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WEIGHTED FINITE DIFFERENCE METHODS FOR THE
SEMICLASSICAL NONLINEAR SCHRODINGER EQUATION
WITH MULTIPHASE OSCILLATORY INITTIAL DATA

YANYAN SHI AND CHRISTIAN LUBICH

ABSTRACT. This paper introduces weighted finite difference methods for nu-
merically solving dispersive evolution equations with solutions that are highly
oscillatory in both space and time. We consider a semiclassically scaled cubic
nonlinear Schrodinger equation with highly oscillatory initial data, first in the
single-phase case and then in the general multiphase case. The proposed meth-
ods do not need to resolve high-frequency oscillations in both space and time
by prohibitively fine grids as would be required by standard finite difference
methods. The approach taken here modifies traditional finite difference meth-
ods by appropriate exponential weights. Specifically, we propose the weighted
leapfrog and weighted Crank—Nicolson methods, both of which achieve second-
order accuracy with time steps and mesh sizes that are not restricted in mag-
nitude by the small semiclassical parameter. Numerical experiments illustrate
the theoretical results.

Keywords. Finite difference method, cubic nonlinear Schréodinger equation,
semiclassical scaling, highly oscillatory, modulated Fourier expansion, Wiener
algebra, stability, error bound, asymptotic-preserving, uniformly accurate

Mathematics Subject Classification (2020): 65M06, 65M12, 65M15

1. INTRODUCTION

As a basic model problem of a dispersive evolution equation with solutions that
are highly oscillatory in both space and time, we consider the time-dependent
weakly nonlinear Schrodinger equation in semiclassical scaling [6, 7],

2
(1.1) ie pu + %Au = e |ul?u,

where 0 < € « 1 is the small semiclassical parameter, and A is a fixed nonzero real
number.

This equation is to be solved for the complex-valued function u = u(t, ) under
periodic boundary conditions with z € T? = (R/27Z)¢ over a bounded time interval
0 <t <T. The final time T is chosen independently of . On this time scale, the
nonlinearity has an O(1) effect on the solution.

We consider highly oscillatory initial data at ¢ = 0. A simple model problem is
the case of a single phase (also known as the monochromatic case) considered in
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the first part of this paper,
(1.2) u(0,z) = a®(z) " T/E,

where x € R4\ {0} is a fixed wave vector, and a® : T¢ — C is a given profile function
that is assumed to be smooth in the sense of having arbitrarily many higher-order
derivatives bounded independently of ¢.

The initial function «(0,-) in (1.3) is required to be a 27-periodic continuous
function. This is satisfied if the small parameter ¢ is assumed to take only values
for which x/e € Z% and a® are 2r-periodic. This assumption on ¢ is not a restriction,
since it can always be achieved with an O(e) modification of k and a corresponding
smooth modification of a'.

The single-phase problem (1.1)—(1.2) provides much insight into the construction
and analysis of the proposed numerical methods and so prepares the ground for the
numerical treatment of the more challenging multiphase problem with initial data

M .
(1.3) u(0,2) = Z al () elm /e,

m=1

where #,, € RA\{0} are fixed wave vectors, and a2, : T¢ — C are given smooth
profile functions. This is considered in the second part of the paper, first illustrated
by the two-phase case M = 2 with opposite wave numbers k1 = k and ko = —k
and then extended to the general multiphase case.

An analytical study of the multiphase problem was given by Carles, Dumas &
Sparber [7], where O(e) approximations to the solution are constructed that are
of the form (1.3) at every time. Here we prove a refined result (Theorem 7.1)
that provides a second-order expansion of the solution with an O(¢?) error in the
maximum norm. As in [7], we derive error bounds in the stronger norm of the
Wiener algebra, which is particularly suitable for handling the nonlinearity. The
improved analytical approximation result is basic for the numerical analysis.

The solution u(t, ) is highly oscillatory in both time and space at a scale pro-
portional to the small parameter €. This poses significant challenges in the devel-
opment of efficient numerical methods and their error analysis. Traditional finite
difference methods like the leapfrog and Crank—Nicolson schemes have been stud-
ied for Schrodinger equations in the semiclassical scaling in [21], where stringent
restrictions on the time step 7 « € and mesh size h « ¢ are required. Time-splitting
spectral discretizations, also known as split-step Fourier methods [3, 4, 17, 19], ease
these restrictions. For the stated initial value problem (1.1)—(1.2), using techniques
as in the cited papers, split-step Fourier methods can be shown to require no bound
of 7 in terms of €, but they still require small h = O(e/|loge|) to obtain at least
first-order accuracy in h, as is already needed for the approximation of the initial
data by trigonometric interpolation. Asymptotic-preserving methods have been
proposed in [1, 11, 5] by reformulating the Schrodinger equation using the WKB
expansion [14, 6] or the Madelung transform [20].

One objective of this paper is to revive finite difference methods for dispersive
evolution equations with solutions that are highly oscillatory in both space and
time, modifying standard methods such as leapfrog and Crank—Nicolson methods
by changing the method coefficients on the same stencil. Such weighted schemes
enable us to approximate the solution of (1.1)~(1.3) with second-order accuracy
even when using time steps T and mesh sizes h that are not restricted by €. Under
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mild assumptions, we prove an O(72 + h? + £2) error bound for the multiphase
problem (Theorem 8.1). The proposed weighted methods tend to the standard
leapfrog and Crank—Nicolson schemes as the ratios of the time step and mesh size
to the semiclassical parameter ¢ approach zero, which is, however, not the regime
of principal interest in this paper. The methods can be extended to be not only
asymptotic-preserving as € — 0 but also uniformly accurate (of order 4/5 for the
multiphase problem) for 0 < e < 1.

Modulated Fourier expansions are a powerful tool for deriving and analyzing
numerical methods for highly oscillatory problems. They represent both the ex-
act and the numerical solution as sums of products of slowly varying modulation
functions and highly oscillatory exponentials, as is given here with the initial data
(1.3). Comparing the modulated Fourier expansions of the numerical and the exact
solution then yields asymptotically sharp error bounds; see [16, Chapter XIII] and,
e.g., [15] for oscillatory ordinary differential equations and, e.g., [9, 12] for evolu-
tionary partial differential equations. We will pursue such an approach also here,
as a novelty combined in both time and space. For the single-phase problem and
in some cases, depending on the numerical treatment of the nonlinearity, also for
the multiphase problem, the proposed weighted finite difference methods can be
reinterpreted as applying the corresponding standard finite difference schemes to
the equations for the non-oscillatory modulation functions of the modulated Fourier
expansion (here considered up to order 2). The approach of numerically approx-
imating the modulation functions has previously been used in the literature for
oscillatory ordinary differential equations, e.g., in [8, 10], and later for temporally
(though not spatially) oscillatory partial differential equations, e.g., in [2, 13].

