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BREATHER SOLUTIONS TO NONLINEAR MAXWELL EQUATIONS

WITH RETARDED MATERIAL LAWS

SEBASTIAN OHREM1

Abstract. We consider Maxwell's equations for Kerr-type optical materials, which are mag-

netically inactive and have a nonlinear response to electric �elds. This response consists of a

linear plus a cubic term, which are both inhomogeneous with bounded coe�cients. The cubic

term is temporally retarded while the linear term has instantaneous and retarded contribu-

tions. For slab waveguides we show existence of breathers, which are time-periodic, real-valued

solutions that are localized in the direction perpendicular to the waveguide, and moreover they

are traveling along one direction of the waveguide. We �nd these breathers using a variational

method which relies on the assumption that an e�ective operator related to the linear part of

Maxwell's equations has a spectral gap about 0. We also give examples of material coe�cients,

including nonperiodic materials, where such a spectral gap is present.

1. Introduction and main results

We consider Maxwell's equations

∇ ·D = 0, ∇× E = −Bt,

∇ ·B = 0, ∇×H = Dt
(1)

in R3 without changes and currents. For the underlying material, we assume the constitutive
relations

B = µ0H, D = ϵ0E+ ϵ0P(E)(2)

where µ0, ϵ0 > 0 denote vacuum permeability and permittivity. So the material is magnetically
inactive and electrically active, with an electric displacement �eld D that depends nonlinearly
on the electric �eld E through the polarization P(E). We consider Kerr optical materials
modelled by P(E) consisting of a linear plus a cubic term of E: the quadratic term is zero for
silica glasses, and higher-order terms are omitted (cf. [1]). More precisely, we assume that the
polarization is given either by

P(E)(x, y, z, t) =

∫ ∞

0

g(x, τ)E(x, y, z, t− τ) dτ + h(x)

∫ ∞

0

ν(τ)E(x, y, z, t− τ)3 dτ(3.1)
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2 BREATHER SOLUTIONS TO NONLINEAR MAXWELL EQUATIONS

where we abbreviate E3 := |E|2E, or by

P(E)(x, y, z, t) =

∫ ∞

0

g(x, τ)E(x, y, z, t− τ) dτ + h(x)

(∫ ∞

0

ν(τ)E(x, y, z, t− τ) dτ

)3

.(3.2)

Note that the material coe�cients g, h, ν depend only on one spatial direction x, which we call
a slab material. Taking the curl of Faraday's law ∇× E = −Bt, one obtains from (1), (2) the
second order Maxwell's equation

∇×∇× E+ ϵ0µ0∂
2
t (E+P(E)) = 0.(4)

There are many results on breathers for nonlinear wave-type equations like (4) in the literature.
Monochromatic breathers, which are given by E(x, y, z, t) = Re[E(x, y, z)eiωt] with frequency
ω > 0 and pro�le E : R3 → C3, reduce (4) to the elliptic problem

∇×∇× E + (χ1(x, y, z) + χ3(x, y, z)|E|2)E = 0(5)

with appropriate functions χ1, χ3 derived from (4) by neglecting higher order harmonics, i.e.,
terms proportional to e±3iωt in P(E). Alternatively, higher order harmonics vanish if the non-
linear part of the polarization is given by the time-average

PNL(E)(x, y, z, t) = h(x, y, z)

∫ T

0

|E(x, y, z, τ)|2 dτE(x, y, z, t),

where T := 2π
ω
. Saturated nonlinearities

∇×∇× E + χ(x, y, z, |E|2)E = 0,

which are asymptotically linear as |E| → ∞, are also of interest. These were considered in a
series of papers [27�33] by Stuart and Zhou. The authors considered transverse electric (TE)
or transverse magnetic (TM) polarized waves in cylindrically symmetric waveguides, which
reduce (5) to a one-dimensional scalar equation that can, e.g., be treated variationally. More
general nonlinearities χ, including also power nonlinearities were investigated in [2, 4, 5, 14]
for cylindrically or spherically symmetric solutions. The restriction to symmetric solutions can
be overcome using a Helmholtz decomposition to deal with the kernel of the curl-curl-operator.
This was investigated by Mederski et al. in a series of papers [19�22]. Mandel combined
the dual variational method with Helmholtz decomposition in [17], and considered spatially
nonlocal nonlinearities in [18]. In [8, 9] Dohnal and Romani obtained breathers by bifurcation
from a simple eigenvalue of the linear problem. We refer to the survey paper [3] for further
results on monochromatic Maxwell equations.

We move to the topic of polychromatic breathers, which have multiple (usually in�nitely many)
supported frequencies and are given by

E(x, y, z, t) =
∑
k∈Z

Ek(x, y, z)eikωt.

Let us �rst discuss the instantaneous nonlinearity PNL(E) = h(x, y, z)E3. Here, the authors of
[10] considered breathers at an interface between two dielectrics and showed that these can be
approximated on large but �nite time scales by solutions of an amplitude equation, the nonlinear
Schrödinger equation. Existence of true time-periodic solutions was shown in [7, 15] by Reichel
et al. for materials where the linear or nonlinear part of the polarization consists of Dirac
measures in space and using variational methods or bifurcation theory, respectively. In [23]
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we considered bounded material coe�cients with spatially localized nonlinear interaction, and
obtained breathers variationally for instantaneous as well as some time-averaged polarizations.

Regarding the retarded polarizations (3.1) and (3.2), breathers were found in our recent paper
[24] using variational methods. The main di�erence between [24] and this paper is a central
property of the e�ective linear operator (see (15)). We consider hyperbolic operators with a
spectral gap about 0 while [24] dealt with the elliptic case.

We solve the second-order Maxwell problem (4) using the polychromatic ansatz

E(x, y, z, t) = w(x, t− 1

c
z) ·

0
1
0

.(6)

of a TE-polarized wave traveling with speed c in z-direction. The ansatz is divergence-free,
so the curl-curl operator simpli�es to ∇ × ∇ × E = −∆E. Normalizing the speed of light in
vacuum to c0 := (ϵ0µ0)

− 1
2 = 1 and inserting into (4), we obtain

−∂2
xw − 1

c2
∂2
tw + ∂2

t (w + P (w)) = 0(7)

where the scalar polarization P (w) is given by

P (w)(x, t) =

∫ ∞

0

g(x, τ)w(x, t− τ) dτ + h(x)

∫ ∞

0

ν(τ)w(x, t− τ)3 dτ(8.1)

or

P (w)(x, t) =

∫ ∞

0

g(x, τ)w(x, t− τ) dτ + h(x)

(∫ ∞

0

ν(τ)w(x, t− τ) dτ

)3

,(8.2)

corresponding to (3.1) and (3.2), respectively. To include instantaneous linear material re-
sponses, we assume a decomposition

g(x, τ) = g0(x)δ0(τ) + g1(x, τ)(9)

with δ0 being the Dirac measure at 0 and g0, g1 bounded. On the other hand, we assume that
the nonlinear material response has no instantaneous contribution.

We show existence of breather solutions which solve Maxwell's equations pointwise and are
in�nitely di�erentiable in time. The precise de�nition is given next.

De�nition 1.1. We call E,D,B,H : R3 × R → R3 breather solutions to Maxwell's equations
with polarization (3.1) [or (3.2)] with time-period T > 0 traveling with speed c in z-direction if
each �eld F ∈ {E,D,B,H} satis�es

F(x, y, z, t+ T ) = F(x, y, z, t) = F(x, y, z + cτ, t+ τ)

and if for all domains of the form Ω = R× [y1, y2]× [z1, z2]× [t1, t2] it has the regularity

∂n
t ∂

m
x F ∈ L2(Ω;R3) ∩ L∞(Ω;R3)

for n ∈ N0 and m ∈ {0, . . . ,m(F)} where m(E) = 2,m(D) = 0,m(B) = m(H) = 1. Moreover,
we require (1), (2), and (3.1) [or (3.2)] to hold pointwise almost everywhere.

Next we give two examples of material parameters g0, g1, h, ν for which we can show existence
of breather solutions. In the �rst example, we consider a spatially periodic linear material
response, i.e., g0 and g1 are periodic in x.



4 BREATHER SOLUTIONS TO NONLINEAR MAXWELL EQUATIONS

Theorem 1.2. Let c ∈ (0,∞), θ ∈ (0, 1)\
{

1
2

}
, T,X > 0. Further let gper1 , hper, hloc ∈ L∞(R;R)

such that gper1 , hper are X-periodic, hper is positive almost everywhere, hloc ≥ 0 and hloc(x) → 0
as |x| → ∞. We set ω := 2π

T
and de�ne potentials g0, g1, h, ν by

g0(x) := g0(x; θ,X) :=
1

c2
− 1 +

{
T 2

16θ2X2 , x ∈ (0, θX) +XZ,
T 2

16(1−θ)2X2 , x ∈ (θX,X) +XZ,

g1(x, t) := gper1 (x) cos(ωt)|cos(ωt)|1[0,T ](t),

h(x) := hper(x) + hloc(x),

ν(t) := dist(t, TZ)1[0,T ](t)

for x, t ∈ R. Then for polarization (3.1) as well as polarization (3.2), there exist in�nitely
many distinct breather solutions with period T and speed c in the sense of De�nition 1.1.

In the second example, we consider a linear material response that is spatially periodic on each
halfspace, and a localized nonlinear response.

Theorem 1.3. Let c ∈ (0,∞), θ−, θ+ ∈ (0, 1
2
) and T,X−, X+ > 0. Further let gper1 , hloc ∈

L∞(R;R) such that gper1 is X−-periodic on (−∞, 0) and X+-periodic on (0,∞), hloc is almost
everywhere positive and hloc(x) → 0 as |x| → ∞. Set ω := 2π

T
and de�ne g0, g1, h, ν by

g0(x) =

{
g0(x; θ

−, X−), x < 0,

g0(x; θ
+, X+), x > 0,

g1(x, t) = gper1 (x) cos(ωt)|cos(ωt)|1[0,T ](t),

h(x) = hloc(x),

ν(t) = dist(t, TZ)1[0,T ](t)

for x, t ∈ R, where g0(x; θ,X) is given by Theorem 1.2. Then for (3.1) as well as (3.2)
there exist in�nitely many distinct breather solutions with period T and speed c in the sense of
De�nition 1.1.

Let us prepare the main theorem. Recall (7), which using (8.1), (8.2), and (9) we rewrite as[
−∂2

x + (1− 1
c2
+ g0(x))∂

2
t

]
w + ∂2

t (g1 ∗ w + PNL(w)) = 0(10)

where ∗ denotes convolution in time and PNL is the nonlinear part of the scalar polarization.
We consider velocities c that are so large that the potential

V (x) := 1− 1

c2
+ g0(x)(11)

is positive, hence the linear operator −∂2
x+V (x)∂2

t is hyperbolic. It is convenient to divide this
operator by V (x) and instead consider L+ ∂2

t with weighted Sturm-Liouville operator

L := − 1

V (x)
∂2
x.(12)

In this form, the spectrum of L+ ∂2
t restricted to time-periodic functions is easier to compute

since L acts only on x, and therefore we simply have σ(L+ ∂2
t ) = σ(L) + σ(∂2

t ).

