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A NON-ITERATIVE DOMAIN DECOMPOSITION TIME

INTEGRATOR FOR LINEAR WAVE EQUATIONS

TIM BUCHHOLZ AND MARLIS HOCHBRUCK

Abstract. We propose and analyze a non-iterative domain decomposition in-
tegrator for the linear acoustic wave equation. The core idea is to combine an

implicit Crank–Nicolson step on spatial subdomains with a local prediction

step at the subdomain interfaces. This enables parallelization across space
while advancing sequentially in time, without requiring iterations at each time

step. The method is similar to the methods in [2, 7], which have been de-

signed for parabolic problems. Our approach adapts them to the case of the
wave equation in a fully discrete setting, using linear finite elements with

mass lumping. Compared to explicit schemes, our method permits signifi-

cantly larger time steps and retains high accuracy. We prove that the result-
ing method achieves second-order accuracy in time and global convergence of

order O(h + τ2) under a CFL-type condition, which depends on the overlap

width between subdomains. We conclude with numerical experiments which
confirm the theoretical results.

1. Introduction

Wave equations are central to modeling a wide range of physical phenomena,
including acoustic, electromagnetic, and elastic wave propagation, cf. [9, Chapter
1]. Numerical simulations of such problems pose significant challenges, particularly
due to the computational cost associated with resolving wave dynamics accurately
over large spatial and temporal domains.

A critical aspect of simulating wave propagation is the time integration process.
Broadly, time-stepping methods fall into two categories: explicit and implicit meth-
ods. Explicit methods are only conditionally stable: Step size restrictions, often
also called Courant-Friedrichs-Lewy (CFL) conditions, force the choice of the time
step to directly depend (linearly or worse) on the space discretization width. Unfor-
tunately, the need for numerous tiny steps can lead to a significant computational
burden, slowing down the simulation process. Implicit methods, in contrast, are
unconditionally stable in many cases and permit larger time steps. However, im-
plicit methods incur a higher computational cost per step, as they require solving a
system of equations at each step. This cost becomes particularly pronounced when
dealing with three-dimensional or finely resolved two-dimensional problems.

To address these computational challenges, we propose a non-iterative domain
decomposition (DD) method for time integration of a finite element discretization
of the linear acoustic wave equation. Specifically, we consider the first-order formu-
lation of the linear acoustic wave equation on an open, polygonal domain Ω ⊂ Rm,
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given by


∂tu = v, ∂tv = Lu+ f in Ω× (0, T ],

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω,

u(·, t)
∣∣
∂Ω

= 0 for t ∈ (0, T ],

(1)

with Lu = ∇ · (κ2∇u), a constant wave propagation speed κ > 0 and final time T .
The differential operator L is defined on its domain D(L) = H2(Ω) ∩H1

0 (Ω). For
the space discretization, we consider linear finite elements with mass lumping on a
triangular mesh.

Domain decomposition methods are well-established tools for solving spatially
discretized partial differential equations (PDEs) by splitting the spatial domain into
subdomains, often enabling parallel computation. Classical Schwarz methods itera-
tively solve stationary problems by exchanging boundary data between subdomains.
An overview of such methods can be found in [15] and [18], respectively.

For time-dependent problems, Schwarz waveform relaxation (SWR) methods
extend this concept by integrating the PDE independently in each subdomain and
exchanging interface data iteratively [14,16,17,21]. However, their iterative nature
introduces a computational overhead that conflicts with the goal of reducing the
computational cost of the time integration.

We follow a non-iterative approach motivated by [2] for parabolic problems which
is based on an overlapping decomposition of the spatial domain. Coupling between
the subdomains is established via artificial boundary conditions obtained from local
extrapolation at the interfaces in each time step. The authors of [2] show that this
domain splitting method is stable and exhibits optimal order of convergence if the
overlap regions between the subdomains are sufficiently large. Related non-iterative
methods are discussed in [7, 8].

Another non-iterative DD approach for hyperbolic problems is tent pitching
[10, 19, 20] in which space-time domains are constructed incrementally with tent-
shaped subdomains, adhering to causality constraints. Yet, this can be complex
for non-constant coefficients and lacks straightforward parallelization due to sub-
domain solution dependencies. A different approach relying on finite propagation
speed and superposition principles was recently proposed in [13]. Similar to our con-
vergence analysis, the authors of [13] show convergence against the Crank–Nicolson
scheme and utilize exponential decay in space. However, their localized implicit
time stepping method requires significant larger overlap regions than the scheme
presented here.

In this work, we adapt the domain splitting method from [2] to the setting of the
linear acoustic wave equation in first order formulation. In this method, which we
call domain splitting method hereafter, we divide the spatial domain into overlap-
ping subdomains on which the Crank–Nicolson method is applied independently.
We use a local variant of the leapfrog scheme for the prediction of boundary data
on the subdomain interfaces.

We prove that the proposed domain splitting method achieves second-order accu-
racy in time and overall convergence of order O(h+τ2) under a CFL-type condition
that depends on the wave propagation speed, the spatial mesh size, and the width
of the overlap between subdomains. Compared to the explicit leapfrog scheme, the
proposed method allows O(ℓ) bigger time steps, where ℓ describes the number of
mesh layers within the overlap. At the same time the domain splitting method re-
tains convergence of order O(h+τ2), given sufficient regularity of the exact solution,
the initial data, and the source term.
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The paper is organized as follows. In Section 2 we first introduce some notation
and discuss standard space and second-order time discretizations on the full spatial
domain. We then construct the domain splitting scheme in Section 3 and present
the main result in Section 4. The subsequent error analysis spans Sections 5 to 8.
In Section 5, we bound the error introduced by the predictions at the boundaries
of the subdomains. In Section 6, we show that the local error can be interpreted
as a solution of a stationary problem, from which we deduce an exponential decay
in space. Section 7 gathers some properties of the averaging process, which is
necessary to obtain a globally continuous approximation. In Section 8, we derive
an error recursion and conclude the error analysis with the proof of the main result.
Finally, we present numerical experiments in Section 9.

2. Discretization and notation

2.1. Discretization in space. Let Th = Th(Ω) be a (shape- and contact-regular)
matching simplicial mesh of Ω, see, e.g. [11, Definition 8.11]. The parameter h
denotes the minimal diameter of the elements in Th. We use continuous linear
finite elements and define the approximation spaces

Wh(Ω) = {q ∈ H1(Ω) : ∀K ∈ Th : q
∣∣
K
∈ P1} and Wh,0(Ω) =Wh(Ω) ∩H1

0 (Ω),

where P1 denotes the set of all linear polynomials in m variables.
Let Θ ⊆ Ω such that

(2) K ∩Θ = K or K ∩Θ = ∅ for all K ∈ Th.
We denote the submesh containing all elements in Θ by Th(Θ).

Moreover, we define the set of all nodal points of the triangulation Th by

NΩ :=
⋃

K∈Th

{xK,j}m+1
j=1 ,

where {xK,j}m+1
j=1 are the vertices of the element K ∈ Th. The set of interior nodal

points of Θ ⊆ Ω satisfying (2) is given by NΘ = NΩ ∩ Θ and for Θ = Ω we write
N = NΩ.

2.2. Norms and bilinear forms. For Θ ⊆ Ω with (2) we denote the standard
L2(Θ) inner product by (·, ·)Θ = (·, ·)L2(Θ) and define the bilinear form

(3) aΘ
(
q, p
)
:=

∫
Θ

κ2∇q · ∇pdx, for q, p ∈ H1(Θ).

We formulate (1) weakly by seeking
(
u, v
)⊤ ∈ H1

0 (Ω)× L2(Ω) such that

(4)
(∂tu, φ)Ω = (v, φ)Ω , for all φ ∈ H1

0 (Ω),

(∂tv, ψ)Ω = aΩ
(
u, ψ

)
+ (f, ψ)Ω , for all ψ ∈ H1

0 (Ω).

Moreover, we use mass-lumping, i.e., we approximate the L2 inner product cell-
wise by a (Lobatto-)quadrature approximation, see, e.g., [6]. If we denote the
nodal interpolation on a single cell K by IKh , we can express the mass-lumped
inner product by

⦅
qh, ph

⦆
Θ
=

∑
K∈Th(Θ)

∫
K

IKh (qhph) dx, qh, ph ∈Wh(Θ).

