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APPROXIMATION OF MINIMIZERS OF THE GINZBURG–LANDAU

ENERGY IN NON-CONVEX DOMAINS

BENJAMIN DÖRICH

Abstract. In this work, we study the approximation of minimizers of the Ginzburg–Landau
energy over non-convex polygonal and polyhedral domains. We discretize the order parameter

with Lagrange finite elements and the vector potential with Nédélec elements. We show that

under certain resolution conditions of the mesh sizes and the Ginzburg–Landau parameter, we
obtain quasi-best approximation error bounds. In two dimensions, the order of convergence can

be fully determined by the angle of the largest reentrant corner.

1. Introduction

We study the Ginzburg–Landau energy functional E given by

(1.1) E(u,A) =
1

2

∫
Ω

| i
κ
∇u+Au|2 + 1

2
(1− |u|2)2 + | curlA−H|2 dx

for the order parameter u : Ω → C and the vector potential A : Ω → Rd, which are global min-
imizers. of the energy E. Here, H is a given external magnetic field and κ ∈ R+ is a material
parameter, often called the Ginzburg–Landau parameter. We minimize the energy under the side
constraint divA = 0, where Ω ⊂ Rd, d = 2, 3, is a possibly non-convex polygonal or polyhedral
domain Ω which for simplicity is assumed to be simply connected. Such minimizers describe the
superconductivity in a material Ω, cf. [19, Sec. 3], where the physically relevant quantities are the
density |u(x)|2 as well as the effective magnetic field curlA. The present scaling of the model en-
sures 0 ≤ |u|2 ≤ 1. Here, the state |u(x)|2 = 1 encodes local superconductivity whereas |u(x)|2 = 0
means that the material is locally not superconducting. In these mixed normal-superconducting
states, both phases can coexist in a so-called Abrikosov vortex lattice [1] with |u(x)|2 = 0 in the
vortex centers. The non-convex domains can for example model defects in the material.

In the recent works [8, 13, 14] the approximation of minimizers of (1.1) for large values of κ by
different finite element methods was studied and best-approximation results have been shown.
Further, resolution conditions of the meshes and the Ginzburg–Landau parameter where estab-
lished. In the present work, we focus on a new aspect of the problem and consider polygonal and
polyhedral domains which are not convex. This induces two major problems: First, the vector
potential is now only slightly better than H

1
2 instead of H2 (on a cube) and the embedding only

yields slightly more than L3, compared to L∞. Second, for the discrete minimizers we have to
enforce the divergence constraint in a weak sense, and thus end up with a non-conforming method
which poses additional technical difficulties.

The first results for the numerical treatment of the Ginzburg–Landau equation were derived in the
pioneering works by Du, Gunzburger and Peterson [19,20]. The authors derived H1(Ω)-error esti-
mates of optimal order in both variables, however without tracking the influence of the parameter
κ. Later on, a covolume method [22] and a finite volume method [21] was used for the discretiza-
tion. In [14] we considered a simplified version of (1.1) (A given) and we showed error bounds
which are explicit in κ and the spatial parameter. In the same setting, a thorough investigation of
the Localized Orthogonal Decomposition (LOD) applied to this problem was performed in [8]. The
full problem (1.1) was then tackled in the work [13], where we used different meshes and ansatz
spaces for the order parameter and the vector potential. With a detailed a-priori analysis on the
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2 B. DÖRICH

regularity of the minimizers, we were ale to derive optimal a-priori bounds which turned out to be
(almost) sharp in terms of κ and the spatial parameters.

In this work, we focus on the case of reduced regularity in both variables. Since one can in general
not expect that the vector potential is in H1(Ω), we cannot use Lagrange element, but instead
employ Nédélec elements. Hence, we have to enforce the divergence constraint in a discrete manner,
which makes our ansatz non-confirming and thus several technical difficulties arise throughout the
analysis. Further, the reduced regularity implies also a reduced integrability, and we have to be far
more careful in the a-priori analysis of the minimizers and the bounds on the Fréchet derivatives of
the energy E. In order to translate the abstract approximation results to specific domains, we keep
the parameter s = s(Ω) > 0 stemming from the elliptic regularity H

3
2+s of the Poisson problem in

non-convex polygonal and polyhedral domains, in all our estimates. For special geometries, such
as the L-shaped domain in R2 where s ∼ 1

6 , we can then directly read of the expected convergence
rate.

This work is motivated by error analysis of the time-dependent Ginzburg–Landau equation by B. Li
in [31]. Due to the time-dependence of the problem the low regularity prohibits the derivation
of convergence rates, however abstract convergence could still be established. In contrast, any
minimizer of (1.1) solves the critical point equation E′ = 0, i.e. an elliptic problem, and thus
additional regularity of the minimizers can be extracted which then allows also for convergence
rates. Let us mention that there are many more results available on the time-dependent Ginzburg–
Landau equation which has the same structure as a gradient flow applied to the presented energy
above. Several results can be found in [5–7, 10, 11, 15–18, 23, 27, 28, 32–34] and the references
therein, but most of them do not consider the precise dependence of the error bounds on the
Ginzburg–Landau parameter κ.

The rest of the paper is organized as follows: In Section 2, we introduce the analytical framework
and derive regularity estimates for the order parameter and the magnetic vector potential. Using
a stabilized norm, we derive in Section 3 various estimate on the minimizers, the energy and its
Fréchet derivatives. The space discretization is introduced in Section 4, where we also discuss the
approximation by the Ritz projection in several norms. Finally, we conclude with our main results
and the corresponding proofs in Section 5. Some technical results and a collection of regularity
estimates is presented in the Appendices A, B, and C.

Notation. For a complex number z ∈ C, we use z∗ for the complex conjugate of z. In the whole
paper we further denote by L2(Ω) := L2(Ω,C) the Hilbert space of L2-integrable complex functions,
but equipped with the real scalar product (u, v)L2 := Re

∫
Ω
v w∗ dx for v, w ∈ L2(Ω). Hence, we

interpret the space as a real Hilbert space. Analogously, we equip the space H1(Ω) := H1(Ω,C),
which will be the solution space for the order parameter, with the scalar product (v, w)L2 +
(∇v,∇w)L2 . This interpretation is crucial so that the Fréchet derivatives of E are meaningful and
exist on H1(Ω). For any space X, we denote its dual space by X ′. Note that this implies, that the
elements of the dual space of H1(Ω) consist of real-linear functionals, which are not necessarily
complex-linear. For example, if F (v) := (f, v)L2 for some f ∈ L2(Ω), then it holds F (α v) = αF (v)
if α ∈ R, but in general not if α ∈ C.

For the real-valued vector potentials, we use boldface letters and denote L2(Ω) := L2(Ω;R3) and
H1(Ω) := H1(Ω;R3). Note that functions in H1(Ω) are complex-valued, whereas functions in
H1(Ω) are real-valued. Further, we use the standard spaces for the weak rotation H(curl) and
divergence H(div), together with their closed subspaces H0(div), i.e. H · ν = 0 on ∂Ω, and
H0(curl), i.e. H× ν = 0 on ∂Ω.

Throughout the paper C denotes a generic constant which is independent of κ and the spatial mesh
parameters H and h, but might depend on numerical constants as well as Ω, H. In particular, we
write α ≲ β if there is a constant C independent of κ, H and h such that α ≤ C β.
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2. Solution spaces, gauges and first a-priori bounds on the minimizers

In this section, we present the functional analytic framework and the relevant properties of the
spaces for the exact minimizers. For convenience of the reader, we recall also the known results and
present, where necessary, the adaptions to the non-convex case. Further, throughout the paper we
cover the cases d = 2 and d = 3. In the two-dimensional case, we assume without loss of generality
that Ω is aligned in the x-y-plane and the magnetic field is given by H(x, y, z) = H3(x, y)ez, i.e.
it is orthogonal to Ω. The vector potential then has the form A(x, y, z) = (A1(x, y), A2(x, y), 0).
Here, we make use of the standard 2d rotations by embedding H and A in their 3d representation.
In particular, this implies that divH = 0 for any choice of H3.

A crucial parameter for the quantification of the regularity of the minimizers is the real number
s > 0, which is obtained from elliptic regularity results of the Poisson problem with solution in
H

3
2+s. Since this s might be different for the Dirichlet and Neumann problem, we will work with

the minimum of both numbers. Note that the formal limit s→ 1
2 corresponds to the convex case,

and we recover (at least formally) several results of the preceding works [13,14].

2.1. Spaces for the minimizers. For the order parameter u, we employ the standard Sobolev
space H1(Ω), and for the vector potential, we employ the spaces

H(curl,div) := {B ∈ L2(Ω) | curlB ∈ L2(Ω),divB ∈ L2(Ω), B · ν = 0 on ∂Ω},(2.1a)

H0(curl,div) := {B ∈ H(curl,div) | divB = 0},(2.1b)

which are in the literature often denoted by XT and XT,0, respectively, see [35, Section 3.8]. Both
spaces can be equipped with the natural norm

(2.2) ||B||2L2 + || curlB||2L2 + || divB||2L2 .

Let us note that by [35, Corollary 3.49] the spacesH(curl,div) andH0(curl,div) compactly embedd
into L2, and by [35, Corollary 3.51] the norm in (2.2) is equivalent to

||B||2H(curl,div) = || curlB||2L2 + ||divB||2L2 , ||B||H0(curl,div) = || curlB||L2 ,

respectively. For completness, we introduce the spaces of harmonics KN (Ω) and KT (Ω) by

(2.3)
KT (Ω) = {B ∈ H(curl) ∩H(div) | curlB = divB = 0 and B · ν|∂Ω = 0} ⊥ ∇H1(Ω)

KN (Ω) = {B ∈ H(curl) ∩H(div) | curlB = divB = 0 and B× ν|∂Ω = 0} ⊥ ∇H1
0 (Ω).

and recall that both spaces are finite dimensional, where dimKT (Ω) equals the first Betti number,
which is zero if Ω is simply connected, and dimKN (Ω) equals the second Betti number, which
counts the number of two-dimensional wholes.

We make frequent use of the following decomposition, using the spaces from (2.3), see for example
[35, Theorem 3.45].

Theorem 2.1 (Helmholtz decomposition). Let B ∈ L2(Ω).

(a) B can also be decomposed as

B = ∇p+ curlC+ fT

with unique p ∈ H1(Ω), C ∈ H0(curl) and fT ∈ KT (Ω).

(b) B can be decomposed as

B = ∇p+ curlC+ fN

with unique p ∈ H1
0 (Ω), fN ∈ KN (Ω) and C ∈ H0(curl,div).

We will often use the second decomposition in the form

curlB = ∇p+ curlC+ fN

and denote by πdiv the map

(2.4) πdiv : H(curl) → H0(curl,div), B 7→ C
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which lifts a function onto on the divergence free component of B, see [35, Lemma 7.6]. A similar
construction is found in [26, Sec. 44.2.1] called curl-preserving lifting. For the rest of this work, we
assume that

dimKT (Ω) = 0,

i.e. that Ω is simply connected.

In order to derive convergence rates, it is not sufficient to have regularity of the minimizers in
H(curl) and H(div), but we need the following embeddings into standard Sobolev spaces. The
first result can be found in [3, Prop. 3.7].

Lemma 2.2. Let Ω ⊂ Rd be a bounded Lipschitz polyhedron. Then, there exists s ∈ (0, 12 ] such
that

||B||
H

1
2
+s ≤ C||B||H(curl,div)

for all B ∈ H(curl,div). Further, we have

H
1
2+s ↪→ L

3
1−s , d = 3,

H
1
2+s ↪→ L

4
1−2s , d = 2.

Remark 2.3. In order to compare the results from this work to the ones in the convex case, we note
the following: For d = 3, (formally) setting s = 1 would give us A ∈ L∞, which was used in the
[13, 14], where obviously in the latter work, this was not done by the embedding from H(curl,div),
but from A ∈ H2. Let us already mention here, that setting s = 1 in the results obtained below
allows us to recover the known results. Similarly, for d = 2 (formally) setting s = 1

2 allows for the
recovery of the known results. Here, we mainly focus on the case s→ 0.

2.2. Explicit estimates in two dimensions. In two dimensions we are able to quantify the
exponent s by the angles of the corners. Thus, we present more detailed results in the following.
In the next theorem, we require a special exponent defined via

pmax =

{
ωmax

ωmax−π/2 ,
π
2 < ωmax < 2π,

∞, π
2 ≥ ωmax,

(2.5)

and note that it always holds pmax >
4
3 .

Theorem 2.4. Let Ω ⊂ R2 be a non-convex polygonal domain with maximal angle ωmax ∈ (π, 2π).
Then, we have the embedding

||B||W 1,p ≤ C||B||H(curl,div)

for all p < pmax < 2 given in (2.5). In addition, this implies

||B||
H

1
2
+s ≤ C||B||H(curl,div), s < s0 =

2π − ωmax

2ωmax
,

||B||Lq ≤ C||B||H(curl,div), q < q0 =
2ωmax

ωmax − π
,

where in all cases s0 > 0 and q0 > 4. If all angles ω satisfy ω ≤ π, the domain is convex, and we
recover the cases p = 2, s = 1. Further, we note the relation pmax = 4

3−2s0
.

Let us note the following examples before we give the proof:

ωmax ∼ π =⇒ pmax ∼ 2, s0 ∼ 0, q0 ∼ ∞

ωmax ∼ 2π =⇒ pmax ∼ 4

3
, s0 ∼ 1

2
, q0 ∼ 4

ωmax =
3π

2
=⇒ pmax =

3

2
, s0 =

1

6
, q0 = 6.