We will formulate the weighted finite difference methods only in the spatially
one-dimensional case (d = 1). This apparent limitation is introduced only for ease
of presentation. The methods and theoretical results extend directly to higher
dimensions. Furthermore, the extension to the full space R? instead of the torus T¢
is straightforward for the formulation of the methods and can be done analogously
in the theory.

The paper is organized as follows.

In Section 2, we introduce the weighted leapfrog and weighted Crank—Nicolson
algorithms for a single initial phase, with stepsizes 7 and meshwidths h that can
be arbitrarily large compared to €. For h » ¢, there is a mild stepsize restriction
7 < ch for the weighted leapfrog method and no such restriction for the weighted
Crank—Nicolson method.

In Section 3, Theorem 3.1 states e-uniform O(72 + h?) error bounds for the
single-phase case for both numerical methods. Numerical experiments confirm these
theoretical results. The proof of the error bound is provided in Sections 4 and 5.
In Section 4, we study the consistency error, i.e., the defect obtained on inserting
the exact solution into the numerical scheme. Section 5 presents the linear Fourier
stability analysis, which is done in the Wiener algebra A(T) < C(T), and then
gives a nonlinear stability analysis that bounds the error of the numerical solution
in terms of the defect.

In Section 6, we treat the case of two opposite phases. We formulate the modu-
lated Fourier expansion of the exact solution and extend both the weighted leapfrog
and weighted Crank—Nicolson methods to the two-phase case in several variants
that differ in the treatment of the nonlinearity and in the attained accuracy. For
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the most accurate variant, we have an O(7? + h? + 2) error bound. Numerical
experiments illustrate the theory.

In Section 7, we present the modulated Fourier expansion of the exact solution
for general multiphase initial conditions (1.3), and we prove that the remainder
term is of order O(g?) in the maximum norm (Theorem 7.1).

In Section 8, we extend the weighted leapfrog and Crank-Nicolson methods to the
general multiphase setting and prove an O(72+h?+&?) error bound in Theorem 8.1,
based on Theorems 3.1 and 7.1. We further obtain e-uniform convergence of order
4/5 by combining the above error bound with the standard error bound obtained
from Taylor expansion of the solution, which is O(72 + h?)/e3. The latter bound
is smaller only for 72 + h? < &, which is not the situation of main interest here,
where we aim for large stepsizes 7 » € and meshsizes h » ¢ for small €.

Part I. Case of a single phase

2. WEIGHTED FINITE DIFFERENCE METHODS FOR A SINGLE INITIAL PHASE

For simplicity of presentation, we restrict the presentation to the case of one
spatial dimension, 0 < x < 2w, with periodic boundary conditions. The proposed
numerical methods and their analysis extend to higher dimensions in a straightfor-
ward way.

2.1. Preparation: Weighted finite differences of modulated exponentials.
We expect that the solution to (1.1) with initial data (1.2) can be approximated
by a modulated plane wave

v(t,z) = b(t, ) e!KT—wt/e, where w = 1x?

in view of the dispersion relation ie(—iw/e) + 3e2(ik/e)® = 0 of the free linear
Schrodinger equation, and b(t, z) is a smooth modulation function with derivatives
bounded independently of €. We then have

dro(t,x) = (5t - %)b(t,x) cglrz—wt)/e

2 _ f 2 | al(kz—wt)/e
ozv(t,x) = (OI + 8) b(t,x) e .

We approximate the partial derivatives of b by symmetric finite differences, with
a temporal step size 7 and a spatial grid size h, up to errors of O(72) and O(h?)
resulting from the Taylor expansion of the smooth function b at (¢, z),

at’U(t, J}) ~ (b(t + 7, Jj) - b(t - T, 33) _ E b(t, JT)) ei(ﬁr—wt)/s
27 £
ein/av(t +7,z) — e—iwr/av(t — T iw
_ )~ )%
and
b(t,z + h) —2b(t,x) + b(t,x — h) ik b(t,x +h) —b(t,x — h)
2 N ) , , i b(t, 7
R ( n T oh
'%2 i(kzx—wt)/e
55 b))l

(1 +irh/e) e "Mey(t, x + h) — 20(t,x) + (1 — ikh/e) e"Meu(t,x + h) K>
2 2 v(t,x).
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We will use the so obtained exponentially weighted finited differences in the nu-
merical schemes to be proposed next. We further note that up to an O(72) error,

v(t,z) = b(t, x) gllrr—wt)/e o %(b(t +7,2)+b(t — T, x)) ellre—wt)/e

= %(ei‘”/ev(t +7,x)+ e*i“”/ev(t -7, x))

2.2. Exponentially weighted leapfrog algorithm. Let the time step be 7 =
T/N > 0 and the mesh size h = 2r/M > 0, where N and M are positive integers.
We denote by u? the numerical approximation of u(t,,;), where t, = nt for
0<n < N,and z; = jh for 0 < j < M. Using weighted finite differences as
derived above, we introduce an explicit algorithm, which has the symmetric two-
step formulation
- ei“u;”r1 - e_i‘:“u;-“1 i e PA+if)uly, —2uf + P (1 —if)ul_,

(2.1) 2T 2 h2

= s)\|u?|2u}’

with

Note that the terms wu” and —%f{zun which would appear in the weighted finite

j R
difference approximations to iedyu(t,,z;) and 2e202u(t,, z;), respectively, cancel
thanks to the dispersion relation w = %FL2.

The weighted leapfrog scheme tends to the classical leapfrog scheme in the limit
7/e — 0 and h/e — 0. Our main interest here is, however, to use the weighted
scheme with large ratios 7/e and h/e.

For the weighted leapfrog method we need the following CFL-type condition.
Stability condition:
(2.2) eT < h?/y with v =~(8) =1+ max(|g],1).

Equivalently, /3% < 1/(2v). For large 8 we note 1/y ~ 1/|8| = &/|rxh|. This yields
the condition 7 < h/|k|, which is the CFL condition for the advection equation
ora + kOza = 0.

On the other hand, for small |3, (2.2) becomes the CFL condition er < h?
of the classical unweighted leapfrog method applied to (1.1), which in our highly
oscillatory situation requires in addition 7 € € and h « ¢ to have a small consistency
erTor.

As a starting step, we use a step of the weighted explicit Euler method

euj — ud N e2 e P(1+if)uly ) —2uf + P (1 —if)u)_,

2.3) i J
(23) i< .

= 5)\\u2\2u2,

2
with initial data u = u(0,z;) given by (1.2).

2.3. Exponentially weighted Crank—Nicolson algorithm. We further present
the following implicit scheme:
o elog T — eyt &? e P +ip)ar,, —2a) + P (1 —ip)ay,
(g~ P+ gy

J
2

=l
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with @ = (e*u) ™' + e~ *u~")/2. Scheme (2.4) implicitly gives the map u"~! —
u™*t1, since u™ does not appear; using half the time step 7 — 7/2, it can be written
and implemented as a one-step method u™ — u™*1.