Let us �x the period T > 0 of the breather and consider as time-domain the set T := R/TZ.
On it, ∂2

t has discrete spectrum σ(∂2
t ) = {−ω2k2 : k ∈ Z} with ω := 2π

T
denoting the base
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frequency. Our analysis strongly uses the assumption that L has a spectral gap about ω2k2

for each k ∈ Zodd. The restriction to odd frequencies means we consider functions that are T
2
-

antiperiodic in time. It is helpful since for k = 0 we always have 0 ∈ σ(L), T
2
-antisymmetry is

compatible with (10), it still yields a variational problem, and it allows us to invert the operator
L + ∂2

t after restricting to T
2
-antiperiodic functions in time. The operator L having countably

many speci�c spectral gaps requires a careful choice of the potential g0. In Theorems 1.2 and 1.3
this is satis�ed, and moreover the size of the spectral gaps grows linearly in |k|.
Remark 1.4. In [13, Appendix C] you can �nd further examples of potentials g0 for which the
results of Theorems 1.2 and 1.3 remain valid. As an example, in Theorem 1.2 one can consider

g0(x) =
1

c2
− 1 +

{
m2T 2

16θ2X2 , x ∈ (0, θX) +XZ,
n2T 2

16(1−θ)2X2 , x ∈ (θX,X) +XZ,

for m,n ∈ Nodd and θ ∈ (0, 1), where instead of θ ̸= 1
2
we require g0 ̸= const. Similar results

hold for a periodic arrangement of three or more step potentials.

Lastly, let us �x some notation for the torus T. It is equipped with the Haar measure dt
normalized such that

∫
T 1 dt = 1. We denote the standard orthonormal basis on T by ek(t) :=

eikωt. Accordingly, the Fourier coe�cients of a function φ : T → C are given by φ̂k = Fk[φ] =∫
T φek dt, and the inverse is φ(t) = F−1[φ̂k](t) =

∑
k∈Z φ̂kek(t). If φ depends on space and time,

φ̂ will always denote its temporal Fourier transform. Moreover, given a function f on R, we
de�ne its periodization by Per[f ](t) = T

∑
k∈Z f(t+kT ) for t ∈ T. Note that f∗Rφ := Per[f ]∗Tφ

holds for T -periodic functions φ.

With this, we present our main existence result on breather solutions to Maxwell's equations
(1) and (2) with polarization (3.1) or (3.2).

Theorem 1.5. Let T > 0 be the period of the breather, ω := 2π
T

be its frequency and c ∈ (0,∞)

be its speed. Assume that for constants α > 1, 1
2
≤ β < 2, γ ≤ 1, 0 < d < δ we have:

(A1) h ∈ L∞(R; (0,∞)).
(A2) ν ∈ L1(R;R) and its periodization N := Per[ν] is even. Denoting its Fourier support

restricted to odd frequencies by R :=
{
k ∈ Zodd : N̂k ̸= 0

}
, we have R ̸= ∅ and

∣∣N̂k

∣∣ ≲
|k|−α for all k ∈ R.

(A3) g0 ∈ L∞(R;R) satis�es ess inf g0 > 1
c2
− 1 and is locally of bounded variation.

(A4) For the spectrum of the operator L : H2(R) → L2(R) de�ned in (12) we have:
• (ω2k2 − δ|k|γ, ω2k2 + δ|k|γ) ⊆ ρ(L) holds for all k ∈ R.
• The point spectrum σp(L) satis�es

∑
λ∈σp(L)

λ−β−ε < ∞ for all ε > 0.

(A5) α+ γ − 2 > β.
(A6) g1 ∈ L∞

x (R;L1
t (R;R)) and its periodization G(x) := Per[g1(x; · )] is even in t and satis�es∣∣Ĝk(x)

∣∣ ≤ d
ω2|k|2−γ V (x) for all x ∈ R, k ∈ R.

(A7) If the polarization is (3.2), assume that
∣∣N̂k

∣∣ ≳ |k|−s holds for all k ∈ R and for some
s ∈ R. In addition, similar to (A4) and (A6) we then require that there exist constants

γ̃ ≤ 1, 0 < d̃ < δ̃ with

(ω2k2 − δ̃|k|γ̃, ω2k2 + δ̃|k|γ̃) ⊆ ρ(L),
∣∣Ĝk(x)

∣∣ ≤ d̃

ω2|k|2−γ̃
V (x)
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for all k ∈ Zodd \R. (note that α+ γ̃ − 2 > β is not required)

Further let one of the two following assumptions on the spatial geometry of g0, g1, h hold.

(A8a) h(x) → 0 as |x| → ∞. In addition there exist R± ∈ R, X± > 0 such that g0 is periodic
on [R+,∞) with period X+ > 0, and also on (−∞, R−] with period X−.

(A8b) h = hloc + hper where hloc(x) ≥ 0 satis�es hloc(x) → 0 as |x| → ∞, and hper, g0, g1 are
periodic in x with common period.

Then there exists a nonzero breather solution E,B,D,H to Maxwell's equations with period T
and speed c in the sense of De�nition 1.1.

If moreover the set R is in�nite, there exists in�nitely many distinct breather solutions.

Remark 1.6. Let us comment on Theorem 1.5 and its assumptions.

• The constitutive relations (3.1) and (3.2) are translation invariant in time. That is, if
E,D,B,H solve the Maxwell system (1) and (2), then for τ ∈ R the shifted functions
E( · , · − τ),D( · , · − τ),B( · , · − τ),H( · , · − τ) also are solutions. In Theorem 1.5,
for #R = ∞ we state existence of in�nitely many distinct solution. By this, we mean
in�nitely many solutions that are not shifts of one another.

• For (A1), it is also possible to treat a negative potential h in front of the nonlinearity.
More precisely, Theorem 1.5 remains valid when h is replaced by −h, and we discuss
changes to the proof in Remark 4.1. However, with our method it is not possible to
treat nonlinear potentials h that change sign, or those that vanish on a set of nonzero
measure.

• The evenness assumption in (A2) and (A6) is needed for the variational structure,
since the linear part of the variational problem, cf. (17), is nonsymmetric without this
assumption. Evenness is equivalent to time reversal symmetry of the time-periodic
Maxwell equations.
The growth assumptions on the Fourier coe�cients N̂k in (A2) together with (A4)

and (A5) ensure that the variational problem can be treated using semilinear methods.
For example, we show that the nonlinear terms are well-de�ned and �nite on the form
domain of the linear operator.

• Assumption (A7) lets us control the linear operator also along frequencies k ∈ Zodd \R.
It is not needed for (8.1) since there the nonlinearity contains a convolution with ν, which
projects onto the frequencies R. The lower bound |k|−s on the Fourier coe�cients N̂k

gives us control over the inverse of this convolution operator.
• The geometry assumptions (A8a) and (A8b) are used to overcome noncompactness
issues for the variational functional: The decay of h in (A8a) ensures complete con-
tinuity of the nonlinearity, whereas the periodic structure in (A8b) allows us to use
concentration-compactness arguments.
Under (A8b) the assumption on the point spectrum in (A4) is trivially satis�ed since

the di�erential operator L is periodic, and therefore by Floquet-Bloch theory (cf. [12])
the spectrum σ(L) consists of pure essential spectrum.
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Outline of the paper. In Section 2 we formally convert the Maxwell problem into an Euler-
Lagrange equation and investigate the appearing symmetric linear operator L. Section 3 deals
with embeddings of the form domainH of the operator L, i.e., the natural domain of the bilinear
form associated to L. We show boundedness as well as local compactness of H ↪→ L4(R× T).
This allows us choose H as domain of the Lagrangian functional. In Section 4 we consider the
dual problem to the Euler-Lagrange equation, and solve it using the mountain pass method.
We also discuss multiplicity of solutions claimed in Theorem 1.5. Next, in Section 5 we discuss
regularity of solutions of the Euler-Lagrange equation as well as the Maxwell system, proving
Theorem 1.5. Lastly, Appendix A contains the proofs of Theorems 1.2 and 1.3 as well as some
auxiliary results. Throughout these sections, we always assume that (A1)�(A7) and one of
(A8a) or (A8b) are ful�lled.

2. Variational formulation

We begin by transforming the scalar Maxwell problem (10) into a variational problem for an
auxiliary variable u. We follow [24] for the formal derivation.

First we consider the polarization (8.1). We denote by ∗ the convolution on the time-domain
T and use

V (x) = 1− 1

c2
+ g0(x), G(x) = Per[g1(x, · )], N = Per[ν]

to rephrase (10) as (
−∂2

x + V (x)∂2
t

)
w + ∂2

t G(x) ∗ w + h(x)∂2
tN ∗ w3 = 0.(13)

Observe that V is bounded, strictly positive, and locally of bounded variation due to (A3). The
nonlinearity ∂2

tN ∗ w3 is supported only on frequencies k ∈ R, so it is reasonable to assume
that w is also supported only on such frequencies. We denote the projection onto frequencies
k ∈ R by PR, i.e., PR[φ] := F−1[1k∈RFk[φ]]. On these frequencies, the operators −∂2

t , N∗ are
invertible as Fourier multipliers with nonzero symbol, which allows us to rewrite (13) as(

−∂2
tN∗

)−1(−∂2
x + V (x)∂2

t + ∂2
t G(x)∗

)
w − h(x)PR[w

3] = 0.(14)

We abbreviate (14) to Lw − hPR[w
3] = 0 by introducing the linear operator

L :=
(
−∂2

tN∗
)−1(−∂2

x + V (x)∂2
t + ∂2

t G(x)∗
)
.(15)

Note that ∂2
t , N∗, and −∂2

x + V (x)∂2
t + ∂2

t G(x)∗ mutually commute since they act on time as
Fourier multipliers. Since N ,G(x) are even in time, the convolution operators N∗,G(x)∗ are
symmetric and hence L is symmetric.

Let us now consider polarization (8.2), where (10) reads(
−∂2

x + V (x)∂2
t

)
w + ∂2

t G(x) ∗ w + h(x)∂2
t (N ∗ w)3 = 0.(16)

We substitute u := N ∗ w in (16) and apply PR to see that u solves

(−∂2
t )

−1
(
−∂2

x + V (x)∂2
t + ∂2

t G(x)∗
)
(N∗)−1u− h(x)PR[u

3] = 0,

whereas by projecting with Id− PR onto (16) we obtain(
−∂2

x + V (x)∂2
t + ∂2

t G(x)∗
)
(Id− PR)w = −h(x)∂2

t (Id− PR)[u
3].
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The �rst of the two equations is again

Lu− h(x)PR[u
3] = 0,(17)

and the second together with PR[w] = (N∗)−1u allows us to reconstruct the wave pro�le w via

w = PR[w] + (Id− PR)[w]

= (N∗)−1u+
(
−∂2

x + V (x)∂2
t + ∂2

t G(x)∗
)−1

[−h(x)∂2
t (Id− PR)[u

3]].
(18)

In particular, for both choices of the polarization we have to solve the problem (17). Then, we
have w = u for polarization (8.1) whereas w is given by (18) for polarization (8.2).

We now study the form domain H of L. For this, we use a functional calculus for the Sturm-
Liouville operator L on a weighted L2-space. We introduce both before de�ning H in De�ni-
tion 2.4.

De�nition 2.1. We de�ne the V -weighted space L2
V (R;C) := L2(R;C;V dx). Uniform bound-

edness and positivity of V show L2
V (R;C) = L2(R;C) with equivalent norms.