Proof of Theorem 2.4. Let p < min{2, pmax}. We follow the proof of [3, Prop. 3.7]. Here, we obtain
some B2 ∈ H1(Ω) with curlB = curlB2 and divB2 = 0. Since by construction curl(B −B2) = 0,
there is χ ∈ H1(Ω) with B −B2 = ∇χ and χ solves the Neumann problem

∆χ = divB in Ω, ∂νχ = −B2 · ν on ∂Ω,
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and B2 · ν ∈ H
1
2 (F ) for all faces of ∂Ω. In particular since p < 2, we have the trivial embedding

B2 · ν ∈ W 1− 1
p ,p(F ) for all faces and, as there are no compatibility conditions (see [30, Theo-

rem 5.1.2.3] which is trivial in the Neumann case for d = 0), it holds B2 · ν ∈ W 1− 1
p ,p(∂Ω). With

[30, Theorem 5.1.2.3] we find Ψ ∈W 2,p such that

∂νΨ = −B2 · ν on ∂Ω, and ∆Ψ− divB ⊥ 1,

and we are left to solve

∆(χ−Ψ) = divB −∆Ψ ∈ Lp in Ω, ∂ν(χ−Ψ) = 0 on ∂Ω.

By [30, Cor. 4.4.3.4], there is a unique solution given by χ−Ψ ∈W 2,p, and thus ∇χ ∈W 1,p. We
have hence established the representation

B = B2 +∇χ ∈W 1,p ↪→ H
2−2p

p ∩ L
2p

2−p .

Using the definition in (2.5), it holds

2− 2pmax

pmax
=

π

ωmax
=

1

2
+

2π − ωmax

2ωmax
and

2pmax

2− pmax
=

2ωmax

ωmax − π
,

and the claim follows. □

2.3. Existence and first a-priori bounds on minimizers. We first present the existence of
(1.1) by adapting the proof in [19] to the non-convex case.

Theorem 2.5. There exists at least one minimizer (u,A) ∈ H1(Ω)×H0(curl,div) of (1.1).

Proof. We follow the proof in [19, Prop. 3.4], and note that the energy E is nonnegative, contin-
uous in the strong topology, and lower semicontinuous in the weak topology. We now consider a
minimizing sequence and (un,An) and obtain without loss of generality E(un,An) ≤ E(0, 0) ≲ 1.
This directly gives us with Lemma 2.2

||An||
L

3
1−s

≲ ||An||H(curl,div) ≲ 1,

as well as

|| i
κ
∇un||L2 ≲ 1 + ||Anun||L2 ≲ 1 + ||An||

L
3

1−s
||u||

L
6

1+2s
≤ 1 + α||∇un||L2 + Cα||un||L2 ,

where α > 0 can be chosen arbitrarily small. Absorption, then gives a uniform bound (not in κ)
on ||∇un||L2 if ||un||L2 is bounded. To this end, we observe that

||un||2L2 = |||un|||L2 ≲ 1 + |||un| − 1||L2 ≲ 1 + ||(|un| − 1)(|un|+ 1)||L2 ≲ 1,

and hence the uniform bound on the minimizing sequence, which yields a converging subsequence
to some (u,A) ∈ H1(Ω)×H0(curl,div)(Ω). Let us now only focus on this subsequence. We observe

that by the compact embeddings, we have strong convergence of un in L4 as well as An in L
3

1−s−,

see e.g. [24, Theorem 3.4], and un in L
6

1+2s+ and thus of Anun in L2. This then implies the weak
convergence to a minimizer. □

Let us note that in principle one could also look for minimizers without the divergence constraint.
However, the following result shows that this does not result in lower energy levels, but induces
a larger kernel of the Fréchet derivative E′′. We refer to [19, Lemma 3.1] for the corresponding
result in convex domains.

Lemma 2.6 (Gauge invariance). Let (u,A) ∈ H1(Ω) × H(curl) be a minimizer of (1.1), then
there is a φ ∈ H1(Ω) such that

Ã = A+∇φ ∈ H0(curl,div),

and the pair (
u eiκφ,A+∇φ

)
∈ H1(Ω)×H0(curl,div)

is also a minimizer of (1.1).
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Proof. Let φ ∈ H1(Ω) be a solution of

(∇φ,∇ψ) = −(A,∇ψ) = f(ψ), for all ψ ∈ H1(Ω),

where f ∈ H−1. We clearly have ∇φ ∈ H(curl) and thus Ã ∈ H(curl), and further

0 = (Ã,∇ψ) =⇒ Ã ∈ H(div) with div Ã = 0.

In addition, we have for all ψ ∈ H1(Ω)

0 = (Ã,∇ψ) = −(div Ã, ψ) +

∫
∂Ω

Ã · νψ dσ =

∫
∂Ω

Ã · νψ dσ

and thus Ã · ν = 0 on ∂Ω, which gives the claim. □

Next, we present the critical point equations for the minimizers of (1.1). Due to the divergence
constraint we obtain additional terms compared to [19].

Lemma 2.7. Let (u,A) ∈ H1(Ω)×H(curl,div) be a minimizer of (1.1). Then, there is Lagrange
multiplier λ ∈ H1(Ω) such that it holds

⟨E′(u,A), (φ,B)⟩+ (∇λ,B) = 0,

(divA, µ) = 0,

for all φ, µ ∈ H1(Ω) and B ∈ H(curl), with

∂uE(u,A)φ = Re

∫
Ω

( i
κ
∇u+Au

)
·
( i
κ
∇φ+Aφ

)∗
+
(
|u|2 − 1

)
uφ∗ dx,

∂AE(u,A)B =

∫
Ω

|u|2A ·B+
1

κ
Re

(
iu∗∇u ·B

)
+ curlA · curlB−H · curlB dx

for φ ∈ H1(Ω) and B ∈ H(curl).

For B ∈ H0(curl,div), we can neglect the Lagrange multiplier, and obtain the famous Ginzburg–
Landau equations. Next, we present the immediate a-priori bounds on the minimizers.

Even though, the proof in [19, Prop. 3.11] for the following statement is presented in the convex
case, it literally caries over to our setting with B, µ = 0 in Lemma 2.7.

Lemma 2.8. Let (u,A) ∈ H1(Ω) × H0(curl,div) be a minimizer of (1.1). Then, the following
stability bounds hold

|u| ≤ 1 a.e.

The first a-priori bounds can by achieved by the fact that E(u,A) ≤ E(0, 0) ≲ 1 and again the
critical point equation and is presented in [13].

Lemma 2.9. Let (u,A) ∈ H1(Ω)×H0(curl,div) be a minimizer of problem (1.1). Then, we have

(2.6) || 1
κ
∇u+Au||2L2 ≤ ||u||2L2 ,

and the following stability bounds hold

|| 1κ∇u||L2 ≲ ||u||L2 + ||Au||L2 , ||u||H1
κ
≲ 1 + ||H||L2 , ||A||

H
1
2
+s ≲ ||A||H(curl,div) ≲ 1 + ||H||L2 .

To conlcude this section, we present a result on the regularity of the rotation of the vector potential
A. This is precisely, what is needed to show convergence for Nédélec elements, see [35, Theo-
rem 5.41] and [2, Theorem B] and Lemma 4.2 below.

Lemma 2.10. Let (u,A) ∈ H1(Ω)×H0(curl,div) be a minimizer of problem (1.1).

(a) Let H ∈ H(curl) ∩H(div) and denote H∆ = curlA−H. Then, it holds

H∆ ∈ H(curl) ∩H(div), H∆ × ν
∣∣
∂Ω

= 0,

and we have H∆ ∈ H
1
2+s(Ω) with

||H∆||
H

1
2
+s ≲ 1.
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(b) If in addition, H ∈ H
1
2+s(Ω), then

|| curlA||
H

1
2
+s ≲ 1.

Proof. We use Lemma 2.7 and rewrite ∂AE(u,A)B+ (∇λ,B) = 0 as∫
Ω

H∆ · curlBdx = −
∫
Ω

|u|2A ·B+
1

κ
Re

(
iu∗∇u ·B

)
dx+

∫
Ω

∇λ ·Bdx

for all B ∈ H(curl). We thus conclude that H∆ ∈ H0(curl) with

curlH∆ = −|u|2A− 1

κ
Re

(
iu∗∇u

)
+∇λ ∈ L2

Inserting B = ∇λ ∈ H(curl) gives us ||∇λ||L2 ≲ 1 and thus also || curlH∆||L2 ≲ 1. Since by
construction it holds divH∆ ∈ L2(Ω), we obtain the claim form Lemma 2.2. □

2.4. Refined regularity theory for the order parameter. In this section, we derive additional
properties of the minimizers u in terms of differentiability and integrability. Here, we heavily rely
on the known and adapted results which we provide in Appendix B. Note that in the convex case
it is not possible to derive more information on the vector potential A than done in Lemmas 2.9
and 2.10. Our aim is to understand how much of the derived results in [13, 14] is still valid in the
non-smooth case. From now on, we work with the regularity obtained in Lemma 2.2, i.e.

A ∈ H0(curl,div) ↪→ H
1
2+s ↪→ L

3
1−s ,

and consider the fixed pair (u,A).

Lemma 2.11. Let (u,A) ∈ H1(Ω) ×H0(curl,div) be a minimizer of problem (1.1). Further, let
ε2 > 0 be arbitrary, take ε0 from Proposition B.3, and define the exponents

pu,1 = 2pu,2 and pu,2 = min{ 3

2(1− s)
− ε2,

4

3
+ ε0} ≥ 4

3
, d = 3,

pu,1 = 2pu,2 and pu,2 = min{ 2

1− 2s
− ε2, pmax} ≥ 4

3
, d = 2,

with pmax defined in (2.5) (with pmax > 2 if and only if Ω is convex). Then, it holds u ∈W 2,pu,2 ∩
W 1,pu,1 with

κ−2||∇2u||Lpu,2 ≲ 1 and κ−1||∇u||Lpu,1 ≲ 1.

In addition, by Sobolev embedding, we have

(2.7a) κ−2||w||
H

7pu,2−6

2pu,2

≲ 1, d = 3, and κ−2||w||
H

3pu,2−2

pu,2

≲ 1, d = 2,

and by interpolation between W 2,pu,2 and L∞

||u||Hpu,2 ≲ ||∇2u||
pu,2

2

Lpu,2 ≲ κpu,2 .(2.7b)

Proof. In the following, we use the relation ∂uE(u,A)φ = 0, i.e.

0 = Re

∫
Ω

( i
κ
∇u+Au

)
·
( i
κ
∇φ+Aφ

)∗
+

(
|u|2 − 1

)
uφ∗ dx

= Re

∫
Ω

1

κ
∇u · 1

κ
∇φ∗ dx+Re

∫
Ω

(
2
i

κ
∇u ·A+ |A|2u+

(
|u|2 − 1

)
u
)
φ∗ dx,

and extract the claimed regularity.

(a) We begin with the three-dimensional case.

(1) We have by Lemma 2.9 ∇u ∈ L2 and A ∈ L
3

1−s ⊂ L3 such that |A|2 ∈ L
3

2−2s ⊂ L
3
2 and

||2 i

κ
A∇u+ |A|2u+

(
|u|2 − 1

)
u||

L
6
5
≲ || i

κ
A∇u||

L
6
5
+ |||A|2||

L
6
5
+ 1 ≲ 1

and hence with Proposition B.3

κ−2||u||
W 2, 6

5
≲ 1.
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(2) We now set up a bootstrap argument. Let q0 = 6
5 and use the interpolation estimate in

Lemma B.5 to obtain that

|| 1
κ
∇u||L2q0 ≲ 1 and || 1

κ
A∇u||Lq1 ≲ 1,

1

q1
=

1− s

3
+

1

2q0
=⇒ q1 =

6q0
3 + 2(1− s)q0

and gain with Proposition B.3

κ−2||u||W 2,q1 ≲ 1.

This leads to a sequence of exponents qk+1 = αqk
α+βqk

(with α = 3, β = 2(1−s)) which converges

monotonically to 3
2(1−s) form below, see Lemma C.1. Thus, after finitely many steps, we have

the established regularity with exponent pu,1. For pu,2 we again employ Lemma B.5.

(b) In two dimensions we make the following adaptions.

(1) We similarly use |A|2 ∈ L
2

1−2s ⊂ L2,A∇u ∈ L
4

3−2s ⊂ L
4
3 obtain thus with Proposition B.4

κ−2||u||
W 2, 4

3
≲ 1.

(2) We use q0 = 4
3 and derive the recursion qk+1 = 4qk

2+(1−2s)qk
=⇒ q = 2

1−2s such that Lemma C.1

gives with with α = 2, β = 2(1− 2s) the limit 3
2(1−s) .

The interpolation estimate is obtained by Lemma B.5. □

In the next lemma, we derive norms in W 1,p, where p is larger than in Lemma 2.11. However, we
have to pay with an additional power of κ.

Lemma 2.12. Let (u,A) ∈ H1(Ω)×H0(curl,div) be a minimizer of problem (1.1).

(a) Let Ω ⊂ R3. For p̂u,1 = min{ 3
1−s , 3 + ε−1} we have u ∈W 1,p̂u,1 ⊂W 1,3 and the estimate

|| 1
κ
∇u||Lpu,1 ≲ κ.

(b) Let Ω ⊂ R2. For p̂u,1 = min{ 4
1−2s , 4 + ε−1} we have u ∈W 1,p̂u,1 ⊂W 1,4 and the estimate

|| 1
κ
∇u||Lpu,1 ≲ κ.

Proof. (a) We exploit divA = 0 to compute

|(A∇u, ϕ)| = |(u,A∇ϕ)| ≤ ||A||
L

3
1−s

||∇ϕ||
L

3
2+s

and thus A∇u ∈ (W 1, 3
2+s )′ = W−1, 3

1−s . In addition, we have |A|2u ∈ L
3

2−2s and by Lemma B.1

also |A|2u ∈W−1, 3
1−2s ⊂W−1, 3

1−s . With this, Proposition B.2 gives us u ∈W 1,p̂u,1 as well as

κ−1||u||
W

1, 3
1−s

≲ ||2 i

κ
A∇u+ |A|2u+

(
|u|2 − 1

)
u||

W
−1, 3

1−s
≲ κ,

and hence the assertion.