Note that as 7/e — 0 and h/e — 0, this scheme tends to the classical Crank—
Nicolson scheme. We are, however, interested in using the weighted scheme with
large ratios 7/¢ and h/e.

No stability condition is needed for the weighted Crank—Nicolson algorithm.

3. ERROR BOUND AND NUMERICAL EXPERIMENTS
Writing the exact solution of (1.1) as
i(rz—wt . 1,2
(3.1) u(t, ) = a(t,z) ! F*=D/e with w = 5K,

we find, on inserting this function w into the Schrodinger equation (1.1), that a(t, x)
solves the advected nonlinear Schrodinger equation

(3.2) Ora + K Oy — %&ia = —iMal?a, a(0,7) = a’(z),

with initial data a” that are assumed to be smooth in the sense of having arbitrarily
many partial derivatives bounded independently of €. By standard arguments, the
solution a(t,x) of (3.2) is then also smooth on any closed time interval 0 < ¢ < T
with T smaller than a possible blowup time.

Our first main result shows that the dominant oscillatory term of the numerical
solution of (2.1) and (2.4) is the same as for the exact solution, and it provides a
second-order error bound in the maximum norm that is uniform in €.

Theorem 3.1 (e-uniform second-order convergence in the maximum norm). Let u’}
be the numerical solution obtained by applying the weighted leapfrog algorithm (2.1)
under the stability condition (2.2) or by the weighted Crank-Nicolson method (2.4)
without requiring a stability condition. Assume (3.1) with a € C*([0,T] x T) having
fourth-order partial derivatives bounded independently of €. Then, the numerical

solution u? can be written as

ul = a(tn, ;) eilrzi—win)/e 4 ef = u(ty,z;) +ej

fort, = nt < T, x; = jh, where a(t,x) is the solution of (3.2) and the error is
bounded in the mazximum norm by

max |ef | < C(m% + h?).
n.j

Here, C' is independent of T,h and 0 < e < 1, but depends on the final time T and
on 0 = ~yet/h? < 1 with v of (2.2) in the case of the weighted leapfrog method.

The proof will be given in the following two sections.

Remark 3.2. The numerical scheme yields approximations to the oscillatory solution
only at the grid points, with many oscillations between neighboring grid points when
T » e or h » e. An interpolant capturing these oscillations is readily obtained by
interpolating the values aj = u?e_i(”'j ~wtn)/¢ that are O(72 + h?) approximations
to the grid values of the smooth function a(t, z) = u(t,z)e (vz—wt)/e,

Remark 3.3. The weighted leapfrog method (2.1) for the Schrédinger equation (1.1)
with single-phase oscillatory initial data (1.2) turns out to be equivalent to applying
the standard leapfrog method to the initial value problem (3.2) with smooth initial
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data a®. A possible proof of Theorem 3.1 could be based on this observation. In
the proof given below, we will not directly use this interpretation, since it does
not simplify the analysis. It is, however, helpful to have both interpretations as
approximations to both u and a in mind, as will become evident in the multiphase
case. The same remark applies to the weighted Crank—Nicolson method (2.4).

Numerical experiments. In this numerical test, we consider the one-dimensional
semiclassical nonlinear Schrodinger equation

2
iedu + ?&wu = elul?u

with the initial condition

u(0,2) = e ei/e,
We set the spatial domain to x € [—6,6] with periodic boundary conditions. The
numerical error is measured at the final time 7" = 0.5 using the discrete L® norm
over the domain [—6, 6].

10° - - 10°
107 "N 10714
I e W -
b5 2
= ol £ 02
£ ©
= =
2 Z
10-3 __“—"’\\_‘\1 10_3
10 - - 10 - -
10°® 10 1072 10° 10® 10 1072 10°
£ €
10° 10°
‘rM_‘
107! A 107"
8 -
g a
()
£ 102 ; % 1072
E J g
= =
2 = ——h =0.4
3 =_e/‘/ 3l |—e—h=02
10 — 10 h— o1
——h = 0.05
—s—h = 0.025
104 10
10°® 107 1072 10° 106 10 1072 10°
£ £

F1cURE 1. Error and time stepsize vs. ¢ with different A for the
weighted leapfrog method (top row) and weighted Crank-Nicolson
method (bottom row).
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Figure 1 displays the absolute error in u at time 7' = 0.5 plotted against e
for several fixed values of h. The top row corresponds to results obtained using
the weighted leapfrog method. For all values of e, the error levels off at a value
proportional to h2. The corresponding time step 7 as a function of ¢ is shown in the
right panel. We chose 7 = min(h/2, h?/(2e7)) so that the stability condition (2.2)
is satisfied for all h and €. We observe that for large €, the time step 7 scales with
h?, whereas for small ¢, a linear dependence between 7 and h suffices. Similarly,
we test the weighted Crank—Nicolson method with time step 7 = h/2 for all values
of &, and the results, presented in the bottom row of Figure 1, are consistent with
the theoretical prediction in Theorem 3.1.

4. CONSISTENCY

We consider the defect obtained on inserting u(t, ) = a(t, z)el(s*=#1/2)/< into
the weighted leapfrog scheme (2.1),
d(tz) = ie elu(t + 7,2) — e u(t — 7, )
2T
(4.1) N e? e B(1+if)u(t,z + h) — 2u(t,z) + P (1 —iB)u(t,» — h)
2 h?
— eXu(t, z)Pult, z),

again with @ = wr/e and 8 = kh/e.

4.1. Defect bound in the maximum norm.
Lemma 4.1. In the situation of Theorem 3.1, the defect (4.1) is bounded in the
mazximum norm by
ldlco.rxm < ce(r? + h?),
where ¢ is independent of €, T, h and n with t, =nt <T.

Proof. The O(7?) and O(h?) error bounds of the weighted finite differences in
Section 2.1 yield, omitting the omnipresent argument (¢, x) on the right-hand side,

d(t,z) = (ie Opu + 3e20%u — e |u|2u) - (wu - %qu) +0(e(m* + h?)).

The terms in big brackets vanish by the nonlinear Schrédinger equation (1.1) and
the dispersion relation w = %52. This proves the result. ([

However, the maximum norm in the defect bound of Lemma 4.1 turns out to be
too weak a norm for the proof of Theorem 3.1.

