P ´1

k y|2.

Therefore,

(5.3)
~U

n~ :“
ÿ

k

ˇ̌
ˇ̌P ´1

k

ˆ
û

n`1
k
û

n
k

˙ˇ̌
ˇ̌
2

“
ÿ

k

ˇ̌
ˇ̌P ´1

k Gk

ˆ
û

n
k

û
n´1
k

˙ˇ̌
ˇ̌
2

“
ÿ

k

ˇ̌
ˇ̌P ´1

k

ˆ
û

n
k

û
n´1
k

˙ˇ̌
ˇ̌
2

“ ~U
n´1~.

Finally, we show that
}P }2 :“ max

k
}Pk}2 " C1, }P

´1}2 :“ max
k

}P
´1
k }2 " C2,

which yields that the newly introduced norm ~ ¨ ~ is equivalent to } ¨ }ApTqˆApTq.
Since

P
˚
k Pk “

˜
2 1 ` ε

`
k ε

´
k

1 ` ε
´
k ε

`
k 2

¸
,

the eigenvalues of P
˚
k Pk can be calculated as 2p1 ˘ µkq. Since |µk| " ⇀ ! 1 by

condition (2.2), we have for all k that

}Pk}2 “
b

εmaxpP ˚
k Pkq ! 2,

}P
´1
k }2 “ 1{

b
εminpP ˚

k Pkq " 1{
a

2p1 ´ ⇀q,
so that

1
2 }U}ApTqˆApTq " ~U~ " 1a

2p1 ´ ⇀q }U}ApTqˆApTq

for all U P ApTq ˆ ApTq. ↭
We similarly extend the weighted Crank–Nicolson algorithm (2.4) to all x P T

and omit the nonlinearity.

Lemma 5.2 (Linear stability of the weighted Crank–Nicolson method). The weighted

Crank–Nicolson algorithm (2.4) without the nonlinear term is unconditionally stable

with

}u
n`1}ApTq “ }u

n´1}ApTq.

Proof. Substituting the Fourier series of u
n into (2.4) without the nonlinear term

yields
ÿ

k

eikx

˜
iωeiϱ

û
n`1
k ´ e´iϱ

û
n´1
k

2ϱ
` ω

2 ↽k

h2
eiϱ

û
n`1
k ` e´iϱ

û
n´1
k

2

¸
“ 0,
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again with ↽k “ cospφ ´ khq ` φ sinpφ ´ khq ´ 1, which leads to
ˆ

iω
2ϱ

` ω
2 ↽k

2h2

˙
eiϱ

û
n`1
k “

ˆ
iω
2ϱ

´ ω
2 ↽k

2h2

˙
e´iϱ

û
n´1
k .

Therefore we have |ûn`1
k | “ |ûn´1

k | for all k, which yields the result. ↭

5.2. Nonlinear stability.

Lemma 5.3 (Nonlinear stability of the weighted leapfrog method). Let the func-

tion u P Cpr0, T s, ApTqq be arbitrary and let the corresponding defect d be defined

by (4.1). Under condition (2.2), the interpolated numerical solution of (2.1), inter-

polated to all x P T as in (5.1) (but now with the nonlinear term included), satisfies

the bound, for tn “ nϱ " T

}u
n ´uptn, ¨q}ApTq " C

´
}u

0 ´up0, ¨q}ApTq ` }u
1 ´upt1, ¨q}ApTq `ω

´1}d}Cpr0,T s,ApTqq
¯

,

where C is independent of ω, ϱ , h, and n with tn " T , but depends on T and on

upper bounds of the above term in big brackets and of the Cpr0, T s, ApTqq norm of u.

Proof. We define the error function e
npxq “ u

npxq ´ uptn, xq, which satisfies

eiϱ
e

n`1pxq ´ e´iϱ
e

n´1pxq

“ iωϱ

h2

`
e´iςp1 ` iφqenpx ` hq ´ 2e

npxq ` eiςp1 ´ iφqenpx ´ hq
˘

´ 2iεϱ
`
|unpxq|2u

npxq ´ |uptn, xq|2uptn, xq
˘

´ 2iϱ ω
´1

dptn, xq.
The Fourier coe#cient of e

n then satisfies
eiϱ

ê
n`1
k ´ e´iϱ

ê
n´1
k

“ 2iωϱ

h2
cospφq cospkhq ` psinpφq ´ φq sinpkhq ´ 1

h2 ê
n
k

´ 2iεϱF
`
|unpxq|2u

npxq ´ |uptn, xq|2uptn, xq
˘

pkq ´ 2iϱω
´1

d̂
n
k .

