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Abstract. In this article, we study the damped time-harmonic Galbrun’s equation which models solar
and stellar oscillations. We introduce and analyze hybrid discontinuous Galerkin discretizations (HDG)
that are stable and optimally convergent for all polynomial degrees greater than or equal to one. The
proposed methods are robust with respect to the drastic changes in the magnitude of the coefficients
that naturally occur in stars. Our analysis is based on the concept of discrete approximation schemes
and weak T-compatibility, which exploits the weakly T-coercive structure of the equation. Compared
to the H1-conforming discretization of [Halla, Lehrenfeld, Stocker, 2022], our method offers improved
stability and robustness. Furthermore, it significantly reduces the computational costs compared to
the H(div)-conforming DG discretization of [Halla, 2023], which has similar stability properties. These
advantages make the proposed HDG methods well-suited for astrophysical simulations.
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May 2, 2025.

1. Introduction

Helioseismology studies the interior of the Sun through acoustic oscillations measured at the surface [21].
Reconstructing physical quantities in the interior, such as the density, the sound speed, or subsurface flows,
requires solving a passive imagining problem. To tackle this problem, approaches such as helioseismic holography
[37, 39] rely on an accurate and computationally efficient solution of the forward problem. To model solar and
stellar oscillations, we consider the damped time-harmonic Galbrun’s equation: Find u : O → Cd such that

−ρ(ω + i∂b + iΩ×)2u−∇
(
ρc2s divu

)
+ (divu)∇p−∇(∇p · u)

+ (Hess(p)− ρHess(ϕ))u+ γρ(−iω)u = f in O,
(1a)

ν · u = 0 on ∂O, (1b)

where O ⊂ Rd, d = 2, 3, is a bounded Lipschitz domain. We denote by ρ the density, by cs the sound speed,
by p the pressure, by ϕ the gravitational potential, and by f the source term. Furthermore, Ω ∈ Rd is the
angular velocity of the frame of reference, ω is the frequency and b is the background velocity. The operator
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∂b :=
∑d

l=1 bl∂xl
is the directional derivative in the direction of b, Hess(·) is the Hessian, and by ν, we denote

the exterior unit normal vector on ∂O. The damping is modeled with the term −iγρωu, where γ is a scalar
damping coefficient.

Galbrun’s equation was first derived in [20] and is a linearization of the nonlinear Euler equations with the
Lagrangian perturbation of displacement as unknown. Without the additional rotational terms as in (1), it is
commonly applied in aeroacoustics [38]. For the well-posed analysis in the time domain, we refer to [24].

Assuming that the Mach number of the background flow b is bounded suitably, the well-posedness of problem
(1) has been shown in [27]. The main ingredient of the proof is a generalized Helmholtz decomposition and a
weak T-coercivity argument. Here, we call a problem weakly T-coercive if it is a compact perturbation of a
T-coercive problem. The T-coercivity technique [6, 9, 12] relies on the explicit construction of an operator that
realizes the inf-sup condition. This approach has been successfully applied to a variety of problems, including
Helmholtz-like problems [14,19,25,31,46] and problems with sign-changing coefficients [4–6,28].

The key to develop stable discretizations of (weakly) T-coercive problems is to transfer the construction
of the T-operator to the discrete level in a stable manner. In particular, the stability of the discretization is
obtained when the constructions fulfill a T-compatibility condition [25,29].

The construction and analysis of reliable finite element schemes for (1) was initiated in [29], where suitable
H1-conforming discretizations were considered, primarily to circumvent the challenges associated with ana-
lyzing non-conforming methods. Since the stability of the discrete divergence operator is essential for stable
discretizations of (1) [1, 29], H1-conforming discretizations of (1) face similar restrictions as those encountered
for finite element discretizations for the Stokes problem. As with the Scott-Vogelius [?] pair, the polynomial
degree has to be sufficiently large (e.g., k ≥ 4 in 2d and k ≥ 8 in 3d) and/or special meshes (e.g., barycentric
refinements) have to be used. In addition, the assumed bound on the Mach number lacked robustness with
respect to changes in magnitude of the physical parameters.

The challenges posed by non-conforming discretizations were then overcome in [26] for H(div)-conforming
and in [45] for fully discontinuous Galerkin (DG) finite elements. Notably, these schemes are stable for all
polynomial degrees k ≥ 1, and the assumed bound on the Mach number remains robust even in the presence of
highly heterogeneous physical parameters. To achieve this, the directional derivative ∂b is stabilized through a
lifting operator [2, 8], which ensures stability without the need to choose a suitable penalty parameter.

However, these developments were primarily motivated by theoretical considerations, and they lack compu-
tational efficiency, in particular because the lifting operator drastically increases the computational costs in a
DG setting (see Remark 28). Thus, we propose hybrid discontinuous Galerkin (HDG) discretizations of (1) in
the current work. The key idea of hybridization [15, 35] is to introduce additional facet unknowns, which in-
creases the total number of degrees of freedom but reduces the number of global couplings. Due to the resulting
structure of the linear system, static condensation can be applied to eliminate the volume unknowns, leading
to a significant reduction in the computational costs. Furthermore, in the hybrid setting, relying on a lifting
operator to stabilize ∂b is feasible, since it is a local operator.

