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Abstract

The NLS equation can be derived from the Zakharov system in a singu-
lar limit. The goal of this paper is to add some new aspects to the existing
analysis about this approximation. We outline the differences between the
situation x € R and = € T = R/(27Z). We explain the difficulties occurring
in the construction of higher order approximations and use these approxi-
mations to improve the approximation rate. Moreover, we point out that
the standard validity proof requires a smallness condition which was not
stated in the existing literature.

1 Introduction

We are interested in singular limits of the Klein-Gordon-Zakharov (KGZ) system
or of systems related to the KGZ system. In this paper we consider the singular
limit of the Zakharov system in which the NLS equation is obtained as a regular
limit system. Our goal is to estimate the distance between the solutions obtained
through the regular limit system and true solutions of the Zakharov system for
small values of the perturbation parameter 0 < ¢ < 1. In detail, we are interested
in the Zakharov system in the form

2i0u = O*u — uv, (1)
20 = 0*v+ 0l (2)

with v = u(z,t) € C, v = v(x,t),z,t € R for spatially 2m-periodic boundary
conditions in the singular limit € — 0. In this limit we first obtain v = —|u|? and



then the NLS equation
2i0u = 0%u + |ul?u, (3)

with spatially 27-periodic boundary conditions, i.e., x € T = R/(27Z). It is the
goal of this paper to give a proof of

Theorem 1.1. There is a Cpar > 0 such that for all Cy, € [0, Cirar) the following
holds. Let uy € C([0,Ty), HS(T,C)) be a solution of satisfying

sup ||uo(+, )| gs = Cy < 0.
t€[0,To)

Then there exist eg > 0 and C' > 0 such that for all € € (0,&9) we have solutions
(u,v) € C([0,Tp), H(T,C) x L*(T,C)) of (1)-@) satisfying

sup ||(U,U)(,t) - (u07 _|u0|2)('at)||H1><L2 < 062.
t€[0,To)

Such estimates have already been shown in [AASS, [SW86] for z € R? with
d = 1,2,3 with the help of energy estimates in order to study the asymptotic
behavior of the solutions of the Zakharov system — when € goes to zero. We
remark that the approximation is only valid if the nonlinear part on the right-hand
side of has a negative sign. For a positive sign there exists a counter example
which shows that the NLS approximation fails to make correct predictions about
the dynamics of the Zakharov system, cf. [BSSZ20].

The goal of this paper is to add some new aspects to the existing analysis about
the validity of this approximation. In detail, we outline the differences between
the situation x € R? and = € T¢, explain the difficulties occurring in the construc-
tion of higher order approximations, and use these approximations to improve the
approximation rate. Our energy estimates follow the ones of [AA8§|. However,
we point out that the standard validity proof requires a smallness condition which
was not stated in the existing literature. It appears when estimating the Sobolev
norms in terms of our energy, cf. Lemma (3.1

Before we do so, we make a number of remarks about the occurrence and
properties of the Zakharov system.

Remark 1.2. The Zakharov system was introduced by Zakharov ([Zak72]) to
describe the propagation of Langmuir waves in an ionized plasma via the electric
field v and the deviation v of the ions’ equilibrium density. It can be derived
directly from and justified for Maxwell’s equation coupled with Euler’s equation,

cf. [Tex07]. For an overview about the significance of the Zakharov system we
refer to the recent textbook |[GGKZ16].



Remark 1.3. The Zakharov system can be rewritten as a semilinear evolutionary
system for which local existence and uniqueness of solutions in Sobolov spaces can
be established by using semigroup theory, cf. [OT92]. Going back to the original
variables for the Zakharov system —, there is local existence and uniqueness
for (u,v,0v) € H*? x H** x H* for s > 0.

Remark 1.4. Estimating the solutions of — is a non-trivial task. This can
be seen by writing — as

2i0u = %u — uv, O = e, Ow = 71020 + e 102 ul?.

Hence the right-hand sides of the equations for v and w are of order O(e~!) and
so a direct application of Gronwall’s inequality only gives estimates on a time
interval of length O(e). For details, see the discussion in [BSSZ20]. The error
estimates on the time interval of length O(1) can only be achieved by a suitably
chosen energy and require opposite signs in front of the nonlinear terms in the u
and v equation —. As already said above, in case of non-opposite signs in
front of these nonlinear terms there exists a counter example which shows that
the NLS approximation fails to make correct predictions about the dynamics of
the Zakharov system, cf. [BSSZ20]. The fact that the signs of the nonlinear
terms play a role for the approximation property immediately shows that the NLS
approximation theory, started with [Kal88], developed for the NLS description of
modulated wave packets cannot apply here.