On a mesh consisting of intervals, triangles, or tetrahedrons we can give the mass-
lumped bilinear form

⦅
·, ·
⦆
Θ
explicitly by the following representation

(5)
⦅
qh, ph

⦆
Θ
=

∑
K∈Th(Θ)

m+1∑
j=1

|K|
m+ 1

qh(xK,j)ph(xK,j),
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see, e.g., [5, Chapter 4]. The mass-lumped inner product induces a norm onWh(Ω),
which is equivalent to the standard L2(Ω)-norm, i.e.

(6) C−1ML

⦅
qh, qh

⦆1/2
Ω
≤ ∥qh∥L2(Ω) ≤ CML

⦅
qh, qh

⦆1/2
Ω
, qh ∈Wh(Ω),

see, e.g., [29, Chapter 15] and [27, Section 3 and 4].
We then introduce the finite-dimensional Hilbert spaces Vh(Θ), Hh(Θ) by

Vh(Θ) =
(
Wh(Θ), aΘ

(
·, ·
))
, Hh(Θ) =

(
Wh(Θ),

⦅
·, ·
⦆
Θ

)
with norms

∥·∥2Vh(Θ) = aΘ
(
·, ·
)

and ∥·∥2Hh(Θ) =
⦅
·, ·
⦆
Θ
,

respectively. The subspaces with a zero trace are denoted as Vh,0(Θ) and Hh,0(Θ).
The linear operator Lh : Vh,0(Ω)→ Vh,0(Ω) associated to aΩ

(
·, ·
)
is given by

(7)
⦅
Lhqh, ph

⦆
Ω
= aΩ

(
qh, ph

)
, qh, ph ∈ Vh,0(Ω).

For X(Θ) = H1(Θ)× L2(Θ) and x =
(
u, v
)⊤ ∈ X(Θ) we define∥∥x∥∥2

X(Θ)
= aΘ

(
u, u

)
+ (v, v)Θ .

Similarly, for Xh(Θ) = Vh(Θ)×Hh(Θ) and xh =
(
uh, vh

)⊤ ∈ Xh(Θ) we denote the
discrete variant using the mass-lumped scalar product by∥∥xh∥∥2Xh(Θ)

= ∥uh∥2Vh(Θ) + ∥vh∥
2
Hh(Θ).

If Θ = Ω, we drop the set Θ and write, e.g., ∥·∥X = ∥·∥X(Ω) and ∥·∥Xh
= ∥·∥Xh(Ω).

We use the L2-projection with respect to
⦅
·, ·
⦆
Ω
to approximate the right-hand side

fh(t) ≈ f(t). Note, that this projection coincides with the nodal interpolation Ih,
as

(8)
⦅
q − Ihq, wh

⦆
Ω
= 0, for q ∈ C(Ω), wh ∈ Hh.

For q ∈ H2(K) on K ∈ Th, the standard interpolation estimate

(9) |q − Ihq|1,K ≤ CIhh |q|2,K
holds with |·|α,K denoting the standard Hα-seminorms on K, see, e.g. [3, Theorem

4.4.4]. We also use the nodal interpolation Ih for the initial values, so that we have

(10) u0h = Ihu0, v0h = Ihv0, fnh = Ihf(tn).
In Xh the discrete counterpart of (4) becomes finally

(11) ∂t

(
uh
vh

)
=

(
0 I
−Lh 0

)(
uh
vh

)
+

(
0

fh(t)

)
.

2.3. Classical second-order time integration. Let τ > 0 be a given time-step
size and tn = nτ for n = 0, 1, . . . , nT with final time T = nT τ . The implicit
Crank–Nicolson scheme for the semi-discrete system (11) yields approximations

xnCN =
(
unCN, v

n
CN

)⊤ ∈ Xh given by

unCN = un−1CN +
τ

2

(
vnCN + vn−1CN

)
,(12a)

vnCN = vn−1CN −
τ

2
Lh

(
unCN + un−1CN

)
+ τf

n−1/2
h , f

n−1/2
h =

1

2
(fnh + fn−1h )(12b)

where we denote f
n−1/2
h = 1

2 (f
n
h +f

n−1
h ). For the implementation it is advantageous

to solve

(13)
(
I +

τ2

4
Lh

)
unCN =

(
I − τ2

4
Lh

)
un−1CN + τvn−1CN +

τ2

2
f
n−1/2
h

for unCN instead of solving the coupled system (12).
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The one-step formulation of the explicit leapfrog scheme applied to (11) yields

an approximation xnlf =
(
unlf, v

n
lf

)⊤ ∈ Xh given by

u
n−1/2
lf = un−1lf +

τ

2
vn−1lf(14a)

vnlf = vn−1lf − τLhu
n−1/2
lf + τf

n−1/2
h(14b)

unlf = u
n−1/2
lf +

τ

2
vnlf(14c)

If we choose a nodal basis of Wh(Ω) and assemble the mass and stiffness matrices
for (14), we get one linear system with a diagonal mass matrix in each step. We
would like to stress that this makes the method local in space. It is well known
that the leapfrog scheme suffers from a strong CFL condition, namely

(15) τ2
∥∥Lh

∥∥
Hh←Hh

≤ 4,

see, e.g., [25, Theorem 1].

3. Domain splitting scheme

The construction of our new scheme is inspired by the non-iterative DD scheme
from [2] proposed for finite element discretizations of parabolic problems. We
start by decomposing the spatial domain into non-overlapping subdomains Ωi,
i = 1, . . . , N , such that

Ω =

N⋃
i=1

Ωi.

Next, we define an overlapping decomposition with overlapping subdomains Ωδ
i

by extending Ωi with ℓ layers of elements. Here, δ denotes the minimal width of the
layers extending Ωi, see Figure 1. Obviously, we have δ ∼ ℓh for a regular mesh.

Solving the discrete wave equation (11) on each subdomain Ωδ
i requires appro-

priate boundary conditions. Hence, one time step of the domain splitting method
consists of the following three steps:

1) Prediction: We generate boundary values at all artificial boundaries ∂Ωδ
i∩

Ω by a leapfrog step, which is local in space.
2) Crank–Nicolson on subdomains: Using the predicted boundary values,

we perform one time step of the Crank–Nicolson method (12) on each of
the overlapping subdomains Ωδ

i .
3) Averaging: In this step, we restrict the subdomain solution on Ωδ

i to the
non–overlapping subdomain Ωi, i = 1, . . . , N . On the interfaces ∂Ωi ∩∂Ωj ,
we apply averaging to obtain a unique continuous solution on Ω.

We now present the three steps in detail.

3.1. Prediction. To generate boundary conditions at each of the interfaces Γδ
i =

∂Ωδ
i ∩ Ω we perform a leapfrog step. This step is fully explicit and only uses the

degrees of freedom surrounding the interface Γδ
i since mass lumping leads to a

diagonal matrix in (14).
In contrast to our approach, in [2] extrapolation in time was used locally at the

desired degrees of freedom. Using a leapfrog step for the prediction is advantageous
here, since it leads to a one-step scheme which simplifies the implementation as well
as the analysis.
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Ωδ
1

Ω2

Ω3 Ω4

δ

Ωδ
1 δ

Figure 1. Non-overlapping and overlapping decomposition for
ℓ = 3 on an equidistant mesh and for ℓ = 2 on a non-equidistant
mesh.

3.2. Crank–Nicolson step on subdomains. The prediction step provides inho-
mogeneous Dirichlet boundary conditions on all interfaces Γδ

i , i = 1, . . . , N . This
enables us to apply a Crank–Nicolson step on each subdomain Ωδ

i . Using the
Crank–Nicolson method on subdomains is considerably cheaper than on the full
domain Ω, since the linear systems of equations are smaller and can be solved in
parallel.

3.3. Averaging. Recall that NΩi
is the set of all interior nodes in Ωi, i.e., NΩi

=
N ∩ Ωi. We define the averaging operator

ζ :
N

×
i=1

Xh(Ω
δ
i )→ Xh, or ζ :

N

×
i=1

Vh(Ω
δ
i )→ Vh,

mapping a set of subdomain functions qi ∈ Xh(Ω
δ
i ) or qi ∈ Vh(Ωδ

i ), i = 1, . . . , N ,
to a global approximation by its nodal values
(16)

ζ
(
{qi}i=1,...,N

)
(xj)=


qi(xj), xj ∈ NΩi

for exactly one i ∈ {1, . . . , N},∑
k∈Jj

qk(xj)
|Jj | , xj ∈ N \

(⋃
i=1,...,N NΩi

)
,

with Jj =
{
i ∈ {1, . . . , N} : xj ∈ Ωi

}
.