Our analysis extends the work of [26, 45] to the hybrid setting and covers both, the fully non-conforming
and the H(div)-conforming case. We show stability and quasi-optimality for all polynomial degrees k ≥ 1, and
the required boundedness assumption on the Mach number is robust with respect to the physical parameters.
Moreover, the proposed methods significantly reduce the computational costs, making them well-suited for
large-scale, efficient, and accurate simulations of solar oscillations.

Structure of paper. In Section 2, we repeat the abstract framework which we use to analyze the proposed
discretizations of (1). In particular, we recall the concepts of weak T-coercivity, discrete approximation schemes,
and weak T-compatibility which provide sufficient criteria for the convergence of approximations. In Section 3,
we introduce hybrid discontinuous Galerkin methods for (1) and show that the discretizations are discrete
approximation schemes which allows us to apply the framework introduced in Section 2. Afterwards, we
utilize the weak T-compatibility criteria to prove the stability and convergence of the proposed discretization
in Section 4 and conclude with numerical experiments in Section 5.
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2. Abstract framework

This section recalls the abstract tools which we will use to analyze the proposed discretizations of (1). For
more details and proofs we refer to [26, 29, 45]. In Section 2.1, we discuss the concept of weak T-coercivity
which essentially asks for an operator to be a compact perturbation of a bijective operator, cf. Definition 1 for
a precise definition. Afterwards, we study the approximation of weakly T-coercive operators in Section 2.2. In
particular, we introduce the (much broader) framework of discrete approximation schemes and discuss sufficient
conditions for the convergence of discrete approximations of weakly T-coercive operators.

2.1. Weak T-coercivity

For two Hilbert spaces (X, ⟨·, ·⟩X) and (Y, ⟨·, ·⟩Y ), we denote by L(X,Y ) the space of bounded linear operators
from X to Y . In particular, we set L(X) := L(X,X). Through the Riesz-isomorphism, there exists a one-to-
one relation between bounded sesquilinear forms a(·, ·) on X ×X and bounded linear operators A ∈ L(X) via
⟨Au, u′⟩X := a(u, u′) for all u, u′ ∈ X. Thus, we discuss the following concepts for linear operators A ∈ L(X),
but also associate them with the corresponding sesquilinear form.

Recall that an operator A ∈ L(X) is called coercive if it holds that

inf
u∈X\{0}

|⟨Au, u⟩X |
∥u∥2X

> 0.

This condition is equivalent, cf. [18, Lem. C.58] to the existence of ξ ∈ C, |ξ| = 1, such that

inf
u∈X\{0}

Re(ξ⟨Au, u⟩X)

∥u∥2X
> 0. (2)

The well-known Lax-Milgram lemma states that bounded coercive operators are bijective. More generally, a
bounded operator A ∈ L(X) is bijective if and only if the adjoint operator A∗ ∈ L(X) is injective and the
inf-sup condition holds:

inf
u∈X\{0}

sup
v∈X\{0}

|⟨Au, v⟩X |
∥u∥X∥v∥X

> 0.

Equivalently, we can prove T-coercivity [14], which asks for the existence of a bijective operator T ∈ L(X)
such that T ∗A (or AT ) is coercive. We recall the following generalization of T-coercivity.

Definition 1 (Weak T-coercivity). We call an operator A ∈ L(X) weakly T-coercive if there exists a bijective
operator T ∈ L(X) and a compact operator K ∈ L(X) such that AT +K is coercive.

In other words, an operator is weakly T-coercive if it is a compact perturbation of a T-coercive, operator.
Thus, weakly T-coercive operators are Fredholm with index zero and therefore bijective if and only if they are
injective.

2.2. Discrete approximation schemes and weak T-compatibility

We want to study the approximation of weakly T-coercive operators in a general setting. To this end, we
discuss the notion of weak T-compatibility [25,29] which is build upon the framework of discrete approximation
schemes [43, 44]. For a more extensive review of these concepts, we refer to [45, Chap. 2]. In the following, let
X be a Hilbert space and (Xn)n∈N be a sequence of finite dimensional Hilbert spaces, which are not necessarily
subspaces of X. Instead, we assume that there exists a sequence of bounded linear operators (pn)n∈N, pn ∈
L(X,Xn), such that limn→∞ ∥pnu∥Xn

= ∥u∥X for all u ∈ X. Finally, let A ∈ L(X) be a bounded linear
operator and (An)n∈N, An ∈ L(Xn), be a sequence of bounded linear operators.

Definition 2. In the setting from above, we define the following concepts:
(i) A sequence (un)n∈N, un ∈ Xn, is said to converge to u ∈ X, if limn→∞ ∥pnu− un∥Xn = 0.
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(ii) A sequence (un)n∈N, un ∈ Xn, is called compact, if for every subsequence N′ ⊂ N there exists a
subsubsequence N′′ ⊂ N′ and u ∈ X such that (un)n∈N′′ converges to u.

