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Abstract

We are interested in improving validity results for the Nonlinear
Schrödinger (NLS) approximation beyond the natural time scale for
completely integrable systems. As a first step, we consider this approxi-
mation for the Korteweg-de Vries (KdV) equation with initial condi-
tions for which the scattering data contains no eigenvalues. By perfor-
ming a linear Schrödinger approximation for the scattering data the
error made by this approximation has only to be estimated for a purely
linear problem which gives estimates beyond the natural NLS time
scale. The inverse scattering transform allows us to transfer these
estimates to the original variables.

1 Introduction

The Nonlinear Schrödinger (NLS) equation describes slow modulations in
time and space of oscillating wave packets in dispersive wave systems. It
was derived through a multiple scaling perturbation ansatz in [Zak68] first.
Various approximation results have been established in the mean-time, cf.
[Kal88, KSM92, Sch05, TW12]. See [Dül21] which contains a recent overview.
We are interested in the question whether it is possible to extend the validity
of the NLS approximation for completely integrable systems beyond the
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natural time scale of the NLS approximation. As a first step in this direction,
in this paper, we consider this question for the Korteweg-de Vries (KdV)
equation which serves as a simple example of a completely integrable system.

Using the Miura transformation, cf. [DJ89], and Gronwall’s inequality, in
[Sch11] a simple proof was given that the NLS approximation

εΨu = εA(ε(x− cut), ε
2t)ei(kux−ωut) + c.c.+O(ε2), (1)

with A(X,T ) ∈ C, X = ε(x − cut), T = ε2t, cu = cu(ku) the linear group
velocity, c.c. the complex conjugated terms and ku, ωu ∈ R satisfying the
linear dispersion relation, makes correct predictions about the dynamics of
the KdV equation

∂tu− 6u∂xu+ ∂3xu = 0, (2)

with u(x, t) ∈ R, x, t ∈ R, if A is chosen to be a solution of the defocusing
NLS equation

∂TA = −3iku∂
2
XA− 6ikuA|A|2. (3)

In detail, it was shown

Theorem 1.1 ([Sch11]). Fix s ≥ 1 and let A ∈ C([0, T0], H
s+4(R,C)) be a

solution of the NLS equation (3). Then there exist ε0 > 0 and C > 0 such
that for all ε ∈ (0, ε0) there are solutions u ∈ L∞([0, T ], Hs(R,R)) of the
KdV equation (2) with

sup
t∈[0,T0/ε2]

∥u(·, t)− εΨu(·, t)∥Hs ≤ Cε3/2.

As already said, we are interested in improving such validity results
for the NLS approximation beyond the natural O(1/ε2)-NLS time scale
for completely integrable systems, here the KdV equation. We do so by
restricting ourselves to initial conditions of the KdV equation for which the
scattering data contains no eigenvalues and by performing an NLS approxima-
tion for the scattering variable b associated to the essential spectrum. Since
the equation for b is linear, the NLS equation degenerates into a linear
Schrödinger equation. On the level of the scattering variables the error made
by this approximation has to be only estimated for a linear problem which
gives estimates beyond the natural NLS time scale, cf Section 3. Hence,
our approach allows us to extend the approximation time from O(1/ε2) to
O(1/ε3−δ) with δ > 0 arbitrarily small, but fixed. The inverse scattering
transform finally allows us to transfer these results to the original variables,
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cf. Section 4 and Section 5. In particular for the last step, a number of
functional analytic difficulties occur, cf. Remark 5.1. Our main result is
formulated in Theorem 5.3. The paper is closed with some discussions where
in particular we discuss the relation between the NLS approximation and the
linear Schrödinger approximation for the KdV equation. See Remark 6.10.

For the KdV equation the subsequent Theorem 5.3 van be interpreted as
a statement about long-time but transient dynamics. It makes no statement
about the asymptotic behavior of the solutions of the KdV equation for
t → ∞. A more and more detailed description of the asymptotic behavior
can be found in a number of papers such as [AS77, EvH81, DZ94, GT09].

Notation. Throughout this paper many possible different constants are
denoted with the same symbol C if they can be chosen independently of the
small perturbation parameter 0 < ε ≪ 1. Here and in the following

∫
R,

respectively
∫∞
−∞, is abbreviated by

∫
.

Let u(x) ∈ L2(R), then its Fourier transform û(ξ) ∈ L2(R) is defined by

û(ξ) =

∫
e−ixξu(x)dx.

The Sobolev space Hs, s ≥ 0, of s times weakly differentiable functions is
equipped with the norm

∥u∥Hs =

(
s∑

j=0

∫
|∂jxu(x)|2dx

)1/2

.

The weighted Lebesgue space L2
s is equipped with the norm

∥û∥L2
s
=

(∫
|û(k)|2(1 + k2)sdk

)1/2

.

Acknowldegement. The present work was partially funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -
Project-ID 258734477 - SFB 1173. The authors would like to thank Xian
Liao for a number of useful comments.

2 IST for the KdV equation

It is well known that the KdV equation

∂tu = −∂3xu+ 6u∂xu
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can be solved with the help of the inverse scattering transform (IST). Since
this theory plays a fundamental role in the following, we recall its basics for
completeness. For more details we refer to [DJ89].

For a solution u = u(x, t) of the KdV equation (2) we consider the
associated (quantum mechanical) scattering problem, namely

Lψ = −∂2xψ − uψ = λψ. (4)

i) The scattering problem is to find the eigenvalues/spectral values λk(t) ∈
R and the associated (formal) eigenfunctions ψk(·, t) for a given u = u(·, t)
where k is in some index set I.

ii) The inverse scattering problem is to reconstruct u = u(·, t) from the
scattering data λk(t) and ψk(·, t) for k ∈ I.

2.1 The scattering problem

The KdV equation is a completely integrable Hamiltonian system for which
there exists a Lax pair formulation

∂tL =ML− LM,

with self-adjoint L defined in (4) and skew-symmetric

Mψ = −4∂3xψ − 3(u∂xψ + (∂xu)ψ).