(b) For d = 2, we have A∇u(W 1, 4
3+2s )′ = W−1, 4

1−2s . In addition, by Lemma B.1 we conclude

|A|2u ∈ L
2

1−2s ↪→W−1, 4
1−2s and thus obtain by Proposition B.2 u ∈W 1,p̂u,1 . □

3. Adapted norm estimates

In the preceding papers, it was always assumed that A is in L∞(Ω) which enabled us to define a
suitable norm for the treatment of the second Fréchet derivative of the energy with respect to u.
As we have shown above, in the non-convex setting, one cannot expect such high integrability, and
thus we have to modify this approach.
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3.1. A stabilized norm for the order parameter. Let (u,A) ∈ H1(Ω)×H(curl) be a minimizer
of (1.1), and let us recall the second Fréchet derivative of E with respect to u given by

⟨∂2uE(u,A)ψ,φ⟩ = Re

∫
Ω

( i
κ
∇φ+Aφ

)
·
( i
κ
∇ψ +Aψ

)∗
(3.1)

+
(
|u|2 − 1

)
φψ∗ + u2φ∗ψ∗ + |u|2φψ∗ dx,

which motivates the use of the following norm

||φ||2H1
κ,A

:= || i
κ
∇φ+Aφ||2L2 + C2

stab(κ)||φ||2L2(3.2)

with a stabilization constant Cstab(κ) determined below, which is necessary to ensure that ||·||H1
κ,A

is a norm on H1(Ω), see Lemmas 3.1 and 3.3. We associate to this the bilinear form

aκ,A(φ,ψ) = Re

∫
Ω

( i
κ
∇φ+Aφ

)
·
( i
κ
∇ψ +Aψ

)∗
+ C2

stab(κ)φψ
∗ dx.

Lemma 3.1 (Norm in 3d). Let Ω ⊂ R3 and define

(3.3) Cstab(κ) = c3(1 + κ
(1−s)

s )

with a constant c3 defined below, which is independent of κ and A.

(a) For all φ ∈ H1(Ω), it holds

||φ||
L

6
1+2s

≲ || 1
κ
∇φ||L2 + Cstab(κ)||φ||L2

independent of κ.

(b) Further, we have the norm equivalence

|| 1
κ
∇φ||2L2 + C2

stab(κ)||φ||2L2 ≲ ||φ||H1
κ,A

≲ || 1
κ
∇φ||2L2 + C2

stab(κ)||φ||2L2

with hidden constants which are independent of κ.

Remark 3.2. (a) For fixed κ ≥ 1, we have the limits

lim
s→0

Cstab(κ) = ∞ and lim
s→1

Cstab(κ) = 1,

where the latter one precisely yields the (unscaled L2)-norm employed in the convex case.

(b) In particular, we may estimate

(3.4) ||Aφ||L2 ≤ || i
κ
∇φ+Aφ||L2 + || 1

κ
∇φ||L2 ≲ ||φ||H1

κ,A

with constants independent of κ and A.

Proof of Lemma 3.1. We compute with Young

|| i
κ
∇φ+Aφ||2L2 = || i

κ
∇φ||2L2 + ||Aφ||2L2 + 2Re(

i

κ
∇φ,Aφ) ≥ (1− γ)|| i

κ
∇φ||2L2 + (1− 1

γ
)||Aφ||2L2 .

With A ∈ L
3

1−s , we have ||Aφ||L2 ≤ ||A||
L

3
1−s

||φ||
L

6
1+2s

. Due to the relation for α = s ∈ (0, 1)

1 + 2s

6
=
α

2
+

1− α

6
,

we further estimate for any β > 0 by Young’s inequality and Sobolev embedding

||φ||2
L

6
1+2s

≤ β−1||φ||2αL2 β||φ||2(1−α)
L6

≤ αβ
−1
α ||φ||2L2 + (1− α)β

1
1−α ||φ||2L6

≲ αβ
−1
α ||φ||2L2 + κ2(1− α)β

1
1−α ||φ||2H1

κ
.

The choice β = c1−ακ2(s−1) for some c > 0 then yields

||φ||2
L

6
1+2s

≲ sκ
2(1−s)

s ||φ||2L2 + c(1− s)||φ||2H1
κ
,
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which gives the estimate in (a) as well as the upper bound in part (b). Further, we have shown for
c sufficiently small

|| i
κ
∇φ+Aφ||2L2 ≥ c1||

i

κ
∇φ||2L2 − c2κ

2(1−s)
s ||φ||2L2

which yields the lower bound in the norm equivalence for suitable c3 > 0. □

In the two-dimensional case, we use a different scaling which requires fewer powers in κ in front
of the L2-term. This is due to the better integrability properties of the vector potential in lower
dimensions.

Lemma 3.3 (Norm in 2d). Let Ω ⊂ R2 and define

Cstab(κ) = c2(1 + κ
(1−2s)
1+2s ), s ∈ (0,

1

2
),

with a constant c2 defined below, which is independent of κ and A.

(a) For all φ ∈ H1(Ω), it holds

||φ||
L

4
1+2s

≲ || 1
κ
∇φ||L2 + Cstab(κ)||φ||L2

independent of κ.

(b) Further, we have the norm equivalence

|| 1
κ
∇φ||2L2 + C2

stab(κ)||φ||2L2 ≲ ||φ||H1
κ,A

≲ || 1
κ
∇φ||2L2 + C2

stab(κ)||φ||2L2

with hidden constants which are independent of κ.

Remark 3.4. For fixed κ ≥ 1, we have the limits

lim
s→0

Cstab(κ) = 1 + κ and lim
s→ 1

2

Cstab(κ) = 1,

where the latter one precisely yields the (unscaled L2)-norm employed in the convex case.

Proof of Lemma 3.3. We proceed as before withA ∈ L
4

1−2s , we have ||Aφ||L2 ≤ ||A||
L

4
1−2s

||φ||
L

4
1+2s

and hence estimate for some q > 4 (to be chosen later)

1 + 2s

4
=
α

2
+

1− α

q
=⇒ α = α(q) =

1

2

q(1 + 2s)− 4

q − 2
, s ∈ (0,

1

2
),

where we have α(q) → 1
2 for q → ∞. With this we estimate

||φ||2
L

4
1+2s

≤ β−1||φ||2αL2 β||φ||2(1−α)
Lq

≤ αβ
−1
α ||φ||2L2 + (1− α)β

1
1−α ||φ||2Lq

≲ αβ
−1
α ||φ||2L2 + κ2q2(1− α)β

1
1−α ||φ||2H1

κ

where we used ||u||Lq ≲ q||φ||H1 , and hence with β = c1−α(q κ)2(α−1) we obtain

||φ||2
L

4
1+2s

≤ c̃α(qκ)
2(1−α)

α ||φ||2L2 + c(1− α)||u||2H1
κ

= c̃α(qκ)
2q(1−2s)

q(1+2s)−4 ||φ||2L2 + c(1− α)||u||2H1
κ

∼ c̃ακ
2(1−2s)
1+2s ||φ||2L2 + c(1− α)||φ||2H1

κ

for q sufficiently large (but independent of κ). This gives the desired estimates. □

In the following lemma, we derive a-priori estimates on solutions of the elliptic problems corre-
sponding to the stabilized bilinear form (·, ·)H1

κ,A
.
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Lemma 3.5. Let f ∈ L2 and consider w ∈ H1(Ω) to be the solution of

(w,φ)H1
κ,A

= m(f, φ).

Then, it holds

||w||H1
κ,A

≲ C−1
stab(κ)||f ||L2 .

(a) If Ω ⊂ R3, then we have w ∈W 2, 6
5−2s (s < 1

4) with

κ−2||w||H1+s ≲ κ−2||w||
W

2, 6
5−2s

≲ ||f ||L2 .

(b) If Ω ⊂ R2, then we have w ∈W 2, 4
3−2s with

κ−2||w||
H

3
2
+s ≲ κ−2||w||

W
2, 4

3−2s
≲ ||f ||L2 .

Proof. Simply inserting w in the elliptic problem and using Lemma 3.1 gives

|| 1
κ
∇w||2L2 + C2

stab(κ)||w||2L2 ≲ (w,w)H1
κ,A

= m(f, w) ≲ ||f ||L2 ||w||L2

and hence with Young the estimate for ||w||H1
κ,A

.

(a) We rewrite the critical point equation and define g as

m(
1

κ
∇w, 1

κ
∇φ) = 2m(

i

κ
∇w,Aφ) +m(Aw,Aφ) +m(f, φ) = (g, ϕ).

To show the claim, we have to provide a bound on the norm of g in L
6

5−2s . Since the dual space

is isomorphic to L
6

1+2s , we may estimate

|(g, ϕ)| ≲ ||w||H1
κ,A

||A||
L

3
1−s

||φ||
L

6
1+2s

+ ||A||2
L

3
1−s

||w||
L

6
1+2s

||φ||
L

6
1+2s

+ ||f ||L2 ||φ||
L

6
1+2s

≲
(
||w||H1

κ,A
+ ||f ||L2

)
||φ||

L
6

1+2s

≲ (C−1
stab(κ) + 1)||f ||L2 ||φ||

L
6

1+2s
.

where we used Lemma 3.1 for the L
6

1+2s -norm of w. We thus established that

||g||
L

6
5−2s

≲ ||f ||L2

and we obtain with Proposition B.3 (s < 1
4 )

κ−2||w||
W

2, 6
5−2s

≲ ||f ||L2

as claimed. The first estimate follows from Sobolev’s embedding.

(b) For d = 2, we modify the argument with the dual spaces L
4

3−2s and L
4

1+2s to

|(g, ϕ)| ≲ ||w||H1
κ,A

||A||
L

4
1−2s

||φ||
L

4
1+2s

+ ||A||2
L

4
1−2s

||w||
L

4
1+2s

||φ||
L

4
1+2s

+ ||f ||L2 ||φ||
L

4
1+2s

≲ (C−1
stab(κ) + 1)||f ||L2 ||φ||

L
4

1+2s
,

where we used Lemma 3.3 for the L
4

1+2s -norm of w. The use of Lemma B.4 yields the claim. □

3.2. Properties of the second Fréchet derivative of E. In this section, we discuss upper and
lower bounds of E′′. To obtain results which are also applicable to study the energy (1.1) for a
fixed vector potential A in the spirit of [8, 14], but under the reduced regularity assumptions. We
therefore recall the representation of E′′ from [13, Lemma 2.4].
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Lemma 3.6. Let (u,A) ∈ H1(Ω) × H0(curl,div) be a minimizer of the energy defined in (1.1).
We denote the second order partial Fréchet derivatives by

⟨∂2uE(u,A) · , φ⟩ :=
∂

∂u
(∂uE(u,A)φ) : H1(Ω) → R,

⟨∂A,uE(u,A) · ,B⟩ :=
∂

∂u
(∂AE(u,A)B) : H1(Ω) → R,

⟨∂u,AE(u,A) · , φ⟩ :=
∂

∂A
(∂uE(u,A)φ) : H(curl) → R,

⟨∂2AE(u,A) · ,B⟩ :=
∂

∂A
(∂AE(u,A)B) : H(curl) → R,

where φ ∈ H1(Ω) and B ∈ H(curl). The derivatives are given by

⟨∂2uE(u,A)ψ,φ⟩ = Re

∫
Ω

( i
κ
∇φ+Aφ

)
·
( i
κ
∇ψ +Aψ

)∗
+
(
|u|2 − 1

)
φψ∗ + u2φ∗ψ∗ + |u|2φψ∗ dx,

⟨∂2AE(u,A)B,C⟩ =
∫
Ω

|u|2C ·B+ curlC · curlBdx,

⟨∂u,AE(u,A)B, ψ⟩ =
∫
Ω

2Re(uψ∗)A ·B+
1

κ
Re

(
iu∗∇ψ + iψ∗∇u

)
·Bdx

and ⟨∂u,AE(u,A)B, ψ⟩ = ⟨∂A,uE(u,A)ψ,B⟩.

Fixing A then corresponds to setting B = C = 0.

3.3. The derivative ∂2uE for fixed A. Using the stabilized bilinear forms above, we can imme-
diately give upper and lower bounds on ∂2uE.

Lemma 3.7. Let (u,A) ∈ H1(Ω)×H0(curl,div) be a minimizer of (1.1). We have

|⟨∂2uE(u,A)ψ,φ⟩| ≲
(
|| i
κ
∇ψ +Aψ||2L2 + ||ψ||2L2

)(
|| i
κ
∇φ+Aφ||2L2 + ||φ||2L2

)
≲ ||φ||H1

κ,A
||ψ||H1

κ,A

and there is a constant ρu,A(κ) ≥ 1 such that

|⟨∂2uE(u,A)φ,φ⟩| ≥ ρu,A(κ)−1C−1
stab(κ)||φ||

2
H1

κ,A
,

with ρu,A(κ) bounded from above independently of Cstab(κ), i.e. ∂2uE is coercive on H1
iu.

Proof. The first estimate is trivially satisfied, and as in [13] we have for the smallest non-zero
eigenvalue λ1 that

⟨∂2uE(u,A)φ,φ⟩ ≥ λ1||φ||2L2 .

