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Abstract

We consider systems of the form

∂τU +A(∂ξ)U +
1

ε
EU = T2(U ,U) + εT3(U ,U ,U),

with 0 < ε ≪ 1 a small perturbation parameter. We are interested
in an effective description of high-frequency wave-packet propagation
associated to highly oscillatory initial conditions

U(ξ, 0) = U∗(ξ)e
ik0ξ/ε + c.c..

By classical perturbation analysis for polarized initial conditions NLS
approximations up to an arbitrary order and for non-polarized initial
conditions a system of decoupled NLS equations can be derived for the
approximate description of the associated solutions. Under the valid-
ity of a number of non-resonance conditions we prove error estimates
between these formal approximations and true solutions of the origi-
nal system. The result improves results from the existing literature in
at least two directions, firstly, the handling of higher order approxi-
mations in case of quadratic nonlinearities T2(U ,U) and secondly, the
handling of non-polarized initial conditions.
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1 Introduction

We consider

∂τU +A(∂ξ)U +
1

ε
EU = T2(U ,U) + εT3(U ,U ,U), (1)

with U(ξ, τ) ∈ RN , ξ ∈ Rd, N, d ∈ N, τ ∈ [0, τ0/ε] for a τ0 > 0, A(∂ξ) =∑d
j=1Aj∂ξj , Aj = AT

j ∈ RN×N , E = −ET ∈ RN×N , T2 : RN × RN → RN

a bilinear mapping and T3 : RN × RN × RN → RN a trilinear mapping.
For most of the paper we assume d = 1 due to the possible application in
nonlinear optics and due to the purpose of this paper. The initial conditions
for (1) are given by

U(ξ, 0) = U∗(ξ)e
ik0ξ/ε + c.c., (2)

where 0 < ε ≪ 1 is a small perturbation parameter and k0 > 0 is a fixed
spatial wave number. This class of problems (1) include, e.g., the Maxwell-
Lorentz system and Klein-Gordon systems, cf. [Col02, CL09, Section 2.1].
This class of problems has been considered for instance in [CL09, Rau12] or
recently in [BJL24] where in case T2 = 0 higher order NLS approximations
have been derived and justified by establishing approximation results. The
results presented in the following improve these papers in at least two direc-
tions, firstly, the handling of higher order NLS approximations for quadratic
nonlinearities T2(U ,U) and secondly the handling of more than one NLS-
scaled wave-packet which is called the non-polarized situation in the follow-
ing. We obtain these improved results by relating these questions to questions
which have already been solved in the existing literature or which can eas-
ily be generalized to the present situation, namely first the justification of
higher order NLS approximations for systems with quadratic nonlinearities
and secondly the separation of internal and interaction dynamics of NLS-
scaled wave-packets.

As will be clear in the following, higher order nonlinear terms

. . .+ ε2T4(U ,U ,U ,U) + ε3T5(U ,U ,U ,U ,U) + . . .

can easily be incorporated in the subsequent analysis. However, for nota-
tional simplicity we restrict ourselves to (1).

Error estimates for the NLS approximation of dispersive systems with-
out small perturbation parameter in the underlying equations have already
been known for a few decades. The NLS equation as envelope equation has
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been derived first in [Zak68]. For systems without quadratic terms a sim-
ple application of Gronwall’s inequality is sufficient to obtain such estimates
[KSM92]. A very general NLS approximation result including quadratic non-
linearities has been shown in [Kal87]. This result was improved in a number
of papers by weakening the non-resonance conditions which are necessary
to eliminate the quadratic terms in order to apply Gronwall’s inequality
again, e.g. [Sch98, Sch05, DHSZ16]. An application of the theory to the
water wave problem can be found in [TW12, DSW16, Dül21], and quasi-
linear wave equations are considered in [CW17, Dül17, DH18]. Another
example of an NLS approximation result for dispersive systems with a small
perturbation parameter in the underlying equations exists for instance for
the Klein-Gordon-Zakharov system from plasma physics, e.g. [MN02]. Our
approach to handle higher order NLS approximations for quadratic nonlin-
earities T2(U ,U) follows [Sch98].