We recall that the Lax pair formulation has to be understood in the sense
that (∂tL)ψ = (∂tu)ψ and (ML − LM)ψ = (−∂3xu + 6u∂xu)ψ are pure
multiplication operators such that no ∂x falls on ψ. The Lax pair representation
implies that the eigenvalues/spectral values λk(t) of the operator L are indepen-
dent of time. The eigenfunctions ψk(·, t) satisfy

∂tψk(·, t) =Mψk(·, t).

For spatially localized u the operator L possesses essential spectrum [0,∞)
and a finite number, say N0, of negative eigenvalues λn, with n = 1, . . . , N0.

i) The eigenfunctions to the negative eigenvalues decay with some exponential
rate for |x| → ∞, in particular we have

ψn(x, t) ∼ cn(t)e
−κnx,
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for x → ∞, where κ2n = −λn and κn > 0, which defines cn(t). It turns out
that the coefficient cn(t) satisfies the simple evolution equation

∂tcn = 4κ3ncn

which is solved by cn(t) = cn(0)e
4κ3

nt.
ii) The eigenfunctions to the spectral values λk = k2 ∈ [0,∞) for k ∈ R

are of the form

ψk(x, t) ∼ e−ikx + b̂(k, t)eikx, for x→ ∞,

and
ψk(x, t) ∼ â(k, t)e−ikx, for x→ −∞.

It turns out that because of

|â(k, t)|2 + |̂b(k, t)|2 = 1, (5)

it is sufficient to control the coefficients b̂(k, t) which satisfy the simple
evolution equations

∂tb̂(k, t) = 8ik3b̂(k, t). (6)

2.2 The inverse scattering problem

The solution u = u(x, t) can be reconstructed from the scattering data

{λn, cn(t), n = 1, . . . , N0; b̂(k, t), k ∈ R}

by solving the Gelfand-Levitan-Marchenko equation

K(x, y, t) + F (x+ y, t) +

∫ ∞

x

K(x, z, t)F (y + z, t)dz = 0 (7)

for K(x, y, t) with y ≥ x where

F (x, t) =

N0∑
j=1

c2j(t)e
−κjx +

1

2π

∫ ∞

−∞
eikxb̂(k, t)dk.

The solution is then given by

u(x, t) = −2
d

dx
K(x, x+, t),

where x+ indicates that the derivative is computed as right-hand limit in the
second variable. The time t appears in these calculations only as a parameter.
In the integral equation (7) also the variable x is a parameter.
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3 The approximation for the scattering data

In this section we construct a Schrödinger approximation for the scattering
variables b̂(k, t), i.e., in the following we consider the case of no eigenvalues,
i.e., we assume N0 = 0 and comment on this assumption later on in Section
6.

The evolution equation (6) for the scattering variables b̂(k, t) is solved by

b̂(k, t) = e8ik
3tb̂(k, 0).

If k is interpreted as Fourier wave number and b̂ as Fourier transform of a
function b, then b satisfies the so-called Airy equation

∂tb(x, t) = −8∂3xb(x, t). (8)

For this equation we make the NLS ansatz

εΨNLS(x, t) = εA(ε(x− c0t), ε
2t)ei(k0x−ω0t) + c.c., (9)

with some fixed k0 ∈ R. Plugging this ansatz into (8) and equating the
coefficients of εnei(k0x−ω0t) to zero gives the linear dispersion relation ω0 =
−8k30 at O(ε), the group velocity c0 = −24k20 at O(ε2), and the linear Schrö-
dinger equation

∂TA = −24ik0∂
2
XA (10)

at O(ε3). For this equation we have the global existence of solutions in every
Hs for each s ≥ 0 since the Hs-norm is conserved

∥A(·, T )∥Hs = ∥e24ik0k2T Â(K, 0)(1 +K2)s/2∥L2
s(dK) (11)

= ∥Â(K, 0)(1 +K2)s/2∥L2
s(dK) = ∥A(·, 0)∥Hs .

We have the following approximation result:

Theorem 3.1 (Approximation for b). For each s ≥ 0 there exist C > 0
and ε0 > 0 such that the following holds. Let A ∈ C([0,∞), Hs+3) be a
solution of the linear Schrödinger equation (10). Then for all ε ∈ (0, ε0)
there is a unique solution b of the Airy equation (8) with initial data

b(x, 0) = εA(εx, 0)eik0x + c.c.

such that

sup
t∈[0,t0]

∥b(x, t)−(εA(ε(x−c0t), ε2t)ei(k0x−ω0t)+c.c.)∥Hs(dx) ≤ Cε7/2t0∥A(·, 0)∥Hs+3 ,

for all t0 ≥ 0.
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Proof. Let

R(x, t) = b(x, t)− (εA(ε(x− c0t), ε
2t)ei(k0x−ω0t) + c.c.),

with R(·, 0) = 0. This error function satisfies

∂tR = −8∂3xR− ε4(8ei(k0x−ω0t)∂3XA+ c.c.).

Applying the variation of constant formula yields

R(·, t) = −
∫ t

0

e−8∂3
x(t−τ)ε4(8ei(k0x−ω0τ)∂3XA+ c.c.)(·, τ)dτ.

Taking care of the fact that we lose a factor ε−1/2 due to the scaling properties
of the L2(R)-norm under x 7→ εx, we immediately find the estimate

∥R(·, t)∥Hs ≤ Cε4tε−1/2 sup
τ∈[0,t]

∥A(·, τ)∥Hs+3 ≤ Cε7/2t∥A(·, 0)∥Hs+3

due to (11).

Corollary 3.2. For each s ≥ 0 and δ ∈ (0, 1] there exist C > 0 and ε0 > 0
such that the following holds. Let A ∈ C([0,∞), Hs+3) be a solution of the
linear Schrödinger equation (10). Then for all ε ∈ (0, ε0) there is a unique
solution b of the Airy equation (8) with b(x, 0) = εA(εx, 0)eik0x + c.c. such
that

sup
t∈[0,1/ε3−δ]

∥b(x, t)− (εA(ε(x− c0t), ε
2t)ei(k0x−ω0t) + c.c.)∥Hs(dx) ≤ Cε1/2+δ.

Remark 3.3. The error of order O(ε1/2+δ) is still smaller than the solution
and the approximation which both are of order O(ε1/2) in Hs, s ≥ 0. Thus,
we improved the approximation time from O(1/ε2) to O(1/ε3−δ) with δ > 0
arbitrarily small, but fixed.