By the proof of Lemma 3.1, we additionally observe that the Garding inequality in the form

⟨∂2uE(u,A)φ,φ⟩ ≥ c1||φ||2H1
κ,A

− c2C
2
stab(κ)||u||2L2

is satisfied. We multiply the first equation by c2Cstab(κ) and the second by λ1 and ad up to

(c2Cstab(κ) + λ1)⟨∂2uE(u,A)φ,φ⟩ ≥ c1λ1||φ||2H1
κ,A

which gives the claim for

ρu,A(κ)Cstab(κ) =
λ1 + c2Cstab(κ)

c1λ1
≲ 1 +

Cstab(κ)

λ1
≲ (1 +

1

λ1
)Cstab(κ)

where we used that Cstab(κ) ≥ 1. □

Lemma 3.8. Let f ∈ L2(Ω) and consider w ∈ H1
iu to be the solution of

⟨∂2uE(u)w,φ⟩ = (f, φ).

Then, the solution satisfies

||w||H1
κ,A

≲ ρu,A(κ)||f ||L2 .
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(a) If Ω ⊂ R3, then we also have w ∈W 2, 6
5−2s (s < 1

4) with

κ−2||w||H1+s ≲ κ−2||w||
W

2, 6
5−2s

≲ ρu,A(κ)||f ||L2 .

(b) If Ω ⊂ R2, then we also have w ∈W 2, 4
3−2s with

κ−2||w||
H

3
2
+s ≲ κ−2||w||

W
2, 4

3−2s
≲ ρu,A(κ)||f ||L2 .

Proof. The existence follows from Lemma 3.7, and we additionally conclude

||w||H1
κ,A

≲ ρu,A(κ)Cstab(κ)||f ||(H1
κ,A)′ ≲ ρu,A(κ)||f ||L2 ,

since Cstab(κ) cancels, and as before we rewrite the problem as

m(
1

κ
∇w, 1

κ
∇φ) = 2m(

i

κ
∇w,Aφ) +m(Aw,Aφ) +m(f, φ)

+ Re

∫
Ω

(
|u|2 − 1

)
wφ∗ + u2w∗φ∗ + |u|2wφ∗ dx = (g, ϕ),

where we only have to estimate g in the correct norm.

(a) We proceed as in Lemma 3.5 and obtain with Lemma 3.1

|(g, ϕ)| ≲ ||w||H1
κ,A

||φ||
L

6
1+2s

+ ||f ||L2 ||φ||
L

6
1+2s

,≲ (ρu,A(κ) + 1)||f ||L2 ||φ||
L

6
1+2s

,

which gives the claim.

(b) The same reasoning gives the claim for d = 2 using A ∈ L
4

1−2s . □

3.4. Properties of E′′. As the last step, before we turn to the numerical discretization, we study
the full energy (1.1), and thus have to consider both minimizers u, A as unknowns. To have
better control over E′′, we perform a similar composition to [13]. We define the inner product for
B,C ∈ H(curl) by

b(B,C) =

∫
Ω

curlB · curlC+B ·Cdx

and with this the bilinear form r by

(3.5) ⟨E′′(u,A)(φ,B), (ψ,C)⟩ = aκ,A(φ,ψ) + b(B,C) + r
(
(φ,B), (ψ,C)

)
.

We further decompose the remainder r as

r
(
(φ,B), (ψ,C)

)
= r1(φ,ψ)+r2(B,C)+r3(B, ψ)+r3(C, φ)+r4(B, ψ)+r4(C, φ)+r5(B, ψ)+r5(C, φ),

where the different terms are defined by

r1(φ,ψ) = ⟨∂2uE(u,A)ψ,φ⟩ − aκ,A(φ,ψ), r2(B,C) = ⟨∂2AE(u,A)B,C⟩ − b(B,C),

r3(B, ψ) = Re

∫
Ω

uψ∗A ·Bdx, r4(B, ψ) = Re

∫
Ω

i

κ
u∗∇ψ ·B dx, r5(B, ψ) = Re

∫
Ω

i

κ
ψ∗∇u ·Bdx.

We now have to bound the different contributions depending on the regularity and bonudary
conditions of the arguments.

Lemma 3.9. Let B,C ∈ L2(Ω) and φ,ψ ∈ L2(Ω). Then, it holds.

|r1(φ,ψ) + r2(B,C)| ≲ C2
stab(κ)||φ||L2 ||ψ||L2 + ||B||L2 ||C||L2 .

Further, we have the following estimates:

(a) For ψ ∈ H1(Ω)

|r3(B, ψ) + r4(B, ψ)| ≲ ||ψ||H1
κ,A

||B||L2 ,

and if B ∈ H0(curl,div)

|r5(B, ψ)| ≲ ||ψ||H1
κ,A

||B||L2 .
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(b) For B ∈ L
3

1−s (or B ∈ L4, respectively)

|r3(B, ψ)| ≲ ||ψ||
L

3
1+2s

||B||
L

3
1−s

, d = 3,

|r3(B, ψ)| ≲ ||ψ||L2 ||B||L4 , d = 2.

(c) If ψ ∈ H1(Ω) and B ∈ H(curl)

|r4(B, ψ)| ≲ ||ψ||H1
κ,A

||πdivB−B||L2 + κ||B||H(curl)||ψ||
L

3
1+s

, d = 3,

|r4(B, ψ)| ≲ ||ψ||H1
κ,A

||πdivB−B||L2 + κ||B||H(curl)||ψ||L2 , d = 2.

(d) If ψ ∈ H1(Ω) and B ∈ H(curl)

|r5(B, ψ)| ≲ ||ψ||H1
κ,A

||B||L2 + κ2||ψ||H1
κ,A

||πdivB−B||L2 , d = 3,

|r5(B, ψ)| ≲ ||ψ||H1
κ,A

||B||L2 + κ||ψ||H1
κ,A

||πdivB−B||L2 , d = 2.

Remark 3.10. We expect that several powers of κ can be removed, if one had a more precise
knowledge on the range of exponents p in Proposition B.2.

Proof of Lemma 3.9. We first note that by definition of the bilinear forms

|r1(φ,ψ)| ≲ C2
stab(κ)||φ||L2 ||ψ||L2 , |r2(B,C)| ≲ ||B||L2 ||C||L2 .

(a) With Lemma 2.8 and (3.4) we have for ψ ∈ H1(Ω)

|r3(B, ψ)| = |Re
∫
Ω

uψ∗A ·Bdx| ≤ ||Aψ||L2 ||B||L2 ≲ ||ψ||H1
κ,A

||B||L2 ,

|r4(B, ψ)| = |Re
∫
Ω

i

κ
u∗∇ψ ·B dx| ≤ || i

κ
∇ψ||L2 ||B||L2 ≲ ||ψ||H1

κ
||B||L2 ,

|r5(B, ψ)| = |Re
∫
Ω

i

κ
ψ∗∇u ·B dx| = |Re

∫
Ω

i

κ
∇ψ∗u ·Bdx| ≲ ||ψ||H1

κ
||B||L2 ,

where we used for the last estimate B ∈ H0(curl,div), integration by parts, and the fact
that divB = 0.

(b) We estimate with Hölder depending on the dimension

|r3(B, ψ)| = |Re
∫
Ω

uψ∗A ·Bdx| ≤ ||A||
L

3
1−s

||B||
L

3
1−s

||ψ||
L

3
1+2s

≲ ||ψ||
L

3
1+2s

||B||
L

3
1−s

,

|r3(B, ψ)| = |Re
∫
Ω

uψ∗A ·Bdx| ≤ ||A||L4 ||B||L4 ||ψ||L2 ≲ ||ψ||L2 ||B||L4 .

(c) For r4 we compute with the lift πdivB

|r4(B, ψ)| ≤ |Re
∫
Ω

i

κ
u∗∇ψ · πdivB dx|+ |Re

∫
Ω

i

κ
u∗∇ψ · (πdivB−B) dx|

≲ |Re
∫
Ω

i

κ
u∗∇ψ · πdivB dx|+ ||ψ||H1

κ,A
||πdivB−B||L2

= |Re
∫
Ω

i

κ
∇u∗ψ · πdivB dx|+ ||ψ||H1

κ,A
||πdivB−B||L2 ,

where we used integration by parts with the fact that πdivB ∈ H0(curl,div). We use
Lemma 2.12 for d = 3

|Re
∫
Ω

i

κ
∇u∗ψ · πdivBdx| ≲ || 1

κ
∇u||L3 ||πdivB||

L
3

1−s
||ψ||

L
3

1+s
≲ κ||B||H(curl)||ψ||

L
3

1+s
,

and, for d = 2, we replace the last estimate by

|Re
∫
Ω

i

κ
∇u∗ψ · πdivBdx| ≲ || 1

κ
∇u||L4 ||πdivB||L2 ||ψ||L2 ≲ κ||B||H(curl)||ψ||L2 .

(d) Again Lemma 2.12 gives for d = 3

|r5(B, ψ)| = |Re
∫
Ω

i

κ
ψ∗∇u ·Bdx| ≲ || 1

κ
∇u||L3 ||B||

L
3

1−s
||ψ||

L
3

1+s
≲ κ||B||

L
3

1−s
||ψ||

L
3

1+s
,
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and for d = 2

|r5(B, ψ)| = |Re
∫
Ω

i

κ
ψ∗∇u ·Bdx| ≲ || 1

κ
∇u||L4 ||B||L4 ||ψ||L2 ≲ κ||B||L4 ||ψ||L2 .

We insert the lift πdivB to write

|r5(B, ψ)| ≤ |Re
∫
Ω

i

κ
ψ∗∇u · πdivBdx|+ |Re

∫
Ω

i

κ
ψ∗∇u · (πdivB−B)|

≤ |Re
∫
Ω

i

κ
ψ∗∇u · πdivBdx|+ |Re

∫
Ω

i

κ
ψ∗∇u · (πdivB−B)|

≤ |Re
∫
Ω

i

κ
∇ψ∗u · πdivBdx|+ |Re

∫
Ω

i

κ
ψ∗∇u · (πdivB−B)|

≤ |Re
∫
Ω

i

κ
∇ψ∗u ·B dx|+ |Re

∫
Ω

i

κ
∇ψ∗u · (πdivB−B) dx|

+ |Re
∫
Ω

i

κ
ψ∗∇u · (πdivB−B)|.

We now use the first estimate in Lemma 3.1 together with Lemma 4.3 for d = 3 as

|r5(B, ψ)| ≲ ||ψ||H1
κ,A

||B||L2 + ||ψ||H1
κ,A

||πdivB−B||L2 + ||ψ||L6 || 1
κ
∇u||L3 ||πdivB−B||L2

≲ ||ψ||H1
κ,A

||B||L2 + κ2||ψ||H1
κ,A

||πdivB−B||L2 ,

and for d = 2 as

|r5(B, ψ)| ≲ ||ψ||H1
κ,A

||B||L2 + ||ψ||H1
κ,A

||πdivB−B||L2 + ||ψ||L4 || 1
κ
∇u||L4 ||πdivB−B||L2

≲ ||ψ||H1
κ,A

||B||L2 + κ||ψ||H1
κ,A

||πdivB−B||L2 ,

which gives the claim. □

Lemma 3.11. Let (u,A) ∈ H1(Ω) ×H0(curl,div) be a minimizer of (1.1). The second Fréchet
derivative is coercive on H1

κ,A ×H0(curl,div) with

⟨E′′(u,A)(φ,B), (φ,B)⟩ ≥ ρu,A(κ)−1C−1
stab(κ)||φ,B||2H1

κ,A×H0(curl,div)

with ρu,A(κ) bounded from above independently of Cstab(κ).

Proof. As in Lemma 3.7, we have for the smallest non-zero eigenvalue λ1 that

⟨E′′(u,A)(φ,B), (φ,B)⟩ ≥ λ1||(φ,B)||2L2×L2 .

With the estimates in Lemma 3.9, we obtain by a weighted Young’s inequality

⟨E′′(u,A)(φ,B), (φ,B)⟩ ≥ c1||φ||2H1
κ,A

+ c1|| curlB||2L2 − c2C
2
stab(κ)||φ||2L2 − c3||B||2L2 .

Without loss of generality let c2C
2
stab(κ) ≥ c3, and multiply the first equation by c2Cstab(κ) and

the second by λ1 and add up to

(c2Cstab(κ) + λ1)⟨∂2uE(u,A)φ,φ⟩ ≥ c1λ1
(
||φ||2H1

κ,A
+ || curlB||2L2

)
which gives the claim for

ρu,A(κ)Cstab(κ) =
λ1 + c2Cstab(κ)

c1λ1
the same reasoning as in Lemma 3.7 gives the claim. □

4. Space discretization

We now turn to the spatially discrete version of (1.1). Therefore, we introduce finite element
spaces for the order parameter u and the vector potential A. In addition, we have to discretize the
divergence constraint or equivalently the Lagrange multiplier. In this section, we first present the
spaces and then discuss the discrete minimization problem as well as the results on the discrete
minimizers.
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4.1. Discrete spaces and properties. To keep some flexibility in the framework, we consider
the different meshes where the order parameter u is approximated with Th and TH , where the
parameters h and H indicate the largest diameter of each of the meshes. In the major part of the
presentation, we work with the following assumption without mentioning it in every occasion.

Assumption 4.1 (Properties of the meshes).

(a) The meshes Th, TH are shape regular.

(b) On the mesh Th the L2-projection is H1(Ω)-stable.

We note that the second part is for example satisfied for quasi-uniform meshes, but also in the
more general setting as for example discussed in [4]. Later on, we additionally require the uniform
boundedness of a certain embedding for TH , see Assumption 4.4.

For the spaces we choose Vh ⊂ H1(Ω) to be the space of (real) linear and continuous Lagrange
elements and RH ⊂ H(curl) as Nédélec elements of the lowest order (of first or second kind). We
then seek discrete minimizers

uh ∈ Vh,C = Vh + iVh, AH ∈ RH ,

and enforce the divergence free condition on AH , cf. [35, Section 7.2.1], via

(AH ,∇φH)L2 = 0 for all φH ∈ VH ,

where VH also consists of linear Lagrange finite element space but on the mesh TH . Note that this
induces a discrete divergence operator divH : RH → VH via

(divH AH , φH)L2 = −(AH ,∇φH)L2 ,

such that we equivalently enforce

divH AH = 0.