This equation can be written in the one-step form
ˆ

ê
n`1
k
ê

n
k

˙
“ Gk

ˆ
ê

n
k

ê
n´1
k

˙
´ 2iεϱ e´iϱ

ˆ
F

`
|unpxq|2u

npxq ´ |uptn, xq|2uptn, xq
˘

pkq
0

˙

´ 2iϱω
´1e´iϱ

ˆ
d̂

n
k
0

˙
,

where Gk is defined in (5.2).

We define the error vector as E
n “

ˆ
e

n`1

e
n

˙
. Multiplying the above equation by

P
´1
k and summing over k gives

~E
n~ “

ÿ

k

ˇ̌
ˇ̌P ´1

k

ˆ
û

n`1
k
û

n
k

˙ˇ̌
ˇ̌
2

"
ÿ

k

ˇ̌
ˇ̌P ´1

k Gk

ˆ
ê

n
k

ê
n´1
k

˙ˇ̌
ˇ̌
2

` c0ϱ

ÿ

k

ˇ̌
ˇ̌P ´1

k

ˆ
F

`
|unpxq|2u

npxq ´ |uptn, xq|2uptn, xq
˘

pkq
0

˙ˇ̌
ˇ̌
2

` c̃0ϱω
´1

ÿ

k

ˇ̌
ˇ̌P ´1

k

ˆ
d̂

n
k
0

˙ˇ̌
ˇ̌
2

.
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By (5.3), the first term on the right-hand side is ~E
n´1~. The second term can be

estimated as follows (we use À to denote " C for some constant C):

ÿ

k

ˇ̌
ˇ̌
ˇP

´1
k

ˆ
F

`
|unpxq|2u

npxq ´ |uptn, xq|2uptn, xq
˘

pkq
0

˙ˇ̌
ˇ̌
ˇ
2

À
›› |unpxq|2u

npxq ´ |uptn, xq|2uptn, xq
››

ApTq
“

››`
|unpxq|2 ` |uptn, xq|2

˘
punpxq ´ uptn, xqq ` u

npxq pūnpxq ´ ūptn, xqq uptn, xq
››

ApTq
À }u

n ´ uptn, ¨q}A À ~E
n´1~,

where we have used the estimate (4.2) for the nonlinear term and the norm equiv-
alence between ~ ¨ ~ and } ¨ }ApTqˆApTq as stated in Lemma 5.1. We then have

~E
n~ " p1 ` cϱq~E

n´1~ ` rcϱω
´1}dptn, ¨q}ApTq

" p1 ` cϱqn~E
0~ ` rcϱω

´1
nÿ

j“1
p1 ` cϱqn´j}dptj , ¨q}ApTq

" ecnϖ ~E
0~ ` rcϱω

´1 ecnϖ ´ 1
cϱ

sup
tPr0,T s

}dpt, ¨q}ApTq,

which yields the result, using the norm equivalence once more. ↭

An analogous result holds true for the weighted Crank–Nicolson method, with
essentially the same proof, now based on Lemma 5.2.

The proof of Theorem 3.1 is then finished by combining Lemmas 4.2 and 5.3.

Part II. Multiphase initial conditions

For the multiphase problem we apply the weighted finite di”erence methods mul-
tiple times, corresponding to each of the di”erent wave vectors ϖm and associated
frequencies ςm. The nonlinearity needs to be treated in a special way.

6. Two opposite phases
As an illustration of the procedure for multiphase initial data, we consider in

this section the particular case of two initial wave packets having opposite wave
numbers.

6.1. Modulated Fourier expansion. The following result provides an Opω2q ap-
proximation to the solution. It is a special case of Theorem 7.1 given in the next
section for the general multiphase case.

Proposition 6.1 (Modulated Fourier expansion for two opposite initial phases).
Let upt, xq be the solution to (1.1) with initial data given by

up0, xq “ a
0
1pxq eiωx{ε ` a

0
´1pxq e´iωx{ε

with ϖ ‰ 0 and with smooth functions a
0
˘1. Then, upt, xq admits a modulated

Fourier expansion

upt, xq “ uMFEpt, xq ` ept, xq,
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where, with ϖ˘1 “ ˘ϖ and ς˘1 “ 1
2 ϖ

2
, and with ϖ˘3 “ ˘3ϖ and ς

‹
˘3 “ 1

2 p˘3ϖq2
,

ς˘3 “ 1
2 ϖ

2 ‰ ς
‹
˘3 and with smooth modulation functions a˘1, b

‹
˘3 and b˘3 defined

below,

uMFEpt, xq “
ÿ

r“˘1
arpt, xq eipωrx´ϑrtq{ε

`ωε

ÿ

φ“˘3
b

‹
φpt, xq eipωω x´ϑ‹

ω tq{ε ` ωε

ÿ

φ“˘3
bφpt, xq eipωω x´ϑω tq{ε

.