Our approach to handle more than one NLS-scaled wave-packet is based
on the literature about the separation of internal and interaction dynamics of
NLS-scaled wave-packets, in particular on [CBCSU08, CBS12]. For disper-
sive systems it has first been observed in [PW95] that for spatially localized
NLS-scaled wave-packets no interaction appears in lowest order w.r.t. the
small perturbation parameter 0 < ε ≪ 1. This result has been improved in a
number of papers, e.g. [CBSU07, CBCSU08, CBS12, CBS15], now allowing
to separate the internal from the interaction dynamics of the wave-packets
up to high order.

The plan of the paper is as follows. In Section 2 we present two examples
which show how the existing theory for NLS approximations can be made ap-
plicable for systems of the form (1). In Section 3 we rescale (1) in such a way
that the existing theory for dispersive systems without small perturbation
parameter in the equations becomes applicable. In Section 4 we explain the
handling of quadratic nonlinearities T2(U ,U) and in Section 5 we explain our
main result, namely the handling of more than one NLS-scaled wave-packet.
Finally, in Section 6 we explain how the results change if x ∈ Rd with d ≥ 2
is considered.

Acknowledgement. The work is partially supported by the Deutsche
Forschungsgemeinschaft DFG through the SFB 1173 ”Wave phenomena”
with the Project-ID 258734477 and the China Scholarship Council through
the Project-ID 202306170135. Xin Meng is grateful to the Institute for Anal-
ysis, Dynamics, and Modeling at the University of Stuttgart for its kind
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ear Optics: Physics, Analysis, and Numerics where this research has been
started. Moreover, he would like to thank Julian Baumstark, Tobias Jahnke
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2 Two examples

The first example motivates our subsequent approach.

Example 2.1. We consider the nonlinear Klein-Gordon equation

∂2
t u = ∂2

xu− u+ u2 + u3, (3)

with t ∈ R, x ∈ R, and u(x, t) ∈ R. By introducing v = ∂tu and w = ∂xu we
obtain the system

∂tu = v,

∂tv = ∂xw − u+ u2 + u3,

∂tw = ∂xv.

This system can be written in the form

∂tU +A∂xU + EU = T2(U,U) + T3(U,U, U), (4)

with

U =

 u
v
w

 , A =

 0 0 0
0 0 −1
0 −1 0

 , E =

 0 −1 0
1 0 0
0 0 0

 ,

and

T2(U,U) =

 0
u2

0

 , T3(U,U, U) =

 0
u3

0

 .

By setting τ = εt, ξ = εx, and U = εU this system transforms in our starting
system (1).

For (3) a NLS equation

∂TA = iν1∂
2
XA+ iν2A|A|2,
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with coefficients ν1, ν2 ∈ R, can be derived with the ansatz

u(x, t) = εA(X,T )ei(k0x−ω0t) + c.c.+O(ε2),

where X = ε(x − ct) and T = ε2t. Herein, k0 and ω0 satisfy the linear
dispersion relation ω2

0 = k2
0 + 1, and c = dω0

dk0
is the linear group velocity. By

definition of v and w the associated ansatz for the solution U of (4) is given
by

U(x, t) = εA(X,T )

 1
−iω0

ik0

 ei(k0x−ω0t) + c.c.+O(ε2).

Hence, the associated ansatz for the solution U of (1) is given by

U(ξ, τ) = A(X,T )

 1
−iω0

ik0

 eiε
−1(k0ξ−ω0τ) + c.c.+O(ε),

where X = ξ−cτ , T = ετ . As a consequence we have for the initial condition
of (1) that

U(ξ, 0) = A(ξ, 0)

 1
−iω0

ik0

 eik0ξ/ε + c.c..

In order to have an example for which all assumptions, used in the sub-
sequent validity proofs, can be checked easily, we also consider

Example 2.2. We consider

∂tU +A∂xU + EU = T2(U,U) + T3(U,U, U), (5)

with

U =

(
u
v

)
, A =

(
0 1
1 0

)
, E =

(
0 1
−1 0

)
,

and
T2(U,U) = O(u2 + v2), T3(U,U, U) = O(|u|3 + |v|3).