Note that xj is contained in at most one set of interior nodal points NΩi
as the

subdomains Ωi, i = 1, . . . , N, are non-overlapping. Moreover, for q ∈ Vh(Ω) we
immediately see

(17) ζ
({
q
∣∣
Ωδ

i

}
i=1,...,N

)
= q,

i.e., first taking restrictions to the overlapping subdomains and then applying ζ
keeps functions in Vh(Ω) invariant.

3.4. Full algorithm. We summarize the domain splitting method in Algorithm 1.
For the initial values we assume u0, v0 ∈ H2(Ω) to give the point-wise evaluations
within the interpolation a proper meaning.

3.5. Further notation. For the subsequent error analysis, we introduce some ad-
ditional notation. By xnDS and xni we denote the approximations of Algorithm 1.
In addition, the Crank–Nicolson solution after n steps started from x0 =

(
u0, v0

)
is

denoted by xnCN. Moreover, we will make use of local in time approximations, which
are obtained by doing one time step with the Crank–Nicolson or the leapfrog scheme
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Algorithm 1: Domain splitting scheme

input: initial data u0DS = Ihu0 ∈ Vh,0, v0DS = Ihv0 ∈ Hh,

overlapping decomposition Ω =
N⋃
i=1

Ω
δ

i ,

time-step size τ , final time T = nT τ

1 n = 1

2 while n ≤ nT do
3 prediction step: prediction by ũn

lf (leapfrog step with i.c. xn−1DS )

4 for i = 1,. . . , N do
5 Crank–Nicolson on subdomains:

6 calculate xni on Ωδ
i with ũn

lf

∣∣
Γδ
i

as b.c. on Γδ
i

7 end

8 averaging step: construct global xnDS = ζ
({
xni
}
i=1,...,N

)
according to

(16)

9 update n← n+ 1

10 end
result: xnT

DS ≈ x(·, T ).

starting from the domain splitting approximation xn−1DS . These approximations are
denoted by x̃n

CN and x̃n
lf , respectively.

We summarize the notation in Table 1.

domain subdomain local in time local in time
splitting approx. Crank–Nicolson Crank–Nicolson leapfrog

in nth step

xnDS =

(
unDS

vnDS

)
xni =

(
uni
vni

)
xnCN =

(
unCN

vnCN

)
x̃n
CN =

(
ũn
CN

ṽ n
CN

)
x̃n
lf =

(
ũn
lf

ṽ n
lf

)
Table 1. Notation for different approximations

4. Main result

A main contribution of this work is to show that the domain splitting method
for approximating the solution of (11) satisfies an error bound of the form∥∥xnDS − x(tn)

∥∥
X

≲ τ2 + h

under suitable conditions on the exact solution x of (1), the right-hand side f , and
the parameters h, τ and ℓ.

A key idea is to start with comparing the domain splitting method and the
Crank–Nicolson method, since for the latter, rigorous error bounds of the full dis-
cretization exist, see [23] and [22, Example 5.3, Corollary 5.9]. More precisely, we
will show

En =
∥∥xnDS − xnCN

∥∥
Xh

≲ τ2

in the following lemma.
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Lemma 4.1. Let u0, v0 ∈ H2(Ω) ∩ H1
0 (Ω) and f ∈ L∞

(
[0, T ];H2(Ω) ∩ H1

0 (Ω)
)

and consider the domain splitting method of the previous section with a sufficiently
large overlap δ ∼ ℓh. Assume that the CFL condition

(18) τ2
∥∥Lh

∥∥
Hh←Hh

≤ 4ℓ2

holds for a time step τ ∈ (0, 1]. Then there exist constants 0 ≤ σ ≤ 1 and Cdata > 0
such that

En =
∥∥xnDS − xnCN

∥∥
Xh
≤ τ2Cdata min{eσtn − 1, σtne

στtn}

The constant Cdata is independent of h and τ , for details see Lemma 5.2 below.

The proof of this result is quite involved and postponed to Section 8.1.

Theorem 4.2 (Error bound against the exact solution). Let the assumptions of
Lemma 4.1 be fulfilled and let the solution of (1) suffice

u ∈ C4
(
[0, T ];L2(Ω)

)
∩ C3

(
[0, T ];H1

0 (Ω)
)
∩ C2

(
[0, T ];H2(Ω)

)
∩ C

(
[0, T ];D(L2)

)
.

Then, the error of the domain splitting scheme satisfies∥∥xnDS − x(tn)
∥∥
X

≲ τ2 + h.

Proof. Let Jh be the projection from X to Xh obtained by taking a Ritz projec-
tion Rh (see, e.g., [12, Section 32.4]) in both components. Then, by the triangle
inequality, we can estimate∥∥x(tn)−xnDS

∥∥
X
≤
∥∥x(tn)−Jhx(tn)∥∥X+CML

∥∥Jhx(tn)−xnCN

∥∥
Xh

+CML

∥∥xnCN−xnDS

∥∥
Xh
,

with CML > 0 from (6). For the first term we can apply standard approximation
results to obtain∥∥x(tn)− Jhx(tn)∥∥X =

(∣∣u(tn)−Rhu(tn)
∣∣2
H1(Ω)

+
∥∥∂tu(tn)−Rh(∂tu(tn))

∥∥2
L2(Ω)

)1/2
≲ h

(∥∥u(tn)∥∥2H2(Ω)
+
∥∥∂tu(tn)∥∥2H1(Ω)

)1/2
,

see, e.g., [12, Theorem 32.15 and 33.2]. For the second term, we have∥∥xnCN − Jhx(tn)
∥∥
Xh

≲
√
2
(
h∥u0∥H2(Ω) + h∥v0∥H1(Ω) +

τ2

8

∫ tn+1

0

∥∂3t x(s)∥X ds

+ hτ

n∑
j=1

max
s∈[tj ,tj+1]

∥∂2t u(s)∥H1(Ω)

+ hτ

n∑
j=1

∥Lu(tj)∥H2(Ω) + ∥Lu(tj+1)∥H2(Ω)

)
,

from [23, Section 4.8] and [22, Section 5.3 and Corollary 5.9].
Finally, the bound for the third term follows from Lemma 4.1. □

5. Prediction error

A key part of the error analysis is estimating the prediction error at each step,
which is challenging because each step begins with a solution that has been cut and
reassembled along the interface, offering little regularity. To address this, we aim
to analyze the prediction error globally in space, but only locally in time. This is
done by using equivalent formulations of the leapfrog and Crank–Nicolson methods
on Xh, which can be found in [9, Sections 11.1 and 11.2].
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Lemma 5.1. a) The Crank–Nicolson method (12) is equivalent to

(19) R−

(
unCN

vnCN

)
= R+

(
un−1CN

vn−1CN

)
+ τ

(
0

f
n−1/2
h

)
,

where

R− =

(
I − τ

2 I
τ
2Lh I

)
, R+ =

(
I τ

2 I
− τ

2Lh I

)
.

b) The leapfrog method (14) is equivalent to

(20) R̂−

(
unlf
vnlf

)
= R̂+

(
un−1lf

vn−1lf

)
+ τ

(
0

f
n−1/2
h

)
,

where

R̂− =

(
I − τ

2 I
τ
2Lh I− τ2

4 Lh

)
R̂+ =

(
I τ

2 I

− τ
2Lh I− τ2

4 Lh

)
Moreover, we define

(21) R = R−1− R+ and R̂ = R̂−1− R̂+.

We start with a stability result for the Crank–Nicolson method, which makes
use of the inverse inequality

(22) ∥Lhqh∥Hh
≤ Cinvκh

−1∥qh∥Vh
≤ C2

invκ
2h−2∥qh∥Hh

,

see, e.g., [11, Lemma 12.1]. For a function q ∈ H2(Ω) we moreover use, that

(23)
∥∥(Ih −Rh)q

∥∥
Vh
≤ CRh

h∥q∥H2(Ω),

see, e.g., [3, Theorem 4.4.20 and 8.5.3]. Lastly, for all p ∈ H2(Ω) it holds that
ph = Ihp satisfies

(24) ∥L1/2
h ph∥Hh

= ∥Ihp∥Vh
≤ CInt∥p∥H2(Ω),

see, e.g., [11, Section 11.5.1]. Note here that we could also require p ∈ W 1,s(Ω)
with s > m, since we only need an embedding into C0(Ω) to make Ihp well defined,
see, e.g. [3, Theorem 4.4.4].