Remark 3.4. The Schrödinger equation shows a decay rate like T−1/2 for
T → ∞, whereas the Airy equation shows a decay rate like t−1/3 for t→ ∞.
The Fourier modes of the Schrödinger approximation are strongly concentrated
at k = k0, see Remark 3.9. Therefore, for A ∈ Hs the part around k =
0, showing the slower decay rate t−1/3, is εs initially. This part and the
Schrödinger part at k = k0 are of the same order if εst−1/3 = T−1/2 =
(ε2t)−1/2, i.e., for t = 1/ε6(s+1) ≫ 1/ε3. The faster decay rate of the
Schrödinger equation is thus manifested outside its range of validity.
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Higher order approximations can be computed, too.

Remark 3.5. The ansatz for the computation of higher order approximations
is given by

εΨ̃b(x, t) =
N∑

n=1

εnAn(ε(x− c0t), ε
2t)ei(k0x−ω0t) + c.c.,

leading to the approximation equations

∂TA1 = −24ik0∂
2
XA1, ∂TAn = −24ik0∂

2
XAn − 8∂3XAn−1,

for n ∈ {2, . . . , N}, with a fixed N ∈ N, and where A1 = A from above.
These approximation equations for n ≥ 2 can be solved with the variation of
constant formula

An(·, T ) = −
∫ T

0

e−24ik0∂2
X(T−τ)8∂3XAn−1(·, τ)dτ

where we have chosen vanishing initial conditions An(·, 0) = 0 for n ∈
{2, . . . , N}. This immediately gives the estimate

sup
0≤τ≤T

∥An(·, τ)∥Hs ≤ CT sup
0≤τ≤T

∥An−1(·, τ)∥Hs+3 .

Therefore, we need

A1 ∈ Hs+3N , A2 ∈ Hs+3N−3, A3 ∈ Hs+3N−6, . . . , AN ∈ Hs+3.

The error function then satisfies

∂tR = −8∂3xR− εN+3(8ei(k0x−ω0t)∂3XAN + c.c.).

Remark 3.6. For obtaining estimates for the higher order approximation
on the long O(1/ε3−δ)-time scale with δ > 0 arbitrarily small, but fixed, we
modify the ansatz into

εΨb(x, t) =
N∑

n=1

ε1+(n−1)δAn(ε(x− c0t), ε
2t)ei(k0x−ω0t) + c.c., (12)

leading to the approximation equations

∂TA1 = −24ik0∂
2
XA1, ∂TAn = −24ik0∂

2
XAn − 8ε1−δ∂3XAn−1,

8



with n = 2, ..., N . Since

sup
0≤τ≤T

∥An(·, τ)∥Hs ≤ Cε1−δT sup
0≤τ≤T

∥An−1(·, τ)∥Hs+3 ,

all An remain O(1)-bounded for t ∈ [0, 1/ε3−δ]. The error function then
satisfies

∂tR = −8∂3xR− ε1+(N−1)δ+3(8ei(k0x−ω0t)∂3XAN + c.c.)

and so

∥R(·, t)∥Hs ≤ Cε1+(N−1)δ+3tε−1/2 sup
τ∈[0,ε2t]

∥AN(·, τ)∥Hs+3 .

Thus, we have proven

Theorem 3.7. For each N ∈ N, s ≥ 0 and δ ∈ (0, 1] there exist C > 0 and
ε0 > 0 such that the following holds. Let A1 ∈ C([0,∞), Hs+3N) be a solution
of the linear Schrödinger equation (10) and let the An be solutions of

∂TAn = −24ik0∂
2
XAn − 8ε1−δ∂3XAn−1, An|T=0 = 0

for n = 2, . . . , N . Then for all ε ∈ (0, ε0) there is a unique solution b of the
Airy equation (8) such that

sup
t∈[0,1/ε3−δ]

∥b(x, t)− εΨb(x, t)∥Hs(dx) ≤ Cε1/2+Nδ

where

εΨb(x, t) =
N∑

n=1

ε1+(n−1)δAn(ε(x− c0t), ε
2t)ei(k0x−ω0t) + c.c..

Remark 3.8. Sobolev’s embedding theorem immediately yields

sup
t∈[0,1/ε3−δ]

sup
x∈R

|b(x, t)− εΨb(x, t)| ≤ Cε1/2+Nδ,

which is a non-void estimate if 1/2 + Nδ > 1. Then, the error of order
O(ε1/2+Nδ) is smaller than the solution and the approximation which both
are of order O(ε) in C0

b .
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Remark 3.9. Since we are handling linear inhomogeneous equations, the
above analysis holds in various other function spaces. For the subsequent
analysis we need an L∞-bound in Fourier space. Rewriting Remark 3.6 for
obtaining estimates for the higher order approximation on the longO(1/ε3−δ)-
time scale with δ > 0 arbitrarily small, the modified ansatz in Fourier space
is given by

ε̂Ψb(k, t) =
N∑

n=1

ε(n−1)δÂn(ε
−1(k − k0), ε

2t)ei(−ω0t)−ic0(k−k0)t + c.c.f.,

leading to the approximation equations

∂T Â1 = 24ik0K
2Â1, ∂T Ân = 24ik0K

2Ân + 8iε1−δK3Ân−1

where c.c.f. corresponds to the complex conjugate in Fourier space. Since

sup
0≤τ≤T

∥Ân(·, τ)∥L∞
s
≤ Cε1−δT sup

0≤τ≤T
∥Ân−1(·, τ)∥L∞

s+3
,

where
∥Â(·, τ)∥L∞

s
= sup

K∈R
|Â(K, τ)(1 +K2)s/2|,

all Ân remain O(1)-bounded for t ∈ [0, 1/ε3−δ]. The error function then
satisfies

∂tR̂ = 8ik3R̂− ε(N−1)δ+3(8ei(−ω0t)−ic0(k−k0)t(iK)3ÂN + c.c.f.),

and so

∥R̂(·, t)∥L∞
s

≤ Cε(N−1)δ+3t sup
τ∈[0,ε2t]

∥ÂN(·, τ)∥L∞
s+3

≤ CεNδ sup
τ∈[0,1/ε1−δ]

∥Â1(·, τ)∥L∞
s+3N

,

for all t ∈ [0, 1/ε3−δ].