We would like to have a discrete subspace of RH which corresponds to H0(curl,div) from (2.1b).
Thus, we define

(4.1) VH,0 := {BH ∈ RH | divH BH = 0},

and emphasize that the condition BH · ν = 0 is only enforced weakly. We endow the space with
the norm

||BH ||2VH,0
:= ||BH ||2L2 + || curlBH ||2L2 + ||divH BH ||2L2 .

Note that such subspaces are also used by Li in [31, Sec. 3.3] in the context of the time-dependent
Ginzburg–Landau problem. In addition, we define the orthogonal projection PH : H(curl) → RH

for B ∈ H(curl) by

(curl(B− PHB), curlCH) + (B− PHB, CH) = 0,

such that in particular it holds for CH

(4.2) (PHB,∇φH) = (B,∇φH),

which implies that PHB−B is discrete divergence-free. Further, divB = 0 implies divH PHB = 0.
We have in addition the following approximation result in Nédélec spaces, which only requires
regularity of the function and its curl for optimal rates.

Lemma 4.2. Let B ∈ H
1
2+s(Ω) and also curlB ∈ H

1
2+s(Ω) for 1

2 < s ≤ 1, then

||B− PHB||H(curl) ≲ H
1
2+s

(
||B||

H
1
2
+s + || curlB||

H
1
2
+s

)
.

Proof. See Section 7.2.1 and Theorem 5.41 in [35]. □

Since a function with vanishing discrete divergence is not automatically divergence free, we make
use of the following construction in several parts of the numerical analysis. Here, we employ the
projection defined in (2.4).
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Lemma 4.3. Let BH ∈ VH,0 and consider the projection πdiv in (2.4).

(a) Then πdivBH ∈ H0(curl,div) and it holds

||πdivBH −BH ||H(curl) = ||πdivBH −BH ||L2 ≲ H
1
2+s|| curlBH ||L2 .

(b) Further, it holds the embedding

||BH ||L2 ≲ || curlBH ||L2

with a constant independent of H, i.e. || curlBH ||L2 is an equivalent norm on VH,0.

Proof. See Appendix A or [35, Lemma 7.6]. □

When studying the discrete minimizers we would like to carry over as much of the techniques from
the continuous case to the discrete setting. An essential tool in th continuous case was there to
use the embedding stated in Lemma 2.2.

Assumption 4.4. There is a constant C independent of H such that

||BH ||
L

3
1−s

≲ ||BH ||VH,0
, d = 3,

||BH ||
L

4
1−2s

≲ ||BH ||VH,0
, d = 2,

where s > 0 is such that H0(curl,div) ↪→ L
3

1−s and H0(curl,div) ↪→ L
4

1−2s , respectively.

We note that in the case of a quasi-uniform mesh TH the estimate in Lemma 3.6 in [31] shows that
this assumption is indeed satisfied. An interesting question would be to find criteria on the mesh
such that Assumption 4.4 is satisfied for more general meshes.

Finally, we rely on the following quasi-interpolation operators that allow us to extract the optimal
order of convergence in the following analysis. Let us emphasize that the properties only require
the shape-regularity of Th.

Lemma 4.5. There exists a quasi-interpolation operator Ih : L
1 → Vh such that for all p ∈ (1,∞)

it holds

||u− Ihu||Lp ≤ Cph
s||u||W s,p and ||∇(u− Ihu)||Lp ≤ Cph

s||u||W 1+s,p

with a constant Cp > 0 independent of h.

Proof. This assertion is stated element-wise in [25, Theorem 22.6] and since the ansatz functions
are W 1,∞-conforming, we obtain the estimate on Ω. □

4.2. Discrete minimization. We are now in the position to state our discrete problems using the
discrete spaces from the last section. The problem reads as follows: Seek (uh,AH) ∈ Vh,C ×RH

such that

(4.3)
E(uh,AH) = min

vh∈Vh,C,BH∈RH

1

2

∫
Ω

| i
κ
∇vh +BHvh|2 +

1

2
(1− |vh|2)2 + | curlBH −H|2 dx,

subject to divH AH = 0.

Analogously to Lemma 2.7, we obtain that each minimizer is a solution to a saddle point problem,
i.e. there exists λH ∈ VH such that for all (φh,BH , µH) ∈ Vh,C ×RH × VH it holds

(4.4)
0 = ∂uE(uh,AH)φh + ∂AE(u,AH)BH + (∇λH ,BH),

0 = (divH AH , µH),

where the Lagrange multiplier terms vanishes for BH ∈ VH,0. Next, we state the existence result
of discrete minimizers as well as the a-priori estimates.
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Theorem 4.6 (Existence of discrete minmizers). For each h > 0, there exists at least one mini-
mizer (uh,AH) ∈ Vh,C ×RH of (4.3), and we have the a-priori bounds

||AH ||L2 + || curlAH ||L2 ≲ 1, ||uh||L4 ≲ 1 || i
κ
∇uh +AHuh||L2 ≲ 1.

In addition, under Assumption 4.4 it also holds ||AH ||
L

3
1−s

≲ 1 (d = 3) and ||AH ||
L

4
1−2s

≲ 1

(d = 2), respectively, and

||uh||H1
κ
+ ||AHuh||L2 ≲ 1 + κα, with

{
α = max{0, 1−4s

4s }, d = 3,

α = 0, d = 2,

with hidden constants independent of h,H and κ.

Proof. Due to the finite dimensions in Vh,C and RH , the existence is clear. For the bounds note
that (0, 0) ∈ Vh,C×VH,0 and thus E(uh,AH) ≤ E(0, 0) ≲ 1 and by construction also divH AH = 0.
The first three estimates are obtained as in [13] combined with Lemma 4.3. For the last one in
d = 3, note that by Assumption 4.4

|| i
κ
∇uh||L2 ≲ || i

κ
∇uh +AHuh||L2 + ||AHuh||L2 ≲ 1 + ||AH ||VH,0

||uh||
L

6
1+2s

≲ 1 + ||uh||
L

6
1+2s

.

For s ≥ 1
4 , we obtain boundedness by a constant and thus only consider s ∈ (0, 14 ). In this case we

use the relation
1 + 2s

6
=
α

6
+

1− α

4
, α = 1− 4s ∈ (0, 1),

and estimate with ||uh||L2 + ||uh||L4 ≲ 1

||uh||
L

6
1+2s

≲ ||uh||1−4s
L6 ||uh||4sL4 ≲ ||uh||1−4s

L6 ≲ κ1−4s|| i
κ
∇uh||1−4s

L2 + 1 ≲ Cδκ
1−4s
4s + δ|| i

κ
∇uh||L2 ,

where we used Young’s inequality in the last step for the pair ( 1
4s ,

1
1−4s ) and some arbitrary δ > 0.

Hence, we obtain the last two estimates (for d = 3) by absorption. In two dimensions, we already
have a uniform bound on AH in L4 and thus ||AHuh||L2 ≲ 1. □

Proposition 4.7. Denote by (uh,AH) ∈ Vh,C ×RH a family of minimizers of (4.3). Then, there
exists an exact minimizer (u0,A0) ∈ H1(Ω) ×H0(curl,div) of problem (1.1) such that there is a
monotonically decreasing sequence (h,H) → 0 with

lim
(h,H)→0

||u0 − uh||H1
n
+ ||A0 −AH ||H(curl) = 0.

In particular, we can require uh ⊥ iu.

Proof. We follow the strategy in [9]. By the a-priori bounds in Theorem 4.6, we obtain weakly
convergent subsequences (with abuse of notation) as (h,H) → 0

uh ⇀ u0 in H1(Ω), AH ⇀ A0 in H(curl),

which directly implies strong convergence of uh in L6 and of AH in L2. We now fix φ ∈ H1(Ω)
and write for φH ∈ VH

(A0,∇φ) = (A0 −AH ,∇φ) + (AH ,∇φ)
= (A0 −AH ,∇φ) + (AH ,∇φH) + (AH ,∇φ−∇φH)

= (A0 −AH ,∇φ) + (AH ,∇φ−∇φH),

where we used that divH AH = 0. Now let limH→0||∇(φ− φH)||L2 = 0, then the first term tends
to zero due to the strong convergence in L2 and the last term due to the uniform boundedness of
||AH ||L2 . Thus, we have shown that A0 ∈ H0(curl,div).

By the weak semi lower continuity, we obtain

lim inf
(h,H)→0

E(uh,AH) ≥ E(u0,A0)
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and by the density of Vh,C and RH we obtain that (uh,AH) is a minimizing sequence. Hence, it
holds equality

lim
(h,H)→0

E(uh,AH) = E(u0,A0) = min
H1

n×H0(curl,div)
E(u,A).

In addition with the strong convergence of the lower order terms, the convergence of the energy
implies

|| 1
κ
∇uh||2L2 + || curlAH ||2L2 → || 1

κ
∇u0||2L2 + || curlA0||2L2 ,

which finally yields the strong convergence as claimed. □

4.3. The Ritz projection in H1
κ,A. This section is devoted to a suitable projection for the order

parameter u in the inner product corresponding to H1
κ,A defined in (3.2). We present general

best-approximation results as well as estimates for prescribed regularities. For a given minimizer
u, we define the spaces H1

iu = H1(Ω) ∩ (iu)⊥ and Vh,iu = Vh,C ∩ (iu)⊥, where the orthogonality is

with respect to the L2-inner product. We define the Ritz projection R⊥
κ,A,h : H

1
iu → Vh,iu via

aκ,A(v − R⊥
κ,A,hv, φh) = 0 for all φh ∈ Vh,iu,

and in particular, we have

(
i

κ
∇(v − R⊥

κ,A,h) +A(v − R⊥
κ,A,hv),

i

κ
∇φh +Aφh) = −Cstab(κ)(v − R⊥

κ,A,hv, φh).(4.5)

With this, we can conclude an adaption of the estimate in [14, Lemma 5.11].

Lemma 4.8. Let φ ∈ H1
iu and assume the resolution condition Cstab(κ)κh ≲ 1, then

||φ− R⊥
κ,A,hφ||H1

κ,A
≲ inf

φh∈Vh

( 1

κ
||∇(φ− φh)||L2 + Cstab(κ)||φ− φh||L2

)
with a constant independent of κ and h.

Proof. We proceed analogously as in [14, Lemma 5.11] to get for any φ ∈ H1
iu

||φ− R⊥
κ,A,hφ||H1

κ,A
≤ ||φ−

(
πhφ− m(πhφ− φ, iu)

m(πh(iu), iu)
πh(iu)

)
||H1

κ,A

≤ ||φ− πhφ||H1
κ,A

+ ||φ− πhφ||L2

||u||L2

m(πh(iu)− iu, iu) + ||iu||2L2

||πh(iu)||H1
κ,A

≤ ||φ− πhφ||H1
κ,A

+ ||φ− πhφ||L2

||πh(iu)||H1
κ,A

||u||L2 − ||u− πhu||L2

.

With the H1(Ω)-stability of πh in Assumption 4.1 and the norm equivalence in Lemma 3.1, we
have

||πh(iu)||H1
κ,A

≲ ||u||H1
κ,A

≲ Cstab(κ)||u||L2 ,

where we employed (2.6) for the last estimate. This leads to

||φ− R⊥
κ,A,hφ||H1

κ,A
≲ ||φ− πhφ||H1

κ,A
+ Cstab(κ)||φ− πhφ||L2

||u||L2

||u||L2 − ||u− πhu||L2

.

We further estimate the denominator again with the norm equivalence and (2.6) to obtain

||u||L2 − cκh|| 1
κ
∇u||L2 ≥ ||u||L2 − cκh||u||H1

κ,A
≥ ||u||L2(1− cCstab(κ)κh)

to finally get with the assumed resolution condition

||φ− R⊥
κ,A,hφ||H1

κ,A
≲ ||φ− πhφ||H1

κ,A
+ Cstab(κ)||φ− πhφ||L2 ≲ ||φ− πhφ||H1

κ,A
.

Again the stability of the L2-projection in H1
κ,A and the norm equivalence from Lemma 3.1 give

the desired claim. □

Next, we present a series of lemmas which discuss the precise projection errors depending on the
regularity of u.
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Lemma 4.9. Let u ∈ H1+σ(Ω) for some σ ∈ (0, 1]. Then,

||u− R⊥
κ,A,hu||H1

κ,A
≲ hσ

(
1 + Cstab(κ)κh

) 1
κ
||u||H1+σ

with a constant independent of h and κ.

Proof. We employ Lemma 4.8 and choose the quasi-interpolation φh = Ihu from Lemma 4.5 to
obtain with s = 1 + σ

||u− R⊥
κ,A,hu||H1

κ,A
≲

1

κ
||∇(u− Ihu)||L2 + Cstab(κ)||u− Ihu||L2

≲
( 1
κ
hs−1 + Cstab(κ)h

s
)
||u||Hs

≲ hσ
(
1 + Cstab(κ)κh

) 1
κ
||u||H1+σ ,

which gives the claim. □

We can similarly show an increased convergence rate in the L2-norm. As expected we do not
obtain an additional full order of convergence, but only the available s from the smoothness of the
domain.

Lemma 4.10. (a) If Ω ⊂ R3, we have

||R⊥
κ,A,hu− u||L2 ≲ hsκ

(
1 + Cstab(κ)κh

)
||R⊥

κ,A,hu− u||H1
κ,A
.

(a) If Ω ⊂ R2, we have

||R⊥
κ,A,hu− u||L2 ≲ h

1
2+sκ

(
1 + Cstab(κ)κh

)
||R⊥

κ,A,hu− u||H1
κ,A
.