4.2. Defect bound in the Wiener algebra norm. Let A(T) be the space
of 2m-periodic complex-valued functions with absolutely convergent Fourier series
flz) = ZZO:_OO f(k) el*® equipped with the ¢1(Z) norm of the sequence of Fourier
coefficients. For the pointwise product of two functions f,g € A(T) we then have
(see, e.g., [18, Section 1.6])

(4.2) Ifgllacry < [flac) lglac)

which makes A(T) a Banach algebra, known as the Wiener algebra. Note that the
maximum norm of a function in A(T) is bounded by its A(T)-norm, and conversely,
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the A(T)-norm is bounded by the maximum norm of the function and its derivative,
see [18, Section 1.6]:

(4.3) Iflery < Iflamy and  [flam < clfllor-

The space C([0,T], A(T)) is the Banach space of A(T)-valued continuous functions
on the interval [0, T], With HdHC([O,T],A(’]I‘)) = MaXo<t<T Hd(t, )HA(’JI‘)

Lemma 4.2. In the situation of Theorem 3.1, the defect (4.1) is bounded in the
Wiener algebra norm by

ld|co,r1,a0m)) < ce(7? + B?),
where ¢ is independent of €, T, h, and n with t, = n1t < T.
Proof. We define
d(z,t) := d(z,t) e"i(re=wb/e
a(t+7,2) —a(t — 7,)

27
N 562(a(7,‘,alc—|—h) —2a(t,z) + a(t,x — h) N 2i/€ a(t,z +h) —a(t,z — h))

=ie

h? € 2h

— eMa(t,z)|?a(t, z)
and note that
[t ) acry = Id(t, ) acr)-
For the temporal finite difference we have by Taylor expansion
a(t +7,2) —alt —1,2)
2T

with the continuously differentiable remainder in integral form,

= dwa(t,z) + T2RW (¢, x)

1
RW(t,z) = f L1 —10))% d}a(t + Or,z) do,
-1

and similarly for the spatial finite differences with O(h?) remainder terms in integral
form. In view of the partial differential equation (3.2) for a, this yields

d(t,z) = ier>RW (¢, z) + %62h2R£2) (t,x) + i/ish?R%l)(t,x)

with continuously differentiable remainder terms, which have partial derivatives
bounded independently of €, 7 and h. So we obtain, uniformly for 0 <t < T,

ld(t, )aery = |d(t, ) acry < c1 [t Yoy < ce(r? + ),
which is the desired bound. O

5. STABILITY

5.1. Linear stability analysis in the Wiener algebra. In this subsection we
give linear stability results for the weighted leapfrog and Crank—Nicolson schemes.
We bound numerical solutions corresponding to the linear Schrédinger equation
(1.1) (without the nonlinearity) in the Wiener algebra norm, using Fourier analysis.



10 Y. SHI AND CH. LUBICH

We momentarily omit the nonlinearity and interpolate the weighted leapfrog
scheme (2.1) from discrete spatial points x; = jh to arbitrary « € T by setting
elvy" 1 (z) — e iy 1(x)

2T
e2 e B(1 +if)u™(x + h) — 2u™(x) + P (1 — iB)u™(z — h)
2 h2
We clearly have u™(z;) = u} of (2.1) for all n > 2 if this holds true for n = 0 and
n = 1. In particular, we have max; |[u| < maxger [u"(2)| < [u"||a(T)-

(5.1) i

= 0.

Lemma 5.1 (Linear stability of the weighted leapfrog method). Under condition
(2.2), the weighted leapfrog algorithm (5.1) without the nonlinear term is stable:

There exists a norm || - || on A(T) x A(T), equivalent to the norm || - | a(ryxa(m)
uniformly in e, T, h subject to the stability condition (2.2), such that
1 un+1
o = 1o e o= (1)),

Proof. Let 4™ = (4}) be the sequence of Fourier coefficients of u”, i.e.,

L .
u"(x) = Z etk g,
k=—c0

Substituting this into (5.1) yields, for all 7,

i ~n+1 —iapsn—1
g AT — e Vi
Ee””] (16 k o+ 2at) =0,
k

where
Y = (cos(B) + Bsin(B)) cos(kh) + (sin(B8) — B cos(B)) sin(kh) — 1
= cos(B — kh) + Bsin(B — kh) — 1,
which is bounded by
[ve| < 7v:=1+max(|8],1) for all k.
We then have

iann+1 —iasn—1
A 2Vk n
ie 5 +e 72 Uk = 0,
T

which is equivalent to the system
,an+1 an
(%) o ().

Qiugeid g2 . ET
(5.2) Gk = < ,Ukl 0 > with pp = ﬁ’}/k.

where

Let )\ﬁ, A, be the two roots of the characteristic polynomial
pr(C) = ¢% = 2ippe™ ¢ — e,
i.e.,
AE = (iuk +(1- ui)l/z) emie,
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Condition (2.2) ensures that |u| < 1 and thus |\ff| = 1. The vectors (\}7,1)T and
(A\;,1)T are eigenvectors of G with eigenvalue A\{ and ); , respectively. This is
because (similar for A,)

ippe™ e\ (AF _ 2ippe 0N + e _ N
1 0 1 A kA1)

Therefore Gy, is diagonalizable,
P 'GLPy = Ay = diag{\{, )\ ],
and Ay is a unitary matrix. Using the transformation matrix Py, we have, for any

vector y € C?,
[P Gryla = AP yle = [Py Myl

Therefore,
~n+1 ~m
o =S| e (“k ) -Ylre (“)
(5.3) k N ok
_ P*(ﬁi) _ oy,
; AU/

Finally, we show that

IPl> = max |[Puls < Cr, [PV = max | P> < G,

which yields that the newly introduced norm || - || is equivalent to | - | a¢ryxa(t)-
Since S
+ —
PEP, — 2 L4+ XA\, 7
L+ ApAf 2

the eigenvalues of PPy, can be calculated as 2(1 £ pg). Since |ux| < 0 < 1 by
condition (2.2), we have for all k that

”Pk:H2 = )\max(P];kPk:) < 2,
1P 2 = 1/4/ Amin (P Pr) < 1/4/2(1— 0),

so that .
Lo < Ul € —|U
2 ” ”A(T)XA(T) H' \H \/m H HA(']I‘)XA(’]I‘)
for all U € A(T) x A(T). O

We similarly extend the weighted Crank—Nicolson algorithm (2.4) to all x € T
and omit the nonlinearity.