4 The approximation of the KdV solutions

via IST

In this section we use the Gelfand-Levitan-Marchenko equation to construct
the approximation εΨu for the KdV equation (2) associated to the linear
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Schrödinger approximation εΨb for a fixed N from Theorem 3.7. We compute

F (x, t) =
1

2π

∫ ∞

−∞
eikxb̂(k, t)dk = b(x, t)

for the solutions constructed in Section 3, i.e., for b = εΨb. Then, we set

εΨu(x, t) = −2
d

dx
(εΨK)(x, x

+, t) (13)

where εΨK is an approximate solution of the Gelfand-Levitan-Marchenko
equation

εΨK(x, y, t) + εΨb(x+ y, t) + ε2
∫ ∞

x

ΨK(x, z, t)Ψb(y + z, t)dz = 0, (14)

with y ≥ x. In the following we explain how to compute εΨK iteratively. We
have

εΨb(x, t) = εA(ε(x− c0t), ε
2t)ei(k0x−ω0t) + c.c.+ h.o.t..

In the subsequent computations i)-iv) we restrict ourselves to εΨb without
the h.o.t. for explaining the underlying approach. The general ansatz for
εΨK can be found in v).

i) For approximately solving (14) we use perturbation theory. We make
the ansatz

εΨK(x, y, t) = εK1(εx, εy, t)e
i(k0x+k0y−ω0t) + c.c.,
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and compute

ε2
∫ ∞

x

ΨK(x, z, t)Ψb(y + z, t)dz

=

∫ ∞

x

εK1(εx, εz, t)εA(ε(y + z − c0t), ε
2t)e2ik0zdzeik0(x+y)e−2iω0t + c.c.

= ε2K1(εx, εz, t)A(ε(y + z − c0t), ε
2t)

e2ik0z

2ik0

∣∣∣∣∞
z=x

eik0(x+y)e−2iω0t

−
∫ ∞

x

ε3∂Z(K1(εx, εz, t)A(ε(y + z − c0t), ε
2t))

e2ik0z

2ik0
dzeik0(x+y)e−2iω0t + c.c.

= −ε2K1(εx, εx, t)A(ε(y + x− c0t), ε
2t)

e2ik0x

2ik0
eik0(x+y)e−2iω0t

+ε3∂Z(K1(εx, εx, t)A(ε(y + x− c0t), ε
2t))

e2ik0x

(2ik0)2
eik0(x+y)e−2iω0t

+

∫ ∞

x

ε4∂2Z(K1(εx, εz, t)A(ε(y + z − c0t), ε
2t))

e2ik0z

(2ik0)2
dzeik0(x+y)e−2iω0t + c.c.

= . . . ,

such that equating the coefficient of εeik0(x+y)e−iω0t in (14) to zero yields

K1(εx, εy, t) = −A(ε(x+ y − c0t), ε
2t).

The solution of the KdV equation is then given by

u(x, t) = εu1(x, t) + h.o.t.,

where

u1(x, t) = −2
d

dx
(K1(εx, εx

+, t)ei(k0x+k0x−ω0t) + c.c.)

= 2
d

dx
(A(ε(x+ x− c0t), ε

2t)ei(k0x+k0x−ω0t) + c.c.)

= 4ik0A(ε(2x− c0t), ε
2t)e2ik0x−iω0t + c.c.

+4ε(∂XA)(ε(2x− c0t), ε
2t)e2ik0x−iω0t + c.c..

ii) For getting rid of the terms of order O(ε2) at ei(3k0x+k0y−2ω0t) we extend
our ansatz to

εΨK(x, y, t) = εK1(εx, εy, t)e
i(k0x+k0y−ω0t) + c.c.

+ε2K2(εx, εy, t)e
i(3k0x+k0y−2ω0t) + c.c.+ h.o.t..
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Equating the coefficient of ε2e3ik0x+ik0ye−2iω0t in (14) to zero yields

K2(εx, εy, t) =
1

2ik0
K1(εx, εy, t)A(ε(x+ y − c0t), ε

2t)

= − 1

2ik0
A(ε(x+ y − c0t), ε

2t)A(ε(x+ y − c0t), ε
2t).

The next order solution of the KdV equation is then given by

u(x, t) = εu1(x, t) + ε2u2(x, t) + h.o.t.,

where

u2(x, t) = −2
d

dx
(K2(εx, εx

+, t)ei(3k0x+k0x−2ω0t) + c.c.)

=
1

ik0

d

dx
(A2(ε(2x− c0t), ε

2t)ei(4k0x−2ω0t) + c.c.)

= 4A2(ε(2x− c0t), ε
2t)ei(4k0x−2ω0t) + c.c.

+
2

ik0
ε(∂X(A

2))(ε(2x− c0t), ε
2t)ei(4k0x−2ω0t) + c.c..

iii) We use the same idea to get rid of the terms of order O(ε3) at
ei(5k0x+k0y−3ω0t). Again we extend our ansatz to

εΨK(x, y, t) = εK1(εx, εy, t)e
i(k0x+k0y−ω0t) + c.c.

+ε2K2(εx, εy, t)e
i(3k0x+k0y−2ω0t) + c.c.

+ε3K3(εx, εy, t)e
i(5k0x+k0y−3ω0t) + c.c.+ h.o.t..

Equating the coefficient of ε3e5ik0x+ik0ye−3iω0t to zero in (14) yields

K3(εx, εy, t) =
1

2ik0
K2(εx, εy, t)A(ε(x+ y − c0t), ε

2t)

=
1

4k20
A2(ε(x+ y − c0t), ε

2t)A(ε(x+ y − c0t), ε
2t).

The next order solution of the KdV equation is then given by

u(x, t) = εu1(x, t) + ε2u2(x, t) + ε3u3(x, t) + h.o.t.,
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where

u3(x, t) = −2
d

dx
(K3(εx, εx

+, t)ei(5k0x+k0x−3ω0t) + c.c.)

= − 1

2k20

d

dx
(A3(ε(2x− c0t), ε

2t)ei(6k0x−3ω0t) + c.c.