(iii) A sequence of operators (An)n∈N, An ∈ L(Xn), approximates (also called asymptotic consistency) an
operator A ∈ L(X), if limn→∞ ∥Anpnu− pnAu∥Xn

= 0 for all u ∈ X.
(iv) A sequence of operators (An)n∈N, An ∈ L(Xn), is called compact, if for every bounded sequence (un)n∈N,

un ∈ Xn, ∥un∥Xn ≤ C, the sequence (Anun)n∈N is compact.
(v) A sequence of operators (An)n∈N, An ∈ L(Xn), is called stable, if there exist constants C > 0, n0 > 0,

such that An is invertible and ∥A−1
n ∥L(Xn) ≤ C for all n > n0.

(vi) A sequence of operators (An)n∈N, An ∈ L(Xn), is said to be regular, if ∥un∥Xn ≤ C and the compactness
of (Anun)n∈N imply the compactness of (un)n∈N itself.

We call the triple (Xn, pn, An) a discrete approximation scheme (DAS) of (X,A) if we have that limn→∞ ∥pnu∥Xn
=

∥u∥X for all u ∈ X and An approximates A.

A conforming Galerkin scheme (Xn, pn, An), whereXn ⊂ X fulfills an approximation property, pn ∈ L(X,Xn)
is the orthogonal projection onto Xn, and An := pnA|Xn

, is always a DAS of (X,A). Our main goal is to show
that the sequence of approximations (un)n∈N, un ∈ Xn, converges to the continuous solution u ∈ X, so we
are interested in the stability of the sequence (An)n∈N. The following result shows that we can focus on the
regularity of the sequence (An)n∈N instead.

Lemma 3 (Lem. 1 & 2 of [29]). Let A ∈ L(X) be bijective and (Xn, pn, An) be a DAS of (X,A). If (An)n∈N
is regular, then (An)n∈N is stable. Further, if u ∈ X solves Au = f and un ∈ Xn are solutions to Anun = fn
where limn→∞ ∥pnf − fn∥Xn

= 0, then (un)n∈N converges to u.

The following theorem gives sufficient conditions for the regularity of approximations of weakly T-coercive op-
erators and therefore the stability of the approximation. It is the key motivation for the analysis presented in
Section 4. We note that if A ∈ L(X) is weakly T-coercive , then there exists a bijective operator B ∈ L(X) and
a compact operator K ∈ L(X) such that AT = B +K.

Theorem 4 (Thm. 3 of [29]). Assume that there exists a constant C > 0, sequences (An)n∈N, (Tn)n∈N,
(Bn)n∈N, (Kn)n∈N and B, T ∈ L(X) such that for each n ∈ N it holds that An, Tn, Bn,Kn ∈ L(Xn), ∥Tn∥L(Xn),
∥T−1

n ∥L(Xn), ∥Bn∥L(Xn), ∥B−1
n ∥L(Xn) ≤ C, B is bijective, (Kn)n∈N is compact and

lim
n→∞

∥Tnpnu− pnTu∥Xn = 0, lim
n→∞

∥Bnpnu− pnBu∥Xn = 0, ∀u ∈ X,

AnTn = Bn +Kn.

Then the sequence (An)n∈N is regular.

To summarize, Theorem 4 yields the stability of a discrete approximation scheme, provided that we can
transfer the weakly T-coercive structure of the continuous operator A ∈ L(X) to the discrete level in a sta-
ble manner.

3. Hybrid discontinuous Galerkin discretizations

In this section, we introduce the considered discretizations of (1). After discussing preliminaries and the
continuous weak formulation in Section 3.1, we introduce the HDG discretizations of Galbrun’s equation in
Section 3.2. To conclude, we show in Section 3.3 that the proposed discretization is indeed a DAS allowing us
apply the framework from Section 2.

3.1. Preliminaries and weak formulation

For simplicity, we assume that O ⊂ Rd is a convex Lipschitz polyhedron and consider O to be the default
domain of all function spaces. Thus, we write for example L2 := L2(O). Further, we denote by ⟨·, ·⟩ the standard
L2-scalar product. For any space X of scalar valued functions, we denote its vectorial version X := [X]d using
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the boldface notation. With abuse of notation, we use also use the notation ⟨·, ·⟩ for the vector valued L2-scalar
product. For any X ⊂ L2 we denote X∗ := {u ∈ X : ⟨u, 1⟩ = 0} with the special case L2

0 := L2
∗. Furthermore,

we define the space

H1
ν0 := {v ∈ H1 : v · ν = 0 on ∂O}. (3)

Let ω ∈ R\{0}, Ω ∈ Rd, and cs, ρ ∈W 1,∞(O,R), γ ∈ L∞(O,R) be measurable and bounded from above and
below. For any function, we denote by · and · its minimal and maximal value in the domain under consideration.
Thus, the boundedness assumptions on the coefficients translate to

cs ≤ cs(x) ≤ cs, ρ ≤ ρ(x) ≤ ρ, γ ≤ γ(x) ≤ γ for all x ∈ O, (4)

for constants cs, cs, ρ, ρ, γ, γ > 0. Finally, let the background flow b ∈ W 1,∞(O,Rd) be compactly supported
in O. We assume that the background flow conserves mass in the sense that div(ρb) = 0. In particular, the
former assumptions imply that div(ρb) ∈ L2 and b · ν = 0 on ∂O. Let the pressure and gravitational potential
p, ϕ ∈W 2,∞(O,R).