Theorem 2.2 (cf. [13, Theorem 3.6]). Let Ψ(x;λ) = (Ψ1(x;λ),Ψ2(x;λ))
⊤ be the fundamental

system of solutions of Lφ = λφ on R with initial data (Ψ, ∂xΨ)|x=0 = Id. Then there exists a
measure µ de�ned on the bounded Borel subsets of R that maps to positive semide�nite R2×2

matrices such that

T : L2
V (R;C) → L2(µ), T [f ](λ) =

∫
R
f(x)Ψ(x;λ)V dx

is an isometric isomorphism with inverse

T−1[g](x) =

∫
R
gi(λ)Ψj(x;λ) dµij(λ).

Here we use the Einstein summation convention. A de�nition of the Hilbert space L2(µ) con-
sisting of equivalence classes of C2-valued measurable functions can be found in [11, De�nition
XIII.5.8]. Its norm is given by ∥g∥2L2(µ) =

∫
R gigj dµij(λ). We note that the integral de�ning T

exists for compactly supported f , and T is de�ned by approximation for general f . The same
holds for T−1.

Let us point out some basic properties of the transform T . A proof is given in Appendix A.

Lemma 2.3. Let f ∈ L2(R;C). Then the following hold:

(a) f ∈ H2(R;C) if and only if λT [f ](λ) ∈ L2(µ), and we have

Lf = T−1[λT [f ](λ)]

(b) f ∈ H1(R;C) if and only if
√
λT [f ](λ) ∈ L2(µ), and we have∫

R
|f ′|2 dx =

∫
R
λTi[f ](λ)Tj[f ](λ) dµij(λ)

(c) Moreover, the support of µ satis�es

supp(µ) :=
2⋃

i,j=1

supp(µij) = σ(L)
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Now we rigorously de�ne the bilinear form bL associated to the operator L of (15) and its
domain H. In the following, we identify the bilinear form bL : H × H → R with the weak
formulation of the operator L via L[u][φ] = bL[u, φ] for u, φ ∈ H, i.e., we consider L : H → H′

where H′ is the dual space.

De�nition 2.4. We de�ne the form domain H by

H :=
{
u ∈ L2(R× T;R) : ûk = 0 for k ∈ Z \R, ⟨u, u⟩H < ∞

}
where

⟨u, v⟩H :=
∑
k∈R

∫
R

∣∣∣∣λ− ω2k2

ω2k2N̂k

∣∣∣∣Ti[ûk](λ)Tj[v̂k](λ) dµij(λ).

Next, we de�ne the operators L,L0,L1 : H → H′ by L := L0 + L1 and

L0[u][φ] :=
∑
k∈R

∫
R

λ− ω2k2

ω2k2N̂k

Ti[ûk](λ)Tj[φ̂k](λ) dµij(λ),

L1[u][φ] :=
∑
k∈R

∫
R

Ĝk(x)

N̂k

ûk(x)φ̂k(x) dx

for u, φ ∈ H. We call a function u weak solution to (17) if u ∈ H and

L[u][φ]−
∫
R×T

h(x)u3φ d(x, t) = 0

holds for all φ ∈ H. We show below in Lemma 2.7 and Proposition 3.2 that the above integrals
and sums are �nite and that embedding H ↪→ L4(R × T) and the maps L0,L1 : H → H′ are
bounded.

We continue by investigating the operator L, its domain H, and their properties. The following
estimate on the symbol |λ− ω2k2| will be useful.

Remark 2.5. For k ∈ R and λ ∈ σ(L) we have∣∣λ− ω2k2
∣∣ ≥ δ|k|γ and

∣∣λ− ω2k2
∣∣ ≥ δ|k|γ

ω2k2 + δ|k|γ
λ.

The �rst estimate follows directly from (A4). For the second estimate, we �x k and consider
|λ−ω2k2|

λ
on λ ∈ σ(L) ⊆ [0, ω2k2− δ|k|γ]∪ [ω2k2+ δ|k|γ,∞) := I. We estimate the quotient from

below by its minimum value on I, which is attained at λ = ω2k2 + δ|k|γ.

We have the following density result for H.

Lemma 2.6. The set D := {u ∈ H ∩ C∞
c (R× T;R) : ûk = 0 for almost all k ∈ R} is dense in

H.

Proof. Note for u ∈ H that ∑
k∈R
|k|≤K

ûk(x)ek(t) → u in H
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as K → ∞. Moreover, for �xed k, using Remark 2.5 we have∣∣∣∣λ− ω2k2

ω2k2N̂k

∣∣∣∣ ≂k λ+ 1

which combined with Lemma 2.3 shows that ûk ∈ H1(R;C) and that the norms ∥ûk∥H1 and
∥ûk(x)ek(t)∥H are equivalent. As C∞

c (R;C) ⊆ H1(R;C) is dense, the result follows by approx-
imating ûk for all |k| ≤ K. □

Lastly, we show that L is invertible and inde�nite. Both properties are essential for the dual
variational method which we use to solve (17).

Lemma 2.7. L,L0,L1 are symmetric, L0 is an isometric isomorphism and ∥L1∥ < 1. By the
Neumann series, L is an isomorphism.

Proof. From the de�nitions of H and L0 it follows that L0 is an isometric isomorphism, and it
is clearly symmetric. By (A6) the potential G(x) is even in time, so its Fourier coe�cients are
real-valued and hence L1 is symmetric. It remains to show the bound on L1. For this, recall
that by Lemma 2.3 the spectral measure µ is supported on σ(L). Using Remark 2.5 we have

∥u∥2H ≥
∑
k∈R

∫
R

δ|k|γ

ω2k2
∣∣N̂k

∣∣Ti[ûk](λ)Tj[ûk](λ) dµij(λ) =
∑
k∈R

δ

ω2|k|2−γ
∣∣N̂k

∣∣∥ûk∥2L2
V
.

Next, using assumption (A6), the Cauchy-Schwarz inequality and the above we �nd

|L1[u][φ]| ≤
∑
k∈R

1∣∣N̂k

∣∣
∥∥∥∥ Ĝk

V

∥∥∥∥
∞
∥ûk∥L2

V (R)∥φ̂k∥L2
V
≤
∑
k∈R

d

ω2|k|2−γ
∣∣N̂k

∣∣∥ûk∥L2
V
∥φ̂k∥L2

V

≤

(∑
k∈R

d

ω2|k|2−γ
∣∣N̂k

∣∣∥ûk∥2L2
V

) 1
2
(∑

k∈R

d

ω2|k|2−γ
∣∣N̂k

∣∣∥φ̂k∥2L2
V

) 1
2

≤ d

δ
∥u∥H∥φ∥H,

showing ∥L1∥ ≤ d
δ
< 1. □

Lemma 2.8. L is an inde�nite bilinear form.

Proof. Clearly, the spectrum σ(L) of the Sturm-Liouville operator L contains 0 and is not
bounded from above. Fix k ∈ R. By (A4) and Lemma 2.3 we �nd a function g ∈ L2(µ) \ {0}
that is supported on [ω2k2 + δ|k|γ, N ] for some N > 0. The function

u(x, t) = T−1[g](x)ek(t) + T−1[g](x)e−k(t).

satis�es

L0[u][u] = 2

∫
R

λ− ω2k2

ω2k2N̂k

gi(λ)gj(λ) dµij(λ),

which is nonzero with sign(L0[u][u]) = sign(N̂k). Since ∥u∥2H = |L0[u][u]|, Lemma 2.7 shows
that L[u][u] is nonzero with sign(L[u][u]) = sign(L0[u][u]) = sign(N̂k).

If above we instead choose g supported on [0, ω2k2− δ|k|γ], then by the same argument we �nd
u satisfying sign(L[u][u]) = − sign(N̂k). □
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3. Embeddings

We investigate the embeddings H ↪→ Lp(R × T), and discuss their boundedness in Proposi-
tion 3.2 as well as a concentration-compactness result in Proposition 3.5. We use some ideas
and results from [13].

Let us �x some notation. Recall that the potential g0 (and therefore also V ) is X+-periodic
on [R+,∞) as well as X−-periodic on (−∞, R−]: In case (A8a) this is part of the assumption,
and in (A8b) g0 is periodic so we may choose R± arbitrarily and X+ = X−. We denote by
V + the X+-periodic extension of V |[R+,∞) to R and similarly by V − the X−-periodic extension
of V |(−∞,R−] to R. To improve readability, in the following we use the ± symbol. Statements
involving such double symbols should be read always using the top, or always using the bottom
symbol. We de�ne the periodic Sturm-Liouville operators

L± := − 1

V ±(x)
∂2
x.

According to Floquet-Bloch theory (cf. [25]), for the spectra of L± : H2(R) → L2(R) we have

σ(L±) =
⋃
n∈N

I±n

where I±n are compact intervals with min I±n
n→∞−−−→ ∞, called spectral bands. We assume that

they are enumerated in the standard way for Floquet-Block theory: I±n are increasing, i.e.,
min I±n+1 ≥ max I±n , and the boundary points {min I±n ,max I±n : n ∈ N} consist precisely of
those λ ∈ R where L±f = λf admits nonzero X±-periodic or X±-antiperiodic solutions.

The operators L± are useful in the study of L together with information on its point spectrum.
For example, σ(L) = σp(L) ∪ σess(L) = σp(L) ∪ σ(L+) ∪ σ(L−) holds (cf. [13, Lemma B.1]).
Information on L allows us to better understand H and characterize its embeddings. We begin
with the following su�cient condition for boundedness of the Lp-embeddings.

Lemma 3.1. Let p ∈ (2,∞], s := p
p−2

with

C :=
∑
k∈R

∣∣k2N̂k

∣∣s∑
n∈N

dist(ω2k2, I+n )
−s +

∑
n∈N

dist(ω2k2, I−n )
−s +

∑
λ∈σp(L)

∣∣ω2k2 − λ
∣∣−s

 < ∞.

Then the embedding H ↪→ Lp(R× T) is continuous.

Proof. We consider the isometry

E : H → L2
V (R× T;R), u 7→

∑
k∈R

T−1
[∣∣∣∣λ− ω2k2

ω2k2N̂k

∣∣∣∣ 12T [ûk](λ)
]
(x)ek(t)

and the family of operators

ιθ : L
2
V (R× T;R) → L

2
1−θ (R× T;R), u 7→

∑
k∈R

T−1
[∣∣∣∣λ− ω2k2

ω2k2N̂k

∣∣∣∣− θs
2

T [ûk](λ)
]
(x)ek(t)

where θ varies over [0, 1]. Then ι0 = Id: L2(R × T;R) → L2(R × T;R) is bounded, and
boundedness of ι1 follows from C < ∞ as in [13, Lemma 3.26]. For this, we note that the
enumeration of the spectral bands I±n used in [13] coincides with ours.



12 BREATHER SOLUTIONS TO NONLINEAR MAXWELL EQUATIONS

By interpolation, each ιθ is bounded. Setting θ = 1
s
, it follows that

ιθE = Id: H → L
2

1−θ (R× T;R) = Lp(R× T;R)

is bounded. □

We are now ready to state our central embedding result, where we use information on the
spectrum of L given in assumption (A4), in particular the existence and size of the spectral
gaps about ω2k2 for k ∈ R as well as estimates on the point spectrum, to verify the condition
in Lemma 3.1.