Lemma 5.2. Let u0, v0 ∈ D(L) and f ∈ L∞
(
[0, T ];D(L)

)
. With u0CN = u0h and

v0CN = v0h from (10), the Crank–Nicolson approximations (19) satisfy

(25)
(∥∥L1/2

h un−1CN

∥∥2
Vh

+
∥∥L1/2

h vn−1CN

∥∥2
Hh

)1/2
+
∥∥∥τ
2
L
1/2
h

(
f
n−1/2
h

)∥∥∥
Hh

≤ Cdata,

with Cdata = Cdata(u
0, v0, κ, f, tn) independent of h.

Proof. By the discrete variation-of-constants formula, we have(
un−1CN

vn−1CN

)
= Rn−1

(
u0CN

v0CN

)
+ τ

n−1∑
j=1

Rn−jR−1−

(
0

f
j−1/2
h

)
.

It is well known that∥∥R∥∥
Xh←Xh

= 1 and
∥∥R−∥∥Xh←Xh

≤ 1

so that we obtain∥∥∥(L1/2
h un−1CN

L
1/2
h vn−1CN

)∥∥∥
Xh

≤
∥∥∥(L1/2

h u0CN

L
1/2
h v0CN

)∥∥∥
Xh

+ τ

n−1∑
j=0

∥∥∥L1/2
h f jh

∥∥∥
Hh

.
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It remains to bound ∥L1/2
h u0CN∥Vh

, ∥L1/2
h v0CN∥Hh

, and ∥L1/2
h f jh∥Hh

in terms of the
initial values and the inhomogeneity. Recall that the Ritz projection Rh satisfies

(26)
∥∥LhRhϕ

∥∥
Hh

=
∥∥Lϕ∥∥

L2(Ω)
,

for all ϕ ∈ D(L), since
⦅
LhRhϕ, ψh

⦆
Ω
= aΩ

(
Rhϕ, ψh

)
= aΩ

(
ϕ, ψh

)
= (Lϕ, ψh)Ω , for all ψh ∈ Hh.

Hence, we have from (22) that∥∥L1/2
h u0CN

∥∥
Vh

=
∥∥LhIhu0

∥∥
Hh
≤
∥∥Lh(Ih −Rh)u

0
∥∥
Hh

+
∥∥LhRhu

0
∥∥
Hh

≤ Cinvh
−1κ

∥∥(Ih −Rh)u
0
∥∥
Vh

+
∥∥Lu0∥∥

L2(Ω)

≤ (CIntCRh
+ 1)κ

∥∥u0∥∥
H2(Ω)

,

since u0 ∈ D(L) ⊂ H2(Ω) by assumption and (23). The remaining bounds in the
Hh-norm follow directly from (24) and using that f ∈ L∞([0, T ];D(L)). Setting all
these bounds together yields an upper bound for (25) given by
(27)
Cdata =

(
CinvCRh

+1
)
κ∥u0∥H2(Ω)+CIntκ∥v0∥H2(Ω)+ tnCIntκ max

j=0,...,n
∥f(tj)∥H2(Ω) .

□

Based on this stability result, we can bound the prediction error
∥∥x̃n

CN − x̃n
lf

∥∥2
Xh

which is global in space but local in time (we only consider one time step of the
Crank–Nicolson and the leapfrog method starting from the domain splitting ap-
proximation xn−1DS ).

Lemma 5.3. Let the assumptions of Lemma 5.2 and in addition the CFL condition
(18) be satisfied. Then it holds∥∥x̃n

CN − x̃n
lf

∥∥
Xh
≤Mℓ

(∥∥xn−1DS − x
n−1
CN

∥∥
Xh

+ τCdata

)
,

with a constant Mℓ only depending on ℓ.

Proof. We rewrite the difference we are interested in with Lemma 5.1 by

(28)
x̃n
CN − x̃n

lf =
(
R− R̂

)
xn−1DS + τ

(
R−1− − R̂−1−

)
g
n−1/2
h

=
(
R− R̂

)(
xn−1DS − x

n−1
CN

)
+
(
R− R̂

)
xn−1CN + τ

(
R−1− − R̂−1−

)
g
n−1/2
h

with g
n−1/2
h =

(
0

f
n−1/2
h

)
. A simple calculation shows

R−1− − R̂−1− =
τ2

4

(
A−1h Lh

A−1h Lh

)(
τ2

4 Lh − τ
2 I

τ
2Lh −I

)
,

and

R− R̂ =
τ2

4

(
A−1h L2

h

A−1h L2
h

)( τ2

2 I τ3

4 I

−τ I τ2

2 I

)
,

where we denote Ah = I + τ2

4 Lh. Since for α ∈ [0, 2], there holds

0 ≤ ξα/2

1 + ξ
≤ 1, for all ξ ≥ 0,

it follows that

τ2
∥∥A−1h Lh

∥∥
Hh←Hh

≤ 4 and τ2
∥∥A−1h Lh

∥∥
Vh←Vh

≤ 4.
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From this and (18) we can derive for x =
(
u, v
)⊤

(29)∥∥(R− R̂)x∥∥2
Xh

=
∥∥∥τ2
4
A−1h L2

h

(τ2
2
u+

τ3

4
v
)∥∥∥2

Vh

+
∥∥∥τ2
4
A−1h L2

h

(
−τu+

τ2

2
v
)∥∥∥2

Hh

≤ 2
(∥∥τ2

2
Lhu

∥∥2
Vh

+
∥∥τL1/2

h u
∥∥2
Vh

+
∥∥τL1/2

h v
∥∥2
Hh

+
∥∥τ2
2
Lhv

∥∥2
Hh

)
≤M2

ℓ

(∥∥u∥∥2
Vh

+
∥∥v∥∥2

Hh

)
=M2

ℓ

∥∥x∥∥2
Xh

with a generic constant Mℓ only depending on ℓ. Alternatively, we can also keep a
prefactor τ by using

(30)
∥∥(R− R̂)x∥∥

Xh
≤Mℓτ

(∥∥L1/2
h u

∥∥2
Vh

+
∥∥L1/2

h v
∥∥2
Hh

)1/2
.

Analogously, we derive for g =
(
0, f
)⊤

(31)∥∥(R−1− − R̂−1− )g∥∥2Xh
≤
∥∥τ3
8
A−1h L

3/2
h f

∥∥2
Hh

+
∥∥τ2
4
A−1h Lhf

∥∥2
Hh
≤M2

ℓ

∥∥τ
2
L
1/2
h f

∥∥2
Hh
.

From (28) we deduce

(32)

∥∥x̃n
CN − x̃n

lf

∥∥
Xh
≤
∥∥(R− R̂)(xn−1DS − x

n−1
CN

)∥∥
Xh

+
∥∥(R− R̂)xn−1CN

∥∥
Xh

+ τ
∥∥(R−1− − R̂−1− )gn−1/2h

∥∥
Xh
.

For the first term we use (29) to get∥∥(R− R̂)(xn−1DS − x
n−1
CN

)∥∥
Xh
≤Mℓ

∥∥xn−1DS − x
n−1
CN

∥∥
Xh
,

while we take (30) for the second term to obtain∥∥(R− R̂)xn−1CN

∥∥
Xh
≤Mℓτ

(∥∥L1/2
h un−1CN

∥∥2
Vh

+
∥∥L1/2

h vn−1CN

∥∥2
Hh

)1/2
,

and (31) to bound∥∥(R−1− − R̂−1− )gn−1/2h

∥∥
Xh
≤Mℓ

∥∥τ
2
L
1/2
h f

n−1/2
h

∥∥
Hh
.

Putting these estimates together in (32) and using Lemma 5.2 proves the claim. □

6. Local deviation from global Crank–Nicolson approximation

Next, we investigate the local Crank–Nicolson approximations on all subdomains.
After the for loop in Algorithm 1 we end up with subdomain approximations xni
on each of the overlapping subdomains Ωδ

i , which we now compare to the global in
space Crank–Nicolson approximation x̃n

CN given in (12) on Ω. We refer to Table 1
for an overview on the notation.

6.1. Variational problem for local error on subdomains. Recall that the
subdomain approximation xni and the Crank–Nicolson approximation x̃n

CN both

start from the same approximation xn−1DS .

Lemma 6.1. The difference znu,i = uni − ũn
CN

∣∣
Ωδ

i

satisfies

(33a)

⦅
znu,i, φ

⦆
Ωδ

i

+
τ2

4
aΩδ

i

(
znu,i, φ

)
= 0, for all φ ∈ Vh,0(Ωδ

i ),

znu,i = ũn
lf − ũn

CN, on ∂Ωδ
i .
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Moreover, for znv,i = vni − ṽ n
CN

∣∣
Ωδ

i

it holds, that

(33b) znu,i =
τ

2
znv,i in Hh(Ω

δ
i ).