The function a1pt, xq is the solution of an advected nonlinear Schrödinger equation

with smooth initial data,

(6.1)
Bta1 ` ϖ1Bxa1 ´ iω

2 B2
xa1 “ ´iε

``
|a1|2 ` 2|a´1|2

˘
a1 ` ωεp2a´1ā1b3 ` a´1b̄´3a´1q

˘
,

a1p0, xq “ a
0
1pxq,

and a´1pt, xq satisfies the same equation where all subscripts have reversed signs.

The function b3pt, xq (and analogously b´3 with opposite subscripts) is given by

the formula, with ▷3 “ ς3 ´ ς
‹
3 “ ´4ϖ

2 ‰ 0,

b3pt, xq “ 1
▷3

pa1ā´1a1qpt, xq,

which turns (6.1) into a quintic advected Schrödinger equation.

The function b
‹
3pt, xq (and analogously b

‹
´3 with opposite subscripts) solves the

advected linear Schrödinger equation

Btb
‹
3 ` ϖ3Bxb

‹
3 ´ iω

2 B2
xb

‹
3 “ ´2iεp|a1|2 ` |a´1|2qb‹

3, b
‹
3p0, xq “ ´b3p0, xq.

With these coe!cient functions a˘1, b
‹
˘3 and b˘3, the error ept, xq is bounded in

the maximum norm by

}e}Cpr0,T sˆTq " Cω
2
.

This result is basic for constructing a numerical method with an Opϱ2 ` h
2 ` ω

2q
error bound without restrictions on the ratios ϱ{ω and h{ω.

6.2. Weighted finite di!erence methods. We extend the weighted leapfrog and
Crank–Nicolson methods of Part I to the case of two initial phases. To simplify
the notation, we define the weighted leapfrog finite di”erence operator for u, which
depends on the parameters ↼ “ 1

2 ϖ
2
ϱ{ω and φ “ ϖh{ω:

(6.2)

D
ϱ,ς
LF u

ˇ̌n
j

:“ iω
eiϱ

u
n`1
j ´ e´iϱ

u
n´1
j

2ϱ
` ω

2

2
e´iςp1 ` iφqun

j`1 ´ 2u
n
j ` eiςp1 ´ iφqun

j´1
h2 .

We consider four schemes that are natural extensions of one another and guide the
derivation of the final scheme. In the first cases we approximate the solution by

uptn, xjq « u
n
j “

ÿ

r“˘1
u

n
rrs,j

where u
n
rrs,j is to approximate urpt, xq “ arpt, xq eipωrx´ϑrtq{ε. In an ω-asymptotically

more accurate scheme, we then make a refined approximation

uptn, xjq « u
n
j “

ÿ

r“˘1
u

n
rrs,j `

ÿ

φ“˘3
w

‹,n
rφs,j `

ÿ

φ“˘3
w

n
rφs,j ,



WEIGHTED FINITE DIFFERENCE METHODS FOR SEMICLASSICAL NLS 15

where w
‹,n
rφs,j is to approximate w

‹
φpt, xq “ ωε b

‹
φpt, xq eipωω x´ϑ‹

ω tq{ε and w
n
rφs,j is to

approximate wφpt, xq “ ωε bφpt, xq eipωω x´ϑω tq{ε at t “ tn and x “ xj .

Case 0 (Naive coupling). We directly extend the single-mode scheme to two
modes with fully coupled nonlinearity

D
ϱ,ς
LF ur1s

ˇ̌n
j

“ ωε
ˇ̌
u

n
r1s,j ` u

n
r´1s,j

ˇ̌2
u

n
r1s,j ,

and apply the same scheme to ur´1s with all subscripts of opposite signs and φ

replaced by ´φ. While straightforward, this leads to incorrect numerical results
except for very small ϱ ! ω and h ! ω.

Case 1 (Separated phases). To better match the system for a˘1, we separate
the nonlinear interactions as

D
ϱ,ς
LF ur1s

ˇ̌n
j

“ ωε
`
|un

r1s,j |2 ` 2|un
r´1s,j |2 ` u

n
r1s,j ū

n
r´1s,j

˘
u

n
r1s,j ,

and apply the same scheme to ur´1s with all subscripts of opposite signs and φ

replaced by ´φ. The mixed term u
n
r1s,j ū

n
r´1s,ju

n
r1s,j is oscillatory with wave number

3ϖ and nonresonant frequency ς “ 1
2 ϖ

2 ‰ 1
2 p3ϖq2. It contributes an Opϱq error if

ϱ $ ω and ↼ “ ςϱ{ω is bounded away from multiples of 2ϑ. This can be traced
back to partial summation and the geometric sum formula

ϱ

nÿ

k“0
e´ikϱ “ ϱ

1 ´ e´ipn`1qϱ

1 ´ e´iϱ .