Proposition 3.2. Let p ∈ [2, p⋆) with p⋆ := min
{

2β
β−1

, 4β
2β−α−γ+2

}
. Then the embedding H ↪→

Lp(R× T) is continuous and locally compact.

In the above quotients we set a
b
= ∞ for b ≤ 0. Note that p⋆ > 4 holds by assumption (A5).

Proof. We only consider p > 2 and begin by showing continuity of the embedding. First we
show that the sum corresponding to the point spectrum∑

k∈R

∣∣k2N̂k

∣∣s ∑
λ∈σp(L)

∣∣ω2k2 − λ
∣∣−s

(19)

with s := p
p−2

is �nite. Recall that
∣∣N̂k

∣∣ ≲ |k|−α due to assumption (A2). We use the estimate

n∑
k=m

kr ≂r

∫ n

m

kr =
nr+1 −mr+1

r + 1
≲r n

r+1 +mr+1

on integer sums with r ∈ R \ {−1} and m,n ∈ N with m < n. To keep notation simple, below
we assume that we are in the generic case r ̸= −1. For r = −1 we can use

∑n
k=m k−1 ≲ε nε

instead, which leads to the same results provided ε is chosen su�ciently small.

We use separate estimates for (19) in the three cases ω2k2 ≪ λ, ω2k2 ≈ λ, and ω2k2 ≫ λ.
First, we calculate∑

λ∈σp(L)

∑
k∈R

ω2k2< 1
2
λ

|k|(2−α)s
∣∣ω2k2 − λ

∣∣−s ≂
∑

λ∈σp(L)

∑
k∈R

ω2k2< 1
2
λ

|k|(2−α)sλ−s

≲
∑

λ∈σp(L)

(
1 + λ

1+(2−α)s
2

)
λ−s.

Second, we have∑
λ∈σp(L)

∑
k∈R

ω2k2≥2λ

|k|(2−α)s
∣∣ω2k2 − λ

∣∣−s ≂
∑

λ∈σp(L)

∑
k∈R

ω2k2≥2λ

|k|(2−α)s|k|−2s

≲
∑

λ∈σp(L)

λ
1−αs

2
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For the third and last sum we use |ω2k2 − λ| = (ω|k| +
√
λ)
∣∣∣ω|k| − √

λ
∣∣∣ ≥ √

λωn where n =⌊∣∣|k| − 1
ω

√
λ
∣∣⌋. Observe that each n ∈ N0 is attained as a value for at most four k. By (A4)

we also have |ω2k2 − λ| ≥ δ|k|γ, which we use instead when n = 0. Therefore∑
λ∈σp(L)

∑
k∈R

1
2
λ≤ω2k2<2λ

|k|(2−α)s
∣∣ω2k2 − λ

∣∣−s ≂
∑

λ∈σp(L)

λ
(2−α)s

2

∑
k∈R

1
2
λ≤ω2k2<2λ

∣∣ω2k2 − λ
∣∣−s

≲
∑

λ∈σp(L)

λ
(2−α)s

2

(
δλ− γs

2 +
∞∑
n=1

λ− s
2n−s

)
By (A4) all the above sums are �nite provided

min

{
s,
αs− 1

2
,
(α + γ − 2)s

2
,
(α− 1)s

2

}
> β.(20)

Using αs−1
2

> (α−1)s
2

≥ (α+γ−2)s
2

, a direct calculation shows that (20) holds for p < p⋆.

For the remaining sums appearing in the constant C of Lemma 3.1, we �rst estimate∑
n∈N

dist(ω2k2, I±n )
−s ≤

∑
λ∈S±

∣∣ω2k2 − λ
∣∣−s

(21)

with S± := {∂I±n : n ∈ N} \ {0}. By the proof of [13, Theorem 3.27] the spectral bands I±n
grow quadratically, so that

∑
λ∈S± λ− 1

2
−ε < ∞ for all ε > 0. We can therefore estimate the

right-hand side of (21) as we did for the point spectrum, except β is replaced by 1
2
in (20). As

we required β ≥ 1
2
in Theorem 1.5, this generates no additional requirements.

Finally, local compactness of the embedding follows by a frequency cuto� approximation argu-
ment as in the proof of [13, Theorem 3.27]. □

For considerations of regularity, we use an improved embedding result introduced next, showing
that low order temporal derivatives of a function u ∈ H still lie in L4(R× T).

De�nition 3.3. We de�ne the fractional temporal derivative |∂t|sf of a function f : T → C
for s ∈ R (with f̂0 = 0 if s < 0) as the Fourier multiplier with symbol |ωk|s, i.e., by |∂t|sf =

F−1[|ωk|sf̂k].

Remark 3.4. As in the proof of Proposition 3.2 we see that

|∂t|ε : H → Lp(R× T;R)

is bounded and locally compact for p ∈ [2, p⋆ε) with p⋆ε := min
{

2β
β−1

, 4β
2β−α+2ε−γ+2

}
. Assumption

(A5) implies p⋆ε > 4 for su�ciently small ε > 0.

We now prove a variant of the concentration-compactness principle of Lions.

Proposition 3.5. Let p ∈ [2, p⋆) where p⋆ is given by Proposition 3.2, r > 0, w : R → [0,∞)
be a bounded and measurable weight function, and (un) be a bounded sequence in H with

sup
x∈R

∫
[x−r,x+r]×T

|un|p w(x)d(x, t)
n→∞−−−→ 0.(22)
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Then un
n→∞−−−→ 0 in Lq

w(R× T) = Lq(R× T;w(x)d(x, t)) for all q ∈ (2, p⋆).

Proof. Part 1: By Hölder's inequality it su�ces to give the proof for p = 2 and one q ∈ (2, p⋆),
which we choose later. Inspired by [16], we consider an auxiliary Hilbert space H de�ned by

H =
{
u ∈ L2(R× T;R) : ûk = 0 for k ∈ Z \R, ∥u∥H < ∞

}
,

∥u∥2H =
∑
k∈R

|k|α+γ−4

∫
R
|û′

k|
2
+ V (x)k2|ûk|2 dx.

The H-norm is local in x which will allow us to get additional information on the desired
embedding by considering H ↪→ H ↪→ Lq

w(R× T).

Using assumption (A2), Lemma 2.3 and the estimate |λ− ω2k2| ≳ |k|γ + λ|k|γ−2 (see Re-
mark 2.5) we �nd

∥u∥2H ≳
∑
k∈R

|k|α−2

∫
R

∣∣λ− ω2k2
∣∣Ti[ûk](λ)Tj[ûk](λ) dµij(λ)

≳
∑
k∈R

|k|α+γ−4

∫
R

(
k2 + λ

)
Ti[ûk](λ)Tj[ûk](λ) dµij(λ)

=
∑
k∈R

|k|α+γ−4

∫
R
|û′

k|
2
+ V (x)k2|ûk|2 dx = ∥u∥2H ,

so that H ↪→ H is bounded.

Part 2: We now consider the embedding H ↪→ Lq(R×T). For this, let I ⊆ R be an interval of
length 2r. On I, let φn(x) =

1√
2r
ein

π
r
x and de�ne the spatial Fourier transform F [ϕ] of ϕ : I → C

by

Fn[ϕ] =

∫
I

ϕ(x)φn(x) dx for n ∈ Z.

Fix some s > 8 and de�ne q > 2 > q′ by 1
q′
= 1− 1

q
= 1

2
+ 1

s
. We calculate∥∥∥(|k|α+γ−4(n2 + k2)

)− 1
2

∥∥∥s
ℓs(Z×R)

=
∑
k∈R

|k|−
(α+γ−4)s

2

∑
n∈Z

(n2 + k2)−
s
2

≲
∑
k∈R

|k|−
(α+γ−4)s

2 · |k|1−s ≤
∑
k∈R

|k|1−
βs
2 < ∞,

where we used α+ γ − 2 > β ≥ 1
2
. From this, for u ∈ H we obtain

∥u∥2Lq
w(I×T) ≲ ∥u∥2Lq(I×T) ≲ ∥Fn[ûk]∥2ℓq′ (Z×R)

≤
∥∥∥(|k|α+γ−4(n2 + k2)

) 1
2Fn[ûk]

∥∥∥2
ℓ2(Z×R)

∥∥∥(|k|α+γ−4(n2 + k2)
)− 1

2

∥∥∥2
ℓs(Z×R)

≲
∑
k∈R

|k|α+γ−4
∑
n∈Z

(
n2 + k2

)
|Fn[ûk]|2 dx

≲
∑
k∈R

|k|α+γ−4

∫
I

|û′
k|

2
+ V (x)k2|ûk|2 dx.
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We now choose intervals Ij := [(2j − 1)r, (2j + 1)r], and de�ne the norm

∥u∥ℓpLq
w
:=

∥∥∥∥(∥u∥Lq
w(Ij×T)

)
j

∥∥∥∥
ℓp(Z)

.

Then, using the above for I = Ij and summing over j we obtain

∥u∥ℓ2Lq
w
≲ ∥u∥H ≲ ∥u∥H

By Hölder interpolation we have

∥un∥ℓpθLqθ
w
≤ ∥un∥θℓ2Lq

w
∥un∥1−θ

ℓ∞L2
w

with 1
pθ

= θ
2
+ 1−θ

∞ , 1
qθ

= θ
q
+ 1−θ

2
for all θ ∈ [0, 1]. Now �x θ ∈ (0, 1) to be the unique solution to

pθ = qθ, and let (un) be a bounded sequence in H satisfying (22) with p = 2, i.e., ∥un∥ℓ∞L2
w
→ 0

as n → ∞. This shows

∥un∥Lqθ
w (R×T) = ∥un∥ℓpθLqθ

w
≲ ∥un∥θH∥un∥1−θ

ℓ∞L2 → 0

as n → ∞, completing the proof. □

4. The dual problem

We solve (17) variationally with the dual variational method. Using that h is positive and
bounded by (A1), we formally substitute v := h

3
4u3 in (17) and multiply with h

1
4L−1 to obtain

the dual problem

Lu− hPR[u
3] = 0 ⇐⇒ Lh− 1

4v
1
3 − h

1
4PR[v] = 0 ⇐⇒ v

1
3 − h

1
4L−1h

1
4PR[v] = 0

where v
1
3 denotes the real cube root of the real-valued function v. We abbreviate the weighted

inverse operator by L−1
h = h

1
4L−1h

1
4PR, and thus consider the problem

v
1
3 − L−1

h v = 0.(23)

Having solved (23), we can formally recover a solution u of (17) by setting

u = h− 1
4v

1
3 = L−1h

1
4PR[v].

Remark 4.1. As stated in Remark 1.6, we can also consider (17) for negative h, for which the
dual problem is given by

Lu− hPR[u
3] = 0 ⇐⇒ (−L)u− (−h)PR[u

3] = 0 ⇐⇒ v
1
3 − (−h)

1
4 (−L)−1(−h)

1
4PR[v] = 0

with v := (−h)
3
4u3. The properties of L that we use below (symmetry, invertibility, inde�nite-

ness) are also satis�ed by −L. Therefore our results on (17) and (23) can be transferred to the
negative case by the substitution (h,L) ; (−h,−L).

Next we properly de�ne the operator L−1
h .