The problem (33a) is well posed, cf. [12, Lemma 33.1].

Proof. The proof is based on comparing two weak forms, one on the overlapping
subdomains Ωδ

i and one on the full domain Ω.
On the one hand, xni ∈

(
Vh(Ω

δ
i ) ∩H1

0 (Ω)
)
×Hh(Ω

δ
i ) is the solution of

⦅
uni , φi

⦆
Ωδ

i

− τ

2

⦅
vni , φi

⦆
Ωδ

i

=
⦅
un−1DS , φi

⦆
Ωδ

i

+
τ

2

⦅
vn−1DS , φi

⦆
Ωδ

i

,

⦅
vni , ψi

⦆
Ωδ

i

+
τ

2
aΩδ

i

(
uni , ψi

)
=
⦅
vn−1DS , ψi

⦆
Ωδ

i

− τ

2
aΩδ

i

(
un−1DS , ψi

)
+ τ

⦅
f
n−1/2
h , ψi

⦆
Ωδ

i

,

uni = ũn
lf , on Γδ

i .

for all φi, ψi ∈ Vh,0(Ωδ
i ). On the other hand, x̃n

CN ∈ Vh,0(Ω)×Hh,0(Ω) satisfies
⦅
ũn
CN, φ

⦆
Ω
− τ

2

⦅
ṽ n
CN, φ

⦆
Ω
=
⦅
un−1DS , φ

⦆
Ω
+
τ

2

⦅
vn−1DS , φ

⦆
Ω
,

⦅
ṽ n
CN, ψ

⦆
Ω
+
τ

2
aΩ
(
ũn
CN, ψ

)
=
⦅
vn−1DS , ψ

⦆
Ω
− τ

2
aΩ
(
un−1DS , ψ

)
+ τ

⦅
f
n−1/2
h , ψ

⦆
Ω
,

for all φ,ψ ∈ Vh,0(Ω).
In order to compare these two approximations, we extend the test functions

φi, ψi by zero onto Ω. By this extension we get valid test functions for the weak
formulation of the global Crank–Nicolson on Ω, which vanish outside of Ωδ

i . The
difference

xni − x̃n
CN

∣∣
Ωδ

i

=

(
uni − ũn

CN

∣∣
Ωδ

i

vni − ṽ n
CN

∣∣
Ωδ

i

)
=

(
znu,i

znv,i

)
∈ Vh(Ωδ

i )×Hh(Ω
δ
i )

satisfies
⦅
znu,i, φi

⦆
Ωδ

i

− τ

2

⦅
znv,i, φi

⦆
Ωδ

i

= 0, φi ∈ Vh,0(Ωδ
i ),(34a)

⦅
znv,i, ψi

⦆
Ωδ

i

+
τ

2
aΩδ

i

(
znu,i, ψi

)
= 0, ψi ∈ Vh,0(Ωδ

i ),(34b)

and

(34c)
(uni − ũn

CN)
∣∣
Γδ
i

= ũn
lf

∣∣
Γδ
i

− ũn
CN

∣∣
Γδ
i

,

(uni − ũn
CN)

∣∣
∂Ω∩∂Ωδ

i

= 0.

(34a) is equivalent to (33b). Inserting this relation into (34b) and using the bound-
ary conditions (34c) shows that znu,i solves (33a). □

6.2. Exponential decay of errors in boundary data. The goal of this subsec-
tion is to prove a discrete exponential decay result for the solution of (34a). For
that we additionally need to introduce weighted bilinear forms.

Definition 6.2. Let λ > 0 be arbitrarily chosen and qh, ph ∈ Vh. For a positive
and continuous weight function ω : Ω → R+, we introduce the weighted bilinear
forms

aΘ,ω

(
qh, ph

)
=

∫
Θ

ω(x)κ2∇qh(x) · ∇ph(x) dx,(35a)

bΘ,ω

(
qh, ph

)
=

1

λ2
⦅
ωqh, ph

⦆
Θ
+ aΘ,ω

(
qh, ph

)
.(35b)

For ω ≡ 1 we abbreviate this via

(35c) bΘ
(
qh, ph

)
= bΘ,1

(
qh, ph

)
=

1

λ2
⦅
qh, ph

⦆
Θ
+ aΘ

(
qh, ph

)
.
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Next, we show a discrete decay estimate, which serves as key ingredient of our
error analysis. This estimate is strongly motivated by [2, Lemma 1], which, however,
does not apply directly to our setting for wave equations. For instance, we have to
include mass lumping.

Theorem 6.3. Let λ > 0, and g ∈ Vh(Ωδ
i ). If z ∈ Vh(Ωδ

i ) solves

(36)

⦅
z, φ

⦆
Ωδ

i

+ λ2aΩδ
i

(
z, φ

)
= 0, ∀φ ∈ Vh,0(Ωδ

i ),

z = g, on ∂Ωδ
i ,

then it holds

1

λ2
⦅
z, z

⦆
Ωi

+ aΩi

(
z, z
)
≤ β exp

(
− γδ

max{λ, h}

)( 1

λ2
⦅
g, g

⦆
Ωδ

i

+ aΩδ
i

(
g, g
))

with γ ∈ (0, 1] and β > 0, which are independent of λ, h, and the size of the
subdomain Ωi.

Proof. We choose some γ ∈ (0, 1], which will be fixed later and define a weight
function

(37) ω(x) := exp

(
γx

max{λ, h}

)
, x ∈ Ωδ

i .

The distance of a point x ∈ Ωδ
i to the prediction interface is denoted by dist(x,Γδ

i ).
Since the distance function is not contained in Vh(Ω

δ
i ), we define its nodal interpo-

lation Ih on the grid points in Ωδ
i as

(38) dh := Ih
(
x 7→ dist(x,Γδ

i )
)
∈ Vh(Ωδ

i ).

For the sake of presentation, we suppress the space dependencies in the rest of the
proof, i.e., we write ω(dh) = ω(dh(x)). Let us first gather some properties of ω and
dh

ω(ξ) ≥ 1 ≥ ω(−ξ) ≥ 0, for ξ ≥ 0,(39a)

ω(ξ + ν) = ω(ξ)ω(ν), for ξ, ν ∈ R,(39b)

dh(x)− δ ≥ 0, for x ∈ Ωi.(39c)

By definitions (35c) for Θ = Ωi, (37), (39a), and (39c), we have

bΩi

(
z, z
)
=

1

λ2
⦅
z, z

⦆
Ωi

+ aΩi

(
z, z
)

≤ 1

λ2
⦅
ω(dh − δ)z, z

⦆
Ωi

+ aΩi,ω(dh−δ)
(
z, z
)

= ω(−δ)bΩi,ω(dh)

(
z, z
)

≤ ω(−δ)bΩδ
i ,ω(dh)

(
z, z
)
.(40)

Thus, it remains to bound bΩδ
i ,ω(dh)

(
z, z
)
in terms of the boundary data g. To

shorten the notation, we write

(41) ωdz = ω(dh)z.

Since Ihωdz − g ∈ Vh,0(Ωδ
i ) is a valid test function for (36), we conclude that

(42)
1

λ2
⦅
z, Ihωdz

⦆
Ωδ

i

+ aΩδ
i

(
z, Ihωdz

)
=

1

λ2
⦅
z, g

⦆
Ωδ

i

+ aΩδ
i

(
z, g
)
= bΩδ

i

(
z, g
)
.

Using this together with the product rule

ω(dh)∇z = ∇ωdz − z∇ω(dh) .
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yields

bΩδ
i ,ω(dh)

(
z, z
)
=

1

λ2
⦅
ωdz, z

⦆
Ωδ

i

+ aΩδ
i

(
ωdz, z

)
−
∫
Ωδ

i

zκ2∇ω(dh) · ∇z dx

=
1

λ2
⦅
ωdz − Ihωdz, z

⦆
Ωδ

i

+ aΩδ
i

(
ωdz − Ihωdz, z

)
+ bΩδ

i

(
g, z
)

(43)

−
∫
Ωδ

i

zκ2∇ω(dh) · ∇z dx

The first term vanishes because of (8). The third term can be estimated with
Cauchy–Schwarz inequality by∣∣∣bΩδ

i

(
g, z
)∣∣∣ ≤ bΩδ

i

(
g, g
)1/2

bΩδ
i

(
z, z
)1/2 ≤ bΩδ

i

(
g, g
)1/2

bΩδ
i ,ω(dh)

(
z, z
)1/2

,

where we also used that ω(dh) ≥ 1 on Ωδ
i . The bounds on the remaining two terms

are given in Lemmas A.1 and A.2 which we postponed to Appendix A because the
proofs are rather technical. Plugging these bounds into (43) yields

(44) bΩδ
i ,ω(dh)

(
z, z
)1/2 ≤ γ(C1 + C2)bΩδ

i ,ω(dh)

(
z, z
)1/2

+ bΩδ
i

(
g, g
)1/2

with constants C1, C2 independent of γ, h and λ. Thus, by possibly reducing γ ∈
(0, 1], such that

β−1/2 := 1− γ
(
C1 + C2

)
> 0.