Throughout the manuscript, we use the notation A ≲ B, if there exists a constant C > 0 such that A ≤ CB,
where the constant C may be different at each occurrence. The constant C may depend on the domain O and
the physical parameters, but not on the index n ∈ N and functions involved in A and B. In particular, the
constant C is not allowed to depend on the ratio cs

2ρ

cs2ρ
.

To introduce the weak formulation of (1), we define the space X through

X := {u ∈ L2 : divu ∈ L2, ∂bu ∈ L2,ν · u = 0 on ∂O}. (5)

In contrast to the original definitions from [27], we consider the associated inner product on X to be weighted:

⟨u,u′⟩X := ⟨c2sρdivu,divu′⟩+ ⟨u,u′⟩+ ⟨ρ∂bu, ∂bu′⟩

Due to the smoothness assumptions cs, ρ ∈ W 1,∞(O,R) and the boundedness assumptions (4), the weighted
inner product is equivalent to the canonical inner product on X and the proof that X is a Hilbert space follows
with the same argumentation as in [27, Lem. 2.1]. The smoothness assumption b ∈W 1,∞ and the compactness
of supp b ⊂ O ensure that the embedding C∞

0 ⊂ X is dense [29, Thm. 6].
For u,u′ ∈ X, we define the following sesquilinear forms

adiv(u,u′) := ⟨c2sρdivu,divu′⟩L2 + ⟨divu,∇p · u′⟩L2 + ⟨∇p · u,divu′⟩L2 , (6a)

a∂b(u,u′) := ⟨ρ(ω + i∂b + iΩ×)u, (ω + i∂b + iΩ×)u′⟩L2 , (6b)

ar(u,u′) := ⟨(Hess(p)− ρHess(ϕ))u,u′⟩L2 − iω⟨γρu,u′⟩L2 . (6c)

Then, we define the sesquilinear form a : X× X → C by

a(u,u′) := adiv(u,u′)− a∂b(u,u′) + ar(u,u′) (7)

and denote by A ∈ L(X) the associated operator. Assuming mass conservation div(ρb) = 0, the variational
formulation of (1) is given by

find u ∈ X such that a(u,u′) = ⟨f ,u′⟩ for all u′ ∈ X, (8)

cf. [27, Sec. 2.3]. If the Mach number ∥c−1
s b∥L∞ is bounded suitably, it can be shown that the operator A is

weakly T-coercive and injective such that problem (8) is well-posed [27, Thm. 3.11]. Defining q := c−2
s ρ−1∇p
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the sesquilinear form a(·, ·) can be written as

a(u,u′)=⟨c2sρ(div+q·)u, (div+q·)u′⟩−⟨ρ(ω +i∂b+iΩ×)u, (ω +i∂b+iΩ×)u′⟩
+ ⟨(Hess(p)− ρHess(ϕ)− c2sρq⊗ q)u,u′⟩ − iω⟨γρu,u′⟩. (9)

This representation will be useful for the discussion of the well-posedness of the continuous and the discrete
problem in Section 4. Similar to (6), we define

a(div +q·)(u,u′) := ⟨c2sρ(div+q·)u, (div+q·)u′⟩ (10a)

a(r−q·)(u,u′) := ⟨(Hess(p)− ρHess(ϕ)− c2sρq⊗ q)u,u′⟩ − iω⟨γρu,u′⟩, (10b)

such that a(u,u′) = a(div +q·)(u,u′) − a∂b(u,u′) + a(r−q·)(u,u′). In particular, considering a(u,u) for u ∈
X ∩ ker{div+q} reveals that the sesquilinear form a(·, ·) is not coercive.

3.2. HDG-Discretization

Let (Tn)n∈N be a sequence of shape regular, simplicial triangulations of the domain O. Let Fn be the
collection of all faces of the triangulation Tn, and let ∂Tn be the collection of all element boundaries ∂τ of
elements τ ∈ Tn. Notice the subtle difference between Fn and ∂Tn; for instance, summing over all element
boundaries counts each interior facet twice.

For an element τ ∈ Tn or a face F ∈ Fn, we denote by hτ and hF their diameters, respectively, and we
set h∂τ = maxF∈∂τ hF . For a unified presentation, we define a function h|σ := hσ, σ ∈ Sn, where Sn ∈
{Tn, ∂Tn,Fn}. Finally, let hn := maxτ∈Tn

hτ be the maximal mesh size.
For a generic Hilbert space S, we denote by S(Tn) its broken version on Tn. In particular, we denote by

Pk(Tn) and Pk(Fn) the spaces of piecewise polynomials up to degree k on Tn and Fn.
On broken spaces S(Sn), where Sn ∈ {Tn, ∂Tn,Fn}, we use the abbreviations:

⟨·, ·⟩S(Sn) :=
∑
σ∈Sn

⟨·, ·⟩S(σ), ∥ · ∥2S(Sn)
:=
∑
σ∈Sn

∥ · ∥2S(σ).