Remark 1.5. The local existence and uniqueness of solutions ©v € H®, s > 1 of
the NLS equation is well known. It follows by using semigroup theory and a
standard fixed point argument applied to the variation of constant formula.

The approximation theorem is proven by energy estimates and Gronwall’s in-
equality. Before we do so, in the next section we bound the residual terms appear-
ing for the Zakharov system. In Section 4] we discuss possible improvements of the
result. In Section 5| we summarize our results and give an outlook to possible
future applications.

Notation. Many possible different constants are denoted with the same symbol
C' if they can be chosen independently of the small perturbation parameter 0 <
¢ < 1. In the following integration by parts all boundary terms vanish due to the
periodic boundary conditions.

Acknowledgement. The paper is partially supported by the Deutsche Forschungs-
gemeinschaft DFG through the SFB 1173 ” Wave phenomena” Project-1D 258734477.



2 Estimates for the residual

For the proof of Theorem we use an improved approximation. Inserting the
extended ansatz

Yulw,t) = uo(x,t),  Yu(x,t) = vo(w,t) + vz (2, ) (4)
into the Zakharov system gives at € that
2i0,up = O*ug — Uy, 0 = 92vg + 02(Juo)?),
and at £% that
vy = 02vs.

The residual of — is given by

Res, (u,v) = —2i0u + 02u — uv,

Res, (u,v) = —&0}v + 02v + 02|ul?
and contains all terms which do not cancel after inserting the approximation into
the Zakharov system. We choose vy = —|ug|* and then ug to satisfy the NLS

equation

2i8tu0 = 8§u0 + UOIUO‘Q. (5)
By this choice the residual will be of order O(g?) which turns out not to be sufficient
for our proof of our approximation result stated in Theorem [1.1. Therefore, we
additionally set

Uo(k,t) = —k20%0(k, t) (6)
for k € Z\ {0} which finally brings the residual Res, from O(g?) to O(¢?). In order
to have vy well-defined, due to the periodic boundary conditions, it is sufficient to
show that the mean value of vy is conserved. This holds due to

at/vodx:—&g/mg]?dmzo
T T

which is the conservation of the L?-norm for the solutions of the NLS equation.
Therefore, we define v5(0,t) = v(0,0). Then by construction all 9,"0;"v, for
m € N, n € Ny are well-defined and have a vanishing mean value.

Remark 2.1. Defining and removing the mean value of a function v, € L?(R, R)
is impossible. Nevertheless, the function vy can also be well defined if x € T is
replaced by z € R since

2
8t Vo =

(92 (Juol*) — 40700 u000T00) + 05([uol*))

1=

respectively

vy = = (92(|uol®) — 4|0,u0|* + Juol*) = v3(uo).

> =

4



If 4, and 1, are defined as in , we find for the residual that
Resy (1, V) = —%ugvy, Res, (¥, 10,) = —&*0%vs.

Thus, we can directly conclude the following lemma.

Lemma 2.2. Let s > 0 and let ug € C([0,Tp), H*®(T,C)) be a solution of the
NLS equation . Then there exist g > 0 and Cyes > 0 such that for all e € (0, &)
we have

sup ||Resu(wu7 ¢v)| Hst4 < CT65527 sup HRGSU (¢u7 wv)|

tG[O,To} tG[O,To}

4
Hs S C’res8 .

Proof. In order to estimate 9?vy in H® we can use the representation of vy in
terms of vy which can be found in Remark and the NLS equation to express
time derivatives of vy by space derivatives of ug. Thus, the function has to be in
H**6. The rest of the proof is straightforward. O

In the equations for the error not only the residual appears but also 9, ' Res,.
Hence we have to estimate the term 19 '9?vy, too. As above, due to the periodic
boundary conditions, it would be sufficient to prove that the mean value of vy is
conserved in order to have the term 9, '07v, bounded in some Sobolev space on
the torus T = R/(277Z) but this we already proved above. Therefore, we have

Lemma 2.3. Let s > 0 and let ug € C([0,Tp], H*%(T,C)) be a solution of the
NLS equation . Then there exist g > 0 and Cyes > 0 such that for all e € (0, o)

we have

sup |10, 'Resy(Vu, Vo) |l2 = sup €*)|0; 10| ms < Chrese™.

t€[0,To] t€[0,Tp]

Remark 2.4. For z € R a serious difficulty occurs at that point. In this case we
have to choose vy = v3(up) from Remark 2.1 for which however we find

1
0, / vodar = — / 0,00 Im(ug0,up) dx # 0
R 2 Jr

after a straightforward calculation. However, in space dimensions d > 3 one may
use that A=': L2 N L' — L? is a bounded operator and that the nonlinear terms
will be in L! due to the Cauchy-Schwarz inequality.