Lemma 5.2 (Linear stability of the weighted Crank—Nicolson method). The weighted
Crank—Nicolson algorithm (2.4) without the nonlinear term is unconditionally stable
with

[ aemy = u" " am).-

Proof. Substituting the Fourier series of u™ into (2.4) without the nonlinear term
yields

iasnt1 —japsn—1 iasn+1 —iapn—1
ika [ € Uy —e Uy, 9 Ee Uy, +e Uy, _
e ie + € =0,
- 2T h? 2
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again with v, = cos(8 — kh) + Ssin(8 — kh) — 1, which leads to

ie 2 Yk iasn+1 ie 2 Tk —iaasn—1
<2T +¢€ 2h2)€ Up = (27_—5 W)e Uy -
Therefore we have |a}™!| = [a}"!| for all k, which yields the result. O

5.2. Nonlinear stability.

Lemma 5.3 (Nonlinear stability of the weighted leapfrog method). Let the func-
tion uw € C([0,T7], A(T)) be arbitrary and let the corresponding defect d be defined
by (4.1). Under condition (2.2), the interpolated numerical solution of (2.1), inter-
polated to all x € T as in (5.1) (but now with the nonlinear term included), satisfies
the bound, fort, =nt <T

|u™ —u(tn, )| ar) < C(HUO —u(0, )| acm) + [ut —ulty, )| acm +571HdHC([O,T]7A(']1‘)))a

where C' is independent of €, 7, h, and n with t,, < T, but depends on T and on
upper bounds of the above term in big brackets and of the C([0,T], A(T)) norm of u.

Proof. We define the error function e™(z) = u™(z) — u(t,, ), which satisfies
eiaen-&-l(x) _ e—iaen—l(x)
- 1}% (e (1 +iB)e"(x + h) — 2¢™(z) + P (1 — iB)e™(z — h))
— 207 (Ju"(z) Pu™ (2) — |[ultn, 2)[Pu(ts, z)) — 2iT e d(t,, 2).

The Fourier coefficient of €™ then satisfies

eiaéZJrl _ efiozézfl
2ieT cos(B) cos(kh) + (sin(B) — ) sin(kh) — 1,
= h2 h2 €k

— 2T F (|u"(z)Pu”(z) — [u(ty, 2)Pu(ts, z)) (k) — 2ire1dy.

This equation can be written in the one-step form

(") = 6 (1) — e (7 (00— it 2Pt ) )

AT
€k
1 i (d}
—2ire™ e 10‘(69 ,

€k
where Gy, is defined in (5.2).
n+1
We define the error vector as £" = (e o ) . Multiplying the above equation by

P ! and summing over k gives

~An+1
ni| _ —1 Uk
el = |7 (u>
<)

1 ey

- k

P Gy <An1>
€k

2

+ 5075_12 P,:l (

k

2

+CoTZ
k

)

Pgl (.7: (‘u"(x)| un(x) — ‘g(tn,xﬂ u(tn,m)) (k‘))

[\v]

2

oy

2
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By (5.3), the first term on the right-hand side is ||€"71||. The second term can be
estimated as follows (we use < to denote < C' for some constant C):

p-1 F(Ju™(@)Pum(z) — [u(ty, )| Pu(tn, x)) (k)
ir ; )

< " (@) Pu (@) = fultn, 2)PPutn, «

M
= H (|un($)|2 + ultn, 517)|2) (u” (@) — ultn, ) + u"(z) (0" (z) — u(ty, z)) u(ts, ) HA(T)
Sl —utn,)a < 1€,

where we have used the estimate (4.2) for the nonlinear term and the norm equiv-
alence between || - || and | - | a(r)xa(r) as stated in Lemma 5.1. We then have

le™l < @+ en)ll€™H I + Ere™ d(tn, ) acry

<L+ en)lE0) +ere™ YL+ er) I d(ts, ) aem)

j=1
o N 1 enT _ 1
<e™T||E7|| + ére” sup [d(t, )| acr),
te[0,T7]
which yields the result, using the norm equivalence once more. (|

An analogous result holds true for the weighted Crank—Nicolson method, with
essentially the same proof, now based on Lemma 5.2.
The proof of Theorem 3.1 is then finished by combining Lemmas 4.2 and 5.3.

Part II. Multiphase initial conditions

For the multiphase problem we apply the weighted finite difference methods mul-
tiple times, corresponding to each of the different wave vectors k,, and associated
frequencies wy,. The nonlinearity needs to be treated in a special way.

6. TWO OPPOSITE PHASES

As an illustration of the procedure for multiphase initial data, we consider in
this section the particular case of two initial wave packets having opposite wave
numbers.

6.1. Modulated Fourier expansion. The following result provides an O(¢?) ap-
proximation to the solution. It is a special case of Theorem 7.1 given in the next
section for the general multiphase case.

Proposition 6.1 (Modulated Fourier expansion for two opposite initial phases).
Let u(t,z) be the solution to (1.1) with initial data given by

u(0, ) = af () elvr/e 4 a®(z) e inw/e

with k # 0 and with smooth functions a%,. Then, u(t,z) admits a modulated
Fourier expansion

u(t, z) = umrr(t, ) + e(t, z),
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where, with kK41 = £k and wyy = %/4:2, and with k43 = +3k and wis = %(i3/€)2,
Wiz = %/ﬁ # Wiz and with smooth modulation functions a4y, b5 and bys defined
below,

unpe(t,x) = Y. ap(tz) eltremwrt/e
r=+1
+eA Z by (t,x) pilmvz—wit)/e L o\ 2 by (t, ) eilvz—wyt)/e
v=13 e
The function aq(t,x) is the solution of an advected nonlinear Schrodinger equation

with smooth initial data,
(6.1)

i€ _
0ia1 + K10za1 — 565@1 = —i\ ((\a1|2 + 2|a,1|2) ay + E)\(Qaflﬁlbg + a,1b73a,1)) s

al(o,m> = a(lj(m)v

and a_1(t,z) satisfies the same equation where all subscripts have reversed signs.
The function bs(t,x) (and analogously b_s with opposite subscripts) is given by
the formula, with 63 = w3 — w} = —4k? # 0,

1
bs(t,x) = 6*3(01@—1611)(15793),

which turns (6.1) into a quintic advected Schrédinger equation.
The function b3(t,x) (and analogously b* 5 with opposite subscripts) solves the
advected linear Schridinger equation

263 = —2i\(Jar]” + a1 )03, b3(0,2) = ~bs(0, ).

ie
ﬁtbg + Iig(}zbg — 5(’}1

With these coefficient functions a+1, bis and bis, the error e(t,x) is bounded in
the maximum norm by

lellcqo,ryxm < Ce.

This result is basic for constructing a numerical method with an O(7% + h? + £?)
error bound without restrictions on the ratios 7/¢ and h/e.

6.2. Weighted finite difference methods. We extend the weighted leapfrog and

Crank—Nicolson methods of Part I to the case of two initial phases. To simplify

the notation, we define the weighted leapfrog finite difference operator for u, which

depends on the parameters a = 1x%7/¢ and 8 = kh/e:

(6.2)

Daﬁu’n i em‘u?+1 - e_“"u;“1 i e (1 + iB)uly g —2uf + e (1 - iB)ul_y
LE Ty 27 2 h?