This allows us to rearrange (44), which gives

(45) bΩδ
i ,ω(dh)

(
z, z
)1/2 ≤ β1/2bΩδ

i

(
g, g
)1/2

By setting together (40) and (45) we finally obtain

bΩi

(
z, z
)
≤ βω(−δ)bΩδ

i

(
g, g
)
,

which concludes the proof. □

We now set together Lemma 6.1 and Theorem 6.3 to apply the decay result to
our setting.

Lemma 6.4. Let the conditions from Lemma 6.1 and Theorem 6.3 be satisfied.
Then, ∥∥xni − x̃n

CN

∥∥2
Xh(Ωi)

≤ β exp
(
− γδ

max{ τ2 , h}

)∥∥x̃n
lf − x̃n

CN

∥∥2
Xh(Ωδ

i )
.

Proof. As in Lemma 6.1 we write

zni = xni − x̃n
CN

∣∣
Ωδ

i

=

(
uni − ũn

CN

∣∣
Ωδ

i

vni − ṽ n
CN

∣∣
Ωδ

i

)
=

(
znu,i

znv,i

)
.

From (33b) it holds

(46)
∥∥zni ∥∥2Xh(Ωi)

=
∥∥znu,i∥∥2Vh(Ωi)

+
∥∥znv,i∥∥2Hh(Ωi)

=
∥∥znu,i∥∥2Vh(Ωi)

+
4

τ2
∥∥znu,i∥∥2Hh(Ωi)

.

The leapfrog steps (14a) and (14c) started from xn−1DS yield

ũn
lf = un−1DS +

τ

2

(
vn−1DS + ṽ n

lf

)
On the other hand, we have for the Crank–Nicolson method by (12a) that

ũn
CN = un−1DS +

τ

2

(
vn−1DS + ṽ n

CN

)
.

It follows

ũn
lf − ũn

CN =
τ

2

(
ṽ n
lf − ṽ n

CN

)
,
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and thus we have as in (46)∥∥x̃n
lf − x̃n

CN

∥∥2
Xh(Ωδ

i )
=
∥∥ũn

lf − ũn
CN

∥∥2
Vh(Ωδ

i )
+

4

τ2
∥∥ũn

lf − ũn
CN

∥∥2
Hh(Ωδ

i )
.

The stated bound then follows immediately by Theorem 6.3, where we set g =
ũn
lf − ũn

CN and λ = τ
2 . □

7. Averaging

In this section we investigate the stability of the averaging operator ζ defined in
(16) and deduce some bound for the specific use of ζ within a single domain splitting
step. The statement of the following lemma relies on the notation summarized in
Table 1.

Lemma 7.1. The averaging operator ζ satisfies the following stability estimate in
the mass lumped L2-norm
(47a)∥∥ζ({vi}i=1,...,N

)∥∥2
Hh(Ω)

≤ cavg
N∑
i=1

∥∥vi∥∥2Hh(Ωi)
, for all vi ∈ Hh(Ω

δ
i ), i = 1, . . . N,

with a constant cavg > 0 independent of h, κ, ℓ.
If xnDS is the CFL condition (18) is satisfied, it further holds

(47b)

∥∥xnDS − x̃n
CN

∥∥2
Xh

=
∥∥ζ({xni − x̃n

CN

∣∣
Ωδ

i

}
i=1,...,N

)∥∥2
Xh

≤ Cavg

N∑
i=1

∥∥xni − x̃n
CN

∥∥2
Xh(Ωi)

.

There, the constant Cavg may depend on ℓ, but it does not depend on h and τ .

Note that (47b) relies heavily on the specific structure of xni − x̃n
CN

∣∣
Ωδ

i

from

Lemma 6.1.

Proof. Note that, with vΩ = ζ
({
vi
}
i=1,...,N

)
it holds, that

∥∥vΩ∥∥2Hh(Ω)
=

N∑
i=1

∥∥vΩ∥∥2Hh(Ωi)
=

N∑
i=1

∑
K∈Th(Ωi)

m+1∑
j=1

|K|
m+ 1

vΩ(xK,j)
2.

The stability bound (47a) follows directly by

vΩ(xK,j)
2 =

 ∑
k∈JK,j

vk(xK,j)

|JK,j |

2

≤
∑

k∈JK,j

vk(xK,j)
2

|JK,j |
,

with JK,j =
{
k ∈ {1, . . . , N} : xK,j ∈ Ωk

}
and the fact that the sizes of neighboring

cells are uniformly equivalent w.r.t. h, see [11, Proposition 11.6].
To show (47b) we note that

∥∥ζ({xni − x̃n
CN

∣∣
Ωδ

i

}
i=1,...,N

)∥∥2
Xh

=

N∑
i=1

∥∥ζ({xni − x̃n
CN

∣∣
Ωδ

i

}
i=1,...,N

)∥∥2
Xh(Ωi)

.

Let K ∈ Th be a cell of which all vertices {xK,j}m+1
j=1 lie inside of one of these

subdomains, say in Ωk. For this cell the averaged solution coincides with the local
solution, i.e.,

(48) ζ
({
xni − x̃n

CN

∣∣
Ωδ

i

}
i=1,...,N

)∣∣∣
K

=
(
xnk − x̃n

CN

∣∣
Ωk

)∣∣∣
K
.
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This means we only have to focus on the remaining cells for which one of the
vertices, say xK,r, lies on an interface, i.e. in

xK,r ∈ Γ =
⋃

i=1,...,N

Γi.

Furthermore, we define the set of all cells having at least one vertex on the interface
by
(49)

Th(Γ) :=
{
K ∈ Th | xK,j ∈ N \

( ⋃
i=1,...,N

NΩi

)
for at least one j ∈ 1, . . . ,m+ 1

}
.

By Lemma 6.1 we have uni − ũn
CN = τ

2 (v
n
i − ṽ n

CN) in Hh(Ω
δ
i ), see (33b), and thus

(unDS − ũn
CN) (xK,j) =

τ

2
(vnDS − ṽ n

CN) (xK,j) for all xK,j ∈ N .,

For K ∈ Th(Γ), we derive with the CFL condition (18) that∥∥xnDS − x̃n
CN

∥∥2
Xh(K)

=
∥∥unDS − ũn

CN

∥∥2
Vh(K)

+
4

τ2
∥∥unDS − ũn

CN

∥∥2
Hh(K)

≤
∥∥Lh

∥∥
Hh←Hh

∥∥unDS − ũn
CN

∥∥2
Hh(K)

+
4

τ2
∥∥unDS − ũn

CN

∥∥2
Hh(K)

≤ (ℓ2 + 1)
4

τ2
∥∥unDS − ũn

CN

∥∥2
Hh(K)

= (ℓ2 + 1)
∥∥vnDS − ṽ n

CN

∥∥2
Hh(K)

.

We continue by using (47a) which implies that

∑
K∈Th(Γ)

∥∥vnDS − ṽ n
CN

∥∥2
Hh(K)

≤ cavg
N∑
i=1

∑
K∈Th(Γ)
K⊂Ωi

∥∥vni − ṽ n
CN

∥∥2
Hh(K)

≤ cavg
N∑
i=1

∑
K∈Th(Γ)
K⊂Ωi

∥∥xni − x̃n
CN

∥∥2
Xh(K)

.

Putting these derivations together we obtain finally

(50)
∑

K∈Th(Γ)

∥∥xnDS − x̃n
CN

∥∥2
Xh(K)

≤ Cavg

N∑
i=1

∑
K∈Th(Γ)
K⊂Ωi

∥∥xni − x̃n
CN

∥∥2
Xh(K)

with Cavg = cavg
(
ℓ2 + 1

)
. However, by (48) we also know that

∑
K∈Th\Th(Γ)

∥∥xnDS − x̃n
CN

∥∥2
Xh(K)

=

N∑
i=1

∑
K∈Th\Th(Γ)

K⊂Ωi

∥∥xni − x̃n
CN

∥∥2
Xh(K)

.