3 Estimates for the error

We introduce the error, made by the improved approximation (¢, 1,) defined in

@), by
(u, 0)(7,t) = (Yu, ¥o) (2, ) + 2Ry, Ry) (2, 1).

5



The error functions R, and R, satisfy

2ZatRu - agRu - quU - ¢URU - 52RuRv + 8_2Resu(¢u7 ¢U>7 (7)
EOR, = OiRy+ 0i(huRy) + 2 (uRy) + €202 | Ryl* 4+ £ Resy (Yu, ). (8)
As already explained in Remark [1.4] bounds on the long O(1) time interval are
a non-trivial task and require a suitable chosen energy. We follow [AA88] and

multiply the first equation with —iR, and integrate this equation w.r.t. z. Since
1, and R, are real-valued we have

Re/z’R_uvau dr =0, Re/ iR,RyR,dz = 0.
T T
Therefore, adding the complex conjugate gives
d — _
EHRUH%Q = Re/iRu@/JuRv dz — Re/iRue_QResu(@bu,@/JU) dz.
T T

We multiply the first equation with d;R, and integrate this equation w.r.t. .
Adding the complex conjugate gives

%Haﬁulliz = - /T (VRO Ry + u RO R,) d
- [ RO+ 0 RO da
—¢? /T (RyR,O: R, + R,R,O:R,) dz
+2Re /T Oy Rye*Resy (Yo, 1y) dz.
Multiplying the second equation with 9,20, R, and integrating then w.r.t. x yields
%%Hmuiz + %e%!\aglatmuiz
- _ /T (O,R )y R, dz — /T (O,R )Yy R, dz — €2 /T |R.|?0,R, dx

+ / (0710,R,)05" (=~ Res, (i, 1) do.
T



Adding these equations gives
SR+ 10 Rullfs + IRl + 5220105 e )
= Re /T iR,y R, dz — Re /1r iR,e *Resy (Vy, 1,) do + 2Re /T O R,e *Resy (Yu, 1y ) dz
+ [0, e *Res, (b 0) do
- [@rod + hror) d
- /1r (Vy RO R, + VR, O, R,) do — €° /T (RyR,O: R, + R,R,O:R,) dw

- /(atRU)%Ru dz — /(&Rv)qu_udx — 52/ |Ry|?0;R, dx = s.
T T T

Keeping the first two lines and rewriting the following lines as total time derivative
plus terms with the time derivative falling on approximation terms yields

s = Re/iR_u¢uRv dx—Re/iR_ue_QResu(¢u,wv)dx+2Re/8tR_u5_2Resu(wu,wv)dx
T T T
+/(3;18th)8;1(5_2Resv(¢u,@Dv))dx—52%/RU|RU|2dx
T T
dt T T dt T T

d [— _
——/zbuRvRu dx—i—/(@tqbu)RvRu dzx.
dt Jp T
We collect all terms in a form of a time derivative in

1 1 -~
E = HRu“%? + HaacRUH%? + §||Rv||%2 + 552”833 lathH%? + /E¢v|RU|2dx

—I—/quvR_uda:—l—/%RvRudx+52/Rv|Ru|2dx.
T T T

We have the following estimate

Lemma 3.1. There is a Cpap > 0 such that for all C,, € [0, Ciaz) the following
holds. Let ug € C([0,Ty), HS(T,C)) be a solution of satisfying

sup |luo(+, t)||gs = Cy < 0.
te(0,To]

Then for all Cr > 0 there exist Co,e¢ > 0 such that for all € € (0,&¢) we have
IRl + ([ Roll 2 < CoEY?,
if |Rullm + [[Rollz2 < Ch.