= − 3i

k0
A3(ε(2x− c0t), ε

2t)ei(6k0x−3ω0t) + c.c.

− 1

k20
ε(∂X(A

3))(ε(2x− c0t), ε
2t)ei(6k0x−3ω0t) + c.c..

iv) As a last example we explain how to eliminate the terms of order
O(ε3) at ei(3k0x+k0y−2ω0t). We extend our ansatz to

εΨK(x, y, t) = εK1(εx, εy, t)e
i(k0x+k0y−ω0t) + c.c.

+ε2K2(εx, εy, t)e
i(3k0x+k0y−2ω0t) + c.c.

+ε3K3(εx, εy, t)e
i(5k0x+k0y−3ω0t) + c.c.

+ε3K2,1(εx, εy, t)e
i(3k0x+k0y−2ω0t) + c.c.+ h.o.t..

Equating the coefficient of ε3e3ik0x+ik0ye−2iω0t in (14) to zero yields

K2,1(εx, εy, t) = − 1

(2ik0)2
∂X
(
K1(εx, εy, t)A(ε(x+ y − c0t), ε

2t)
)

= − 1

4k20
∂X
(
A(ε(x+ y − c0t), ε

2t)A(ε(x+ y − c0t), ε
2t)
)
.

The next order solution of the KdV equation is then given by

u(x, t) = εu1(x, t) + ε2u2(x, t) + ε3u3(x, t) + ε3u2,1(x, t) + h.o.t.,

where

u2,1(x, t) = −2
d

dx
(K2,1(εx, εx

+, t)ei(3k0x+k0x−2ω0t) + c.c.)

= − 1

2k20

d

dx
(∂X

(
A2(ε(2x− c0t), ε

2t)
)
ei(4k0x−2ω0t) + c.c.

= − 2i

k0
(∂X(A

2))
(
ε(2x− c0t), ε

2t
)
ei(4k0x−2ω0t) + c.c.

− 1

k20
ε(∂2X(A

2))
(
ε(2x− c0t), ε

2t
)
ei(4k0x−2ω0t) + c.c..

v) The inclusion of the h.o.t. does not change the calculations substantially.
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Remark 4.1. Approximations εΨK of the kernel can be computed up to
arbitrary order. For solving (14) we then make the ansatz

εΨK(x, y, t) =
∑
n∈IÑ

MÑ,n∑
m=0

εβ(n)+mKn,m(εx, εy, t)e
i((2n−1)k0x+k0y−nω0t),

with β(n) = 1+ ||n|−1|, IÑ = {−Ñ ,−Ñ +1, . . . , Ñ −1, Ñ}, and sufficiently
large numbers MÑ,n ∈ N0. By shifting the integral term to higher orders
again and again, as in i), new terms occur which are balanced by extending
the ansatz εΨK with the new kernels Kn,m where Kj,0 = Kj from above and
uj,0 = uj for j ∈ N.

Remark 4.2. The computation of the kernels seems to be rather complicated
but once these calculations are made the formula for the solution

u(x, t) = εu1(x, t) + ε2u2(x, t) +O(ε3)

= 4εik0A(ε(2x− c0t), ε
2t)e2ik0x−iω0t + c.c.

+4ε2(∂XA)(ε(2x− c0t), ε
2t)e2ik0x−iω0t + c.c.

+4ε2A2(ε(2x− c0t), ε
2t)ei(4k0x−2ω0t) + c.c.+O(ε3)

in terms of A is rather simple.

Remark 4.3. In this section we performed the calculations to compute εΨK

and therefore εΨu for the NLS ansatz ΨNLS in (9). In case δ = 1 for the
extended NLS ansatz εΨb in (12) we can use the ansatz from Remark 4.1.
Since the calculations for the extended ansatz do not differ from the previous
ones we refrain from listing the formulas. In case δ ∈ (0, 1) the ansatz from
Remark 4.1 has to be modified in an obvious and straightforward way. Since
the general form of εΨK is then very lengthy we decided not list it here.

5 Error estimates via IST

Let
b(x, t) = εΨb(x, t) + εβRb(x, t),

where β = 1
2
+ Nδ and εΨb are given in Theorem 3.7. The kernel K is a

sum of the approximation kernel εΨK constructed in Section 4 and an error
εβRK . Plugging

K(x, y, t) = εΨK(x, y, t) + εβRK(x, y, t)
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into the Gelfand-Levitan-Marchenko equation (14) yields

εΨK(x, y, t) + εβRK(x, y, t) + εΨb(x+ y, t) + εβRb(x+ y, t)

+

∫ ∞

x

(εΨK(x, z, t) + εβRK(x, z, t))(εΨb(y + z, t) + εβRb(y + z, t))dz = 0,

and so

RK + sinh + slin + snon + sres = 0, (15)

with

sinh(x, y, t) = Rb(x+ y, t) + ε

∫ ∞

x

ΨK(x, z, t)Rb(y + z, t)dz,

slin(x, y, t) = ε

∫ ∞

x

RK(x, z, t)Ψb(y + z, t)dz,

snon(x, y, t) = εβ
∫ ∞

x

RK(x, z, t)Rb(y + z, t)dz,

sres(x, y, t) = ε−β

(
εΨK(x, y, t) + εΨb(x+ y, t)

+ε2
∫ ∞

x

ΨK(x, z, t)Ψb(y + z, t)dz

)
.

The functionRK(x, y, t) vanishes identically for y < x since the Marchenko
equation (7) is only valid for y ≥ x.

The structure of (15) is as follows:

• The term sinh is independent ofRK and does not contain residual terms.

• The term slin is linear in RK . This term can be estimated with the
help of energy estimates.

• The term snon is nonlinear in RK and will be of higher order due to the
εβ in front.