We consider four schemes that are natural extensions of one another and guide the

derivation of the final scheme. In the first cases we approximate the solution by

~ n
wltn, 25) > uj = 3 up,
r=+1

where u?] ; 1s to approximate u,(t, ) = a,(t, z) elFre=wr)/e n an e-asymptotically

r

more accurate scheme, we then make a refined approximation

ultn, @)~y = D ufy+ D0 Wi+ D Wi
r=+1 v=+3 v=+3
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*,n i(kyz—wit)/e

where wyy . is to approximate wh(t,z) = e (t, z) el and wp,, ; is to

J
approximate w, (t,2) = eAb, (t,z) el @=wt/e at ¢ = ¢, and = = ;.

Case 0 (Naive coupling). We directly extend the single-mode scheme to two
modes with fully coupled nonlinearity

a,B n _ n n 2 n
D up|; = eufiy; + ufoa 4l ufyy

and apply the same scheme to wu_;) with all subscripts of opposite signs and
replaced by —p. While straightforward, this leads to incorrect numerical results
except for very small 7 « € and h < €.

Case 1 (Separated phases). To better match the system for a4, we separate
the nonlinear interactions as
a, 3 n_ 2 2 ~
Driuml; = eA(ufy,;1° + 2 417 + ufy g ) ufy 5
and apply the same scheme to wu_;) with all subscripts of opposite signs and 3
replaced by —3. The mixed term uﬁ] jﬂﬁl] juﬁ] ;s oscillatory with wave number

3k and nonresonant frequency w = k2 # $(3x)2. It contributes an O(7) error if
T > ¢ and a = wr/e is bounded away from multiples of 27. This can be traced
back to partial summation and the geometric sum formula

n —i(n+1Da
. 1 — e—ilnt

TE e‘ka:Til —.

k=0 ¢

The error is then bounded by the minimum of O(7 + h% + €) and O((72 + h?)/e3),
where the latter term results from a standard error analysis using Taylor expansion
of the solution u (of interest when ¢ is not very small and h < £2).

Case 2 (e-asymptotically first order accurate). To improve the order of
accuracy in the time step 7 for small €, we remove the high-frequency oscillations
and set

B n n 2 n 2\, n
Driiup; = eA(upiyl° + 2ufpy 41°)ufyy -
The formula for uj_;j is obtained by reversing the signs of all subscripts and re-
placing 8 by —3. This scheme achieves accuracy of order O(72 + h? + £) when ¢ is
small, but deteriorates as € increases.

Case 3 (e-asymptotically second order accurate). To improve the accuracy
for small £, we add the O(g) terms and assign the high-frequency oscillations to
higher modes:
B n 2 2
Driupl; = eA((ufy 1 + 2luf_n 4 1P)ufy

+2uf ) ;U W)+ U 08 Y1)

with wii . = (11,5 % -11,5% 11,5

n+1 @ n+l-n+l  n+l
o 7
(37— g4

9,3 * M n n *n
DLF 5w[3]|j = 25)\(|U[1]’j|2 + ‘U[il]’j|2)w[3]7j.

The formulas for the components with negative subscripts are obtained by reversing

the signs of all subscripts and replacing 8 by —f3. This scheme achieves accuracy
of order O(7% + h? + £2).
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Extended leapfrog algorithm. To ensure uniform accuracy independently of ¢,
we filter the oscillatory terms using a switching function:

Dgfﬁ“[ll‘? = eA((ufyy 4 + 2y 5 + x4 5)uf
+2uf 3y ;U W) 5+ U 08 U1 5)

(6.3) N
DgF’?”B 3]| = 2eA(|uy

[1], ]‘2 + ‘un71 1.7 |2)wE7]n7]7

n+1

53 w[s],j — (1 X)E)\un+1 —n+1 n+1

GU-11,5% 0,50

where y = 1 if h? < ce® and zero otherwise. The initial conditions are given by

U (0,2) = a(l)(x) eim/e,

) _
wiz)(0,7) = (1 — X)gu[l]u[—l]u[l] (0,)
wfg] (0,2) = —wp3) (0, ).

The formulas for the components with negative subscripts are obtained by reversing
the signs of all subscripts and replacing 8 by —p8.

Extended Crank—Nicolson algorithm. We define the weighted finite difference

operator

(6.4)

Dedul" i i elog it — eyt . &2 e B +ip)ar,, —2ar + P (1 —ip)ay,
CN 75 - o0 ) B2 )

where @ = (elau;“rl + e’io‘u" 1Y/2. Following the same strategy, we construct a

Crank—Nicolson-type discretlzatlon
n —
o N (T R s B Ve R T R Pt

~N

+ X Ay A1) ) U

(6.5) + 207y ;i ;B + aﬁl}@“"ﬁ]ﬁ‘ﬁﬂd)
. n+l _ (1 EA uttlgntl n+l
with w5 = (1=X) 5w ;41004050
9,3 n n— n ~*.M
Do wfy ] = eMufiy P+ Wiy P+ iy 5P+l P ag) -

The initial conditions are the same as those specified for the extended leapfrog
scheme.

The following result is a special case of Theorem 8.1 given below for the general
multiphase case.

Proposition 6.2 (e-uniform convergence in the maximum norm). Under the as-
sumptions of Proposition 6.1, and in the case of the leapfrog scheme subject to
the stability condition er < min(h?/v(8),h?/v(383)) with v defined by (2.2), the
following error estimate holds for both methods (6.3) and (6.5):

2+h2
|u(tn, ;) — uj| < min <Co( + h? + &%), o " > < C(T° + n*P),
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uniformly for t, = nt <T and x; = jh. The constants Cy,Cy and C' are indepen-
dent of € € (0,1], the time step T, and the mesh size h, and independent of j and n
fort, <T.

6.3. Numerical experiments. In this numerical test, we consider the one-dimensional
semiclassical nonlinear Schrodinger equation

iediu + 362 05pu = elul’u
with the initial condition
u(0,2) = %e_””2ei””/‘5 + %e_$Qe_iw/E.
The spatial domain and final time T are the same as in the previous experiments.

The solution error is again evaluated using the discrete L® norm. The switching
function is chosen as y = 1 if h? < 5¢® and zero otherwise.

10»1 ] —'—\
~
g o v—v\e\A [N
510 &
g %
= o
= =1
T‘% =
10-3 _/a-—\
10»4 L
10°® 107 1072 10°
€ 1>
10° - -
107! e
o 107
5 .
£ 1072 3 $
5 s 102¥
@ 10-3 . ——h =04
" 3||[—e—h=02
: 10 h=01
——h = 0.05
107 E —=—h = 0.025
" " 10.4 " -
10°® 10 1072 10° 10°® 10 1072 10°
€ €

FIGURE 2. Error and time stepsize vs. ¢ with different h for the
weighted leapfrog method (top row) and weighted Crank—Nicolson
method (bottom row).