Remark 3.2. For rewriting the terms as time derivatives it is absolut fundamental
that the nonlinear terms in - have opposite signs. In case that the nonlinear
terms in — have the same sign such a rewriting is not possible and in fact there
exists a counter example which shows that the NLS approximation fails to make
correct predictions about the dynamics of the Zakharov system, cf. [BSSZ20].
However, it is not necessary to write the term

- /(¢vRuatR_u + Y, Ry0:R,) dz
T

as time derivative plus terms with less derivatives.

Rewriting the above calculations and estimating the non-time derivatives yields
d

ot = [Wullzoe | Rull 2l Roll 22 + 72| Rull 2 Resu(Wu, o)l 2

+2Re

/@R_ue_QResu(wu,wv)dx -+ H@;lathHLz||8;1(5_2Resv(wu,wv))HLz
T
+2(|0stpul| oo | Roll 2] Rull 22 + (|00t | oo || Ru| 72

In order to estimate Re / 0, R, *Res, dz| we substitute 0, R, by the right-hand
T
side of . Integration by parts together with Lemma finally gives

Re / O Rye *Res, (Y, ¥, ) da
T

Re /(@%Ru - ¢uRU - vau - 52RuRv + E_QRGSU(@%? %))E_QRGSuWu, ¢v) d.l?
T

< e 2| Rull g [IResu(Wu, o) L + €2 [|9hul oo || Roll 22| Resw (1o, ) || 2
+ & bl oo || Rl 2 IR €8 (90, 00| 2
+ [|Rull | Ry [l 2 1 Resw (o, ¥0)l 22 + €| Resu (¢, 1) |1 72

< CoyEY? + Cose®E + C?

res”

It is straightforward how to estimate ||R,|[z2 and ||Ry,|/z in terms of E'/2. Less
obvious is the estimate

1020, Ry || 12110, (e 2Resy) || 22 < 2|0, 0y Rol22 + 78110, 'Res,||22 < E + Crese®
Hence, by using £'/2 < 1+ E and Lemma we obtain

d
—E < Cy+ CLE + %10, 0, Ry ||22 4 7210, (e *Resy (Vu, 1)) ||

dt
< CyF + (4.

By Gronwall’s inequality we have E(t) < M for all ¢t € [0,T}] for a constant
M = O(1). Hence, for uy sufficiently small, but still O(1), with Lemma [3.1} the
bound for the error w.r.t. the H' x L?norm, as stated in Theorem , follows.
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4 Two improvements of the result

It is the purpose of this section to discuss two possible improvements of our ap-
proximation result stated in Theorem We start with the following higher
regularity result

Theorem 4.1. Let s € Ny. There is a Cyap > 0 such that for all C,, € [0, Cruaz)
the following holds. Let ug € C([0,Tp], H*¢(T,C)) be a solution of satisfying

sup ||ug(+, )| gs+s = Cy < 0.
t€[0,T0]

Then there exist £ > 0 and C' > 0 such that for all € € (0,g¢) we have solutions
(u,v) € C([0, Tp], H**(T,C) x H*(T,C)) of (1)-@) satisfying

sup | (u, v)(-, 1) = (uo, —[uol*) (-, 2)]

t€[0,To]

Hs+lx Hs < CS

Proof. We proceed as in the proof of Theorem The estimates for the residuals
have already been stated in the required form. Thus, it remains to do the energy
estimates. First we apply the operator 9 to the system —. Then we multiply
the first equation with 9,0 R,,, integrate w.r.t. = and add the complex conjugate.
Further we multiply the second equation with 9 20;R, and integrate w.r.t. .
Adding the resulting equations together gives

S0 Rullys + 5 ORI + 52 S0 O R Ge = I+ 4 T
where
L o= - /T (02 (o R) 0 o + 02 (10 R4 R,
ho= = [OM0R)O0R + 0 R)O;R,) da
b= =[O0 R)0OT + 00 F)OSR,) da
Io= =2 [ @R RO + U RRIOR, + B R POOR,) da

Is = 2Re / 0,0 Rye 20 Resy (1, Vo) da + / (05710, R,) 0 (72 Resy, (Y, V) ) d.
T T

Again it is essential that the R,- and R,-terms in the energy with the highest
derivatives can be written as time derivative plus terms with less derivatives falling



on R. As an example we consider the first two integrals I; and I,. We use Leibniz’s
rule in order to get

L= - / (uD: RohD T + 0u D Radh 0 Ry)
T

S S . - — s 5 . o

k=1

We apply the strategy from Section |3 and rewrite the terms with most derivatives
falling on R as a total time derivative plus terms with the time derivative falling
on approximation terms. This yields