By setting τ = εt, ξ = εx, and U = εU this system transforms in our starting
system (1). The linear operator M = A∂x + E is given in Fourier space by

M̂(k) =

(
0 1 + ik

−1 + ik 0

)
,

The matrix M̂(k) has two eigenvalues, namely

ω1(k) = −i
√
1 + k2, ω2(k) = i

√
1 + k2.
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3 Rescaling and transforming the system

In this section we rescale and transform (1) in such a way that the existing
theory for dispersive systems without small perturbation parameter in the
underlying equations becomes applicable. Following Example 2.1 of the last
section we introduce t, x, U by τ = εt, ξ = εx, and U = εU , and consider
then

∂tU +A∂xU + EU = T2(U,U) + T3(U,U, U), (6)

with initial conditions

U(x, 0) = εU∗(εx)e
ik0x + c.c.

This is a special form of a dispersive wave system. For dispersive wave
systems a complete theory exists how to handle the validity question of NLS
approximations and of generalizations of NLS approximations. For proving
the validity of NLS approximations for systems with quadratic nonlinearities
it is essential to consider the Fourier transformed systems.

i) In Fourier space we have

∂tÛ(k, t) + ikAÛ(k, t) + EÛ(k, t) = T̂2(Û , Û)(k, t) + T̂3(Û , Û , Û)(k, t).

ii)We diagonalize the linear part in Fourier space with Û(k, t) = Ŝ(k)V̂ (k, t),

with Ŝ(k) ∈ CN×N , for k ∈ R. We assume for a moment that such a diago-
nalization is possible for all k ∈ R. After the diagonalization we find

∂tV̂ (k, t) = D̂(k)V̂ (k, t) + N̂(V̂ )(k, t), (7)

where

D̂(k) = (iωn(k))n∈N = −(Ŝ(k))−1(ikA+ E)Ŝ(k),
N̂(V̂ )(k, t) = Ĝ2(V̂ , V̂ )(k, t) + Ĝ3(V̂ , V̂ , V̂ )(k, t),

with

(Ĝ2(V̂ , V̂ ))j(k, t)

=
N∑

j1,j2=1

∫
ĝjj1j2(k, k − k1, k1)V̂j1(k − k1, t)V̂j2(k1, t)dk1
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and

(Ĝ3(V̂ , V̂ , V̂ ))j(k, t)

=
N∑

j1,j2,j3=1

∫ ∫
ĝjj1j2j3(k, k − k1, k1 − k2, k2)

×V̂j1(k − k1, t)V̂j2(k1 − k2, t)V̂j3(k2, t)dk2dk1.

Without loss of generality we assume that ĝjj1j2 is symmetric in j1 and j2, as

well as ĝjj1j2j3 is symmetric in j1, j2 and j3. These are exactly the dispersive
wave systems for which the analysis for the validity of the NLS approximation
has been carried out. In the following we transfer the higher order validity
results for systems with quadratic nonlinearities and the validity results for
solutions with more than one NLS-scaled wave-packet to (1).

For (1) we have

Ĝ2(V̂ , V̂ )(k, t) = (Ŝ(k))−1T̂2(ŜV̂ , ŜV̂ )(k, t),

Ĝ3(V̂ , V̂ , V̂ )(k, t) = (Ŝ(k))−1T̂3(ŜV̂ , ŜV̂ , ŜV̂ )(k, t)

If

(T̂2(Û , Û))j(k, t) =
N∑

j1,j2=1

∫
b̂jj1j2Ûj1(k − k1, t)Ûj2(k1, t)dk1

with b̂jj1j2 ∈ R we have

ĝjj1j2(k, k − k1, k1) =
N∑

j3,j4,j5=1

((Ŝ(k))−1)j,j3 b̂
j3
j4j5

Ŝj4,j1(k − k1)Ŝj5,j2(k1)

and similar for T̂3 and ĝjj1j2j3(k, k − k1, k1 − k2, k2).

iii) Since the derivation of the approximation equations is notationally
more simple in physical space we transfer the diagonlized system (7) back to
physical space where for the components we have

∂tVn(x, t) = iωn(−i∂x)Vn(x, t) +Nn(V )(x, t) (8)

for n = 1, . . . , N which is the starting point of the subsequent analysis.
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4 Higher order NLS approximation