In particular, we set ⟨·, ·⟩Sn
:= ⟨·, ·⟩L2(Sn). With abuse of notation, we will also use this notation for the

respective broken vector-valued scalar products, i.e. with L2 replaced by L2. We introduce the discrete space

Xn := XTn × XFn ,

where XTn
and XFn

are discrete polynomial spaces defined on Tn and Fn, respectively. The default choices are
XTn = [Pk(Tn)]d and XFn = [Pk(Fn)]

d, k ∈ N, yielding a fully non-conforming HDG discretization. However,
the forthcoming analysis also covers different choices, for example H(div)-conforming spaces, cf. Remark 5.

For functions un ∈ Xn, we write un = (uτ ,uF ), where uτ ∈ XTn
is the volume and uF ∈ XFn

is the facet
component of un. On occasion, we make use of the projection operators onto the volume or facet components
defined by (·)τ : Xn → XTn

, (uτ ,uF ) 7→ uτ and (·)F : Xn → XFn
, (uτ ,uF ) 7→ uF .

We define the following HDG-jump operators element-wise on τ ∈ Tn

[[un]] := uτ − uF , [[un]]ν := ν · [[un]], [[un]]b := (b · ν)[[un]], (11)

where we interpret uτ in a trace sense. Further, we define [[uτ ]]F := uτ |τ1 − uτ |τ2 , F ∈ Fn, τ1, τ2 ∈ Tn,
τ1 ∩ τ2 = F , to be the usual DG-jump operator (distinguished by the absence of the underline) on XTn . Here,
we assume a unique numbering of the aligned elements for each facet to fix the sign of the jump.
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Let l ∈ N. For all un ∈ Xn, we define the weighted lifting operators of degree l as Rlun ∈ [Pl(Tn)]d and
Rlun ∈ Pl(Tn) solving

⟨ρRlun,ψn⟩Tn = −⟨ρ[[un]]b,ψn⟩L2(∂Tn) for all ψn ∈ [Pl(Tn)]d, (12a)

⟨c2sρRlun, ψn⟩Tn
= −⟨c2sρ[[un]]ν , ψn⟩L2(∂Tn) for all ψn ∈ Pl(Tn). (12b)

Due to the Cauchy-Schwarz and the discrete trace inequality, we have that

∥ρ1/2Rlun∥2L2 ≤ C2
dt∥ρ1/2h−1/2[[un]]b∥2L2(∂Tn)

,

∥(c2sρ)1/2Rlun∥2L2 ≤ C2
dt∥(c2sρ)1/2h−1/2[[un]]ν∥2L2(∂Tn)

.
(13)

The lifting operators allow us to define the following discrete versions of the differential operators Dn
b and divnν

on Xn. For un ∈ Xn and τ ∈ Tn, we define

(Dn
bun)|τ := (∂buτ ) +Rlun and (divnν un)|τ := (divuτ ) +Rlun. (14)

These operators can be interpreted as distributional versions of their continuous counterpart on the broken
polynomial space Xn, cf. [10]. To stabilize ∂b on the discrete level, we replace ∂b by Dn

b in the discrete
sesquilinear form. This treatment stems from a Bassi-Rebay lifting technique [2, 8] and enables us to obtain a
stable method without an additional stabilization term. In particular, this technique allows us to avoid further
assumptions on the magnitude of the Mach number. In contrast, the terms involving the divergence operator do
not depend on the background flow b. As such, we use a classical symmetric interior penalty (SIP) technique for
those terms and note that the discrete divergence operator is mainly introduced to obtain a unified notation with
Dn

b, for which the lifting technique is essential. To be precise, we introduce the following discrete sesquilinear
forms:

adivn (un,u
′
n) := ⟨c2sρdiv

n
ν un,div

n
ν u′

n⟩Tn + sn(un,u
′
n) (15a)

+ ⟨divnν un,∇p · u′
τ ⟩Tn

+ ⟨∇p · uτ ,div
n
ν u′

n⟩Tn

a∂b
n (un,u

′
n) := ⟨ρ(ω + iDn

b + iΩ×)un, (ω + iDn
b + iΩ×)u′

n⟩Tn
(15b)

arn(un,u
′
n) := ⟨(Hess(p)− ρHess(ϕ))uτ ,u

′
τ ⟩Tn

− iω⟨γρuτ ,u
′
τ ⟩Tn

(15c)

where the stabilization term sn(·, ·) is defined for α > 0 as

sn(un,u
′
n) := −⟨c2sραh−1[[un]]ν , [[u

′
n]]ν⟩∂Tn − ⟨c2sρRlun, R

lu′
n⟩Tn .

The unusual minus in front of the first term is required to show stability in Theorem 23. In particular, the
construction of the Tn in Section 4.1 flips the sign in front of the normal jump, which makes the terms stemming
from sn(·, ·) positive.