Figure 2 displays the absolute error in u plotted against ¢ for several fixed val-
ues of h, using the weighted leapfrog (top row) and the weighted Crank—Nicolson
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method (bottom row). We chose 7 = min(h/2, h?/(2e73)) with 3 = v(33) for the
weighted leapfrog method while 7 = h/2 for the weighted Crank—Nicolson method.
The corresponding time step 7 as a function of € is shown in the right panel. It is
observed that the error levels off at a constant value proportional to k2 for small €.

7. GENERAL MULTIPHASE PROBLEM: MODULATED FOURIER EXPANSION OF THE
EXACT SOLUTION

We now consider the semiclassical cubic Schrodinger equation (1. 1) with mul-
tiphase initial data given by (1.3) with smooth profile functions a2, : T¢ — C

for m = 1,..., M, and with pairwise different wave vectors k,, € Rd and with
associated frequencies wy, = 3|km|?, where | - | is the Euclidean norm.
For a multi-index p = (mo,...,mg) € {1,..., M}**! with [ > 0 we denote
21 21
Ky = Z(—l)%mi and  w, = Z(—l)iwmi.
i=0 i=0

We call the multi-index p resonant if w, = %[k, [%.

We construct a sequence of wave vectors that correspond to resonant multi-
indices. Given a set K = {k1,...,kr} (with R > M) of wave vectors with associ-
ated frequences w, = %|f£r\2 for r = 1,..., R, we augment this set as follows: Let
w = (i,4,k) be a multi-index in {1,..., R}3, and let p,q e {1,..., R}.

(i) If p is resonant and k, ¢ K, then we add «, to K.

(ii) If g is nonresonant and (u,p,q) is resonant and r, , ) ¢ K, then we add
K(u,p,q) t0 K. Similarly, if 41 is nonresonant and (p, p, ¢) is resonant and &, . q) ¢ K,
then we add Ky, ,.q) t0 K.

By these two rules we augment K to a set K Wlth R > R elements. By
construction, K < K. We enumerate the elements of K

K ={Ki,...KR;KR41,-- -, K}

and for the corresponding frequencies we have w, = %‘KTP forr=1,..., R.
We iterate the map K — K: Starting from Ky = {k1,...,kn}, we define the
set K1 = K for £ =0,1,2,... We make the following assumption.

Assumption 1. (Saturation condition) There exists an integer k. > 0 such that
Ky, +1 = K, -

In the following we write K = K}, and enumerate the elements of this set, which
contains Ki,...,Kp:

K ={K1,...,6M,EM+1,-- -, KR}
For r =1,..., R, the frequency associated with k, is then w, = %|nr\2.

Remark. (a) In the case of dimension d = 1, we have generically k. = 0. Rule (i)
cannot add new resonant wave numbers, as is seen from the basic formula
(7.1) %(I{Z‘—Hj-i-lik) (;FL?—*K + Iik) = (ki — Kj) (KK — Kj).

Rule (ii) can add new resonant wave numbers only in exceptional cases. Using (7.1)
twice, we found that this can happen only for a two-parameter family of quintuples
(Hia Rj, Kk, Kp, K:q)'
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(b) The situation is much more intricate in higher dimensions d > 1; see the
discussion in [7]. Note that the higher-dimensional version of (7.1),

sl — w5+ wil? = Glril* = glw5° + 3lRxl?) = (ki = Kj) - (ki — ;)
with the Euclidean inner product - on the right-hand side, does no longer imply

that x; = x; or ki = k; when the left-hand side vanishes. However, k, = 0 still
appears to be generic.

We let AV be the set of all multi-indices v = (3, j, k) with 4,5,k € {1,..., R} that are
nonresonant, i.e., with x, = x; —k; + K~ and w, = w; —w; +wy, we have w, # %|/§V|2.
For v e N, we let w}, = %]k, |? and 6, = w, — w}; # 0.

Assumption 2. (Nonresonance condition) For allv € N and all p,q,7 =1,..., R
with q # r,

* 1 2 * 1 2
W, —Wg +wr # 5|k, — kg + KT and  wp —w) +wr # 5lkp — Ky + K|

In dimension d = 1, it follows from (7.1) that this condition is always satisfied.
In higher dimensions, the condition still appears to be generic; cf. [7].

The following theorem provides an O(¢?) approximation to the solution of (1.1)
with multiphase initial data (1.3).

Theorem 7.1 (Modulated Fourier expansion for multiphase initial data). Let
u(t,z) be the solution to (1.1) with initial data given by (1.3), with wave vectors
Km for which Assumptions 1 and 2 are fulfilled. Then, u(t,x) admits a modulated
Fourier expansion

u(t, z) = umrr(t, ) + e(t, ),

where, with the notation introduced above and with modulation functions a,, b}, and
b, defined below,

7-’fMFE(ta {E) = Qr (tv .’t) el(mra—wrt)fe

M=

r=1

+ e Z bE(t, ) el amwit)/e o) Z by (t,x) ellrvzmwnt)/e,
veN veN

The functions a,(t,x) solve the system of advected nonlinear Schridinger equations

(7.2) Oy + Ky - Vya, — %ieAxar = —iA Z a;G;ag

4.4 k=1,...,R:
Ki—Rj+RE=Rp

— 2ie)? Z byayaq — ieA? Z apguaq,

veN,p,q=1,...,R: veN,p,q=1,..., R:
Ky —kKpthg=rr Kp—kKy+thkg=FKr

a,(0,7) = a(),

where the initial data a%(z) are given for r = 1,...,M and are set to zero for
r=M+1,....R.

The functions b,(t,x) for v = (i,5,k) € N are defined by the formula, with
0y =w, —w,y # 0,

(7.3) b, (t,z) = —(a;a;a1)(t, ),

& =
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which turns (7.2) into a quintic nonlinear Schrodinger equation. The function b, is

an O(e) approzimation to the solution of the advected linear Schriodinger equation
i5, . 1
by + k- Vb, — JieAyb, — 2 b, = —Z qiaja,  by(0,2) = —(aia,a1)(0, ).
€ € v

The function b, is the solution of the advected linear Schrédinger equation
R
Qb + Ky - Vbl — $iEALD) = —iA2 ) [a, 7B}, by(0,2) = —b, (0, ).
r=1

The modulation functions a,, b, and b}, are smooth in the sense that the functions
and all their partial derivatives of arbitrary order are bounded independently of €
and (t,z) € [0,T] x T¢ for a time T > 0 on which a solution of (7.2) with (7.3)
exists. With these functions a,, b, and b}, the error e(t,x) is bounded by

lelle o, <y < Ce?.
Both T and C are independent of € € (0,&q9) for some g9 > 0, but they depend on
the given wave vectors K, and C' depends on T.