In this section first we recall the results from the existing literature about the
validity of higher order NLS approximations for (7), see for instance [Kal87,
SU17]. Secondly, we use these results to extend the results from [BJL24]
with a pure cubic nonlinearity to the situation with quadratic nonlinearities,
i.e., T2 ̸= 0. We consider so called polarized initial conditions which are of
order O(ε) only in one component, say, we make the NLS ansatz for Vn0 for
an n0 ∈ {1, . . . , N}. The ansatz for the derivation of a higher order NLS
approximation is then given by

Vn0(x, t) =
m∗∑

m=−m∗

j∗(m)∑
j=0

εβn0 (m)+jAn0,m,j(X,T )eim(k0x−ω0t) (9)

and by

Vn(x, t) =
m∗∑

m=−m∗

j∗(m)∑
j=0

εβn(m)+jAn,m,j(X,T )eim(k0x−ω0t) (10)

for n ∈ {1, . . . , N} with n ̸= n0, where X = ε(x−ct) and T = ε2t, and where
m∗ is a fixed chosen number and where j∗(m) is defined below. Herein, we
have the basic temporal wave number ω0 = −ωn0(k0) and c = d

dk
ωn0(k0) the

linear group velocity. The appearing numbers are given by

βn0(m) = 1 + ||m| − 1|, βn(m) = 1 + ||m| − 1|+ 2δ|m|1,

and
j∗(m) = m∗ − |m| − 2δ|m|1,

with δmn the Kronecker delta. Plugging this ansatz into (8) and equating
equal powers of ε and of eim(k0x−ω0t) to zero gives that An0,1,0 has to satisfy
an NLS equation

∂TAn0,1,0 = iν1∂
2
XAn0,1,0 + iν2An0,1,0|An0,1,0|2, (11)

with coefficients ν1, ν2 ∈ R, where An0,−1,0 = An0,1,0. We find that the An0,1,j

and An0,−1,j for j ≥ 1 have to satisfy linear inhomogeneous Schrödinger
equations and that all other An,m,j have to satisfy algebraic equations which
can be solved w.r.t. An,m,j if the non-resonance conditions

ωn(mk0)−mωn0(k0) ̸= 0 (12)
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are satisfied for all n ∈ {1, . . . , N} andm ∈ {−m∗, . . . ,m∗} except if (m,n) =
(1, n0). The approximation constructed in this way is called in the following
εΨn0 .

In case of no quadratic terms, i.e. T2 = 0, this approximation can be
justified with an approximation theorem by a simple application of Gronwall’s
inequality, cf. [KSM92]. In case of T2 ̸= 0 the quadratic terms have to be
eliminated by some normal form transformation. This requires the validity
of additional non-resonance conditions, namely

inf
n1,n2∈{1,...,N}

inf
k∈R

|ωn1(k)− ωn0(k0)− ωn2(k − k0)| > 0. (13)

This condition can be weakened to

sup
n1,n2∈{1,...,N}

sup
k∈R

|
ĝn1
n0n2

(k, k0, k − k0)

ωn1(k)− ωn0(k0)− ωn2(k − k0)
| < ∞. (14)

Moreover, we assume that

sup
k∈R

∥Ŝ(k)∥+ sup
k∈R

∥(Ŝ(k))−1∥ < ∞. (15)

Then we have the following approximation theorem, cf. [Kal87, DLP+11,
SU17].

Theorem 4.1. For all m ∈ N with m ≥ 4 the following holds. Assume
the validity of (15) and of the non-resonance conditions (12) and (14). Let
An0,1,0 ∈ C([0, T0], H

3(m−3)+2) be a solution of the NLS equation (11) and let
εΨn0 be the approximation defined above with m∗ = m− 1. Then there exist
C > 0 and ε0 > 0 such that for all ε ∈ (0, ε0) we have solutions V of (8)
with

sup
t∈[0,T0/ε2]

sup
x∈R

|V (x, t)− εΨn0(x, t)| ≤ Cεm−5/2.

Remark 4.2. In case of T2 = 0 from the non-resonance condition (12) the
cases m ∈ {−2, 0, 2} only play a role for the higher order terms, i.e. j ≥ 1,
and (14) is no longer necessary.

For the non-diagonalized system we obtain

Corollary 4.3. Under the assumptions of Theorem 4.1 there exist C > 0
and ε0 > 0 such that for all ε ∈ (0, ε0) we have solutions U of (6) with

sup
t∈[0,T0/ε2]

sup
x∈R

|U(x, t)− εSΨn0(x, t)| ≤ Cεm−5/2.