Altogether, we define the discrete version of (7) through

an(un,u
′
n) := adivn (un,u

′
n)− a∂b

n (un,u
′
n) + arn(un,u

′
n). (16)

We denote by An ∈ L(Xn) the operator associated to the sesquilinear form an(·, ·). The use of the discrete
divergence operator divnν in combination with the stabilization term sn(·, ·) indeed yields a SIP formulation for
adivn (·, ·), since

⟨c2sρ div
n
ν un,div

n
ν u′

n⟩Tn+sn(un,u
′
n)

=⟨c2sρ divuτ ,divuτ ⟩Tn
− ⟨c2sρ[[un]]ν ,divu

′
τ ⟩∂Tn

−⟨c2sρ divuτ , [[u
′
n]]ν⟩∂Tn

+⟨c2sραh−1[[un]]ν , [[u
′
n]]ν⟩∂Tn

.
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Altogether, we consider the discrete problem

find un ∈ Xn such that an(un,u
′
n) = ⟨f ,u′

n⟩ for all u′
n ∈ Xn. (17)

For functions un,u
′
n ∈ Xn, we define the following scalar product

⟨un,u
′
n⟩Xn

:=⟨c2sρdiv
n
ν un,div

n
ν u′

n⟩Tn
+ ⟨uτ ,u

′
τ ⟩Tn

+ ⟨ρDn
bun,D

n
bu

′
n⟩Tn + ⟨c2sρh−1[[un]]ν , [[u

′
n]]ν⟩∂Tn ,

(18)

and denote by ∥ · ∥Xn =
√
⟨·, ·⟩Xn the induced norm. The terms involving the normal jump [[·]]ν are added to

control the terms of an(·, ·) arising from the SIP stabilization of the ⟨div ·,div ·⟩Tn
-term.

In preparation for the forthcoming analysis, we define the following bounded interpolation operators. For
s > 1/2, let
• πd

n : Hs → [Pk(Tn)]d ∩H(div) be an H(div)-conforming interpolation operator,
• πl

n : L2 → Pk(Tn) be the (scalar) L2-interpolation operator,
• πn : Hs → XTn

be an interpolation operator into XTn
, e.g. the standard L2-interpolation operator if XTn

=
[Pk(Tn)]d or an H(div)-conforming interpolation operator if XTn

= [Pk(Tn)]d ∩H(div).
We assume that the interpolation operators πd

n and πl
n fulfill the commutation property div πd

n = πl
n div and

that the following estimates hold: for all v ∈ Hr(τ), r ∈ [1, k + 1], m ∈ [0, r], τ ∈ Tn, we have that

|v − π̃nv|Hm(τ) ≤ Caprh
r−m
τ |v|Hr(τ), (19a)

∥v − π̃nv∥L2(∂τ) ≤ Cabh
r−1/2
τ |v|Hr(τ), (19b)

where π̃n ∈ {πd
n, πn}. For standard constructions satisfying these assumptions, we refer to [17].

We extend the interpolation operator πn from the DG space XTn to the HDG space Xn through

πn : Hs → Xn,uτ 7→ (πnuτ , tr|Fn
(πnuτ )),

where the trace operator tr|Fn of a discontinuous function is defined through averaging. For uτ ∈ XTn , F ∈ Fn

and τ1, τ2 ∈ Tn such that τ1 ∩ τ2 = F , we set

(tr|Fn uτ )|F :=
1

2
(truτ |τ1 + truτ |τ2).

We define a specific extension of the H(div)-conforming interpolation operator πd
n to Xn for future use. For

any vector-valued function u, let Pνu := ν(ν · u) denote the normal projection and P⊥
ν := id−Pν be the

tangential projection. For s ≥ 0, we set

π̃d
n : H1+s → XTn

∩H(div)× XFn
,u 7→ (πd

nu, Pν(π
d
nu) + P⊥

ν (πFn
n u)), (20)

where πFn
n is the L2-projection onto XFn

. The properties of the interpolation operator π̃d
n are studied in

Lemma 6.

Remark 5 (Choices for XTn
and XFn

). As discussed above, we may choose XTn
as the Brezzi-Douglas-Marini

(BDM) space [7] defined as

XTn
:= BDMk := {uτ ∈ [Pk(Tn)]d : [[uτ · ν]]F = 0 ∀F ∈ Fn} ⊂ H(div,O),

where we recall that [[·]]F , F ∈ Fn, denotes the usual DG-jump operator. To obtain an H(div)-conforming HDG
discretization [36], we set XFn

to be the space of tangential polynomials on the skeleton Fn:

XFn
:= Pk,tang(Fn) = {uF ∈ [Pk(Fn)]

d : PνuF = 0}.
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For these choices, we redefine the HDG-jump operators as [[un]] := P⊥
ν uτ − uF such that [[un]]ν = 0. Conse-

quently, we obtain that Rlun = 0 for all un ∈ Xn and therefore we have that divnν = div and sn(·, ·) = 0.
To optimize the computational efficiency, we can use relaxed H(div)-conforming spaces as introduced in

[33,34]. We define
BDM−

k := {uτ ∈ [Pk(Tn)]d : Πk−1
F [[uτ · ν]]F = 0 ∀F ∈ Fn},

where Πk−1
F is the L2-projection onto [Pk−1(F )]d. While functions in BDM−

k are not normal-continuous in the
highest order, this relaxation reduces the number of coupling degrees of freedoms improving the sparsity pattern
of the system matrices. The choice of XTn

= BDM−
k and XFn

= Pk,tang(Fn) still yields Rlun = 0 if the lifting
degree satisfies l ≤ k − 1.