The error is then bounded by the minimum of Opϱ ` h
2 ` ωq and Oppϱ2 ` h

2q{ω
3q,

where the latter term results from a standard error analysis using Taylor expansion
of the solution u (of interest when ω is not very small and h " ω

2).

Case 2 (ω-asymptotically first order accurate). To improve the order of
accuracy in the time step ϱ for small ω, we remove the high-frequency oscillations
and set

D
ϱ,ς
LF ur1s

ˇ̌n
j

“ ωε
`
|un

r1s,j |2 ` 2|un
r´1s,j |2

˘
u

n
r1s,j .

The formula for ur´1s is obtained by reversing the signs of all subscripts and re-
placing φ by ´φ. This scheme achieves accuracy of order Opϱ2 ` h

2 ` ωq when ω is
small, but deteriorates as ω increases.

Case 3 (ω-asymptotically second order accurate). To improve the accuracy
for small ω, we add the Opωq terms and assign the high-frequency oscillations to
higher modes:

D
ϱ,ς
LF ur1s

ˇ̌n
j

“ ωε
`
p|un

r1s,j |2 ` 2|un
r´1s,j |2qun

r1s,j

` 2u
n
r´1s,j ū

n
r1s,jw

n
r3s,j ` u

n
r´1s,jw̄

n
r´3s,ju

n
r´1s,j

˘

with w
n`1
r3s,j “ ωε

▷3
u

n`1
r1s,j ū

n`1
r´1s,ju

n`1
r1s,j ,

D
9ϱ,3ς
LF w

‹
r3s

ˇ̌n
j

“ 2ωεp|un
r1s,j |2 ` |un

r´1s,j |2qw‹,n
r3s,j .

The formulas for the components with negative subscripts are obtained by reversing
the signs of all subscripts and replacing φ by ´φ. This scheme achieves accuracy
of order Opϱ2 ` h

2 ` ω
2q.



16 Y. SHI AND CH. LUBICH

Extended leapfrog algorithm. To ensure uniform accuracy independently of ω,
we filter the oscillatory terms using a switching function:

(6.3)

D
ϱ,ς
LF ur1s

ˇ̌n
j

“ ωε
`
p|un

r1s,j |2 ` 2|un
r´1s,j |2 ` ◁ u

n
r1s,j ū

n
r´1s,jqun

r1s,j

` 2u
n
r´1s,j ū

n
r1s,jw

n
r3s,j ` u

n
r´1s,jw̄

n
r´3s,ju

n
r´1s,j

˘
,

D
9ϱ,3ς
LF w

‹
r3s

ˇ̌n
j

“ 2ωεp|un
r1s,j |2 ` |un

r´1s,j |2qw‹,n
r3s,j ,

▷3 w
n`1
r3s,j “ p1 ´ ◁qωεu

n`1
r1s,j ū

n`1
r´1s,ju

n`1
r1s,j ,

where ◁ “ 1 if h
2 " c ω

5 and zero otherwise. The initial conditions are given by

ur1sp0, xq “ a
0
1pxq eiωx{ε

,

wr3sp0, xq “ p1 ´ ◁qωε

▷3
ur1sūr´1sur1sp0, xq

w
‹
r3sp0, xq “ ´wr3sp0, xq.

The formulas for the components with negative subscripts are obtained by reversing
the signs of all subscripts and replacing φ by ´φ.

Extended Crank–Nicolson algorithm. We define the weighted finite di”erence
operator
(6.4)

D
ϱ,ς
CN u

ˇ̌n
j

:“ iω
eiϱ

u
n`1
j ´ e´iϱ

u
n´1
j

2ϱ
` ω

2

2
e´iςp1 ` iφqũn

j`1 ´ 2ũ
n
j ` eiςp1 ´ iφqũn

j´1
h2 ,

where ũ
n
j “ peiϱ

u
n`1
j ` e´iϱ

u
n´1
j q{2. Following the same strategy, we construct a

Crank–Nicolson-type discretization

(6.5)

D
ϱ,ς
CN ur1s

ˇ̌n
j

“ ωε

´`
p|un`1

r1s,j |2 ` |un´1
r´1s,j |2q{2 ` |un`1

r´1s,j |2 ` |un´1
r´1s,j |2

` ◁ ũ
n
r1s,j ¯̃un

r´1s,j
˘
ũ

n
r1s,j

` 2ũ
n
r´1s,j ¯̃un

r1s,jw̃
n
r3s,j ` ũ

n
r´1s,j ¯̃wn

r´3s,j ũ
n
r´1s,j

¯

with w
n`1
r3s,j “ p1 ´ ◁q ωε

▷3
u

n`1
r1s,j ū

n`1
r´1s,ju

n`1
r1s,j ,

D
9ϱ,3ς
CN w

‹
r3s

ˇ̌n
j

“ ωεp|un´1
r1s,j |2 ` |un`1

r1s,j |2 ` |un´1
r1s,j |2 ` |un`1

r´1s,j |2qw̃‹,n
r3s,j .