In both cases the hidden constant is independent of h and κ.

Proof. We use a dual argument, and define eπ = R⊥
κ,A,hu− u and w ∈ H1(Ω) as the solution of

aκ,A(w,φ) = m(eπ, φ),

and compute with the orthogonality of the Ritz projection

||eπ||2L2 = aκ,A(w, eπ) = aκ,A(w − R⊥
κ,A,hw,R

⊥
κ,A,hu− u) ≤ ||R⊥

κ,A,hw − w||H1
κ,A

||R⊥
κ,A,hu− u||H1

κ,A
.

(a) With Lemmas 4.9 and 3.5 we conclude

||R⊥
κ,A,hw − w||H1

κ,A
≲ hs

(
1 + Cstab(κ)κh

) 1
κ
||w||H1+s ≲ hsκ

(
1 + Cstab(κ)κh

)
||eπ||L2

and thus

||eπ||L2 ≲ hsκ
(
1 + Cstab(κ)κh

)
||R⊥

κ,A,hu− u||H1
κ,A
,

as claimed.

(b) We simply use Lemma 4.9 and the increased regularity in part (b) of Lemma 3.5 to obtain

||R⊥
κ,A,hw − w||H1

κ,A
≲ h

1
2+s

(
1 + Cstab(κ)κh

) 1
κ
||w||

H
3
2
+s ≲ h

1
2+sκ

(
1 + Cstab(κ)κh

)
||eπ||L2 ,

which gives the second assertion. □

Further, we show another approximation (for d = 3) in the L
3

1+s -norm, which is between L2 and
H1 ↪→ L6 for s ∈ (0, 12 ] and is useful in the later best-approximation estimates, cf. the proof of
Lemma 5.7 below.

Lemma 4.11. Let Ω ⊂ R3 and s ∈ (0, 12 ]. Then, it holds for

||R⊥
κ,A,hu− u||

L
3

1+s
≲ hs(

1
2+s)

(
1 + Cstab(κ)κh

) 1
2+s

κ||R⊥
κ,A,hu− u||H1

κ,A
,

and for s ≥ 1
2 we are in the situation of Lemma 4.10.
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Proof. We use interpolation between the estimates in L2 and H1
κ,A. Therefore, note that

1 + s

3
=
α

2
+

1− α

6
for α =

1

2
+ s.

Hence, we obtain with eπ = R⊥
κ,A,hu− u

||eπ||
L

3
1+s

≤ ||eπ||
1
2+s

L2 ||eπ||
1
2−s

L6 ≤ κ
1
2−s||eπ||

1
2+s

L2 ||eπ||
1
2−s

H1
κ,A
.

Now with Lemma 4.10, we further estimate

||eπ||
L

3
1+s

≲ (hsκ)
1
2+s

(
1 + Cstab(κ)κh

) 1
2+s

κ
1
2−s||eπ||H1

κ,A
= hs(

1
2+s)κ

(
1 + Cstab(κ)κh

) 1
2+s||eπ||H1

κ,A
,

which gives the claim. □

4.4. Inserting the minimizer. We now combine the results on the convergence with the estab-
lished regularity of the minimizers to derive convergence rates which are then independent of the
minimizer itself and only depend on the regularity induced by the domain Ω. We first state the
result in three dimensions.

Lemma 4.12 (3 dimensions). (a) Let u ∈W 2,pu,2 be a minimizer of (1.1), then

||u− R⊥
κ,A,hu||H1

κ,A
≲ min{(κh)pu,2−1, κh

5pu,2−6

2pu,2 }(1 + κ
1
sh), 0 < s < 1.

(b) Since pu,2 ≥ 4
3 , we have at least

||u− R⊥
κ,A,hu||H1

κ,A
≲ (κh)

1
3 (1 + κ

1
sh), 0 < s < 1.

Proof. We simply use Lemma 4.9 together with the estimates (2.7a) and (2.7b) and Cstab(κ) from
(3.3) to conclude the assertion. □

Remark 4.13. (a) Note that if Ω is convex, we obtain s = 1
2 and hence pu,2 = 2. This implies

||u− R⊥
κ,A,hu||H1

κ,A
≲ (κh)(1 + κ2h).

(b) Further, formally inserting s = 1 yields pu,2 ≥ 2 and hence the estimate

||u− R⊥
κ,A,hu||H1

κ,A
≲ (κh)(1 + κh).

Due to the better embedding in two dimensions, the error bounds improve in this case.

Lemma 4.14 (2 dimensions). (a) Let u ∈W 2,pu,2 be a minimizer of (1.1), then

||u− R⊥
κ,A,hu||H1

κ,A
≲ min{(κh)pu,2−1, κh

2pu,2−2

pu,2 }(1 + κ
2

1+2sh), s <
1

2
.

(b) Since pu,2 ≥ 4
3 , we have at least

||u− R⊥
κ,A,hu||H1

κ,A
≲ min{(κh) 1

3 , κh
1
2 }(1 + κ

2
1+2sh), 0 < s < 1.

Remark 4.15. If we write the largest angle ωmax = απ, α > 1
2 , then

pmax(α) =
α

α− 1
2

, =⇒ pmax(1) = 2, pmax(
3

2
) =

3

2
, pmax(2) =

4

3
.

(a) For example if α = 3
2 , then s = 1

6 and the convergence improves to

||u− R⊥
κ,A,hu||H1

κ,A
≲ min{(κh) 1

2 , κh
2
3 }(1 + κ

3
2h), 0 < s < 1,

which aligns with the expected regularity for an L-shaped domain where u ∈ H
5
3−.

(b) If Ω is convex, then s = 1
2 and pmax = 2 such that

||u− R⊥
κ,A,hu||H1

κ,A
≲ (κh)(1 + κh).
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5. Quasi best-approximation results

We finally turn to the error bounds for the minimizers, where relate the error eh = u− uh to the
best approximation error eπ. We first study the case of a fixed vector potential, but only assume
the regularity A ∈ H

1
2+s, and in a second step derive the error bounds for the full problem. Let

us note that in the reduced case, one can derive better estimates than in the coupled case.

5.1. The case of fixed A. Let u be a minimizer of (1.1) and uh ∈ Vh,iu a minimizer of (4.3),
and emphasize that we do not require Assumption 4.4 in this section. We use the standard
decomposition

⟨∂2uE(u)R⊥
κ,A,hu− uh, φh⟩ = ⟨∂2uE(u)R⊥

κ,A,hu− u, φh⟩+ ⟨∂2uE(u)u− uh, φh⟩ =: ε1(φh) + ε2(φh),

and derive the following bounds.

Lemma 5.1. Let u be a minimizer of (1.1) and uh ∈ Vh,iu a minimizer of (4.3). Then, we have
the estimates

ε1(φh) ≲ C2
stab(κ)||R

⊥
κ,A,hu− u||L2 ||φh||L2 ,

ε2(φh) ≲
(
||u− uh||2L4 + ||u− uh||3L6

)
||φh||L2 ,

with constants independent of κ and h.

Proof. We follow the lines of [14, Lemma 5.5], and first consider using the representation in (3.1)

ε1(φh) = −C2
stab(κ)(R

⊥
κ,A,hu− u, φh)

+ (
(
|u|2 − 1

)
(R⊥

κ,A,hu− u) + u2(R⊥
κ,A,hu− u)∗ + |u|2(R⊥

κ,A,hu− u), φh)

≲ C2
stab(κ)||R

⊥
κ,A,hu− u||L2 ||φh||L2 ,

where we used (4.5). Further, by the estimate

|ε2(φh)| ≤
∫
Ω

(
2u|u− uh|2 + (u− uh)

2u∗ − |u− uh|2(u− uh)
)
ϕh∗ dx

≲
(
||u− uh||2L4 + ||u− uh||3L6

)
||φh||L2

we obtain the claim. □

This already yields us the best-approximation result in the H1
κ,A-norm.

Theorem 5.2. Let Assumption 4.1 hold, and let u be a minimizer of (1.1) and uh ∈ Vh,iu a
minimizer of (4.3). For h sufficiently small, we obtain the following quasi best-approximation
results.

(a) If Ω ⊂ R3, then it holds

||u− uh||H1
κ,A

≲
(
1 + hsκρu,A(κ)

(
1 + κ

1
sh

))
||R⊥

κ,A,hu− u||H1
κ,A

with constants independent of κ and h.

(b) If Ω ⊂ R2, then it holds

||u− uh||H1
κ,A

≤
(
1 + h

1
2+sκρu,A(κ)(1 + κ

2
1+2sh)

)
||R⊥

κ,A,hu− u||H1
κ,A

with constants independent of κ and h.

In particular, we observe that for h is sufficiently small ||u− uh||H1
κ,A

≲ ||R⊥
κ,A,hu− u||H1

κ,A
.
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Proof. We employ the lower bound in Lemma 3.7 and the estimates in Lemma 5.1

|| 1
κ
∇(R⊥

κ,A,hu− uh)||2L2 + C2
stab(κ)||R

⊥
κ,A,hu− uh||2L2

≲ ρu,A(κ)⟨∂2uE(u)R⊥
κ,A,hu− uh,R

⊥
κ,A,hu− uh⟩

≤ ρu,A(κ)
(
C2

stab(κ)||R
⊥
κ,A,hu− u||L2 + ||u− uh||2L4 + ||u− uh||3L6

)
||R⊥

κ,A,hu− uh||L2

≤ ρu,A(κ)Cstab(κ)||R⊥
κ,A,hu− u||L2Cstab(κ)||R⊥

κ,A,hu− uh||L2

+ ρu,A(κ)Cstab(κ)
(
||u− uh||2L4 + ||u− uh||3L6

)
Cstab(κ)||R⊥

κ,A,hu− uh||L2

and thus with Young

|| 1
κ
∇(R⊥

κ,A,hu− uh)||L2 + Cstab(κ)||R⊥
κ,A,hu− uh||L2

≲ ρu,A(κ)Cstab(κ)||R⊥
κ,A,hu− u||L2 + ρu,A(κ)Cstab(κ)

(
||u− uh||2L4 + ||u− uh||3L6

)
Form this, we conclude for h sufficiently small

|| 1
κ
∇(u− uh)||L2 + Cstab(κ)||u− uh||L2

≲ || 1
κ
∇(u− R⊥

κ,A,hu)||L2 + Cstab(κ)||u− R⊥
κ,A,hu||L2 + ρu,A(κ)Cstab(κ)||R⊥

κ,A,hu− u||L2

≲ || 1
κ
∇(u− R⊥

κ,A,hu)||L2 + ρu,A(κ)Cstab(κ)||R⊥
κ,A,hu− u||L2

For Ω ⊂ R3, we insert Lemma 4.10 (a) to eliminate the L2-norm and obtain

||u− uh||H1
κ,A

≤
(
1 + hsκρu,A(κ)

(
1 + Cstab(κ)κh

))
||R⊥

κ,A,hu− u||H1
κ,A

and the definition of Cstab(κ) gives the desired bound. Using Lemma 4.10 (b) gives the claim in
two dimensions. □

Using the estimate in H1
κ,A, we are now able to increase the convergence in the L2-norm via an

Aubin–Nitsche trick.

Theorem 5.3. Let Assumption 4.1 hold, and let u be a minimizer of (1.1) and uh ∈ Vh,iu a
minimizer of (4.3).

(a) If Ω ⊂ R3, we have the estimate

||u− uh||L2 ≲ ρu,A(κ)κhs
(
1 + Cstab(κ)κh

)
||u− uh||H1

κ,A

for h sufficiently small.

(b) If Ω ⊂ R2, we have the estimate

||u− uh||L2 ≤ ρu,A(κ)κhs+
1
2

(
1 + Cstab(κ)κh

)
||u− uh||H1

κ,A

for h sufficiently small.

Proof. We use again a duality argument, but now with ∂2uE. Denote again eh = u − uh and let
w ∈ H1(Ω) be the solution of

⟨∂2uE(u)w,φ⟩ = (eh, φ)

We then insert φ = eh to obtain

||eh||2L2 = ⟨∂2uE(u)w, eh⟩ = ⟨∂2uE(u)w − R⊥
κ,A,hw, eh⟩+ ⟨∂2uE(u)R⊥

κ,A,hw, eh⟩

≲ ||w − R⊥
κ,A,hw||H1

κ,A
||eh||H1

κ,A
+ |ε2(R⊥

κ,A,hw)|

≲ ||w − R⊥
κ,A,hw||H1

κ,A
||eh||H1

κ,A
+ ||eh||L2

(
||u− uh||L3 + ||u− uh||2L6

)
κ||R⊥

κ,A,hw||H1
κ,A

where we used the representation of ε2 in Lemma 5.1. We then use Lemma 3.8 to estimate

||R⊥
κ,A,hw||H1

κ,A
≤ ||w||H1

κ,A
≲ ρu,A(κ)||eh||L2
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as well as with Lemma 4.9 (a) (and part (b) in the case d = 2)

||w − R⊥
κ,A,hw||H1

κ,A
≲ hs

(
1 + Cstab(κ)κh

) 1
κ
||w||H1+s ≲ hsκ

(
1 + Cstab(κ)κh

)
ρu,A(κ)||eh||L2 .

Combining all this, gives

||u− uh||L2 ≲ hsκ
(
1 + Cstab(κ)κh

)
ρu,A(κ)||eh||H1

κ,A

+ ρu,A(κ)
(
||u− uh||L3 + ||u− uh||2L6

)
κ||u− uh||L2

≲ κhsρu,A(κ)
(
1 + Cstab(κ)κh

)
||eh||H1

κ,A

+ ρu,A(κ)
(
||u− uh||L3 + ||u− uh||2L6

)
κ||u− uh||L2 .