• The term sres is the residual, i.e., it contains the terms which do not
cancel after inserting the formal approximations ΨK and Ψb into the
Gelfand-Levitan-Marchenko equation (14). The remaining terms can
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be written as

sres = ε−β(εΨK(x, y, t) + εΨb(x+ y, t)

+ε2
∫ ∞

x

ΨK(x, z, t)Ψb(y + z, t)dz)

= ε−β

(∫ ∞

x

εN+1Krest(x, z, t)Ψb(y + z, t)dz

)
,

where Krest has an integral form similiar to∫ ∞

x

ε3∂Z(K1(εx, εz, t)A(ε(y + z − c0t), ε
2t))

e2ik0z

2ik0
dzeik0(x+y)e−2iω0t

from part i) of Section 4 and is finally a function of

A1, ..., AN , . . . , ∂
sA
X A1, ..., ∂

sA
X AN ,

where A1 = A from above, with sA a number depending on Ñ from
Lemma 4.1, cf. the construction in Section 4.

5.1 Outline

Equation (15) will be solved for every fixed t. Since (15) is formally of the
form RK plus some small perturbation in RK plus some inhomogeneity, we
will use Neumann’s series to solve (15) w.r.t RK .

Remark 5.1. In order to apply a fixed point argument to (15), we need
suitable function spaces such that the above integrals sinh, slin, snon and sres
are defined. However, the main difficulty is to find such spaces forK and thus
the error RK , since K(·, ·, t) /∈ L2(R2), as we will see. The key element in
finding these spaces is an identity that can subsequently be found in Remark
5.2. This allows us to estimate RK(·, ·, t) in the L2-norm with respect to the
second variable and in the supremum norm with respect to the first variable.

Multiplication of (15) with RK(x, y, t) and integration w.r.t. y yields∫ ∞

−∞
|RK(x, y, t)|2dy + rinh(x, t) + rlin(x, t) + rnon(x, t) + rres(x, t) = 0, (16)
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with

rinh(x, t) =

∫ ∞

−∞
RK(x, y, t)sinh(x, y, t)dy,

rlin(x, t) =

∫ ∞

−∞
RK(x, y, t)slin(x, y, t)dy,

rnon(x, t) =

∫ ∞

−∞
RK(x, y, t)snon(x, y, t)dy,

rres(x, t) =

∫ ∞

−∞
RK(x, y, t)sres(x, y, t)dy.

Remark 5.2. In the following we use the fundamental identity, cf. [Seg73,
p. 727], ∫ ∞

−∞

∫ ∞

x

εR1(x, z, t)Ψb(y + z, t)R2(x, y, t)dzdy

=

∫ ∞

−∞

∫ ∞

−∞
εR1(x, z, t)Ψb(y + z, t)R2(x, y, t)dzdy

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
εR1(x, z, t)

∫ ∞

−∞
Ψ̂b(k, t)e

ik(y+z)dkR2(x, y, t)dzdy

=
1

2π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
εR1(x, z, t)e

ikzΨ̂b(k, t)R2(x, y, t)e
ikydzdydk

=
1

2π

∫ ∞

−∞
εΨ̂b(k, t)R̂1(x,−k, t)R̂2(x,−k, t)dk

=
1

2π

∫ ∞

−∞
εΨ̂b(k, t)R̂1(x, k, t)R̂2(x, k, t)dk,

where we used RK(x, z, t) = 0 for x > z, to obtain the second line from the
first line, and the definition of Fourier transform.

5.2 Estimates for the inhomogeneous term rinh

In this subsection we are going to estimate

rinh(x, t) =

∫ ∞

−∞
RK(x, y, t)Rb(x+ y, t)dy

+ε

∫ ∞

−∞
RK(x, y, t)

∫ ∞

x

ΨK(x, z, t)Rb(y + z, t)dzdy.
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With the Cauchy-Schwarz inequality we find∣∣∣∣∫ ∞

−∞
RK(x, y, t)Rb(x+ y, t)dy

∣∣∣∣ ≤ ∥RK(x, ·, t)∥L2∥Rb(·, t)∥L2

and with Remark 5.2, Plancherel’s identity, and Young’s inequality that

ε

∣∣∣∣∫ ∞

−∞
RK(x, y, t)

∫ ∞

x

ΨK(x, z, t)Rb(y + z, t)dzdy

∣∣∣∣
≤ Cε sup

k∈R
|R̂b(·, t)|∥RK(x, ·, t)∥L2∥ΨK(x, ·, t)∥L2 .

Hence, we obtain the estimate

|rinh(x, t)| ≤ (C0,1 + C0,2ε)∥RK(x, ·, t)∥L2 ≤ 2C0,1∥RK(x, ·, t)∥L2 ,

if ε > 0 is chosen so small that C0,2ε ≤ C0,1, with constants

C0,1 = sup
t∈[0,1/ε3−δ]

∥Rb(·, t)∥L2 ,

C0,2ε = Cε sup
t∈[0,1/ε3−δ]

sup
k∈R

|R̂b(·, t)| sup
t∈[0,1/ε3−δ]

sup
x∈R

∥ΨK(x, ·, t)∥L2 ,

where
sup

t∈[0,1/ε3−δ]

sup
k∈R

|R̂b(·, t)| = CB

is bounded by Remark 3.9 and the last factor is bounded by Remark 4.1.

5.3 Estimates for the linear term rlin

With Remark 5.2 and Plancherel’s identity we find

ε

∣∣∣∣∫ ∞

−∞
RK(x, y, t)

∫ ∞

x

RK(x, z, t)Ψb(y + z, t)dzdy

∣∣∣∣ (17)

≤ ε∥Ψ̂b∥L∞∥RK(x, ·, t)∥2L2 .

We assume
sup
K∈R

|Â(K,T )| ≤ sup
K∈R

|Â(K, 0)| ≤ 1− δ′ < 1 (18)

for T ≥ 0 and a δ′ ∈ (0, 1) which is a natural and necessary restriction due
to the condition (5) which lead to (18). Then, the triangle inequality yields

∥εΨ̂b∥L∞ ≤ ∥Â∥L∞ +O(ε) ≤ 1− δ′/2 (19)
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for ε > 0 sufficiently small. Therefore, we achieve

|rlin(x, t)| ≤ C1∥RK(x, ·, t)∥2L2 ,

with a C1 < 1.

5.4 Estimates for the nonlinear term rnon

In this subsection we are going to estimate

rnon(x, t) = εβ
∫ ∞

−∞
RK(x, y, t)

∫ ∞

x

RK(x, z, t)Rb(y + z, t)dzdy.