The initial conditions are the same as those specified for the extended leapfrog
scheme.

The following result is a special case of Theorem 8.1 given below for the general
multiphase case.

Proposition 6.2 (ω-uniform convergence in the maximum norm). Under the as-

sumptions of Proposition 6.1, and in the case of the leapfrog scheme subject to

the stability condition ωϱ ! minph2{↽pφq, h
2{↽p3φqq with ↽ defined by (2.2), the

following error estimate holds for both methods (6.3) and (6.5):

|uptn, xjq ´ u
n
j | " min

ˆ
C0pϱ2 ` h

2 ` ω
2q, C1

ϱ
2 ` h

2

ω3

˙
" Cpϱ4{5 ` h

4{5q,
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uniformly for tn “ nϱ " T and xj “ jh. The constants C0, C1 and C are indepen-

dent of ω P p0, 1s, the time step ϱ , and the mesh size h, and independent of j and n

for tn " T .

6.3. Numerical experiments. In this numerical test, we consider the one-dimensional
semiclassical nonlinear Schrödinger equation

iωBtu ` 1
2 ω

2Bxxu “ ω|u|2u

with the initial condition
up0, xq “ 1

2 e´x2
eix{ε ` 1

2 e´x2
e´ix{ε

.

The spatial domain and final time T are the same as in the previous experiments.
The solution error is again evaluated using the discrete L

8 norm. The switching
function is chosen as ◁ “ 1 if h

2 " 5 ω
5 and zero otherwise.
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Figure 2. Error and time stepsize vs. ω with di”erent h for the
weighted leapfrog method (top row) and weighted Crank–Nicolson
method (bottom row).

Figure 2 displays the absolute error in u plotted against ω for several fixed val-
ues of h, using the weighted leapfrog (top row) and the weighted Crank–Nicolson
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method (bottom row). We chose ϱ “ minph{2, h
2{p2ω↽3qq with ↽3 “ ↽p3φq for the

weighted leapfrog method while ϱ “ h{2 for the weighted Crank–Nicolson method.
The corresponding time step ϱ as a function of ω is shown in the right panel. It is
observed that the error levels o” at a constant value proportional to h

2 for small ω.

7. General multiphase problem: modulated Fourier expansion of the
exact solution

We now consider the semiclassical cubic Schrödinger equation (1.1) with mul-
tiphase initial data given by (1.3) with smooth profile functions a

0
m : Td Ñ C

for m “ 1, . . . , M , and with pairwise di”erent wave vectors ϖm P Rd and with
associated frequencies ςm “ 1

2 |ϖm|2, where | ¨ | is the Euclidean norm.
For a multi-index µ “ pm0, . . . , m2lq P t1, . . . , Mu2l`1 with l & 0 we denote

ϖµ “
2lÿ

i“0
p´1qi

ϖmi and ςµ “
2lÿ

i“0
p´1qi

ςmi .

We call the multi-index µ resonant if ςµ “ 1
2 |ϖµ|2.

We construct a sequence of wave vectors that correspond to resonant multi-
indices. Given a set K “ tϖ1, . . . , ϖRu (with R & M) of wave vectors with associ-
ated frequences ςr “ 1

2 |ϖr|2 for r “ 1, . . . , R, we augment this set as follows: Let
µ “ pi, j, kq be a multi-index in t1, . . . , Ru3, and let p, q P t1, . . . , Ru.

(i) If µ is resonant and ϖµ R K, then we add ϖµ to K.
(ii) If µ is nonresonant and pµ, p, qq is resonant and ϖpµ,p,qq R K, then we add

ϖpµ,p,qq to K. Similarly, if µ is nonresonant and pp, µ, qq is resonant and ϖpp,µ,qq R K,
then we add ϖpp,µ,qq to K.

By these two rules, we augment K to a set pK with pR & R elements. By
construction, K ’ pK. We enumerate the elements of pK,

pK “ tϖ1, ...ϖR, ϖR`1, . . . , ϖ pRu
and for the corresponding frequencies we have ςr “ 1

2 |ϖr|2 for r “ 1, . . . , pR.
We iterate the map K %Ñ pK: Starting from K0 “ tϖ1, . . . , ϖM u, we define the

set Kk`1 “ pKk for k “ 0, 1, 2, . . . We make the following assumption.

Assumption 1. (Saturation condition) There exists an integer k‹ & 0 such that

Kk‹`1 “ Kk‹ .

In the following we write K “ Kk‹ and enumerate the elements of this set, which
contains ϖ1, . . . , ϖM :

K “ tϖ1, . . . , ϖM , ϖM`1, . . . , ϖRu
For r “ 1, . . . , R, the frequency associated with ϖr is then ςr “ 1

2 |ϖr|2.