Thus, for h sufficiently small, we obtain by absorption

||u− uh||L2 ≲ ρu,A(κ)κhs
(
1 + Cstab(κ)κh

)
||eh||H1

κ,A
,

which gives the claim. □

5.2. The case of full E′′. We now turn the coupled problem and treat the approximation on u
and A together. A crucial ingredient in the latter analysis is the coercivity of the second Fréchet
derivative to estimate the discrete error. However, in the magnetic part, the error satisfies by (4.2)

divH ÊH = 0 but ÊH = PHA−AH /∈ H(div).

Hence, we cannot apply Lemma 3.11 directly. However, the coercivity can be recovered under the
resolution condition

(5.1) ρu,A(κ)Cstab(κ)H
1
2+s sufficiently small,

which is shown in the following lemma.

Proposition 5.4. Let Assumption 4.1 hold, and let (u,A) ∈ H1(Ω)×H0(curl,div) be a minimizer
of (1.1) and (uh,AH) ∈ Vh,iu × VH,0 a minimizer of (4.3). Then, there is a constant c > 0
independent of h, H, and κ such that(

1− cρu,A(κ)Cstab(κ)H
1
2+s

)
||φh,BH ||2H1

κ,A×VH,0

≲ ρu,A(κ)Cstab(κ)⟨E′′(u,A)(φh,BH), (φh,BH)⟩
for (φh,BH) ∈ Vh,iu × VH,0. In particular, E′′ is coercive on Vh,iu × VH,0 under the resolution
condition (5.1).

Proof. Let BH be given and discrete divergence free. We associate B̂ = πdivBH ∈ H0(curl,div)

such that curl B̂ = curlBH , with πdiv from (2.4), and write BH = B̂+ (BH − B̂) where the first
summand is divergence free and the second one curl- and divH-free.

We use the property of B̂ to obtain

||φh, curlBH ||2H1
κ,A×L2 = ||φh, curl B̂||2H1

κ,A×L2 ≤ ρu,A(κ)Cstab(κ)⟨E′′(u,A)(φh, B̂), (φh, B̂)⟩

and further use the expansion (φh, B̂) = (φh,BH) + (0, B̂−BH) to write

⟨E′′(u,A)(φh, B̂), (φh, B̂)⟩

= ⟨E′′(u,A)(φh,BH), (φh,BH)⟩+ 2⟨E′′(u,A)(φh, B̂), (0, B̂−BH)⟩

+ ⟨E′′(u,A)(0, B̂−BH), (0, B̂−BH)⟩

= ⟨E′′(u,A)(φh,BH), (φh,BH)⟩+ 4⟨∂u,AE(u,A)(B̂−BH), φh⟩

+ 2⟨∂2AE(u,A)(B̂−BH),BH⟩+ ⟨∂2AE(u,A)(B̂−BH), B̂−BH⟩.
The first term is precisely what we want, and for the second derivative in A we have

⟨∂2AE(u,A)(B̂−BH), B̂−BH⟩ ≲ ||B̂−BH ||2H(curl) = ||B̂−BH ||2L2 ≲
(
H

1
2+s|| curlBH ||L2

)2
,

where we used again Lemma 4.3. In the same manner we estimate

⟨∂2AE(u,A)(B̂−BH),BH⟩ ≲ H
1
2+s|| curlBH ||2L2 .
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Finally, with the representation of ∂u,AE in Lemma 3.6,d the bounds derived in Section 3, and
Assumption 4.4 we observe

⟨∂u,AE(u,A)(B̂−BH), φh⟩ ≲ ||φh||H1
κ,A

||B̂−BH ||H(curl) ≲ H
1
2+s

(
||φh||2H1

κ,A
+ || curlBH ||2L2

)
,

once again using Lemma 4.3. □

A crucial ingredient in the proofs of the error bounds is to exploit the critical point equation.
However, due to the Lagrange multiplier in (4.4), it does not hold ⟨E′(u,A), (φh,BH)⟩ = 0 for
(φh,BH) ∈ Vh,iu ×VH,0. Nevertheless, we can quantify this error in the following result.

Lemma 5.5. Let Assumption 4.1 hold, and let (u,A) ∈ H1(Ω)×H0(curl,div) be a minimizer of
(1.1) and (uh,AH) ∈ Vh,iu ×VH,0 a minimizer of (4.3). Then, it holds

⟨E′(u,A), (φh,BH)⟩ ≲ H
1
2+s|| curlBH ||L2

for (φh,BH) ∈ Vh,iu ×VH,0.

Proof. As above, we associate B̂ ∈ H0(curl,div) such that curl B̂ = curlBH , and compute with
Lemma 2.7

⟨E′(u,A), (φh,BH)⟩ = ⟨E′(u,A), (0,BH − B̂)⟩,
and Lemma 4.3 gives the claim. □

After these preparations, we now turn to the treatment of the error in the discrete minimizers.

Defining the errors êh = R⊥
κ,A,hu−uh and ÊH = PHA−AH , with Proposition 5.4 we can estimate

||êh, ÊH ||2H1
κ,A×VH,0

≲ ρu,A(κ)Cstab(κ)⟨E′′(u,A)(êh, ÊH), (êh, ÊH)⟩,

and decompose as

ε1(ψh,CH) := ⟨E′′(u,A)(R⊥
κ,A,hu− u, PHA−A), (ψh,CH)⟩,

ε2(ψh,CH) := ⟨E′′(u,A)(u− uh,A−AH), (ψh,CH)⟩.

Thus, it remains to study the two different contributions. We begin with the second one.

Lemma 5.6. Let Assumptions 4.1 and 4.4 hold, and let (u,A) ∈ H1(Ω) × H0(curl,div) be a
minimizer of (1.1) and (uh,AH) ∈ Vh,iu ×VH,0 a minimizer of (4.3). Then, it holds

|ε2(ψh,CH)| ≤ C(κ)
(
||u− uh||2L6 + ||u− uh||2H1

κ,A
+ ||A−AH ||2

 L3

)
||ψh,CH ||H1

κ,A×H(curl)

+ C̃H
1
2+s|| curlCH ||L2

with C̃ independent of κ.

Proof. We perform the expansion

ε2(ψh,CH) = ⟨E′′(u,A)(u,A), (ψh,CH)⟩ ± ⟨E′(u,A), (ψh,CH)⟩
− ⟨E′′(uh,AH)(uh,AH), (ψh,CH)⟩ ± ⟨E′(uh,AH), (ψh,CH)⟩
+ ⟨E′′(uh,AH)(uh,AH), (ψh,CH)⟩ − ⟨E′′(u,A)(uh,AH), (ψh,CH)⟩

=
(
⟨E′′(u,A)(u,A), (ψh,CH)⟩ − ⟨E′(u,A), (ψh,CH)⟩

)
−
(
⟨E′′(uh,AH)(uh,AH), (ψh,CH)⟩ − ⟨E′(uh,AH), (ψh,CH)⟩

)
+ ⟨E′′(uh,AH)(uh,AH), (ψh,CH)⟩ − ⟨E′′(u,A)(uh,AH), (ψh,CH)⟩
+ ⟨E′(u,A), (ψh,CH)⟩

≤
∣∣(⟨E′′(u,A)(u,A), (ψh,CH)⟩ − ⟨E′(u,A), (ψh,CH)⟩

)
−
(
⟨E′′(uh,AH)(uh,AH), (ψh,CH)⟩ − ⟨E′(uh,AH), (ψh,CH)⟩

)
+ ⟨E′′(uh,AH)(uh,AH), (ψh,CH)⟩ − ⟨E′′(u,A)(uh,AH), (ψh,CH)⟩

∣∣
+H

1
2+s|| curlCH ||L2 ,
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where we used that ⟨E′(uh,AH), (ψh,CH)⟩ = 0, and the estimate in Lemma 5.5. For the remaining
parts, we modify the proof of [13, Lemma 5.5] such that only ||A||L3 , ||AH ||L3 are used instead of
the H1(Ω)-norm. □

Lemma 5.7. Let Assumptions 4.1 and 4.4 hold, and let (u,A) ∈ H1(Ω) × H0(curl,div) be a
minimizer of (1.1) and (uh,AH) ∈ Vh,iu ×VH,0 a minimizer of (4.3).

(a) If Ω ⊂ R3, we have the bound

|ε1(ψh,CH)|
||ψh,CH ||H1

κ,A×H(curl)

≲
(
hsCstab(κ)κ(1 + Cstab(κ)κh)||eπ||H1

κ,A
+ ||Eπ||L2

+H
1
2+s||eπ||H1

κ,A
+ hs(

1
2+s)κ2(1 + Cstab(κ)κh)

1
2+s||eπ||H1

κ,A

+ κ2H
1
2+s||Eπ||H(curl)

)
.

(b) If Ω ⊂ R2, we have the bound

|ε1(ψh,CH)|
||ψh,CH ||H1

κ,A×H(curl)

≲
(
hsCstab(κ)κ(1 + Cstab(κ)κh)||eπ||H1

κ,A
+ ||Eπ||L2

+H
1
2+s||eπ||H1

κ,A
+ hs(

1
2+s)κ2(1 + Cstab(κ)κh)

1
2+s||eπ||H1

κ,A

+ κ2H
1
2+s||Eπ||H(curl)

)
.

In both cases the hidden constants are independent of κ, h, and H.

Proof. By the definition of the two projections and r in (3.5)

ε1(ψh,CH) = r
(
(eπ, Eπ), (ψh,CH)

)
= r1(eπ, ψh) + r2(Eπ,CH)

+ r3(Eπ, ψh) + r3(CH , eπ) + r4(Eπ, ψh) + r4(CH , eπ) + r5(Eπ, ψh) + r5(CH , eπ),

Then, by Lemma 3.9 (a)

|r1(eπ, ψh) + r2(Eπ,CH)| ≲ C2
stab(κ)||eπ||L2 ||ψh||L2 + ||Eπ||L2 ||CH ||L2 .

This further is estimated by

||eπ||L2 ≲ hsκ(1 + Cstab(κ)κh)||eπ||H1
κ,A
, d = 3,

||eπ||L2 ≲ h
1
2+sκ(1 + Cstab(κ)κh)||eπ||H1

κ,A
, d = 2.

We first consider the case d = 3. By Lemma 3.9 (a) and (b)

|r3(Eπ, ψh) + r3(CH , eπ)|
≲ ||Eπ||L2 ||ψh||H1

κ,A
+ ||eπ||

L
3

1+2s
||CH ||H(curl)

≲ ||Eπ||L2 ||ψh||H1
κ,A

+ hs(
1
2+s)κ(1 + Cstab(κ)κh)

1
2+s||eπ||H1

κ,A
||CH ||H(curl).

Further, by Lemma 3.9 (a) and (c)

|r4(Eπ, ψh) + r4(CH , eπ)| ≲ ||Eπ||L2 ||ψh||H1
κ,A

+ ||eπ||H1
κ,A

||πdivCH −CH ||H(curl)

+ κ||eπ||
L

3
1+s

||CH ||H(curl)

≲ ||Eπ||L2 ||ψh||H1
κ,A

+H
1
2+s||eπ||H1

κ,A
||CH ||H(curl)

+ hs(
1
2+s)κ2(1 + Cstab(κ)κh)

1
2+s||eπ||H1

κ,A
||CH ||H(curl),
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where we used Lemmas 4.2 and 4.11 in the last step. Finally, we use Lemma 3.9 (d) and the same
estimates to obtain

|r5(Eπ, ψh) + r5(CH , eπ)| ≲ κ||CH ||
L

3
1−s

||eπ||
L

3
1+s

+ ||Eπ||L2 ||ψh||H1
κ,A

+ κ2||ψh||H1
κ,A

||πdivEπ − Eπ||L2

≲ hs(
1
2+s)κ2(1 + Cstab(κ)κh)

1
2+s||eπ||H1

κ,A
||CH ||H(curl)

+ ||Eπ||L2 ||ψh||H1
κ,A

+ κ2H
1
2+s||ψh||H1

κ,A
||Eπ||H(curl).

Collecting all terms, then yields

|ε1(ψh,CH)|
||ψh,CH ||H1

κ,A×H(curl)

≲
(
hsCstab(κ)κ(1 + Cstab(κ)κh)||eπ||H1

κ,A

+ ||Eπ||L2 + hs(
1
2+s)κ(1 + Cstab(κ)κh)

1
2+s||eπ||H1

κ,A

+H
1
2+s||eπ||H1

κ,A
+ hs(

1
2+s)κ2(1 + Cstab(κ)κh)

1
2+s||eπ||H1

κ,A

+ κ2H
1
2+s||Eπ||H(curl)

)
.

Next, let d = 2. By Lemma 3.9 (a) and (b)

|r3(Eπ, ψh) + r3(CH , eπ)| ≲ ||Eπ||L2 ||ψh||H1
κ,A

+ ||eπ||L2 ||CH ||H(curl)

Further, by Lemma 3.9 (a) and (c)

|r4(Eπ, ψh) + r4(CH , eπ)| ≲ ||Eπ||L2 ||ψh||H1
κ,A

+ ||eπ||H1
κ,A

||πdivCH −CH ||H(curl)

+ κ||eπ||L2 ||CH ||H(curl)

≲ ||Eπ||L2 ||ψh||H1
κ,A

+H
1
2+s||eπ||H1

κ,A
||CH ||H(curl)

+ h
1
2+sκ2(1 + Cstab(κ)κh)||eπ||H1

κ,A
||CH ||H(curl),

where we used Lemmas 4.2 and 4.10 (b) in the last step. Finally, we use Lemma 3.9 (d) and the
same estimates to obtain

|r5(Eπ, ψh) + r5(CH , eπ)| ≲ κ||CH ||L4 ||eπ||L2 + ||Eπ||L2 ||ψh||H1
κ,A

+ κ||ψh||H1
κ,A

||πdivEπ − Eπ||L2

≲ h
1
2+sκ2(1 + Cstab(κ)κh)||eπ||H1

κ,A
||CH ||H(curl)

+ ||Eπ||L2 ||ψh||H1
κ,A

+ κH
1
2+s||ψh||H1

κ,A
||Eπ||H(curl).