9



For the original system (1) the higher order approximation result is as
follows.

Corollary 4.4. Under the assumptions of Theorem 4.1 there exist C > 0
and ε0 > 0 such that for all ε ∈ (0, ε0) we have solutions U of (1) with

sup
τ∈[0,T0/ε]

sup
ξ∈R

|U(ξ, τ)− SΨn0(ξ, τ)| ≤ Cεm−7/2.

Remark 4.5. Theorem 4.1 should not be taken for granted since solutions
of order O(ε) have to be controlled on an O(1/ε2)-time-scale.

Remark 4.6. The previous approximation results, in particular Corollary
4.4 guarantee that the NLS approximation can be used for an effective sim-
ulation of solutions of (1) to polarized initial conditions of the form (2).
As already said an initial condition is called polarized if in the diagonalized
system (8) the initial condition is O(ε) in only one component at k = k0.
The situation of initial conditions being O(ε) in all components at k = k0 is
handled in the following Section 5.

Remark 4.7. For having an approximation of the form (9)-(10), i.e., that
An0,−1,0 also belongs to the Vn0-component we need that ωn0(k) = −ωn0(−k)
around k = k0. In general this is only possible if ωn0 is defined with at least
one jump. For the derivation of the amplitude equations this jump should
be chosen at a small but order O(1) wave number k ̸= 0.

Remark 4.8. The assumption on the diagonalization can be weakened strong-
ly. Only a separation of the NLS modes near k = ±k0 is necessary. However,
since this requires a complete rewriting of all non-resonance conditions, cf.
[Kal87, Col02], and gives less insight we prefer to stay at the chosen presen-
tation.

Remark 4.9. The eigenvalues for Example 2.2 are the same as for the Klein-
Gordon model (3). It is well known that the non-resonance condition (14)
is satisfied for the Klein-Gordon model (3). The matrix S can be defined in
Fourier space by

Ŝ(k) =
1√

1 + k2

(
1 + ik 1 + ik

−i
√
1 + k2 i

√
1 + k2

)
,

for which the validity of the assumption (15) is obvious since the limits exist
for |k| → ∞.
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5 The handling of more than one wave-packet

It is the purpose of this section to explain how to handle more than one
wave-packet, i.e, how to handle the case of non-polarized initial conditions.
These are of order O(ε) in all components. In order to handle this situation
we make an NLS approximation not only for Vn0 alone, but for all Vn with
n ∈ {1, . . . , N}. We restrict ourselves again to the case x ∈ R. Due to the
fact that in general the group velocities d

dk
ωn of the wave-packets are different,

no consistent ansatz of the above form (9)-(10) is possible. However, by a
slight modification of this ansatz a consistent ansatz up to an error of order
O(ε3) is possible. In detail, the analysis made in [CBS12] for the interaction
of two NLS-scaled wave-packets for dispersive wave systems on the one hand
can be specialized and on the other hand can be generalized to handle the
present situation.

The ansatz of [CBS12] specialized and generalized to the present situation
is given by

Vn(x, t) =
2∑

r=0

ε1+rAn,1,r(Xn, T )e
iYn

+
2∑

r=0

ε1+rAn,−1,r(Xn, T )e
−iYn +Mmixed,n,

Xn = X + εω′
n(k0)t+ ε2

∑
j ̸=n

Ψ
(1)
n,j(X + εω′

j(k0)t, T ),

Yn = k0x− ωn(k0)t+
∑
l=1,2

εl
∑
j ̸=n

Ω
(l)
n,j(X + εω′

j(k0)t, T ),

X = εx, T = ε2t,

with Mmixed,n = O(ε2) determined below. It is a specialization in the sense
that all spatial wave numbers of the wave-packets are the same. It is gener-
alization in the sense that more than two wave-packets are considered.

In case of T2 = 0 in (1) we recall the explicit formulas which determine

the amplitudes An,1,r, the phase shifts Ω
(1)
n,j, the envelope shifts Ψ

(1)
n,j, and the

second order corrections of the phase shifts and amplitudes Ω
(2)
n,j.