De�nition 4.2. Let ι : H ↪→ L4(R× T;R) be the bounded embedding of Proposition 3.2 and ι′

be its adjoint. Then, using that L : H → H′ is invertible according to Lemma 2.7, we de�ne the
h-weighted inverse by

L−1
h := h

1
4 ιL−1ι′h

1
4 : L

4
3 (R× T;R) → L4(R× T;R)
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Next, we call a function v a solution to (23) if v ∈ L
4
3 (R×T;R) is a critical point of the energy

functional

J : L
4
3 (R× T;R) → R, J(v) :=

∫
R×T

3

4
|v|

4
3 − 1

2
L−1

h v · v d(x, t),

or equivalently if v
1
3 − L−1

h v = 0 in L4(R× T;R).

Remark 4.3. In De�nition 4.2, note that PRι = ι holds by de�nition of H, hence we can omit
PR in the de�nition of L−1

h . By Proposition 3.2 the map L−1
h is locally compact.

In Theorem 4.9 we show that there exists a nonzero solution to the dual problem (23). More
precisely, we show that there exists a ground state as de�ned below.

De�nition 4.4. We call the energy level

cgs := inf
v∈L4/3(R×T;R)\{0}

J ′(v)=0

J(v)

the ground state energy level, and any nonzero critical point v of J with J(v) = cgs is called a
ground state.

Remark 4.5. The substitution v = h
3
4u3, which gives a one-to-one correspondence between

solutions u of (17) and solutions v to (23), also links the ground states of the two problems.
Indeed, if u is a solution of (17), which is the Euler-Lagrange equation of

J̃(u) =

∫
R×T

1
2
Lu · u− 1

4
hu4 d(x, t),

we have

J̃(u) = J̃(u)− 1
2
J̃ ′(u)[u] = 1

4

∫
R×T

hu4 d(x, t) = 1
4

∫
R×T

|v|
4
3 d(x, t) = J(v)− 1

2
J ′(v)[v] = J(v).

To show existence of ground states, we �rst use the mountain pass method to obtain a Palais-
Smale sequence for J .

De�nition 4.6. We call a sequence (vn) in L
4
3 (R × T;R) a Palais-Smale sequence for J at

level c ∈ R if J(vn) → c in R and J ′(vn) → 0 in H′ as n → ∞.

Proposition 4.7. There exists v ∈ L
4
3 (R × T;R) \ {0} with J(v) ≤ 0. For such v we de�ne

the mountain pass energy level by

cmp := cmp(v) := inf
γ∈C([0,1];L

4
3 (R×T;R))

γ(0)=0,γ(1)=v

sup
t∈[0,1]

J(γ(t)).

Then cmp > 0 and there exists a Palais-Smale sequence for J at level cmp.

Proof. We �rst show that there exists v ∈ L
4
3 (R×T;R) with

∫
R×T L

−1
h v · v d(x, t) > 0. Assume

for a contradiction that∫
R×T

L−1
h v · v d(x, t) =

∫
R×T

ιL−1ι′h
1
4v · h

1
4v d(x, t) ≤ 0
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for all v ∈ L
4
3 (R× T;R). As h vanishes almost nowhere, h

1
4L

4
3 (R× T) ⊆ L

4
3 (R× T) is dense.

By approximation it follows that ∫
R×T

ιL−1ι′v · v d(x, t) ≤ 0

holds for all v ∈ L
4
3 (R×T;R). Next, let φ lie in the dense subset D ⊆ H of Lemma 2.6. Then

v := Lφ ∈ L∞(R× T) is compactly supported, and we have∫
R×T

ιL−1ι′v · v d(x, t) = L[φ][φ] ≤ 0.

Using density of D ⊆ H we conclude that L is negative semide�nite, contradicting Lemma 2.8.

So our assumption was false, and therefore we �nd v ∈ L
4
3 (R×T;R) with

∫
R×T L

−1
h v ·v d(x, t) >

0. This implies J(sv) ≤ 0 for su�ciently large s.

Now let 0 < r <
(

3

2∥L−1
h ∥
) 3

2
and ṽ ∈ L

4
3 (R× T) with ∥ṽ∥ 4

3
= r. Then

J(ṽ) ≥ 3

4
r

4
3 − 1

2

∥∥L−1
h

∥∥r2 > 0

and therefore also cmp ≥ 3
4
r

4
3 − 1

2

∥∥L−1
h

∥∥r2 > 0. By the mountain pass theorem (cf. Theorem 6.1,
Theorem 3.4, and Remark 3.5 in [26, Chapter II]) there exists a Palais-Smale sequence (vn) for
J at level cmp. □

Remark 4.8. Any Palais-Smale sequence for J is bounded. Indeed, if (vn) is a Palais-Smale
sequence at level c, then

2c+ o(1) + o(∥vn∥ 4
3
) = 2J(vn)− J ′(vn)[vn] =

1

2
∥vn∥

4
3
4
3

,

shows that (vn) is bounded and moreover that ∥vn∥ 4
3
→ (4c)

3
4 as n → ∞.

Next we show an existence result for the dual problem.

Theorem 4.9. There exists a ground state of (23).

The proof of Theorem 4.9 di�ers depending on the choice of assumption: (A8a) or (A8b). The
case (A8a) is simpler since J satis�es the Palais-Smale condition, and the proof is carried out
in Proposition 4.10. Case (A8b) is investigated in Lemma 4.11 for purely periodic coe�cients
g0, g1, h using the concentration-compactness principle Proposition 3.5, and in Proposition 4.12
for the general case using energy comparison arguments.

Proposition 4.10. Assume (A1)�(A6) and (A8a). Then there exists a ground state of (23).

Proof. Let (vn) be the Palais-Smale sequence from Proposition 4.7. By Remark 4.8, up to
a subsequence which we again label by vn, there exists v ∈ L

4
3 (R × T;R) with vn ⇀ v in

L
4
3 (R× T).
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By Proposition 3.2 the embedding ι : H ↪→ L4(R × T;R) is locally compact. Then h
1
4 ι is

compact since h decays to 0 at ±∞ by assumption (A8a), and in particular L−1
h is compact

and thus L−1
h vn → L−1

h v in L4. Using

J ′(vn) = v
1
3
n − L−1

h vn → 0 in L4

we see that v
1
3
n converges to L−1

h v in L4, which implies vn → (L−1
h v)3 in L

4
3 .

Since also vn ⇀ v, we have v = (L−1
h v)3 and vn → v in L

4
3 , so v

1
3 − L−1

h v = 0 in L4. By
continuity of J we have J(vn) → J(v), i.e., J(v) = cmp.

Thus far, we have shown existence of a nonzero critical point of J , and thus cgs ̸= ∞. Now let
(vn) be a sequence of critical points of J with J(vn) → cgs. Then the above arguments shows
vn → v in L

4
3 up to a subsequence, and hence v is a ground state. □

Lemma 4.11. Assume (A1)�(A6) and (A8b) with hloc = 0. Then there exists a ground state
of (23).

Proof. Part 1: Denote the common period of h = hper, g0, g1 by X, so V is also X-periodic by
its de�nition (11). Let us investigate the shift τ in x by X, i.e., τ [f ](x) = f(x − X). With
the spectral transform T and fundamental solution Ψ given in Theorem 2.2, we calculate for
compactly supported f ∈ L2(R;C)

T [τf ](λ) =

∫
R
f(x−X)Ψ(x;λ) dx =

∫
R
f(x)Ψ(x+X;λ) dx = M(λ)T [f ](λ)

where the matrix M(λ) ∈ R2×2 is given by

M(λ)Ψ(x;λ) = Ψ(x+X;λ).

for all x ∈ R, and it exists since Ψ( · ;λ) solves an X-periodic di�erential equation. As τ is an
isometric isomorphism on L2

V (R;C), multiplication with M(λ) is an isometric isomorphism of
L2(µ). For u ∈ H we have

∥τu∥2H =
∑
k∈R

∥∥∥∥∥
∣∣∣∣λ− ω2k2

ω2k2N̂k

∣∣∣∣ 12T [τ ûk](λ)

∥∥∥∥∥
2

L2(µ)

=
∑
k∈R

∥∥∥∥∥M(λ)

∣∣∣∣λ− ω2k2

ω2k2N̂k

∣∣∣∣ 12T [ûk](λ)

∥∥∥∥∥
2

L2(µ)

=
∑
k∈R

∥∥∥∥∥
∣∣∣∣λ− ω2k2

ω2k2N̂k

∣∣∣∣ 12T [ûk](λ)

∥∥∥∥∥
2

L2(µ)

= ∥u∥2H,

i.e., τ is an isometric isomorphism of H. A similar calculation shows L0[τu][τu] = L0[u][u], and
L1[τu][τu] = L1[u][u] follows directly from periodicity of G. Thus we have L[τu][τu] = L[u][u].
Let us de�ne τ on H′ by τ |H′ =

(
(τ |H)−1)′, which is an isometric isomorphism of H′. Then by

the above, τL = Lτ , τL−1 = L−1τ and τL−1
h = L−1

h τ hold.
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Part 2: Let (vn) be the Palais-Smale sequence given by Proposition 4.7. We apply Proposi-
tion 3.5 with r = X, p = q = 4, w = h and un := L−1ι′h

1
4vn = h− 1

4L−1
h vn to obtain a sequence

of points xn ∈ R with

lim sup
n→∞

∥un∥L4
h([xn−X,xn+X]×T) = lim sup

n→∞

∥∥L−1
h vn

∥∥
L4([xn−X,xn+X]×T) > 0.

since

∥un∥L4
h(R×T) =

∥∥L−1
h vn

∥∥
L4(R×T) =

∥∥v3n∥∥L4(R×T) + o(1) → (4cmp)
9
4 > 0

by Remark 4.8.

W.l.o.g. we may assume xn = knX for some kn ∈ Z. Then, ṽn := τ knvn satis�es∥∥L−1
h vn

∥∥
L4([xn−X,xn+X]×T) =

∥∥τ−knL−1
h τ knvn

∥∥
L4([xn−X,xn+X]×T) =

∥∥L−1
h ṽn

∥∥
L4([−X,X]×T).

Now choose a subsequence, again denoted by ṽn such that ṽn ⇀ v in L
4
3 (R× T) and∥∥L−1

h ṽn
∥∥
L4([−X,X]×T) → s > 0

By local compactness of L−1
h (see Proposition 3.2) we have L−1

h ṽn → L−1
h v in L4

loc(R× T) and
thus v ̸= 0. In addition,∫

R×T

(
ṽ

1
3
n − L−1

h ṽn

)
φ d(x, t) =

∫
R×T

(
v

1
3
n − L−1

h vn

)
τ−knφ d(x, t) = J ′(vn)[τ

−knφ] = o(∥φ∥ 4
3
)

as n → ∞ for φ ∈ L
4
3 (R×T). This shows ṽ

1
3
n → L−1

h v in L4
loc(R×T;R) and thus ṽn → (L−1

h v)3

in L
4
3
loc(R×T;R). Therefore v = (L−1

h v)3 holds, that is, v is a critical point of J . In particular,
we have cgs ̸= ∞.

Part 3: Now let (vn) be a sequence of critical points of J with J(vn) → cgs. Arguing as in
part 2, up to a subsequence and shifts xn = knX ∈ R we have ṽn := τ knvn ⇀ v, where v is a
nonzero critical point of J . For the energy level of v we calculate

J(v) = J(v)− 1

2
J ′(v)[v] =

1

4
∥v∥

4
3
4
3

≤ lim inf
n→∞

1

4
∥ṽn∥

4
3
4
3

= lim inf
n→∞

J(ṽn)−
1

2
J ′(ṽn)[ṽn] = cgs.

Since also J(v) ≥ cgs by de�nition of the ground state energy, we see that v is a ground state. □

Proposition 4.12. Assume (A1)�(A6) and (A8b). Then there exists a ground state of (23).