Collecting all terms, then yields

|ε1(ψh,CH)|
||ψh,CH ||H1

κ,A×H(curl)

≲
(
h

1
2+sCstab(κ)κ(1 + Cstab(κ)κh)||eπ||H1

κ,A

+ ||Eπ||L2

+H
1
2+s||eπ||H1

κ,A
+ h

1
2+sκ2(1 + Cstab(κ)κh)||eπ||H1

κ,A

+ κH
1
2+s||Eπ||H(curl)

)
.

□

Finally, we can summarize our finding in our main result.

Theorem 5.8. Let Assumptions 4.1 and 4.4 hold, and let (u,A) ∈ H1(Ω) × H0(curl,div) be a
minimizer of (1.1) and (uh,AH) ∈ Vh,iu × VH,0 a minimizer of (4.3) such that they satisfy the
assertion of Proposition 4.7.

(a) If Ω ⊂ R3, and h,H sufficiently small, in particular such that the resolution conditions

ρu,A(κ)Cstab(κ)
(
hsCstab(κ)κ+ hs(

1
2+s)κ2 +H

1
2+sκ2

)
≲ 1
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are satisfied, we have

||u− uh||H1
κ,A

+ ||A−AH ||H(curl)

≲ ||R⊥
κ,A,hu− u||H1

κ,A
+ ||PHA−A||H(curl) + ρu,A(κ)Cstab(κ)||PHA−A||L2

with constants independent of κ, h and H.

(b) If Ω ⊂ R2, and h,H sufficiently small, in particular such that the resolution conditions

ρu,A(κ)Cstab(κ)
(
h

1
2+sCstab(κ)κ+ h

1
2+sκ2 +H

1
2+sκ

)
≲ 1

are satisfied, we have

||u− uh||H1
κ,A

+ ||A−AH ||H(curl)

≲ ||R⊥
κ,A,hu− u||H1

κ,A
+ ||PHA−A||H(curl) + ρu,A(κ)Cstab(κ)||PHA−A||L2

with constants independent opf κ, h and H.

Proof. We split the error in the projection error and the discrete error and combine Proposition 5.4
with Lemmas 5.6 and 5.7. Absorption of the higher order terms gives the result. □

Remark 5.9. Let us note that one would like to remove the L2-norm together with the constants
in front of it. However, from the regularity we derived so far for AH , we cannot hope to obtain an
increased convergence in the L2-norm using Nédélec of first kind. If we are able to show additional
regularity and use elements of the second kind, one can hope for an additional H in front of the
L2-Norm, see for example [35, Theorem 8.15], and then hide this term under a resolution condition.

Conclusion 5.10. Let the assumptions of Theorem 5.8 hold.

(a) If Ω ⊂ R3, we have

||u− uh||H1
κ,A

+ ||A−AH ||H(curl) ≲ κhs + (1 + ρu,A(κ)Cstab(κ))H
1
2+s

with constants independent of κ, h and H.

(b) If Ω ⊂ R2, we have

||u− uh||H1
κ,A

+ ||A−AH ||H(curl) ≲ κh
1
2+s + (1 + ρu,A(κ)Cstab(κ))H

1
2+s

with constants independent opf κ, h and H.
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Appendix A. Proof of Lemma 4.3

A.1. Discrete Helmholtz decomposition. We follow the presentation in [35, Lemma 7.6] for
the the Nédélec space which is H0(curl)-conforming. Here, the discrete divergence is defined using
a discrete subspace of H1

0 (Ω). Recalling the definition of (4.1), we have for RH ⊂ H(curl) the
discrete Helmholtz decomposition

RH = VH,0 ⊕∇VH
with the standard Lagrange finite element space VH . We further introduce the div-conforming
finite element space WH , which satisfies curlRH ⊂ WH . Let us now define the discrete curl
denoted by curlH : WH → RH for zH ∈WH by

(curlH zH , wH) = (zH , curlwH) for all wH ∈ RH .
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Lemma A.1. Any function in BH ∈ RH can be uniquely written as

BH = curlH zH +∇φH

for zH ∈WH and φH ∈ VH . In particular, if BH ∈ VH,0, then

BH = curlH zH .

Proof. Since ∇VH is the kernel of curl restricted to RH , we obtain

ran(curlH) = (ker(curl
∣∣
RH

))⊥ = (∇VH)⊥

we have that VH,0 = (∇VH)⊥ ⊕∇VH = curlHWH ⊕∇VH and hence the assertion. □

A.2. Commuting projections. We provide now a proof following the presentation in [35, Lemma 7.6].
We therefore introduce the interpolations

rH : H(curl) → RH , wH : H(div) →WH ,

which satisfy the commuting property: for all C ∈ H(curl)

(A.1) curl(rHC) = wH(curlC).

A.3. Proof of the properties of the projection πdiv.

Proof of Lemma 4.3. We reduce the claim in (b) to the estimate in (a). The idea is to expand as

||BH ||L2 ≤ ||C−BH ||L2 + ||C||L2

for some suitable C, where we follow the proof of [35, Lemma 7.6].

(b) We use C = πdivBH from Theorem 2.1, which in particular satisfies by [35, Theorem 3.50 &
Cor. 3.51]

||C||
H

1
2
+s ≲ || curlC||L2

as well as by (A.1)

(A.2) curl rHC = wH(curlC) = wH(curlBH) = curlBH =⇒ curl(rHC−BH) = 0.

This directly yields

||C||L2 ≲ || curlC||L2 = || curlBH ||L2 ,

and thus we are left to estimate the difference C−BH as in (a).

(a) For this, we compute

||C−BH ||2L2 = (C−BH ,C−BH)

= (C−BH ,C− rHC) + (C, rHC−BH)− (BH , rHC−BH)

≤ ||C−BH ||L2 ||C− rHC||L2 + (C, rHC−BH)− (BH , rHC−BH)

and show that the two inner products in fact vanish.

By Lemma A.1, it holds for some zH ∈WH

(BH , rHC−BH) = (zH , curl(rHC−BH)) = 0,

By the Helmholtz decomposition in Theorem 2.1 (b) and the fact that divC = 0, there exists

C̃ ∈ H0(curl) such that C = curl C̃ and hence

(C, rHC−BH) = (curl C̃, rHC−BH) = (C̃, curl(rHC−BH)) = 0,

where we again used (A.2) in the last step. In the last step, we have to estimate the projection
error of C. We have by [35, Theorem 6.6]

||C− rHC||L2 ≲ H
1
2+s(||C||

H
1
2
+s + || curlC||L2) ≲ H

1
2+s|| curlC||L2 = H

1
2+s|| curlBH ||L2 ,

and with this the assertion. □
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Appendix B. Collection of regularity estimates

In this section of the appendix, we collect several useful regularity results which are used throughout
the paper. Most of them are stated for convenience of the reader.

Lemma B.1. LetΩ ⊂ Rd and f ∈ Lp. Then f ∈W−1,q with

||f ||Lp ≲ ||f ||W−1,q = ||f ||(W 1,q′ )′ , for 1 < p, q <∞ and q =
dp

d− p
.

Further, it holds W−1,p1 ⊂W−1,p2 if p1 ≥ p2.

(a) In particular, L
3

2−s ↪→W−1, 3
1−s , d = 3 and L

4
3−2s ↪→W−1, 4

1−2s , d = 2

Proof. We note that by the choice of p, q

W 1,q′ ↪→ Lp′
,

it holds for φ ∈W 1,q′ that

(f, φ)L2 ≲ ||f ||Lp ||φ||Lp′ ≲ ||f ||Lp ||φ||W 1,q′ .

Since W−1,q =
(
W 1,q′

)′
the first claim follows. Now let p1 ≥ p2, then p

′
1 ≤ p′2 and W 1,p′

2 ⊂W 1,p′
1 .

This gives

W−1,p1 = (W 1,p′
1)′ ⊂ (W 1,p′

2)′ =W−1,p2 ,

and with this the second claim. □

B.1. General results on regularity. The next result can be found in a variant in [29, Theo-
rem 1.2], and we only adapt the proof to our case.

Proposition B.2. Let w ∈ H1(Ω) be the solution of

(∇w,∇φ) = f(φ) for all φ ∈ H1(Ω).

Then, there is a constant ε−1 > 0 such that for any p with

(a) 3
2 − ε−1 < p < 3 + ε−1 if d = 3,

(b) 4
3 − ε−1 < p < 4 + ε−1 if d = 2,

it holds that for f ∈W−1,p the solution satisfies w ∈W 1,p with

||w||W 1,p ≲ ||f ||W−1,p .

Proof. We proceed as in the proof of [29, Lemma 5.1] and let g ∈ C∞
0 (Ω) be arbitrary and consider

the dual solution v of
(∇v,∇φ) = (div g, φ)

for all φ ∈ H1(Ω). We then compute with the definition of v and w

|(∇w, g)| = |(w,div g)| = |(∇w,∇v)| = |f(v)| ≤ ||f ||W−1,p ||v||W 1,p′ ≲ ||f ||W−1,p ||g||Lp′

where we used [29, Theorem 1.2] in the last step, since p′ is in the same range as p. From this we
conclude by density

||∇w||Lp = sup
||g||

Lp′=1

(∇w, g) ≲ ||f ||W−1,p ,

and thus the claim. □

The next result is on the W 2,p-regularity in three dimensions and is taken from [12, Cor. 3.10].

Proposition B.3. Let Ω ⊂ R3, and w ∈ H1(Ω) be the solution of

(B.1) (∇w,∇φ) = (f, φ) for all φ ∈ H1(Ω).

Then, there is a constant ε0 ≥ 0 such that for f ∈ Lp with p ∈ [ 65 ,
4
3 + ε0] the solution satisfies

w ∈W 2,p with
||w||W 2,p ≲ ||f ||Lp .
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In two spatial dimensions, we have the following result from [30, Cor. 4.4.3.4] and [30, Theo-
rem 4.3.2.3].

Proposition B.4. Let Ω ⊂ R2, and w ∈ H1(Ω) be the solution of (B.1). Further, let ωmax be the
largest angle of Ω, and consider pmax defined in (2.5). Then, for p < pmax and f ∈ Lp the solution
satisfies w ∈W 2,p with

||w||W 2,p ≲ ||f ||Lp .

Finally, we state some interpolation results, used several times in the analysis.

Lemma B.5. Let w ∈W 2,p ∩ L∞ for some p ≤ 2. Then, we have w ∈ Hp =W p,2 with

||w||Hp ≲ ||w||
p
2

W 2,p ||w||
1− p

2

L∞

||w||W 1,2p ≲ ||w||
1
2

W 2,p ||w||
1
2

L∞

In addition, we have by Sobolev embedding

||w||
H

7p−6
2p

≲ ||w||W 2,p , d = 3,

||w||
H

3p−2
p

≲ ||w||W 2,p , d = 2

Proof. Let si ≥ 0 and qi ∈ (1,∞) and define for α ∈ (0, 1)

s = αs1 + (1− α)s2,
1

q
=
α

q1
+

1− α

q2
.

Then, for w ∈W s1,q1 ∩W s2,q2 we have w ∈W s,q, and it holds the estimate

||w||W s,q ≲ ||w||αW s1,q1 ||w||1−α
W s2,q2

Then, our claim follows by applying the result with s1 = 2, s2 = 0, p1 = p, p2 = ∞ and α = p
2 , and

s1 = 2, s2 = 0, p1 = p, p2 = ∞ and α = 1
2 . □

Appendix C. Auxiliary result

Lemma C.1. Let α > 0 and consider the sequence

qk+1 =
2αqk

α+ βqk
with q0 ∈ (0,

α

β
].

Then, the sequence converges monotonically to α
β .

Proof. Define the function f(x) = 2αx
α+βx , and note that

x = f(x) =⇒ x =
α

β
,

and thus in the case of convergence the limit is q = α
β . Further, we observe that f is positive and

monotonically increasing for x > 0 such that if qk ≤ α
β , it holds

qk+1 = f(qk) ≤ f(
α

β
) =

α

β
,

and thus by induction the sequence is bounded form above by α
β . Further, for qk ≤ α

β we have

qk+1

qk
=

2α

α+ βqk
≥ 2α

α+ α
= 1,

and hence we have that the sequence is monotonically increasing. This gives the claim. □
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References

[1] A. A. Abrikosov, Nobel lecture: Type-II superconductors and the vortex lattice, Rev. Mod. Phys. 76 (2004),

no. 3,1, 975–979. https://doi.org/10.1103/RevModPhys.76.975.

[2] A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic
Maxwell equations, Math. Comp. 68 (1999), no. 226, 607–631. MR1609607

[3] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth

domains, Math. Methods Appl. Sci. 21 (1998), no. 9, 823–864. MR1626990
[4] R. E. Bank and H. Yserentant, On the H1-stability of the L2-projection onto finite element spaces, Numer.

Math. 126 (2014), no. 2, 361–381. MR3150226
[5] S. Bartels, A posteriori error analysis for time-dependent Ginzburg-Landau type equations, Numer. Math. 99

(2005), no. 4, 557–583. MR2121069

[6] , Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices, M2AN
Math. Model. Numer. Anal. 39 (2005), no. 5, 863–882. MR2178565

[7] S. Bartels, R. Müller, and C. Ortner, Robust a priori and a posteriori error analysis for the approximation of

Allen-Cahn and Ginzburg-Landau equations past topological changes, SIAM J. Numer. Anal. 49 (2011), no. 1,
110–134. MR2764423
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