Proof. Let d(t,z) be the defect of the approximate solution uppg(t, z) in (1.1),

2
3
R 2
d =1 8tuMFE + D) AUMFE — 5/\‘UMFE‘ UMFE-

Inserting the expression for unrg(t, ), we compute

2 R .
€ ie .
ie QpumrE + EAUMFE =ie Z (5tar + k- Va, — 2Aar> el(rrz—wrt)/e
r=1
ie id )
+He?X Y] <0th + iy Vb, — S Aby, — ”b,,> ol z—w,t)/e
veN 3
ie . N
+i€2)\ Z (atb; + Ky Vb; _ 2Ab;> el(nu.x—wut)/e.
veN
For the nonlinear term we have
R
\uMFE\QuMFE = Z ai&jakei(ﬁ(i,j,k)'m—w(z‘,j,k)t)/s
i,j,k=1
R
+eA Z Z <2buapaqei(“(uwp=q>'x_“’(V»PYQ)t)/E + apl_)yaqei('{(p,qu)'I_W(p,u,q)t)/6>
veN p,q=1
R
+eA Z Z <2b;apaqei(n<y’pm'mi(w(y’pﬁ)iéy)t)/g + apb_;aqei(’ﬂp,v,q)'“"*(W(p,u,q)Jréu)t)/E)
veN p,g=1

+0(e?).

The equations for a,, b, and b} are constructed such that, under Assumptions 1
and 2, the defect is of the form

L
d=ie (E Z alt, ) el(Fra—at)fe 0(62)>

=1
with e-uniformly bounded and smooth modulation functions ¢; and nonresonant
(Ri, @), ie., @ # %|El\2. Since all modulation functions are spatially smooth, the
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same argument as in the proof of Lemma 4.2 shows that the above O(g?)-bounds
are valid not only in the maximum norm, but also in the stronger norm of the
Wiener algebra A(T4).

The error e = u — uyrg then satisfies the equation

2
ic Oie + %Ae = e (Jul*u — |umre*uvre) — d.

Applying Duhamel’s principle yields

t
e(t) = eiEtA/ze(O) - i)\J- gle(t=9)A/2 (|u|2u — |uMFE|2uMFE) ds
0

t
+ i/\J iett=o1a/z Aor) g
0 ie

By the partial integration argument of Lemma 5.7 of [7], we obtain in the present
nonresonant situation

t
J eis(t—s)A/2cl(S7 ) el(Rrz—wis)/e 4 = O(e)
0

in the Wiener algebra A(T?), and so we have

t
’ J o)Az L(s, ) ds < Coe.
0

1€

A(T9)

Using e(0) = 0 and trilinear estimates in A(T%), we then obtain

t
le®)] ageay < Co j Je(s)] acre) ds + Coc?.
0

The stated bound then follows from Gronwall’s inequality. O

8. GENERAL MULTIPHASE PROBLEM: NUMERICAL METHOD AND ERROR BOUND

In view of Theorem 7.1, the exponentially weighted leapfrog method extends
from the particular two-phase case in (6.3) to the general multiphase situation as
follows. With the notation of the two previous sections, we approximate

R
u(tn, zj) ~ uj = 2 uﬁn]vj + Z w[*lfij + Z wﬁ/],j
r=1 veN veN

*,M

where uﬁﬁ],j is to approximate u,(t,z) = a,(t,z)el(Fre=wrt)/e Wi is to approx-
imate wh(t,z) = b%(t,z)elvr—wit)/e and wp,; is to approximate wy(t,z) =
by (t,z)ellrva—wntl/e at + = t, and = = xj. In the following, let o, = w,7/e,
Br = krh/e, af = wit/e, and B, = k,h/e. We compute u;”l as follows for
r=1,...,Rand v = (k,I,m) € N. With the weighted leapfrog finite difference
operator of Section 6.2 (or its obvious generalization to higher dimensions d > 1),
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we consider the scheme

n _ n -n n n -n n
upy | j =X Z ULk, U1, U m) 5 T XEA 2 ULk, Y0, g
k,,m=1,..., R: k,=1,..., R:
K —Rl+Kkm=Kpr (k,l,m)EN

oo
DLF

n =N n n — T n
L2 S AL SRL AR S SR AL AL AN
veN,p,q=1,..., R: veN,p,q=1,..., R:
Ky —Kpthg=kr Kp—Kythkg=kr

: n €>\ n =N n
with wpyy ;= (1= X) 5 Ui 5 %f1).5 %m0

D; ””6“ = 2e\ Z |upr,5

w[l/] J’

where y = 1 if h? < ce® and zero otherwise. The initial conditions are given by

upr1(0,2) = a(z)e*r /e for r =1,..., M and zero otherwise,

EA _
w[l,] (0, .’L’) = (1 — X)(;fU[k]’LL[l]’LL[m] (O, .’L’)

wfu] (07 :C) = W (Ov I)
An analogous formula holds for the exponentially weighted Crank—Nicolson method;
cf. (6.5).
The following theorem provides an O(72 + h? + £2) error bound in the maximum
norm for the numerical solutions of the above weighted leapfrog and Crank—Nicolson
methods, which extends to an e-uniform O(7%° + h*?) error bound.

Theorem 8.1 (Error bound for the weighted leapfrog and Crank-Nicolson meth-
ods). Under the assumptions of Theorem 7.1, and in the case of the leapfrog scheme
subject to the stability condition et < h?/v(B,) for all p € {1,...,R} UN where
By, = kuh/e and v is defined by (2.2), the error is bounded by

72 4+ h?
=3

[u — u(ty,z;)| < min <C0(7'2 +h?+ %), Oy

; > <C(T4/5+h4/5),

uniformly for t, = nt < T and z; = jh and 0 < e < 1. The constants Cy,Cq and
C are independent of €, the time step 7, and the mesh size h, and independent of
j and n fort, <T.

Proof. Theorem 8.1 is proved by combining the proofs of Theorems 3.1 and 7.1.
We consider two cases based on the relative value of h? and £5:
(1) h? = ceb, ie., x = 0.
In this case, proceeding as in the proof of Theorem 3.1 for each component
ufr 1.7 w[*;?j and wﬁ, 1.j of the numerical solution, we obtain that the differ-
ence between the numerical solution and the modulated Fourier expansion
of the exact solution is bounded by

|u;1 — UMFE(tna QTJ)‘ = O(T2 + h2)

uniformly for j and n with ¢, <T. Together with Theorem 7.1, this yields
the maximum norm error bound

[uj — u(ty,z;)| = O(T% + h? + £?)

uniformly for j and n with ¢, < T.
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(2) h? <ced e, x = 1.
In this regime, w[*y] = wr,] = 0, the scheme reduces to a standard leapfrog
or Crank—Nicolson algorithm. By summing the equations and applying
Taylor expansion, we obtain the error bound

2 2
T+ h
Combining the two cases yields the stated e-uniform error bound. O
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