Proof. Part 1: We consider the periodic functional

Jper(v) =

∫
R×T

3
4
|v|

4
3 − 1

2
L−1

hperv · v d(x, t)

on L
4
3 (R × T) which has a ground state vper due to Lemma 4.11. We denote its energy by

cpergs := Jper(uper). Recall that 0 < hper ≤ hper + hloc = h holds by assumption (A8b). Setting

v :=
(
hper

h

) 1
4vper, we estimate

J(sv) =

∫
R×T

3

4
s

4
3 |v|

4
3 − 1

2
s2L−1

h v · v d(x, t)

=

∫
R×T

3

4
s

4
3

(
hper

h

) 1
3 |vper|

4
3 − 1

2
s2L−1

hperv
per · vper d(x, t)

≤ Jper(svper)
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for any s > 0. For the particular value s0 :=
(
3
2

) 3
2 we calculate

Jper(s0v
per) =

27

16
(Jper)′(vper)[vper] = 0.

In particular, we can estimate the mountain pass energy via

cmp := cmp(s0v) ≤ max
s∈[0,s0]

J(sv) ≤ max
s∈[0,s0]

Jper(svper) = Jper(vper) =: cpergs .

Part 2: Let us �rst consider the case cmp = cpergs . From the above (in)equality we conclude that
vper = 0 holds almost everywhere on {h ̸= hper}. In particular, we have v = vper, and from

(vper)
1
3 − L−1

hperv
per = 0

we see that L−1
hpervper also vanishes on {h ̸= hper}. Therefore

(v)
1
3 − L−1

h v = (vper)
1
3 − L−1

hper = 0,

and v = vper is a ground state of both J and Jper.

Part 3: Let us now consider the case cmp < cpergs . Let vn be a Palais-Smale sequence for J

with J(vn) → cmp. Then up to a subsequence vn ⇀ v ∈ L
4
3 (R × T) by Remark 4.8. In order

to show v ̸= 0, let us assume for a contradiction that v = 0 so that L−1
h vn → 0 in L4

loc by
Proposition 3.2. As in the proof of Lemma 4.11 there exists a subsequence, again denoted
by vn, such that suitable shifts ṽn = τ knvn weakly converge to some 0 ̸= ṽ ∈ L

4
3 (R × T;R).

From v3n = L−1
h vn + o(1) → 0 in L4

loc we conclude |kn| → ∞. For compactly supported
φ ∈ L

4
3 (R× T;R) we calculate∣∣(Jper)′(vn)[τ

−knφ]− J ′(vn)[τ
−knφ]

∣∣
=

∣∣∣∣∫
R×T

(
L−1

h − L−1
hper

)
vn · τ−knφ d(x, t)

∣∣∣∣
=

∣∣∣∣∫
R×T

((
h

1
4 − (hper)

1
4
)
ιL−1ι′h

1
4 + (hper)

1
4 ιL−1ι′

(
h

1
4 − (hper)

1
4
))

vn · τ−knφ d(x, t)

∣∣∣∣
≤ ∥ι∥2

∥∥L−1
∥∥(∥∥∥h 1

4vn

∥∥∥
4
3

∥∥∥(h 1
4 − (hper)

1
4
)
τ−knφ

∥∥∥
4
3

+
∥∥∥(h 1

4 − (hper)
1
4
)
vn

∥∥∥
4
3

∥∥∥(hper)
1
4 τ−knφ

∥∥∥
4
3

)
≲ ∥vn∥ 4

3

∥∥∥(hloc)
1
4 τ−knφ

∥∥∥
4
3

+
∥∥∥(hloc)

1
4vn

∥∥∥
4
3

∥φ∥ 4
3
→ 0

as n → ∞ since hloc is localized by (A8b). Thus we have∫
R×T

ṽ
1
3
nφ− L−1

hper ṽn · φ d(x, t) = (Jper)′(ṽn)[φ] = (Jper)′(vn)[τ
−knφ] → 0.

Using L−1
hper ṽn → L−1

hper ṽ in L4
loc, the above shows ṽn → (L−1

hper ṽ)3 in L
4
3
loc, so that ṽ

1
3 −L−1

hper ṽ = 0.
As ṽ is a nonzero solution to the periodic problem, we have

cpergs ≤ Jper(ṽ) = Jper(ṽ)− 2(Jper)′(ṽ)[ṽ] =
1

4
∥ṽ∥

4
3
4
3

≤ lim inf
n→∞

1

4
∥ṽn∥

4
3
4
3

= lim inf
n→∞

J(vn)− 2J ′(vn)[vn] = cmp,

a contradiction.
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So we have shown vn ⇀ v ̸= 0. By testing with compactly supported φ as above, we see that
v solves v

1
3 − L−1

h v = 0 and J(v) ≤ lim infn→∞ J(vn) = cmp holds. So we have found a critical
point v with J(v) ≤ cmp < cpergs .

Part 4: By parts 2 or 3 we have cgs ≤ cpergs . We then choose vn to be a Palais-Smale sequence
with J(vn) → cgs. Repeating the arguments of parts 2 or 3 we obtain a nonzero critical point
v of J satisfying J(v) ≤ cgs. By de�nition of the ground state energy, v is a ground state. □

Lastly, we discuss a multiplicity result for solutions.

Proposition 4.13. Assume in addition that the set R is in�nite. Then there exist in�nitely
many solutions of (23) that are not spatiotemporal shifts of each other.

Proof. For �xed m ∈ Nodd, we seek T
2m

-antiperiodic in time solutions to (23), or equivalently
functions with frequency support on R∩mZodd. These solutions are precisely critical points of
J restricted to the space of T

2m
-antiperiodic functions.

For in�nitely many m we have R ∩mZodd ̸= ∅, and for these m as in Theorem 4.9 we obtain
existence of a nonzero T

m
-periodic solution vm to (23). Each vm has a minimal temporal period

Tm > 0 which is a divisor of T
m
. From 0 < Tm ≤ T

m
we see that there exist in�nitely many distinct

minimal periods, and the corresponding solutions vm clearly are not shifts of one another. □

5. Regularity

In this section, we discuss di�erentiability and integrability properties of a solution v to (23) as
well as for corresponding solutions u to (17), w to (10) and E,D,B,H to Maxwell's equations.

Lemma 5.1. Let v ∈ L
4
3 (R× T;R) be a solution to (23). Then u := h− 1

4v
1
3 lies in H and is a

weak solution to (17) with ∂l
t∂

m
x u ∈ L2 ∩ L∞(R× T;R) for l ∈ N0 and m ∈ {0, 1, 2}.

Proof. Part 1: As v solves (23), the function u satis�es

u = h− 1
4L−1

h v = ιL−1ι′h
1
4v = ιL−1ι′hu3,

so that u = L−1ι′h
1
4v ∈ H. Then for φ ∈ H we have

0 = L[u− L−1ι′hu3][φ] = L[u][φ]−
∫
R×T

hu3φ d(x, t),

i.e., u is a weak solution to (17).

Part 2: According to Remark 3.4, we �x ε > 0 such that |∂t|ε : H → L4(R× T;R) is bounded,
therefore |∂t|εu ∈ L4(R × T;R) holds. From the fractional Leibniz rule (cf. [6]) we obtain
|∂t|ε[u3] ∈ L

4
3 (R× T;R) with norm ∥|∂t|ε[u3]∥ 4

3
≲ (∥u∥4 + ∥|∂t|εu∥4)

3. Thus

|∂t|εu = |∂t|εL−1ι′hu3 = L−1ι′h|∂t|ε[u3] ∈ H

holds, and from the embedding |∂t|2εu ∈ L4 follows. Iterating the above argument, we get
|∂t|nε ∈ H for all n ∈ N0. Recall that H is supported on frequencies k ∈ R and that 0 ̸∈ R.
Therefore |∂t|s : H → H is bounded for all s ≤ 0, and the above shows |∂t|su ∈ H for all s ∈ R.
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Part 3: From boundedness of the embedding H ↪→ L2 (see Proposition 3.2) it follows that
|∂t|su ∈ L2 for all s ∈ R. We next calculate

∥|∂t|su∥2∞ ≤

(∑
k∈R

|ωk|s∥ûk∥∞

)2

≤
∑
k∈R

1

ω2k2
·
∑
k∈R

|ωk|2s+2∥ûk∥2∞ ≲
∑
k∈R

|ωk|2s+2∥ûk∥2H1 .

Using Lemma 2.3 and Remark 2.5 and assumption (A2) we further estimate∑
k∈R

|ωk|2s+2∥ûk∥2H1 ≲
∑
k∈R

|ωk|2s+2

∫
R
(1 + λ)Ti[ûk]Tj[ûk] dµij(λ)

≲
∑
k∈R

|k|2s+4−γ

∫
R

∣∣λ− ω2k2
∣∣Ti[ûk]Tj[ûk] dµij(λ)

≲
∑
k∈R

|ωk|2s+6−γ−α

∫
R

∣∣∣∣λ− ω2k2

ω2k2N̂k

∣∣∣∣Ti[ûk]Tj[ûk] dµij(λ)

=
∥∥∥|∂t| 2s+6−γ−α

2 u
∥∥∥2
H
< ∞

for any s ∈ R. In particular, we have ∂l
tu ∈ L2 ∩ L∞ for all l ∈ N0.

Part 4: For regularity of spatial derivatives, from (14) we obtain the identity

∂2
xu = V (x)∂2

t u+ ∂2
t G ∗ u+ h∂2

tN ∗ PR[u
3].(24)

Observe that the right-hand side of (24) is in�nitely di�erentiable in time with values in
L2 ∩ L∞ since u, u3 are and the convolution operators G∗,N∗, PR are regularity preserving
(see Lemma 5.2 below), so the same holds for ∂2

xu. □

Lemma 5.2. Let M be a Fourier multiplier with symbol M̂k of at most polynomial growth, i.e.,∣∣∣M̂k

∣∣∣ ≲ |k|r for some r > 0 and all k ∈ Z. Further let p ∈ [1,∞] and f : T → C be a function

with ∂n
t f ∈ Lp(T;C) for all n ∈ N0 and f̂0 = 0. Then ∂n

t Mf ∈ Lp(T;C) for all n ∈ N0.

Proof. The symbol (iωk)−⌈r+1⌉M̂k is square-summable and therefore

m(t) :=
∑

k∈Z\{0}

(iωk)−⌈r+1⌉M̂kek(t)

converges in L2(T;C). The claim follows from this and

∥∂n
t Mf∥p =

∥∥∥∂n+⌈r+1⌉
t m ∗ f

∥∥∥
p
≤ ∥m∥1

∥∥∥∂n+⌈r+1⌉
t f

∥∥∥
p
. □

After having shown regularity of the solution u to (17), we now consider the pro�le w of the
electric �eld. For polarization (8.1) there is nothing to do since w = u. So let us discuss
polarization (8.2) where w is de�ned by (18).