Similar to [CBS12], at O(ε3) we find that An,1,0 has to satisfy the NLS
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equation

∂2An,1,0(Xn, T ) = −i(ω′′
n(k0)/2)∂

2
1An,1,0(Xn, T ) (16)

+3gnnnn(k0, k0, k0,−k0)|An,1,0(Xn, T )|2An,1,0(Xn, T ),

and that Ω
(1)
n,j has to satisfy the phase shift formula

Ω
(1)
n,j(Xj, T ) =

6gnnjj(k0, k0, k0,−k0)

i(ω′
n(k0)− ω′

j(k0))

∫ Xj

−∞
|Aj,1,0(ζ, T )|2dζ.

In particular, both the NLS equation and the phase shift formula are anal-
ogous to (3.10) and (3.11) in [CBS12] respectively. We have that Ω

(1)
n,j is a

real quantity because of gnnjj(k0, k0, k0,−k0) ∈ iR. Therefore, it is a pure
phase correction. Moreover, we have a number of mixed terms which can be
eliminated by setting Mmixed,n equal to

∑
r1,r2,r3=±1

N∑
j1,j2,j3,r1j1+r2j2+r3j3 ̸=1

ε3M r1,r2,r3
n,j1,j2,j3

(X,T )ei(r1Yj1
+r2Yj2

+r3Yj3
) + c.c.,

where

M r1,r2,r3
n,j1,j2,j3

(X,T ) = ((ωj1(r1k0) + ωj2(r2k0) + ωj3(r3k0)− ωn((r1 + r2 + r3)k0))
−1

×gnj1,j2,j3((r1 + r2 + r3)k0, r1k0, r2k0, r3k0)

×Aj1,r1,0(Xj1 , T )Aj2,r2,0(Xj2 , T )Aj3,r3,0(Xj3 , T ).

Comparable to (3.12) in [CBS12], at O(ε4) we find that the An,1,1 solve
linear inhomogeneous evolution equations

∂2An,1,1(X1, T ) = i(ω′′
1(k0)/2)∂

2
1An,1,1(X1, T ) + tn,1,1,

where tn,1,1 is a function of An,1,0 and An,−1,0. Thus, An,1,1 describes internal
dynamics of a single pulse.

At O(ε4) we also find the envelope shift formula

Ψ
(1)
n,j(Xj, T ) = Cn,j

∫ Xj

−∞
|Aj,1,0(ζ, T )|2dζ,

with an explicitly computable prefactor Cn,j, equivalent to (3.13) in [CBS12].
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The quantities Ω
(2)
n,j are determined at O(ε4). The real part is a second

order correction to the phase shift, whereas its imaginary part gives a cor-
rection to the amplitude. We refrain from explicitly displaying the rather
lengthy expression for Ω

(2)
n,j and only note that it is pure integration of spa-

tially localized terms similar to the expressions for determining Ω
(1)
n,j and Ψ

(1)
n,j.

Finally, there are even more mixed terms which we also do not display
explicitly.

For the computation of the mixed terms again a number of non-resonance
conditions have to be satisfied. For the computation of the quadratic mixed
terms we need

ωn((r1 + r2)k0)− ωj1(r1k0)− ωj2(r2k0) ̸= 0 (17)

for all n, j1, j2 ∈ {1, . . . , N} and r1, r2 ∈ {−1, 1}. For the computation of the
cubic mixed terms we need

ωn((r1 + r2 + r3)k0)− ωj1(r1k0)− ωj2(r2k0)− ωj3(r3k0) ̸= 0 (18)

for all n, j1, j2, j3 ∈ {1, . . . , N} and r1, r2, r3 ∈ {−1, 1} with r1 + r2 + r3 ̸∈
{−1, 1}. For the computation of the quartic mixed terms we need

ωn((r1+r2+r3+r4)k0)−ωj1(r1k0)−ωj2(r2k0)−ωj3(r3k0)−ωj4(r4k0) ̸= 0 (19)

for all n, j1, j2, j3, j4 ∈ {1, . . . , N} and r1, r2, r3, r4 ∈ {−1, 1}. For the com-

putation of the phase shifts Ω
(r)
n,j and the envelope shifts Ψ

(1)
n,j the additional

condition
ω′
n(k0)− ω′

j(k0) ̸= 0, (20)

for all n, j ∈ {1, . . . , N}, with n ̸= j, on the group velocities is necessary.
In case of no quadratic terms, i.e. T2 = 0, again this approximation can

be justified with a simple application of Gronwall’s inequality, cf. [KSM92].
In case of T2 ̸= 0 the quadratic terms have to be eliminated by some normal
form transformation. This requires additional non-resonance conditions, cf.
[SU17, §11.5], namely

inf
n1,n2,n3∈{1,...,N}

inf
k∈R

|ωn1(k)− ωn2(k0)− ωn3(k − k0)| > 0. (21)