Again with Remark 5.2 and Plancherel’s identity this can be estimated by

|rnon(x, t)| ≤ Cεβ∥R̂b(·, t)∥L∞∥RK(x, ·, t)∥2L2 .

5.5 Estimates for the residual term rres

In this subsection we are going to estimate

rres(x, t) = ε−β

∫ ∞

−∞
RK(x, y, t)

(
εΨK(x, y, t) + εΨb(x+ y, t)

+ε2
∫ ∞

x

ΨK(x, z, t)Ψb(y + z, t)dz
)
dy

= ε−β

∫ ∞

−∞
RK(x, y, t)

(∫ ∞

x

εÑ+1Krest(x, z, t)Ψb(y + z, t)dz

)
dy.

With Remark 5.2 we find

rres(x, t) = εÑ+1−β 1

2π

∫ ∞

−∞
Ψ̂b(k, t)R̂K(x, k, t)K̂rest(x, k, t)dk.

The function Krest can be expressed in terms of the functions A1, ..., AN , ...,
∂sAX A1, ..., ∂

sA
X AN with sA a number depending on Ñ . It contains terms

which are at least quadratic in the argument. Moreover, there are no terms
in Krest w.r.t A1, ..., AN and their derivatives of power bigger than Ñ + 1.
Since multiplication becomes convolution under Fourier transform we have
to estimate for instance

∥Â∗(Ñ+1)∥L2 .
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By Young’s inequality for convolutions, the embedding L2
s ⊂ L1 for s > 1/2,

we obtain for instance

∥Â∗(Ñ+1)∥L2 ≤ C∥Â∗(Ñ)∥L1∥Â∥L2 ≤ C∥Â∥ÑL1∥A∥Hs

and analogously for the terms containing derivatives of A such that all terms
in Krest can be estimated in terms of C∥A∥j

Hs+sA
for j = 2, . . . , Ñ + 1.

By the Cauchy-Schwarz inequality, Plancherel’s identity and estimate (19)
we obtain

|rres(x, t)| =

∣∣∣∣εN+1−β 1

2π

∫ ∞

−∞
Ψ̂b(k, t)R̂K(x, k, t)K̂rest(x, k, t)dk

∣∣∣∣
≤ εN−βε∥Ψ̂b(·, t)∥L∞∥RK(x, ·, t)∥L2∥Krest(x, ·, t)∥L2

≤ CεN−β−1/2ε∥Ψ̂b(·, t)∥L∞∥RK(x, ·, t)∥L2∥A(·, t)∥Hs+sA

Ñ+1∑
j=2

∥Â(·, t)∥j−1
L1

≤ CεN−β−1/2C1∥RK(x, ·, t)∥L2∥A(·, t)∥Hs+sA

Ñ+1∑
j=2

∥Â(·, t)∥j−1
L1

≤ C2ε
N−β−1/2∥RK(x, ·, t)∥L2 ,

with the constant

C2 = sup
t∈[0,1/ε3−δ]

sup
x∈R

CC1∥A(·, t)∥Hs+sA

Ñ+1∑
j=2

∥Â(·, t)∥j−1
L1

 .

5.6 Final estimates

In the following we choose Ñ so large that N − β ≥ 1. Recall that N and Ñ
are different numbers, cf. Remark 4.1, with N → ∞ for Ñ → ∞. From (16)
we immediately find∫ ∞

−∞
|RK(x, y, t)|2dy ≤ |rinh(x, t)|+ |rlin(x, t)|+ |rnon(x, t)|+ |rres(x, t)|.

First, Young’s inequality gives

|rinh(x, t)| ≤ 2C0,1∥RK(x, ·, t)∥L2 ≤ δ21∥RK(x, ·, t)∥2L2 +
C0,1

δ21
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and

|rres(x, t)| ≤ C2ε
N−β∥RK(x, ·, t)∥L2 ≤ C2

2/4 + ε2(N−β)∥RK(x, ·, t)∥2L2 ,

such that

∥RK(x, ·, t)∥2L2 ≤ δ21∥RK(x, ·, t)∥2L2 +
C0,1

δ21
+C1∥RK(x, ·, t)∥2L2

+CεβCB∥RK(x, ·, t)∥2L2

+C2
2/4 + ε2(N−β)∥RK(x, ·, t)∥2L2

with C1 < 1. Rearranging the terms we obtain

(1− δ21 − C1 − CεβCB − ε2(N−β))∥RK(x, ·, t)∥2L2 ≤ C0,1

δ21
+ C2

2/4.

Choosing δ1 > 0 and ε > 0 so small that

δ21 + CεβCB + ε2(N−β) ≤ (1− C1)/2

gives

sup
t∈[0,1/ε3−δ]

sup
x∈R

∥RK(x, ·, t)∥L2 ≤ 2(1− C1)
−1(

C0,1

δ21
+ C2

2/4) =: CR = O(1),

and hence

sup
t∈[0,1/ε3−δ]

sup
x∈R

∥K(x, ·, t)− εΨK(x, ·, t)∥L2 ≤ CRε
β.

In exactly the same way, we prove

sup
t∈[0,1/ε3−δ]

sup
x∈R

∥∂sxx ∂syy (K(x, ·, t)− εΨK(x, ·, t))∥L2 ≤ CRε
β,

for 0 ≤ sx + sy ≤ s. Therefore, we find

u(x, t)− εΨu(x, t) = −2
d

dx
(K(x, x+, t)− εΨK(x, x

+, t)).

and so
sup

t∈[0,1/ε3−δ]

∥u(x, t)− εΨu(x, t)∥Hs−1 ≤ Cεβ.

Hence, we have proven
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Theorem 5.3. For each N ∈ N, s ≥ 1 and δ ∈ (0, 1] there exist C > 0 and
ε0 > 0 such that the following holds. Let A1 ∈ C([0,∞),F−1L∞

s+3N ∩Hs+3N)
be a solution of the linear Schrödinger equation (10) with

sup
K∈R

|Â(K, 0)| < 1 (20)

and let the An be solutions of

∂TAn = 24ik0∂
2
XAn − 8ε1−δ∂3XAn−1, An|T=0 = 0,

for n = 2, . . . , N . Then for all ε ∈ (0, ε0) there are solutions u of the KdV
equation (2) such that

sup
t∈[0,1/ε3−δ]

∥u(x, t)− εΨu(x, t)∥Hs−1(dx) ≤ Cε1/2+Nδ,

with εΨu as constructed in (13).