; B .
h= -5 [ oo [ov0no
dt T T
-y (S> / O, RO R, du
= \K/ Jr

—_ i - S k s—k Qs > S & [

d _ _
= —— [ 9 (WuRu) R, dz + / O 0:R,0° Ry, da

—_ - s k s—k s u S & [T

We estimate

[t Tnal =2 Re [ 0,02R.0Rada| < Clowllie | Bl |l
T
|1 p+ Lop| =2 RGZ (S) /ax(aiwua;_kRy)ata;_lR_ude
k=1 k) Jr
< Olguliess | Rl 10 Rull s
Lo+ Dy =2 [Re Y (S) / (O F RO Ry d
k=1 k) Jr
< C(10sull s (| Rl s -1 + [[10u]] 225 || Oc R zrs—1) | R || 125,

where Ip; = I ;. Here and in the following ||0;R,| ;s occurs. This can be
estimated by the right-hand side of the R,-equation and so by

2|0 R, |

Hs—1 < ||Ru|

Hs—1 ||Ru|

et + [ Qul e | Roll -1 + [[4ho]
+‘€2||RUHHS—1HR1)HHS—1 + Cres-

Hs—1

10



As above it is not necessary to write I3 as time derivative plus terms with less
derivatives. The terms in I3 can be estimated directly. In detail, we find

|I3] =2 Re/@j“(vau)@t@;_lR_udx < O]
T

s+ ||O Ry |

Hs+1||Ru| Hsfl.

The term I, can be written as

/ (03 (RyR,) 0,05 Ry, + 05 (RyR,)0,0° Ry, + O (| Ru|?) 0,03 R, dr
T

— / (R,OIR,0,0: R, + 0:R,R,0,0: R, + 0:R,R,0,0: R, + OSR,R,0,05R,) d
T
+) (Z) / ROV R,00:R, + OFR,0:"R,0,0: R, da
k=1 T

s—1
S k s—k s
+) (k> /T 0" R, ¥ R,0,0°R, du
k=1

Adapting the strategy for I; yields

d _ _ _ _
I, = E (R, 0:R,0:R, + 0;R,R,0:R,) dx — /(GtRuE)ij(?jRu + R, 0RO R,) dx
T T
S s—1
S [ S I
2R O*R,0°""R,0,0°R, d / O*R,0°""R,0,0° R, dz.
coe3(y) [ornortnaaRi 3 (i) [ onor Roon. i
After integration by parts in I, and I . we estimate
1,4 = 2¢* |Re / O RO R,O: R, dx| < C2||0: Ry || 2 || Roll 225 || Rl 2541,
T
|Iip] = 26” Re ) (S) / 0.(0F R, 057" R,)0,0:7' R, d
k=1 k) Jx
< C°||Rull s || Rl s 10 Rul [ o1,
s—1
IV (S> / 0.(0"R, 05" R,)0,0° 'R, dx
k=1 k) Jx
S C&QHRU‘ H5+1HRu’ Hs+1\|8tajfleHLz.

The terms I can be estimated through the Cauchy-Schwarz inequality, Lemma
2.2l and Lemma 2.3l We find

[I5.4] =2 < Ce™?||0,R,|

Re / 0,05 Rue 205 Resy (thu, thy) dz
T

Hs—1 ||Resu<¢ua ¢v>|

Hs+1,

’[5,17’ = < 06_2"8758;_1Rv“L2HReSv(wuawv)’

Hs—1.

/ (05710, R,) 05 (e *Res, (Y, ¥)) da
T

11



Again we collect all terms in form of a time derivative in our energy £ = F£ +E ,
where

~ 1 1
E = 105" Ru17: + —||32Rv||%2 + —€2||32‘13t3v||%2
/(@S(% DR, + O (GuRa) PR, d
T

g / (RWOER,OER, + 0°R,R,0:R,) dx
T

Then £'/2 is equivalent to the H*™! x H*-norm of (R,, R,) in the sense of Lemma
B

Again we use £Y/2 < 1+ £. Using Lemma and the calculations from the
previous section we finally come to an inequality of the form

d
&< CE+ O+ C < (C+1)E+C,

as long as Ce€'/2 < 1. By Gronwall’s inequality we have £(t) < M for all t € [0, Tp]
for a constant M = O(1). We choose gy > 0 so small that CegM/? < 1. Using
the equivalence of £'/2 to the H*! x H*-norm we are done. O