This condition again can be weakened, namely to

sup
n1,n2,n3∈{1,...,N}

sup
k∈R

|
ĝn1
n2n3

(k, k0, k − k0)

ωn1(k)− ωn2(k0)− ωn3(k − k0)
| < ∞. (22)
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Remark 5.1. For the computation of the phase shifts Ω
(r)
n,j and the envelope

shift Ψ
(1)
n,j some integral has to be computed and so a certain spatial localiza-

tion of the solutions of the NLS equations is necessary. Therefore, we define
the space Hs

m for s,m ∈ N0 as a subspace of Hs for which the norm

∥A∥Hs
m
= ∥Aρ∥Hs

is finite, where ρ(x) = (1 + x2)m/2. Local existence and uniqueness for the
solutions of the NLS equations (16) in spaces Hs+m

0 ∩ Hs
m is well known if

s ≥ 1 and follows by application of the variation of constant formula and
using the fact that i∂2

X is the generator of a strongly continuous semigroup
in Hs+m

0 ∩Hs
m, cf. [CKS95].

By the above ansatz the residual terms formally are of orderO(ε5). There-
fore, we have the following approximation theorem, cf. [SU17, Theorem
11.2.6].

Theorem 5.2. Assume the validity of (15) and of the non-resonance condi-
tions (17), (18), (19), (20), and (22). Let the An,1,0 ∈ C([0, T0], H

12
2 ∩H14

0 )
be solutions of the NLS equations (16) and let εΨ be the approximation to
these solutions defined above in Section 5. Then there exist C > 0 and ε0 > 0
such that for all ε ∈ (0, ε0) we have solutions V of (8) with

sup
t∈[0,T0/ε2]

sup
x∈R

|V (x, t)− εΨ(x, t)| ≤ Cε5/2.

For the non-diagonalized system we obtain

Corollary 5.3. Under the assumptions of Theorem 5.2 there exist C > 0
and ε0 > 0 such that for all ε ∈ (0, ε0) we have solutions U of (6) with

sup
t∈[0,T0/ε2]

sup
x∈R

|U(x, t)− εSΨ(x, t)| ≤ Cε5/2.

For the original system (1) the approximation result is as follows.

Corollary 5.4. Under the assumptions of Theorem 5.2 there exist C > 0
and ε0 > 0 such that for all ε ∈ (0, ε0) we have solutions U of (1) with

sup
τ∈[0,T0/ε]

sup
ξ∈R

|U(ξ, τ)− SΨ(ξ, τ)| ≤ Cε3/2.
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Remark 5.5. As before, Theorem 5.2 should not be taken for granted since
solutions of order O(ε) have to be controlled on an O(1/ε2)-time-scale.

Remark 5.6. The previous approximation results, in particular Corollary
5.4 guarantee that the NLS approximation can be used for an effective sim-
ulation of solutions of (1) to general initial conditions of the form (2). The
polarization is no longer needed.

6 The higher dimensional situation

In this section we explain how the results change if x ∈ Rd with d ≥ 2 is
considered.

The results from Section 4 transfer in a straightforward way from x ∈ R
to x ∈ Rd with d ≥ 2. The group velocity in (9) and (10) is then given by
c = ∇k0ω0 ∈ Rd where k ∈ Rd. The NLS equation is then given by

∂TAn0,1,0 = i
d∑

j1,j2

νj1j2∂Xj1
∂Xj2

An0,1,0 + iν2An0,1,0|An0,1,0|2, (23)

where νj1j2 =
1
2
∂kj1∂kj2ω0|k=k0 . The proof of the approximation result is line

for line the same. In a similar way the results from Section 5 can be modified.
However, in general the non-resonance condition to eliminate the quadratic

terms (13) will not be valid in higher space dimensions. In [DHSZ16] it has
been pointed out that this problem can be solved by working in modulational
Gevrey spaces.