Remark. (a) In the case of dimension d “ 1, we have generically k‹ “ 0. Rule (i)
cannot add new resonant wave numbers, as is seen from the basic formula

(7.1) 1
2 pϖi ´ ϖj ` ϖkq2 ´ p 1

2 ϖ
2
i ´ 1

2 ϖ
2
j ` 1

2 ϖ
2
kq “ pϖi ´ ϖjqpϖk ´ ϖjq.

Rule (ii) can add new resonant wave numbers only in exceptional cases. Using (7.1)
twice, we found that this can happen only for a two-parameter family of quintuples
pϖi, ϖj , ϖk, ϖp, ϖqq.
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(b) The situation is much more intricate in higher dimensions d $ 1; see the
discussion in [7]. Note that the higher-dimensional version of (7.1),

1
2 |ϖi ´ ϖj ` ϖk|2 ´ p 1

2 |ϖi|2 ´ 1
2 |ϖj |2 ` 1

2 |ϖk|2q “ pϖi ´ ϖjq ¨ pϖk ´ ϖjq
with the Euclidean inner product ¨ on the right-hand side, does no longer imply
that ϖi “ ϖj or ϖk “ ϖj when the left-hand side vanishes. However, k‹ “ 0 still
appears to be generic.

We let N be the set of all multi-indices 0 “ pi, j, kq with i, j, k P t1, . . . , Ru that are
nonresonant, i.e., with ϖφ “ ϖi ´ϖj `ϖk and ςφ “ ςi ´ςj `ςk we have ςφ ‰ 1

2 |ϖφ |2.
For 0 P N , we let ς

‹
φ “ 1

2 |ϖφ |2 and ▷φ “ ςφ ´ ς
‹
φ ‰ 0.

Assumption 2. (Nonresonance condition) For all 0 P N and all p, q, r “ 1, . . . , R

with q ‰ r,

ς
‹
φ ´ ςq ` ςr ‰ 1

2 |ϖφ ´ ϖq ` ϖr|2 and ςp ´ ς
‹
φ ` ςr ‰ 1

2 |ϖp ´ ϖφ ` ϖr|2.

In dimension d “ 1, it follows from (7.1) that this condition is always satisfied.
In higher dimensions, the condition still appears to be generic; cf. [7].

The following theorem provides an Opω2q approximation to the solution of (1.1)
with multiphase initial data (1.3).

Theorem 7.1 (Modulated Fourier expansion for multiphase initial data). Let

upt, xq be the solution to (1.1) with initial data given by (1.3), with wave vectors

ϖm for which Assumptions 1 and 2 are fulfilled. Then, upt, xq admits a modulated

Fourier expansion

upt, xq “ uMFEpt, xq ` ept, xq,
where, with the notation introduced above and with modulation functions ar, b

‹
φ and

bφ defined below,

uMFEpt, xq “
Rÿ

r“1
arpt, xq eipωr¨x´ϑrtq{ε

` ωε

ÿ

φPN
b

‹
φpt, xq eipωω ¨x´ϑ‹

ω tq{ε ` ωε

ÿ

φPN
bφpt, xq eipωω ¨x´ϑω tq{ε

.

The functions arpt, xq solve the system of advected nonlinear Schrödinger equations

Btar ` ϖr ¨ →xar ´ 1
2 iω!xar “ ´iε

ÿ

i,j,k“1,...,R:
εi´εj `εk“εr

aiājak(7.2)

´ 2iωε
2

ÿ

ωPN ,p,q“1,...,R:
εω ´εp`εq “εr

bφ āpaq ´ iωε
2

ÿ

ωPN ,p,q“1,...,R:
εp´εω `εq “εr

apb̄φaq,

arp0, xq “ a
0
rpxq,

where the initial data a
0
rpxq are given for r “ 1, . . . , M and are set to zero for

r “ M ` 1, . . . , R.

The functions bφpt, xq for 0 “ pi, j, kq P N are defined by the formula, with

▷φ “ ςφ ´ ς
‹
φ ‰ 0,

(7.3) bφpt, xq “ 1
▷φ

paiājakqpt, xq,
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which turns (7.2) into a quintic nonlinear Schrödinger equation. The function bφ is

an Opωq approximation to the solution of the advected linear Schrödinger equation

Btbφ ` ϖφ ¨ →xbφ ´ 1
2 iω!xbφ ´ i▷φ

ω
bφ “ ´ i

ω
aiājak, bφp0, xq “ 1

▷φ
paiājakqp0, xq.