The second improvement is about the validity of the higher order approxima-
tions. For ug(-, ) in a Sobolev space with sufficiently high regularity, the approxi-
mation rate in Theorem and Theorem can be increased. In the following,
we outline how to achieve this. For computing higher order approximations in case
x € T we make the ansatz

Yun(x,t) = Za%ugkxt Yyn(z,t) = Ze vk (z, 1). (9)

Then as before vy = —|ug|? and g solves the NLS equation . The functions wuoy,
solve inhomogeneous linear Schrodinger equations and the functions vy satisfy

D7 va(e—1) = O2vak + 02Gap(uo, - . ., Usg), (10)

where Gy, are quadratic nonlinearities. Suppose that vy;_1) has a vanishing mean
value. We look for vy, having a vanishing mean value, too. Since in general Gy
will not have a vanishing mean value we add a constant By € C to vy to get rid
of the non-vanishing mean value of Ggr. We can do this since the constant will
cancel in ([10). Then we set

Vo = 0, 207 va(r—1) — Gar (U, . . ., uap) + Pox (11)

12



and

1
Bak = %/TG%(UO, o gg) () da.

Under the condition that uy € H*72">(T, C) we have that the residual is of order
O(e?2) for the higher order approximation.
Unlike in Section [3] we introduce the error by

(u,0) (@, 1) = (Y, on) (@, 1) + €7 (R, Ry) ().
The error functions R, and R, satisfy

27'atRu - aiRu - ¢u,nRv - l/Jv,nRu - 5BRuRv + 6_6Resu(¢uu ¢v)a (12)
20'R, = O’R, + 02 (VunRy) + 02 (YunRy)
4902 | Ry|? + e PRes, (¥, ¥y). (13)

We set § = 2n where n is the order of the approximation defined in @ Then
the energy estimates are analogous to those from above. In total, we have the
following theorem.

Theorem 4.2. Let n € N and s € Ny. There is a Cyae > 0 such that for
all C, € [0,Chnaz) the following holds. Let uy € C([0, Ty, H*T2"5(T,C)) be a
solution of satisfying

sup ||luo(-, )| gs+2nts = Cy < 00.
tE[O,To]

Then there exist g > 0 and C' > 0 such that for all ¢ € (0,eq) we have solutions
(u,v) € C([0, Tp), H**(T,C) x H*(T,C)) of - satisfying

sup || (u, V) (5, 1) = (Yuns Yon) (1))

t€[0,To)

erims < Ce™.

5 Summary and Outlook

This paper investigates the singular limit of the Zakharov system, where the NLS
equation appears as a regular limit equation. The paper explains the importance
of opposite signs in the nonlinear terms of the Zakharov system for the validity
of the NLS approximation, see Remark [[.4, The approximation results, Theorem
[1.1] Theorem [4.I] and Theorem [4.2] are based on energy estimates and Gron-
wall’s inequality. The analysis shows that the standard proof of validity requires
an unstated smallness condition to relate the constructed energy to the usual
Sobolev norm, cf. Lemma (3.1, The paper compares the cases where € R and

13



x € T =R/(2rZ). We explain in Remark that in both cases the improved ap-
proximation (4 can be defined and the associated residual can be estimated. For
the approximation proof we also need estimates for 9, 'Res, (1, 1,). These hold
for z € T, ¢f. Lemmal[2.3] but not for 2 € R, ¢f. Remark[2.4. We have outlined the
challenges of properly defining the higher order approximations @ by explaining
the need to remove the mean in , which is only possible for z € T.

This paper is the starting point for some further investigations. The NLS
equation also appears for the Klein-Gordon-Zakharov (KGZ) system.

202 = 0%u — e %u — v, 72 0%v = 0%v + 02 (|ul?) (14)

with a parameter v € R\ {0} in the limit ¢ — 0. After eliminating all non-
resonant terms by normal form transformations, we end up with a system that has
the same properties as the Zakharov system. Therefore, we strongly expect that
an NLS approximation result for the KGZ system can be obtained by combining
normal form transformations with the energy estimates from this paper. This
would provide an alternative to the approximation proof given in [MNO5] and
a first higher order NLS approximation result for the KGZ system on the one-
dimensional torus T = R/(27Z). This will be the subject of future research.
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