We would like to close the paper with the remark that the results from
Section 5 are less relevant in higher space dimensions due to the fact that for
x ∈ Rd the wave-packets have more space and so in general spatially localized
solutions will miss each other. In case that the wave-packets are not at the
same place at the same time, there is a decoupling up to high order. The
ansatz is then given by

V (x, t) =
N∑

n0=1

εΨn0(x, t)

where εΨn0 is the approximation defined in (9)-(10) but now with

X = Xn0 = ε(x−∇ωn0 |k=k0t) + ε−1Xn0,0 = X̃ + ε−1(Xn0,0 −∇ωn0|k=k0T ),
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with X̃ = εx. Suppose now that

(ASS) the lines (X,T ) = (Xn0,0 −∇ωn0|k=k0T, T ) ∈ Rd+1 have no inter-
section points, i.e., assume that the wave-packets are not at the same place
at the same time.

Then we have

Theorem 6.1. For all m ∈ N there exists a s ∈ N such that the following
holds. Assume the validity of (15), of the non-resonance conditions (12) and
(14), and of the non-interaction assumption (ASS). For all n0 ∈ {1, . . . , N}
let An0,1,0 ∈ C([0, T0], H

s+3m∗
m ∩Hs+3m∗+m

0 ) be solution of the NLS equations
(11) and let the εΨn0 be the approximations defined in (9)-(10) with the above
modification. Then there exist C > 0 and ε0 > 0 such that for all ε ∈ (0, ε0)
we have solutions V of (8) with

sup
t∈[0,T0/ε2]

sup
x∈R

|V (x, t)−
N∑

n0=1

εΨn0(x, t)| ≤ Cεm−1/2.

By the localization An0,1,0 ∈ C([0, T0], H
s+3m∗
m ) the interaction terms are

of sufficiently high order w.r.t. ε, cf. [PW95, CBCSU08].
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[Dül21] Wolf-Patrick Düll. Validity of the nonlinear Schrödinger approx-
imation for the two-dimensional water wave problem with and
without surface tension in the arc length formulation. Arch.
Ration. Mech. Anal., 239(2):831–914, 2021.

[Kal87] L. A. Kalyakin. Asymptotic decay of a one-dimensional wave
packet in a nonlinear dispersive medium. Mat. Sb. (N.S.),
132(174)(4):470–495, 592, 1987.

[KSM92] Pius Kirrmann, Guido Schneider, and Alexander Mielke. The
validity of modulation equations for extended systems with cubic
nonlinearities. Proc. Roy. Soc. Edinburgh Sect. A, 122(1-2):85–
91, 1992.

[MN02] Nader Masmoudi and Kenji Nakanishi. From nonlinear Klein-
Gordon equation to a system of coupled nonlinear Schrödinger
equations. Math. Ann., 324(2):359–389, 2002.

[PW95] R. D. Pierce and C. E. Wayne. On the validity of mean-field
amplitude equations for counterpropagating wavetrains. Non-
linearity, 8(5):769–779, 1995.

[Rau12] Jeffrey Rauch. Hyperbolic partial differential equations and geo-
metric optics, volume 133 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2012.

[Sch98] Guido Schneider. Justification of modulation equations for hy-
perbolic systems via normal forms. NoDEA Nonlinear Differen-
tial Equations Appl., 5(1):69–82, 1998.

[Sch05] Guido Schneider. Justification and failure of the nonlinear
Schrödinger equation in case of non-trivial quadratic resonances.
J. Differential Equations, 216(2):354–386, 2005.

[SU17] Guido Schneider and Hannes Uecker. Nonlinear PDEs, volume
182 of Graduate Studies in Mathematics. American Mathemat-
ical Society, Providence, RI, 2017. A dynamical systems ap-
proach.

18



[TW12] Nathan Totz and Sijue Wu. A rigorous justification of the modu-
lation approximation to the 2D full water wave problem. Comm.
Math. Phys., 310(3):817–883, 2012.

[Zak68] V.E. Zakharov. Stability of periodic waves of finite amplitude
on the surface of a deep fluid. Sov. Phys. J. Appl. Mech. Tech.
Phys, 4:190–194, 1968.

19