Together with (50) this yields (47b). □

8. Global error

Recall the definitions of xnDS, x
n
i , x

n
CN, x̃

n
CN and x̃n

lf , which are summarized in
Table 1. We now derive a bound for the difference En of the domain splitting
approximation and the Crank–Nicolson approximation after n time steps, i.e.

(51) En =
∥∥xnDS − xnCN

∥∥
Xh

.
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For that we will use the results of the previous sections, so recall the constants
Cdata from Lemma 5.2, Mℓ from Lemma 5.3, β, γ from Theorem 6.3, and Cavg from
Lemma 7.1.

To set everything together, we denote the maximum number of mutually over-
lapping subdomains by

(52) card{i | x ∈ Ωδ
i } ≤ Cglob, for all x ∈ Ω.

Note that Cglob does not depend on the total number of subdomains N . This
property is known as bounded local overlap property, see for instance [24].

Lemma 8.1. Let u0, v0 ∈ H2(Ω) ∩ H1
0 (Ω) and f ∈ L∞([0, T ];H2(Ω) ∩ H1

0 (Ω)).
Assume that the CFL condition (18) holds. Then, En defined in (51) satisfies

(53) En ≤ τCdataDτ,h,δ

n−1∑
j=0

(1 +Dτ,h,δ)
j

with

(54) D2
τ,h,δ = CavgCglobβ exp

(
− γδ

max{ τ2 , h}

)
M2

ℓ .

Proof. Firstly, we use the triangle inequality to obtain

En =
∥∥xnDS − xnCN

∥∥
Xh
≤
∥∥xnDS − x̃n

CN

∥∥
Xh

+
∥∥x̃n

CN − xnCN

∥∥
Xh

= En
A + En

B .

Secondly, we use (47b) and then exploit the exponential decay in Lemma 6.4 and
(52)

(En
A)

2 =
∥∥xnDS − x̃n

CN

∥∥2
Xh
≤ Cavg

N∑
i=1

∥∥xni − x̃n
CN

∥∥2
Xh(Ωi)

≤ Cavgβ exp
(
− γδ

max{ τ2 , h}

) N∑
i=1

∥∥x̃n
lf − x̃n

CN

∥∥2
Xh(Ωδ

i )

≤ CglobCavgβ exp
(
− γδ

max{ τ2 , h}

)∥∥x̃n
lf − x̃n

CN

∥∥2
Xh

Next, Lemma 5.3 yields∥∥x̃n
lf − x̃n

CN

∥∥
Xh
≤Mℓ

(
En−1 + τCdata

)
,

so that we obtain

(En
A)

2 ≤ CavgCglobβ exp
(
− γδ

max{ τ2 , h}

)
M2

ℓ

(
En−1 + τCdata

)2
.

For term En
B we use that the Crank–Nicolson operator R defined in (21) is unitary,

which implies

En
B =

∥∥x̃n
CN − xnCN

∥∥
Xh

=
∥∥R (xn−1DS − x

n−1
CN

) ∥∥
Xh

=
∥∥xn−1DS − x

n−1
CN

∥∥
Xh

= En−1.

Combining the estimates of En
A and En

B and obtain

En ≤ Dτ,h,δ

(
En−1 + τCdata

)
+ En−1

= (1 +Dτ,h,δ)E
n−1 + τDτ,h,δCdata.

Resolving this inequality and using that E0 =
∥∥x0DS − x0CN

∥∥
Xh

= 0 proves the

claim. □
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8.1. Proof of Lemma 4.1. In this section, we complete the proof of the main
result Theorem 4.2 which relies on Lemma 4.1.

Proof. By assumption, the overlap δ ∼ ℓh is sufficiently large and hence there exists
a constant 0 < σ ≤ 1 such that

(55) Dτ,h,δ =

(
CavgCglobβ exp

(
− γδ

max{ τ2 , h}

)
M2

ℓ

)1/2

≤ στ2,

where γ was introduced in Theorem 6.3. From (53) we obtain

(56) En ≤ τ2Cdataστ

n−1∑
j=0

(
1 + στ2

)j
.

This allows us to derive two error bounds. Since τ ≤ 1, there holds

στ

n−1∑
j=0

(
1 + στ2

)j ≤ στ n−1∑
j=0

(1 + στ)
j ≤ eσtn − 1

and

στ

n−1∑
j=0

(
1 + στ2

)j ≤ 1

τ

(
eστtn − 1

)
≤ σtneστtn .

This proves the lemma. □

8.2. Discussion on the CFL condition. Next, let us discuss the CFL condition
(18) required for Theorem 4.2. Obviously, (18) becomes weaker if ℓ is chosen larger.

The second condition is that the overlap δ ∼ ℓh has to be chosen sufficiently
large such that (55) holds for a constant σ ∈ (0, 1). This condition ensures, that
the damping of the prediction error is strong enough. The condition can be satisfied
for fixed τ, h by taking ℓ sufficiently large such that the condition on δ ∼ hℓ above
is satisfied.

9. Numerical experiments

After proving the theoretical results in the previous sections, we confirm and il-
lustrate these with some numerical experiments. All experiments were implemented
within the FEniCSx framework [1,28]. The code corresponding to the experiments
in this section is made publicly available at

https://gitlab.kit.edu/tim.buchholz/ds-acoustic-wave.

In all graphs, solid lines refer to errors against the analytical solution, dashed
lines refer to errors against the Crank–Nicolson solution.

9.1. One-dimensional experiments. Inspired by [26] we construct an analytical
solution to the homogeneous wave equation on a one-dimensional domain (0, 1) ⊆ R.
We choose a function

(57) µξ,s(z) = 1{|z−ξ|<s} sin
(
z − (ξ + s)

2s
π
)3
,

where 1S denotes the indicator function corresponding to a set S. Then, we define
the initial conditions for (1) as

(58) u0(x) = µ(x), v0(x) = ∂tµ(x− t)
∣∣
t=0

with
µ(z) = µξ1,s(z)− µξ2,s(z), ξ1 = 0.55, ξ2 = 0.45, s = 0.2.

In order to avoid over approximation effects, we perturbed a uniform mesh
randomly, which resulted in a non-equidistant mesh with minimum mesh width

https://gitlab.kit.edu/tim.buchholz/ds-acoustic-wave
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Figure 2. Maximal stable step sizes τmax of the domain splitting
(DSℓ) depending on the overlap parameter ℓ.
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Figure 3. Errors of the domain splitting approximation (DSℓ) for
the 1d example of Section 9.1 for various numbers of ℓ measured at
the final time T = 5.0 against the exact solution (solid) and against
the Crank–Nicolson approximation (dashed). For comparison, we
also show the error of the Crank–Nicolson (CN) and the leapfrog
(lf) methods on the full domain.

hmin = 3 · 10−4 and maximum mesh width hmax = 6.9 · 10−4 with 2000 subin-
tervals). All domain splitting approximations use two subdomains and the index
indicates the choice of the overlap parameter ℓ.

We start by illustrating the dependence of the CFL condition (18) on the overlap
parameter ℓ in Figure 2. One can clearly see the linear dependence, confirming the
theoretical result.

In Figure 3 we show the H1
0 (Ω)×L2(Ω) errors measured at the final time T = 5.0

against the exact solution (which can be found in [26]). For comparison, we also
show the error of Crank–Nicolson (CN) and the leapfrog (lf) methods on the full
domain. Here, we observe that the error of DSℓ roughly coincides with the Crank–
Nicolson error, if the time step satisfies the CFL condition. This is confirmed in
Figure 3, where we illustrate Lemma 4.1 by plotting not only the error against the
exact solution but also the error of the domain splitting method (DS8) against the
Crank–Nicolson solution on the full domain.
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Figure 4. Errors of the domain splitting approximation (DSℓ)
with 4× 4 subdomains and ℓ = 8 for the example from Section 9.2
measured at the final time T = 1.0 against the exact solution
(solid) and against the Crank–Nicolson approximation (dashed).
For comparison, we also show the error of the Crank–Nicolson (CN)
and the leapfrog (lf) methods on the full domain.
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Figure 5. Errors of the domain splitting approximation against
the Crank–Nicolson approximation on different, rectangular sub-
domain configurations. All runs were made with overlap parameter
ℓ = 8.

9.2. Two-dimensional experiments. Let Ω = (0, 1)2, ξ = 0.5, s = 0.2, and
Using (57), we prescribe the exact solution of (1) as

u(x, y, t) = u1D(x, t)µξ,s(y) + u1D(y, t)µξ,s(x),

where u1D solves the homogeneous one-dimensional wave equation on (0, 1) with
initial conditions (58) with µ = µξ,s. Inserting this solution into the wave operator
defines the inhomogeneity f in (1).