Remark 5.4. As already said (20) is a natural and necessary restriction due
to (5).

6 Discussion

In the previous sections we used the Gelfand-Levitan-Marchenko equation
and the evolution of the scattering data to construct a linear Schrödinger
approximation for the KdV equation. Although at a first view this detour
only seems to be of theoretical use, the transfer of a nonlinear PDE problem
into a pure integration problem allowed us to extend the approximation time
beyond the natural NLS time scale.

Remark 6.1. Our result is what can be expected for completely integrable
systems for which a representation in action and angle variables do exist.
The action variables are conserved. The frequency of the angle variables are
approximated up to order O(ε2), i.e. with an error of order O(ε3). The
error for these variables then grows like O(ε3)t which is of order O(εδ) for a
O(1/ε3−δ)-time scale.

Remark 6.2. The inverse scattering approach for the KdV equation and
the NLS equation have been related in [ZK86]. Such correspondances have
been analysed in a number of other papers, cf. [TLOB88, BCP02, KP03].
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Remark 6.3. It is the goal of future research to describe the interaction of
NLS scaled wave packets for completely integrable systems. Is it possible
to extend the separation of internal and interaction dynamics of NLS scaled
wave packets with different carrier waves for completely integrable systems
even further than in the existing literature [PW95, CSU07, CCSU08, CS12,
SC15] for general dispersive systems?

Remark 6.4. Due to the scaling properties of the slow spatial variable
X ∼ εx in the NLS ansatz and the scaling properties of the KdV solitons ∼
ε2Asoliton(ε(x− ct)), we expect that the discrete eigenvalues in the scattering
data are of orderO(ε2) for a general NLS ansatz in the original KdV equation.
Rigorous estimates for the number and size of the eigenvalues can be found
with the help of Lieb-Thirring inequalities, cf. [FLW23]. However, a detailed
analysis with respect to this question is beyond the scope of this paper.

Remark 6.5. For the KdV equation, only the defocusing NLS equation can
be derived. Unlike the focusing NLS equation, it has no pulse solutions and
its dynamics for initial conditions vanishing for |X| → ∞ is a bit annoying,
since all solutions decay to zero for T → ∞. However, the essential result is
that the KdV equation can be approximated by a linear Schrödinger equation
per se.

Remark 6.6. The Schrödinger equation shows a dispersive decay ∼ 1/
√
T .

Hence for t = O(1/ε3−δ), respectively T = O(1/ε1−δ) we have that the
solutions are of order O(ε1/2−δ/2) if they are initially of order O(1) or of order
O(ε3/2−δ/2) if they are initially of order O(ε) like for the NLS approximation.
As explained in the introduction the KdV equation (2) can be transferred
with the help of the Miura transformation

u = v2 + ∂xv (21)

via direct substitution into the mKdV equation

∂tv − 6v2∂xv + ∂3xv = 0. (22)

For solutions of orderO(ε3/2−δ/2) of the mKdV equation Gronwall’s inequality
easily gives estimates on a time scale of order O(1/ε3−δ) w.r.t. t. However, in
our situation the solutions are initially of order O(ε) and much bigger than
O(ε3/2−δ/2) except at the end of the time interval [0, 1/ε3−δ]. Therefore, our
result is non-trivial and gives a rather precise description of the decay of NLS
scaled wave packets on the long time interval [0, 1/ε3−δ].
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Remark 6.7. Due to the decay of the solutions, cf Remark 6.6, we have a
global-in-time approximation result with an error O(ε3/2−δ/2).

Remark 6.8. It is the purpose of future research to transfer the presented
analysis to other dispersive completely integrable systems, such as the sine-
Gordon equation, the NLS equation, or the Toda-lattice.

Remark 6.9. There is a relation between the the scattering data of the KdV
equation and of the NLS equation, cf. [ZK86, TLOB88]. It is the purpose
of future research to replace the special initial conditions for the scattering
data b by scattering data which allows us to handle all NLS approximations.
In order to analyze the general NLS case, even with no discrete eigenvalues,
scattering data concentrated at other integer multiples of the basic wave
number have to be considered, too.

Remark 6.10. The question about the relation of the NLS approximation
and the linear Schödinger approximation of the KdV question has not been
discussed so far. At a first view it seems a little bit strange that the KdV
equation can be approximated simultaneously by a NLS equation and a
linear Schödinger equation. In the following we explain why this is not a
contradiction.

We denote with xu the space and with tu the time variable used in the
NLS approximation and with x the space and with t the time variable used
in the linear Schödinger approximation.

On the one hand we have the NLS approximation

u(xu, tu) = εA(ε(xu − cutu), ε
2t)ei(kuxu−ωutu) + c.c.+O(ε2),

for the KdV equation

∂tuu− 6u∂xuu+ ∂3xu
u = 0,

with ωu = −k3u, cu = −3k2u, and A satisfying the defocusing NLS equation

∂TuA = −3iku∂
2
Xu

A− 6ikuA|A|2.

On the other hand we have the linear Schödinger approximation

u(x, t) = 4εik0A(ε(2x− c0t), ε
2t)e2ik0x−iω0t + c.c.+O(ε2),
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for the same KdV equation, with ω0 = −8k30, c0 = −24k20, and A satisfying
the linear Schödinger equation

∂TA = −24ik0∂
2
XA.

A comparison of the NLS approximation and the linear Schödinger approxi-
mation gives k0 = ku, 2x = xu, 8t = tu, c0 = 8cu, 2X = Xu, and 8T = Tu.

For solutions of order O(ε) the nonlinear terms in the KdV equation
will not affect the dynamics of the KdV equation in lowest order before
O(1/ε)-time scales but in general they play a role after this time scale.
However, for initial conditions of the KdV equation which are O(ε2) close to
the approximation constructed by the linear Schrödinger equation at t = 0
there is a subset of initial conditions of the KdV equation for which the effect
of the nonlinear terms stays small on the long O(1/ε3−δ)-time scale.

Remark 6.11. The previous analysis will work for all other members of the
KdV-hierarchy, too.
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