3.3. Interpretation as DAS

To apply the abstract framework discussed in Section 2, we have to show that the proposed discretization
can be interpreted as a DAS. As a first step, we have to define a suitable quasi projection pn ∈ L(X,Xn).
Since the trace of functions in X is not necessarily well-defined, the evaluation of the discrete operator Dn

b and
therefore the evaluation of ⟨·, ·⟩Xn is not well-defined for functions in X. Nevertheless, we want to define the
quasi projection pn in the spirit of an orthogonal projection. Thus, for u ∈ X, we define pnu ∈ Xn to be the
solution to

⟨pnu,u′
n⟩Xn

=⟨c2sρdivu,div
n
ν u′

n⟩L2 + ⟨u,u′
τ ⟩L2 + ⟨ρ∂bu,Dn

bu
′
n⟩L2 ∀u′

n ∈ Xn. (21)

If the function u has enough regularity to allow for a well-defined trace, for instance if u ∈ X∩H1, the discrete
operators divnν and Dn

b can be applied to the pair u := (u, tru) and thus u may be plugged into ⟨·, ·⟩Xn , cf. (18).
Then, (21) can be written as ⟨pnu,u′

n⟩Xn = ⟨u,u′
n⟩Xn .

The Cauchy-Schwarz inequality yields that pn ∈ L(X,Xn) with ∥pn∥L(X,Xn) ≤ 1. Furthermore, for all u′
n ∈ Xn

the following Galerkin orthogonality property holds:

0 =⟨c2sρ(divu− divnν pnu),div
n
ν u′

n⟩Tn + ⟨u− (pnu)τ ,u
′
n⟩Tn

+ ⟨ρ(∂bu−Dn
bpnu),D

n
bu

′
n⟩Tn

− ⟨c2sρh−1[[pnu]]ν , [[u
′
n]]ν⟩∂Tn

(22)

As discussed above, the norm ∥ · ∥Xn cannot be evaluated for functions in X. To circumvent this issue, we
introduce a distance function dn : X× Xn → R+

0 ,

dn(u,u
′
n)

2 :=∥(c2sρ)1/2(divu− divnν un)∥2L2 + ∥u− uτ∥2L2

+ ∥ρ1/2(∂bu−Dn
bun)∥2L2 + [[[uh]]]

2
∂Tn,1/2,ν

,
(23)

where we define the following jump norm on Xn:

[[[uh]]]
2
∂Tn,1/2,ν

:= ∥(c2sρ)1/2h−1/2[[un]]ν∥2L2(∂Tn)
. (24)

If the trace is well-defined, e.g. for u ∈ X ∩ H1, then we obtain dn(u,un) = ∥u − un∥Xn
for u = (u, tru).

Furthermore, the distance function dn(·, ·) fulfills the following triangle inequalities

dn(u,un) ≤ dn(ũ,un) + ∥ũ− u∥X, dn(u,un) ≤ dn(u, ũn) + ∥ũn − un∥Xn
, (25)

for all u, ũ ∈ X and un, ũn ∈ Xn.
To show that the triple (Xn, pn, An) is a DAS of (X, A), we will show in Lemma 11 below that limn→∞ ∥pnu∥Xn

=
∥u∥X for all u ∈ X and in Theorem 13 that An approximates A. As a preparation, we proceed to analyze the
projection operators defined in the previous section. We remark that most results follow with the same argu-
mentation as in the H(div)-conforming DG [26] and the fully discontinuous DG [45] case.
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Lemma 6. Let u ∈ H1+s, 0 ≤ s ≤ k, and π̃d
n be defined by (20). Then

[[π̃d
nu]]ν = 0 and [[π̃d

nu]] = P⊥
ν (πd

nu− πFn
n u). (26)

Furthermore, there exists a constant C > 0 such that

∥u− π̃d
nu∥Xn

≤ Chsn∥u∥H1+s , (27)

where u = (u, tru).

Proof. The properties (26) hold by definition of π̃d
n. Since [[π̃d

nu]]ν = 0, it follows that Rlπ̃d
nu = 0 and therefore

by definition of the discrete divergence operator divnν , we have that divnν π̃
d
nu = div(π̃d

nu)τ . The triangle
inequality yields that

∥u− π̃d
nu∥Xn

≤ ∥u− (π̃d
nu)τ∥X(Tn) + ∥ρ1/2Rl(u− π̃d

nu)∥Tn
.

For the first term, the commutation property div πd
n = πl

n div and the approximation properties of πd
n and πl

n

imply that ∥u−(π̃d
nu)τ∥X(Tn)≲h

s
n∥u∥H1+s .

For the second term, we calculate with (13) and [[u]] = 0 that

∥ρ1/2Rl(u− π̃d
nu)∥Tn

≲ ∥ρ1/2h−1/2[[π̃d
nu]]b∥L2(∂Tn)

≲ ∥ρ1/2h−1/2(b · ν)P⊥
ν (πd

nu− πFn
n u)∥L2(∂Tn)

≲ ∥ρ1/2h−1/2(b · ν)(πd
nu− u)∥L2(∂Tn)

+ ∥ρ1/2h−1/2(b · ν)(πFn
n u− u)∥L2(∂Tn)

≲ hsn∥u∥H1+s ,

(28)

where we use the definition of π̃d
n in the second line, the boundedness of P⊥

ν in the third and the approximation
properties of πd

n and πFn
n in the last line. Altogether, we conclude that there exists a constant C > 0 such that

∥u− π̃d
nu∥Xn

≤ C∥u∥H1+s which proves (27). □

Lemma 7. For all u ∈ H1
ν0, it holds that dn(u, pnu) ≤ dn(u, πnu).