Lemma 5.3. Let v ∈ L
4
3 (R × T;R) be a solution to (23). We de�ne u := h− 1

4v
1
3 as in

Lemma 5.1, and w by (18). Then ∂l
t∂

m
x w ∈ L2 ∩L∞(R×T;R) for all l ∈ N0 and m ∈ {0, 1, 2}.
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Proof. Part 1: By Lemmas 5.1 and 5.2 we already know that the functions

∂l
tPRw = (N∗)−1∂l

tu and ∂l+2
t (Id− PR)[u

3]

lie in L2 ∩ L∞ for any l ∈ N0. Hence it remains to show

∂l
t(Id− PR)w =

(
−∂2

x + V (x)∂2
t + ∂2

t G(x)∗
)−1

[−h(x)∂l+2
t (Id− PR)[u

3]] ∈ L2 ∩ L∞,

and in particular that −∂2
x + V (x)∂2

t + ∂2
t G(x)∗ is invertible on suitable spaces of functions f

satisfying PRf = 0.

Part 2: Taking the Fourier series in time decomposes the linear operator−∂2
x+V (x)∂2

t +∂2
t G(x)∗

into the sequence of operators (Lk)k∈Zodd\R with

Lk := −∂2
x − ω2k2V (x)− ω2k2Ĝk(x)

which we split into main part Lk,0 and perturbation Lk,1 via

Lk,0 := −∂2
x − ω2k2V (x), Lk,1 := −ω2k2Ĝk(x).

First, for φ ∈ H2(R;C) using Lemma 2.3 and Remark 2.5 we calculate∫
R
|Lk,0φ|2

1

V
dx =

∫
R
(λ− ω2k2)2Ti[φ]Tj[φ] dµij(λ)

≥
∫
R

(δ̃|k|γ̃)2

2

(
1 +

λ2

(ω2k2 + δ|k|γ̃)2

)
Ti[φ]Tj[φ] dµii(λ)

≳ |k|2γ̃−4

∫
R
(1 + λ2)Ti[φ]Tj[φ] dµij(λ)

= |k|2γ̃−4

∫
R

(∣∣∣∣ 1V φ′′
∣∣∣∣2 + |φ|2

)
V d(x),

and it follows that Lk,0 : H
2(R;C) → L2(R;C) is invertible with

∥∥L−1
k,0

∥∥ ≲ |k|2−γ̃. For Lk,1,
using (A7) and Remark 2.5 we estimate∫

R
|Lk,1φ|2

1

V
dx ≤ (ω2k2)2

(
d̃

ω2|k|2−γ̃

)2 ∫
R
|φ|2 V dx =

(
d̃|k|γ̃

)2 ∫
R
Ti[φ]Tj[φ] dµij(λ)

≤
(
d̃|k|γ̃

)2 ∫
R

(
|λ− ω2k2|

δ̃|k|γ̃

)2

Ti[φ]Tj[φ] dµij(λ) =
d̃2

δ̃2

∫
R
|Lk,0φ|2

1

V
dx.

Since d̃ < δ̃, the Neumann series shows that Lk = Lk,0 + Lk,1 : H
2(R;C) → L2(R;C; 1

V
dx) is

invertible with ∥∥L−1
k

∥∥ ≤
∥∥L−1

k,0

∥∥
1−

∥∥Lk,1L
−1
k,0

∥∥ ≤
∥∥L−1

k,0

∥∥
1− d̃

δ̃

≲ |k|2−γ̃.

Part 3: We de�ne the inverse of the linear operator by(
−∂2

x + V (x)∂2
t + ∂2

t G(x)∗
)−1

φ :=
∑

k∈Zodd\R

L−1
k [φ̂k](x)ek(t)

for φ such that the series on the right-hand side converges in L2. Let us abbreviate

f := −h(x)∂l+2
t (Id− PR)[u

3],
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which lies in L2 ∩ L∞ by Lemma 5.2 and boundedness of h, and recall

∂l
t(Id− PR)w =

(
−∂2

x + V (x)∂2
t + ∂2

t G(x)∗
)−1

f =
∑

k∈Zodd\R

L−1
k [f̂k](x)ek(t).

We show that this term lies in L2 ∩ L∞. First we estimate∥∥∂l
t(Id− PR)w

∥∥2
2
=

∑
k∈Zodd\R

∥∥∥L−1
k f̂k

∥∥∥2
2
≲

∑
k∈Zodd\R

∥∥∥L−1
k f̂k

∥∥∥2
H2

≲
∑

k∈Zodd\R

|ωk|2⌈2−γ̃⌉
∥∥∥f̂k∥∥∥2

2
=
∥∥∥∂⌈2−γ̃⌉

t f
∥∥∥2
2
< ∞.

Next for L∞ we have

∥∥∂l
t(Id− PR)w

∥∥2
∞ ≤

 ∑
k∈Zodd\R

∥∥∥L−1
k f̂k

∥∥∥
∞

2

≲
∑

k∈Zodd\R

k2
∥∥∥L−1

k f̂k

∥∥∥2
∞

≲
∑

k∈Zodd\R

k2
∥∥∥L−1

k f̂k

∥∥∥2
H2

≲
∑

k∈Zodd\R

|ωk|2⌈3−γ̃⌉
∥∥∥f̂k∥∥∥2

2
=
∥∥∥∂⌈3−γ̃⌉

t f
∥∥∥2
2
< ∞.

Combined, we have shown that ∂l
tw = ∂l

tPRw + ∂l
t(1− PR)w lies in L2 ∩ L∞.

Part 4: Using (16) we see

∂2
xw = V (x)∂2

tw + ∂2
t G ∗ w + h∂2

t u
3.

where the right-hand side (and therefore ∂2
xw) is in�nitely time-di�erentiable by the above and

Lemma 5.2. □

We are now ready to prove the main theorem.

Proof of Theorem 1.5. Let v ∈ L
4
3 (R × T;R) be a nonzero solution to (23), which exists by

Theorem 4.9. Then u := h− 1
4v

1
3 is the corresponding solution of (17). De�ne w := u for

polarization (3.1), or de�ne w by (18) for polarization (3.2). Then ∂l
t∂

m
x w ∈ L2 ∩L∞(R×T;R)

for l ∈ N0 and m ∈ {0, 1, 2} by Lemma 5.1 or Lemma 5.3, and w solves (10).

We de�ne ∂−1
t on T as the Fourier multiplier with symbol 1

iωk
. Then, recalling the ansatz (6)

and Maxwell's equations (1),(2) we obtain the following formula for the corresponding solutions
E,D,B,H of Maxwell's equations:

E(x, y, z, t) = w(x, t− 1

c
z) ·

0
1
0

,

B(x, y, z, t) = −∂−1
t ∇× E = −

 1
c
w(x, t− 1

c
z)

0
Wx(x, t− 1

c
z)

,

H(x, y, z, t) =
1

µ0

B(x, y, z, t),

D(x, y, z, t) = ϵ0(E+P(E))
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where we have set W := ∂−1
t w. From the regularity of w it follows that

∂l
tE ∈ H2 ∩W 2,∞(Ω;R3), ∂l

tB, ∂l
tH ∈ H1 ∩W 1,∞(Ω;R3), ∂l

tD ∈ L2 ∩ L∞(Ω;R3)

for l ∈ N0 and domains of the form Ω = R× [y1, y2]× [z2, z2]× [t1, t2]. Note that D may not be
di�erentiable in space because the material coe�cients g0, g1, h of P were not assumed to be
smooth. □

Appendix A.

Here we give a proof of Lemma 2.3 on fundamental properties of the transform T given by
Theorem 2.2. We also prove Theorems 1.2 and 1.3.

Proof of Lemma 2.3. (a): First let f ∈ H2(R;C) be compactly supported. Then

T [Lf ](λ) =

∫
R
Lf(x)Ψ(x;λ)V dx =

∫
R
f(x)LΨ(x;λ)V dx =

∫
R
f(x)λΨ(x;λ)V dx = λT [f ](λ).

Reversely, let T [f ] be compactly supported. Then

T−1[λT [f ]] =

∫
R
Ti[f ]λΨj(x;λ) dµij(λ) =

∫
R
Ti[f ]LΨj(x;λ) dµij(λ) = Lf

lies in L2
V (R;C). By approximation, we obtain the result for general f .

(b): If f ∈ H2(R;C), using (a) and that T is an isometry we have∫
R
|f ′|2 dx =

∫
R
Lf · f V dx =

∫
R
T−1[λT [f ](λ)] · f V dx =

∫
R
λTi[f ](λ)Tj[f ](λ) dµij(λ).

For general f , one can argue by approximation.

(c): First let λ0 ∈ C \ supp(µ). Then 1
λ−λ0

is a bounded symbol on supp(µ), thus

(L− λ0)
−1 = T−1

[ 1

λ− λ0

T [ · ](λ)
]

is bounded, i.e., λ0 ∈ ρ(L) holds.

Now let λ0 ∈ supp(µ), i.e., λ0 ∈ supp(µij) for some i, j ∈ {1, 2}. By de�nition we have

|µij|(Bε(λ0)) > 0

for all ε > 0, with |µij| denoting the total variation of µij. Split Bε(λ0) = E+ ∪ E− with
E+ ∩ E− = ∅ into positive and negative part according to the measure µij. Then we have

0 < |µij|(Bε(λ0)) = µij(E
+)− µij(E

−) ≤
√

µii(E+)µjj(E+) +
√
µii(E−)µjj(E−)

since µ(E±) are positive semide�nite matrices. This implies

µii(Bε(λ0)) = µii(E
+) + µii(E

−) > 0, µjj(Bε(λ0)) = µjj(E
+) + µjj(E

−) > 0

since µii, µjj are a nonnegative measures, that is, λ0 ∈ supp(µii) ∩ supp(µjj).
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We denote by δi the i-th unit vector, and consider the function f := T−1[1Bε(λ0)δi]. Then since

∥(L− λ0)f∥L2
V

∥f∥L2
V

=

∥∥(λ− λ0)1Bε(λ0)

∥∥
L2(µii)∥∥1Bε(λ0)

∥∥
L2(µii)

≤ ε

for arbitrary ε > 0, L− λ0 has no bounded inverse, i.e., λ0 ∈ σ(L) holds. □

Proof of Theorems 1.2 and 1.3. For both theorems, we check that the assumptions of Theo-
rem 1.5 are satis�ed. First (A1), (A3) hold by de�nition, and the same is true for (A8b) in
Theorem 1.2, and for (A8a) in Theorem 1.3. Next we calculate the Fourier coe�cients

N̂k =

∫
T
T dist(t, TZ)e−iωkt dt =

∫ T

0

dist(t, TZ)e−iωkt dt =


T 2

4
, k = 0,

0, k ̸= 0 even,

− T 2

2k2π2 , k odd,

and see that (A2) holds with α = 2. The spectrum of the operator L is investigated in [13,
Appendix C]. There, it is shown that L has a spectral gap about ω2k2 for each k ∈ Zodd,
that the size of the gap grows linearly in |k|, and moreover that the point spectrum grows
quadratically, i.e., (A4) holds with γ = 1, β = 1

2
and some δ > 0. Next (A5) holds since

α + γ − 2 = 1 > 1
2
= β.

We calculate

Ĝk(x) = gper1 (x)

∫ T

0

cos(ωt)|cos(ωt)|e−iωkt dt =

{
0, k even,

gper1 (x) 4T (−1)n

(4k−k3)π
, k = 2n+ 1 odd,

and �nd
∣∣∣Ĝk(x)

∣∣∣ ≤ C
k2

1
ω2|k|V (x). Since in (A6) we require d < δ, this only shows (A6) for

su�ciently large k. Similarly, (A7) holds with s = 2 but only for su�ciently large k.