The function b
‹
φ is the solution of the advected linear Schrödinger equation

Btb
‹
φ ` ϖφ ¨ →xb

‹
φ ´ 1

2 iω!xb
‹
φ “ ´iε 2

Rÿ

r“1
|ar|2 b

‹
φ , b

‹
φp0, xq “ ´bφp0, xq.

The modulation functions ar, bφ and b
‹
φ are smooth in the sense that the functions

and all their partial derivatives of arbitrary order are bounded independently of ω

and pt, xq P r0, T s ˆ Td
for a time T $ 0 on which a solution of (7.2) with (7.3)

exists. With these functions ar, bφ and b
‹
φ , the error ept, xq is bounded by

}e}Cpr0,T sˆTdq " Cω
2
.

Both T and C are independent of ω P p0, ω0q for some ω0 $ 0, but they depend on

the given wave vectors ϖm, and C depends on T .

Proof. Let dpt, xq be the defect of the approximate solution uMFEpt, xq in (1.1),

d :“ iω BtuMFE ` ω
2

2 !uMFE ´ ωε|uMFE|2uMFE.

Inserting the expression for uMFEpt, xq, we compute

iω BtuMFE ` ω
2

2 !uMFE “ iω
Rÿ

r“1

ˆ
Btar ` ϖr →ar ´ iω

2 !ar

˙
eipωr¨x´ϑrtq{ε

`iω2
ε

ÿ

φPN

ˆ
Btbφ ` ϖφ →bφ ´ iω

2 !bφ ´ i▷φ

ω
bφ

˙
eipωω ¨x´ϑω tq{ε

`iω2
ε

ÿ

φPN

ˆ
Btb

‹
φ ` ϖφ →b

‹
φ ´ iω

2 !b
‹
φ

˙
eipωω ¨x´ϑ‹

ω tq{ε
.

For the nonlinear term we have

|uMFE|2uMFE “
Rÿ

i,j,k“1
aiājakeipωpi,j,kq¨x´ϑpi,j,kqtq{ε

` ωε

ÿ

φPN

Rÿ

p,q“1

´
2bφ āpaqeipωpω,p,qq¨x´ϑpω,p,qqtq{ε ` apb̄φaqeipωpp,ω,qq¨x´ϑpp,ω,qqtq{ε

¯

` ωε

ÿ

φPN

Rÿ

p,q“1

´
2b

‹
φ āpaqeipωpω,p,qq¨x´pϑpω,p,qq´↼ω qtq{ε ` apb̄‹

φaqeipωpp,ω,qq¨x´pϑpp,ω,qq`↼ω qtq{ε
¯

` Opω2q.
The equations for ar, bφ and b

‹
φ are constructed such that, under Assumptions 1

and 2, the defect is of the form

d “ iω
˜

ω

Lÿ

l“1
clpt, xq eiprωl¨x´rϑltq{ε ` Opω2q

¸

with ω-uniformly bounded and smooth modulation functions cl and nonresonant

prϖl, rςlq, i.e., rςl ‰ 1
2 |rϖl|2. Since all modulation functions are spatially smooth, the
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same argument as in the proof of Lemma 4.2 shows that the above Opω2q-bounds
are valid not only in the maximum norm, but also in the stronger norm of the
Wiener algebra ApTdq.

The error e “ u ´ uMFE then satisfies the equation

iω Bte ` ω
2

2 !e “ ωε
`
|u|2u ´ |uMFE|2uMFE

˘
´ d.

Applying Duhamel’s principle yields

eptq “ eiεt!{2
ep0q ´ iε

" t

0
eiεpt´sq!{2 `

|u|2u ´ |uMFE|2uMFE
˘

ds

` iε
" t

0
eiεpt´sq!{2 dps, ¨q

iω ds.

By the partial integration argument of Lemma 5.7 of [7], we obtain in the present
nonresonant situation

" t

0
eiεpt´sq!{2

clps, xq eiprωl¨x´rϑlsq{ε ds “ Opωq

in the Wiener algebra ApTdq, and so we have
››››

" t

0
eiεpt´sq!{2 dps, ¨q

iω ds

››››
ApTdq

" C0ω
2
.

Using ep0q “ 0 and trilinear estimates in ApTdq, we then obtain

}eptq}ApTdq " C1

" t

0
}epsq}ApTdq ds ` C0ω

2
.