We discretize Ω by a regular, triangular mesh containing 2 · 106 cells with mesh
width h = 10−3. The error is measured at the final time T = 1.0. In Figure 4
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the convergence against the exact solution is depicted for the leapfrog scheme, the
Crank–Nicolson method and the domain splitting method with different choices of
the overlap parameter ℓ. Additionally, the norm of the difference between the final
domain splitting approximation and the Crank–Nicolson solution is measured. The
results are in line with the one-dimensional example in Figure 3.

In Figure 5 compare the error of the domain splitting approximation against the
Crank–Nicolson approximation on different, rectangular subdomain configurations
comprisingNx×Ny subdomains in x and y-direction, respectively, for a fixed overlap
parameter ℓ = 8. The approximations are denoted by DSℓ,Nx×Ny . While the error
constants depend slightly on the number of neighboring subdomains, the stability
is not affected by the number or configuration of subdomains as also stated by our
error analysis.

Appendix A. Bounds of Theorem 6.3

With the notation introduced in Definition 6.2 and in the proof of Theorem 6.3
we now prove two Lemmas used there. Recall the definition of the constants CML

and CIh from (6) and (9), respectively, and the definition of the weight function
ω in (37). Let |·|2,K,ω(−dh)

denote the H2 semi-norm, weighted by ω(−dh), in the

same manner as the bilinear forms from Definition 6.2. Moreover, |·| denotes the
Euclidean norm when applied to a vector.

Lemma A.1. Let γ ∈ (0, 1], λ > 0, z ∈ Vh(Ωδ
i ). For ωdz = ω(dh)z defined in (41)

the interpolation error εdz = ωdz − Ihωdz satisfies∣∣∣aΩδ
i

(
εdz, z

)∣∣∣ ≤ γC1bΩδ
i ,ω(dh)

(
z, z
)
,

with C1 = κCIh
√
3me ·max{eCML, 2}.

Proof. By definition of aΩδ
i

(
·, ·
)
in (3), aΩδ

i ,ω
(·, ·) in (35a), the Cauchy–Schwarz

inequality, and (39b) we obtain

(59)

∣∣∣aΩδ
i

(
εdz, z

)∣∣∣ = ∣∣∣(κ2∇(εdz),∇z)Ωδ
i

∣∣∣
=
∣∣∣(κ2ω(−dh)1/2∇(εdz), ω(dh)1/2∇z)Ωδ

i

∣∣∣
≤ aΩδ

i ,ω(−dh)

(
εdz, εdz

)1/2
aΩδ

i ,ω(dh)

(
z, z
)1/2

.

We estimate the first factor via

aΩδ
i ,ω(−dh)

(
εdz, εdz

)
=

∑
K∈Th(Ωδ

i )

aK,ω(−dh)

(
εdz, εdz

)
≤

∑
K∈Th(Ωδ

i )

max
x∈K

ω(−dh)κ2 |εdz|21,K .(60)

Since z
∣∣
K
∈ P1, for K ∈ Th(Ωδ

i ) the function ωdz

∣∣
K

is smooth, so that the interpo-

lation estimate (9) yields

(61) |εdz|21,K ≤ C
2
Ihh

2 |ωdz|22,K ≤
C2
Ihh

2

minx∈K ω(−dh)
|ωdz|22,K,ω(−dh)

.

Moreover, since ω(x) is monotonically increasing, there holds on K ∈ Th(Ωδ
i )

(62)
maxx∈K ω(−dh)
minx∈K ω(−dh)

=
ω(−minx∈K dh)

ω(−maxx∈K dh)
= ω(max

x∈K
dh −min

x∈K
dh) ≤ ω(diamK) ≤ ω(h).
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By combining this with (60) and (61) we get

(63)
aΩδ

i ,ω(−dh)

(
εdz, εdz

)
≤ κ2C2

Ihh
2ω(h)

∑
K∈Th(Ωδ

i )

|ωdz|22,K,ω(−dh)
.

Since ∂r(∂jvh
∣∣
K
) = 0 for vh ∈ P1 and r, j = 1, . . . ,m, we get

(64)
∂2

∂r∂j
ωdz =

γ

maxλ, h

(
∂rz∂jdh + z

γ

max{λ, h}
∂rdh∂jdh + ∂jz∂rdh

)
ω(dh).

Note, that d : x 7→ dist(x,Γδ
i ) satisfies

|∇d(x̂)| = 1, for all x̂ ∈ Ωδ
i ,

cf. [4]. By definition of dh in (38), we deduce with a geometric argument

(65) |∂jdh(x̂)| ≤ |∇dh(x̂)| ≤ |∇d(x̂)| = 1, for j = 1, . . . ,m

for all x̂ ∈ Ωδ
i , see also [2] after equation (24).

By combining (64) and (65) and using the linearity of the integral we have

(66)

∑
K∈Th(Ωδ

i )

|ωdz|22,K,ω(−dh)
=

∑
K∈Th(Ωδ

i )

∫
K

ω(−dh)
m∑

r,j=1

∣∣∣∣∂2ωdz

∂r∂j

∣∣∣∣2 dx

≤ 3mγ2

max{λ, h}4
(
γ2 (ω(dh)z, z)Ωδ

i
+ 2max{λ, h}2aΩδ

i ,ω(dh)

(
z, z
))
.

Using (6), one can easily show, that

(67) (ω(dh)u, u)Ωδ
i
≤ CMLω(h)

⦅
ω(dh)u, u

⦆
Ωδ

i

, u ∈ Vh(Ωδ
i ).

Combining this with (66) yields

(68)

∑
K∈Th(Ωδ

i )

|ωdz|22,K,ω(−dh)
≤ 3mγ2

max{λ, h}2
max{γ2CMLω(h), 2}bΩδ

i ,ω(dh)

(
z, z
)
.

Putting (63), (68) together yields an estimate for the first factor of (59) of the form

aΩδ
i ,ω(−dh)

(
εdz, εdz

)
≤ κ2C2

Ihh
2ω(h)

3mγ2

max{λ, h}2
max{γ2CMLω(h), 2}bΩδ

i ,ω(dh)

(
z, z
)
.

By (35b) and since 1
λ2

⦅
ω(dh)z, z

⦆
Ωδ

i

≥ 0, we bound the second factor in (59) by

aΩδ
i ,ω(dh)

(
z, z
)
≤ bΩδ

i ,ω(dh)

(
z, z
)
.

In total, we receive the estimate∣∣∣aΩδ
i

(
εdz, z

)∣∣∣ ≤ κCIhω(h2 )
√
3mγh

max{λ, h}
max{γC1/2

MLω(
h

2
),
√
2}bΩδ

i ,ω(dh)

(
z, z
)
.

The claim follows by using that h
max{λ,h} ≤ 1, γ ≤ 1, and thus ω(h/2) ≤ eγ/2 ≤

√
e. □

By similar arguments as in the proof of Lemma A.1 we can also derive a bound
for the last remaining term in (43).

Lemma A.2. Let the assumptions of Lemma A.1 hold. Then, we have∣∣∣∣∣
∫
Ωδ

i

zκ2∇ω(dh) · ∇z dx

∣∣∣∣∣ ≤ γC2bΩδ
i ,ω(dh)

(
z, z
)
,

with C2 = 1
2κ(CMLe)

1/2.



A DOMAIN SPLITTING METHOD FOR THE ACOUSTIC WAVE EQUATION 23

Proof. By (65) we have |∇dh| ≤ 1. Thus, with definition (37) of ω(·) we derive

|∇ω(dh)| =
∣∣∣∣∇ exp

(
γdh

max{λ, h}

)∣∣∣∣ = ∣∣∣∣ γ

max{λ, h}
exp

(
γdh

max{λ, h}

)
∇dh

∣∣∣∣
≤ γ

max{λ, h}
ω(dh).

The desired bound then follows by using again the Cauchy–Schwarz inequality,
which yields∣∣∣∣∣

∫
Ωδ

i

zκ2∇ω(dh) · ∇z dx

∣∣∣∣∣ ≤ κ
∫
Ωδ

i

|z| γ

max{λ, h}
ω(dh)κ |∇z| dx

≤ κγ

max{λ, h}
(ω(dh)z, z)

1/2

Ωδ
i

aΩδ
i ,ω(dh)

(
z, z
)1/2

≤ γ κ(CMLe
γ)1/2

2
bΩδ

i ,ω(dh)

(
z, z
)
.

The claim follows then as in Lemma A.1 from eγ ≤ e. □
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