This restriction to large frequencies is not an issue: Because R =
{
k ∈ Zodd : N̂k ̸= 0

}
= Zodd

is in�nite, by Proposition 4.13 and its proof there exist in�nitely many distinct breathers that
are supported only on large frequencies. □

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) � Project-
ID 258734477 � SFB 1173

References

[1] Govind P. Agrawal. Nonlinear �ber optics. 5. ed. Amsterdam: Elsevier, Academic Press,
2013.

[2] Antonio Azzollini et al. �Existence of static solutions of the semilinear Maxwell equations�.
In: Ric. Mat. 55.2 (2006), pp. 283�297. doi: 10.1007/s11587-006-0016-8.

[3] Thomas Bartsch and Jarosªaw Mederski. �Nonlinear time-harmonic Maxwell equations
in domains�. In: J. Fixed Point Theory Appl. 19.1 (2017), pp. 959�986. doi: 10.1007/
s11784-017-0409-1.

[4] Thomas Bartsch et al. �Ground states of a nonlinear curl-curl problem in cylindrically
symmetric media�. In: NoDEA Nonlinear Di�erential Equations Appl. 23.5 (2016), Paper
No. 52. doi: 10.1007/s00030-016-0403-0.

https://doi.org/10.1007/s11587-006-0016-8
https://doi.org/10.1007/s11784-017-0409-1
https://doi.org/10.1007/s11784-017-0409-1
https://doi.org/10.1007/s00030-016-0403-0


REFERENCES 27

[5] Vieri Benci and Donato Fortunato. �Towards a uni�ed �eld theory for classical electrody-
namics�. In: Arch. Ration. Mech. Anal. 173.3 (2004), pp. 379�414. doi: 10.1007/s00205-
004-0324-7.

[6] Árpád Bényi, Tadahiro Oh, and Tengfei Zhao. �Fractional Leibniz rule on the torus�. In:
Proc. Amer. Math. Soc. 153.1 (2025), pp. 207�221. doi: 10.1090/proc/17007.

[7] Gabriele Bruell, Piotr Idzik, and Wolfgang Reichel. �Traveling waves for a quasilinear
wave equation�. In: Nonlinear Anal. 225 (2022), Paper No. 113115. doi: 10.1016/j.na.
2022.113115.

[8] Tomá² Dohnal and Giulio Romani. �Correction to: eigenvalue bifurcation in doubly non-
linear problems with an application to surface plasmon polaritons�. In: NoDEA Nonlinear
Di�erential Equations Appl. 30.1 (2023), Paper No. 9.

[9] Tomá² Dohnal and Giulio Romani. �Eigenvalue bifurcation in doubly nonlinear problems
with an application to surface plasmon polaritons�. In: NoDEA Nonlinear Di�erential
Equations Appl. 28.1 (2021), Paper No. 9. doi: 10.1007/s00030-020-00668-2.

[10] Tomá² Dohnal, Roland Schnaubelt, and Daniel P. Tietz. �Rigorous envelope approxima-
tion for interface wave packets in Maxwell's equations with two dimensional localization�.
In: SIAM J. Math. Anal. 55.6 (2023), pp. 6898�6939. doi: 10.1137/22M1501611.

[11] Nelson Dunford and Jacob T. Schwartz. Linear operators. Part II: Spectral theory. Self
adjoint operators in Hilbert space. Interscience Publishers John Wiley & Sons, New York-
London, 1963.

[12] Michael S. P. Eastham. The spectral theory of periodic di�erential equations. Texts in
Mathematics (Edinburgh). Scottish Academic Press, Edinburgh; Hafner Press, New York,
1973.

[13] Julia Henninger, Sebastian Ohrem, and Wolfgang Reichel. Breather solutions for semi-
linear wave equations. 2025. arXiv: 2505.13336 [math.AP]. url: https://arxiv.org/
abs/2505.13336.

[14] Andreas Hirsch and Wolfgang Reichel. �Existence of cylindrically symmetric ground states
to a nonlinear curl-curl equation with non-constant coe�cients�. In: Z. Anal. Anwend. 36.4
(2017), pp. 419�435. doi: 10.4171/ZAA/1595.

[15] Simon Kohler andWolfgang Reichel. �Breather solutions for a quasi-linear (1+1)-dimensional
wave equation�. In: Stud. Appl. Math. 148.2 (2022), pp. 689�714. doi: 10.1111/sapm.
12455.

[16] Daniela Maier, Wolfgang Reichel, and Guido Schneider. �Breather solutions for a semi-
linear Klein-Gordon equation on a periodic metric graph�. In: J. Math. Anal. Appl. 528.2
(2023), Paper No. 127520. doi: 10.1016/j.jmaa.2023.127520.

[17] Rainer Mandel. A simple variational approach to nonlinear Maxwell equations. CRC 1173
Preprint 2022/82. Karlsruhe Institute of Technology, Dec. 2022. doi: 10 . 5445 / IR /
1000154207.

[18] Rainer Mandel. �Ground states for Maxwell's equations in nonlocal nonlinear media�. In:
Partial Di�er. Equ. Appl. 3.2 (2022), Paper No. 22. doi: 10.1007/s42985-022-00159-2.

[19] Jarosªaw Mederski. �Ground states of time-harmonic semilinear Maxwell equations in R3

with vanishing permittivity�. In: Arch. Ration. Mech. Anal. 218.2 (2015), pp. 825�861.
doi: 10.1007/s00205-015-0870-1.

[20] Jarosªaw Mederski and Wolfgang Reichel. �Travelling waves for Maxwell's equations in
nonlinear and nonsymmetric media�. In: NoDEA Nonlinear Di�erential Equations Appl.
30.2 (2023), Paper No. 22. doi: 10.1007/s00030-022-00824-w.

https://doi.org/10.1007/s00205-004-0324-7
https://doi.org/10.1007/s00205-004-0324-7
https://doi.org/10.1090/proc/17007
https://doi.org/10.1016/j.na.2022.113115
https://doi.org/10.1016/j.na.2022.113115
https://doi.org/10.1007/s00030-020-00668-2
https://doi.org/10.1137/22M1501611
https://arxiv.org/abs/2505.13336
https://arxiv.org/abs/2505.13336
https://arxiv.org/abs/2505.13336
https://doi.org/10.4171/ZAA/1595
https://doi.org/10.1111/sapm.12455
https://doi.org/10.1111/sapm.12455
https://doi.org/10.1016/j.jmaa.2023.127520
https://doi.org/10.5445/IR/1000154207
https://doi.org/10.5445/IR/1000154207
https://doi.org/10.1007/s42985-022-00159-2
https://doi.org/10.1007/s00205-015-0870-1
https://doi.org/10.1007/s00030-022-00824-w


28 REFERENCES

[21] Jarosªaw Mederski and Jacopo Schino. �Nonlinear curl-curl problems in R3�. In: Minimax
Theory Appl. 7.2 (2022), pp. 339�364.

[22] Jarosªaw Mederski and Jacopo Schino. Travelling waves for Maxwell's equations in non-
linear and symmetric media. 2024. eprint: arXiv:2406.01433.

[23] Sebastian Ohrem and Wolfgang Reichel. Existence of traveling breather solutions to cu-
bic nonlinear Maxwell equations in waveguide geometries. CRC 1173 Preprint 2024/15.
Karlsruhe Institute of Technology, July 2024. doi: 10.5445/IR/1000172960.

[24] Sebastian Ohrem and Wolfgang Reichel. Travelling breather solutions in waveguides for
cubic nonlinear Maxwell equations with retarded material laws. 2025. arXiv: 2503.11539
[math.AP]. url: https://arxiv.org/abs/2503.11539.

[25] Michael Plum. �On the spectra of periodic di�erential operators�. In: Photonic Crystals:
Mathematical Analysis and Numerical Approximation. Basel: Springer Basel, 2011, pp. 63�
77. doi: 10.1007/978-3-0348-0113-3_3.

[26] Michael Struwe. Variational methods. 4th ed. Vol. 34. Ergebnisse der Mathematik und
ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics. Springer-Verlag,
Berlin, 2008. doi: 10.1007/978-3-540-74013-1.

[27] Charles A. Stuart. �Modelling axi-symmetric travelling waves in a dielectric with nonlinear
refractive index�. In: Milan J. Math. 72 (2004), pp. 107�128. doi: 10.1007/s00032-004-
0035-4.

[28] Charles A. Stuart. �Self-trapping of an electromagnetic �eld and bifurcation from the
essential spectrum�. In: Arch. Rational Mech. Anal. 113.1 (1990), pp. 65�96. doi: 10.
1007/BF00380816.

[29] Charles A. Stuart and Huan-Song Zhou. �A constrained minimization problem and its
application to guided cylindrical TM-modes in an anisotropic self-focusing dielectric�.
In: Calc. Var. Partial Di�erential Equations 16.4 (2003), pp. 335�373. doi: 10.1007/
s005260100153.

[30] Charles A. Stuart and Huan-Song Zhou. �A variational problem related to self-trapping
of an electromagnetic �eld�. In: Math. Methods Appl. Sci. 19.17 (1996), pp. 1397�1407.
doi: 10.1002/(SICI)1099-1476(19961125)19:17<1397::AID-MMA833>3.0.CO;2-B.

[31] Charles A. Stuart and Huan-Song Zhou. �Axisymmetric TE-modes in a self-focusing di-
electric�. In: SIAM J. Math. Anal. 37.1 (2005), pp. 218�237. doi: 10.1137/S0036141004441751.

[32] Charles A. Stuart and Huan-Song Zhou. �Existence of guided cylindrical TM-modes in a
homogeneous self-focusing dielectric�. In: Ann. Inst. H. Poincaré C Anal. Non Linéaire
18.1 (2001), pp. 69�96. doi: 10.1016/S0294-1449(00)00125-6.

[33] Charles A. Stuart and Huan-Song Zhou. �Existence of guided cylindrical TM-modes in an
inhomogeneous self-focusing dielectric�. In: Math. Models Methods Appl. Sci. 20.9 (2010),
pp. 1681�1719. doi: 10.1142/S0218202510004751.

arXiv:2406.01433
https://doi.org/10.5445/IR/1000172960
https://arxiv.org/abs/2503.11539
https://arxiv.org/abs/2503.11539
https://arxiv.org/abs/2503.11539
https://doi.org/10.1007/978-3-0348-0113-3_3
https://doi.org/10.1007/978-3-540-74013-1
https://doi.org/10.1007/s00032-004-0035-4
https://doi.org/10.1007/s00032-004-0035-4
https://doi.org/10.1007/BF00380816
https://doi.org/10.1007/BF00380816
https://doi.org/10.1007/s005260100153
https://doi.org/10.1007/s005260100153
https://doi.org/10.1002/(SICI)1099-1476(19961125)19:17<1397::AID-MMA833>3.0.CO;2-B
https://doi.org/10.1137/S0036141004441751
https://doi.org/10.1016/S0294-1449(00)00125-6
https://doi.org/10.1142/S0218202510004751

	1. Introduction and main results
	Outline of the paper

	2. Variational formulation
	3. Embeddings
	4. The dual problem
	5. Regularity
	Appendix A. 
	References