The stated bound then follows from Gronwall’s inequality. ↭

8. General multiphase problem: numerical method and error bound
In view of Theorem 7.1, the exponentially weighted leapfrog method extends

from the particular two-phase case in (6.3) to the general multiphase situation as
follows. With the notation of the two previous sections, we approximate

uptn, xjq « u
n
j “

Rÿ

r“1
u

n
rrs,j `

ÿ

φPN
w

‹,n
rφs,j `

ÿ

φPN
w

n
rφs,j

where u
n
rrs,j is to approximate urpt, xq “ arpt, xq eipωr¨x´ϑrtq{ε, w

‹,n
rφs,j is to approx-

imate w
‹
φpt, xq “ b

‹
φpt, xq eipωω ¨x´ϑ‹

ω tq{ε, and w
n
rφs,j is to approximate wφpt, xq “

bφpt, xq eipωω ¨x´ϑω tq{ε at t “ tn and x “ xj . In the following, let ↼r “ ςrϱ{ω,
φr “ ϖrh{ω, ↼

‹
φ “ ς

‹
φϱ{ω, and φφ “ ϖφh{ω. We compute u

n`1
j as follows for

r “ 1, . . . , R and 0 “ pk, l, mq P N . With the weighted leapfrog finite di”erence
operator of Section 6.2 (or its obvious generalization to higher dimensions d $ 1),
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we consider the scheme
D

ϱr,ςr

LF urrs
ˇ̌n
j

“ ωε

ÿ

k,l,m“1,...,R:
εk´εl`εm“εr

u
n
rks,j ū

n
rls,ju

n
rms,j ` ◁ωε

ÿ

k,l“1,...,R:
pk,l,rqPN

u
n
rks,j ū

n
rls,ju

n
rrs,j

` 2ωε

ÿ

ωPN ,p,q“1,...,R:
εω ´εp`εq “εr

w
n
rφs,j ū

n
rps,ju

n
rqs,j ` ωε

ÿ

ωPN ,p,q“1,...,R:
εp´εω `εq “εr

u
n
rps,jw̄

n
rφs,ju

n
rqs,j

with w
n
rφs,j “ p1 ´ ◁q ωε

▷φ
u

n
rks,j ū

n
rls,ju

n
rms,j ,

D
ϱ‹

ω ,ςω

LF w
‹
rφs

ˇ̌n
j

“ 2ωε

Rÿ

r“1
|urrs,j |2 w

‹,n
rφs,j ,

where ◁ “ 1 if h
2 " c ω

5 and zero otherwise. The initial conditions are given by

urrsp0, xq “ a
0
rpxq eiωr¨x{ε for r “ 1, . . . , M and zero otherwise,

wrφsp0, xq “ p1 ´ ◁qωε

▷φ
urksūrlsurmsp0, xq

w
‹
rφsp0, xq “ ´wrφsp0, xq.

An analogous formula holds for the exponentially weighted Crank–Nicolson method;
cf. (6.5).

The following theorem provides an Opϱ2 ` h
2 ` ω

2q error bound in the maximum
norm for the numerical solutions of the above weighted leapfrog and Crank–Nicolson
methods, which extends to an ω-uniform Opϱ4{5 ` h

4{5q error bound.

Theorem 8.1 (Error bound for the weighted leapfrog and Crank-Nicolson meth-
ods). Under the assumptions of Theorem 7.1, and in the case of the leapfrog scheme

subject to the stability condition ωϱ ! h
2{↽pφµq for all µ P t1, . . . , Ru Y N where

φµ “ ϖµh{ω and ↽ is defined by (2.2), the error is bounded by

|un
j ´ uptn, xjq| " min

ˆ
C0pϱ2 ` h

2 ` ω
2q, C1

ϱ
2 ` h

2

ω3

˙
" Cpϱ4{5 ` h

4{5q,

uniformly for tn “ nϱ " T and xj “ jh and 0 ! ω " 1. The constants C0, C1 and

C are independent of ω, the time step ϱ , and the mesh size h, and independent of

j and n for tn " T .

Proof. Theorem 8.1 is proved by combining the proofs of Theorems 3.1 and 7.1.
We consider two cases based on the relative value of h

2 and ω
5:

(1) h
2 & c ω

5, i.e., ◁ “ 0.
In this case, proceeding as in the proof of Theorem 3.1 for each component
u

n
rrs,j , w

‹,n
rφs,j and w

n
rφs,j of the numerical solution, we obtain that the di”er-

ence between the numerical solution and the modulated Fourier expansion
of the exact solution is bounded by

|un
j ´ uMFEptn, xjq| “ Opϱ2 ` h

2q
uniformly for j and n with tn " T . Together with Theorem 7.1, this yields
the maximum norm error bound

|un
j ´ uptn, xjq| “ Opϱ2 ` h

2 ` ω
2q

uniformly for j and n with tn " T .
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(2) h
2 " c ω

5, i.e., ◁ “ 1.
In this regime, w

‹
rφs “ wrφs “ 0, the scheme reduces to a standard leapfrog

or Crank–Nicolson algorithm. By summing the equations and applying
Taylor expansion, we obtain the error bound

|un
j ´ uptn, xjq| “ O

ˆ
ϱ

2 ` h
2

ω3

˙
.

Combining the two cases yields the stated ω-uniform error bound. ↭
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