Proof. Follows from an application of (22) and the Cauchy-Schwarz inequality. □

Lemma 8. For all u ∈ H1
ν0 ∩ H1+s, 0 < s ≤ k, there exists a constant C > 0 independent of h such that

dn(u, πnu) ≤ Chsn∥u∥H1+s .

Proof. Follows from the boundedness of the lifting operators, cf. (13) and the approximation properties of πn,
cf. (19). □

Lemma 9. For each u ∈ X, it holds that limn→∞ dn(u, pnu) = 0.

Proof. Due to the density of C∞
0 in X [29, Thm. 6], we can choose ũ ∈ C∞

0 such that ∥u − ũ∥X < ϵ for any
ϵ > 0. Then, we can estimate with (25) that

dn(u, pnu) ≤ dn(ũ, pnũ) + ∥ũ− u∥X + ∥pn(ũ− u)∥Xn ≤ dn(ũ, pnũ) + 2ϵ.

Thus, the claim follows from the previous Lemma 7 and Lemma 8. □

Lemma 10. For all u ∈ H1
ν0, it holds that

lim
n→∞

dn(u, πnu) = 0 and lim
n→∞

dn(u, π̃
d
nu) = 0. (29)
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Proof. By construction of π̃d
n and the approximation properties of πd

n, we have for u ∈ H1+s that

dn(u, π̃
d
nu) ≲ ∥u− πd

nu∥X(Tn) + ∥ρ1/2Rlπ̃d
nu∥Tn ≲ hs∥u∥H1+s .

Lemma 8 yields the same estimate for πn. The proof of the claim then follows with similar density arguments as
in the proof of Lemma 9 with the additional technicality of constructing a smooth approximation that respects
the boundary condition ν · ũ = 0 on ∂O. For technical details, we refer to the proof of [26, Lem. 6]. □

Lemma 11. For all u ∈ X it holds that limn→∞ ∥pnu∥Xn
= ∥u∥X.

Proof. With (21), we compute

∥pnu∥2Xn
= ⟨pnu, pnu⟩Xn

= ⟨c2sρ divu,div
n
ν pnu⟩L2 + ⟨u, (pnu)τ ⟩L2 + ⟨ρ∂bu,Dn

bpnu⟩L2

= ∥u∥X + ⟨c2sρ divu,div
n
ν pnu− divu⟩L2 + ⟨u, (pnu)τ − u⟩L2

+ ⟨ρ∂bu,Dn
bpnu− ∂bu⟩L2 .

Since limn→∞ dn(u, pnu) = 0 by Lemma 9, the claim follows from the estimate

|⟨c2sρdivu,div
n
ν pnu− divu⟩L2 + ⟨u, (pnu)τ − u⟩L2 + ⟨ρ∂bu,Dn

bpnu− ∂bu⟩L2 |
≤∥u∥Xdn(u, pnu).

□

Recall that An ∈ L(Xn) and A ∈ L(X) are the linear operators associated with the sesquilinear forms an(·, ·)
defined by (16) and a(·, ·) defined by (7). In preparation to show that An approximates A, we prove the following
compactness result.

Lemma 12. Let (un)n∈N ⊂ Xn be such that supn∈N ∥un∥Xn
< ∞. Then there exists u ∈ X and a subsequence

N′ ⊂ N such that (un)τ
L2

⇀ u, c2sρdiv
n
ν un

L2

⇀ c2sρdivu and ρDn
bun

L2

⇀ ρ∂bu, n ∈ N′.

Proof. We modify standard arguments from the DG-case, see e.g. [10] and [26], to the HDG setting, see also [32].
By assumption, the sequences (un)τ , ρDn

bun and c2sρdiv
n
ν un are bounded in L2 and L2, respectively. Thus,

there exist a subsequence N′ ⊂ N and elements u, g ∈ L2, q ∈ L2 such that (un)τ
L2

⇀ u, c2sρdiv
n
ν un

L2

⇀ q and

ρDn
bun

L2

⇀ g. It remains to show that g = ρ∂bu and q = c2sρdivu. We only show the former, as the latter
follows with a similar argumentation for the scalar lifting operator Rl, see also [45, Lem. 6.7]. Let ψ ∈ C∞

0

and ψn be the lowest order standard H1-interpolant of ψ on Tn. Then, we compute with element-wise partial
integration

−⟨(un)τ , ρ∂bψ⟩Tn

= ⟨ρ∂b(un)τ ,ψ⟩Tn
− ⟨ρ(b · ν)(un)τ ,ψ⟩∂Tn

+ ⟨ρ(b · ν)(un)F ,ψ⟩∂Tn︸ ︷︷ ︸
=0

= ⟨ρ∂b(un)τ ,ψ⟩Tn
− ⟨ρ[[un]]b,ψ⟩∂Tn

(12a)
= ⟨ρ∂b(un)τ ,ψ⟩Tn

− ⟨ρ[[un]]b,ψ −ψn⟩∂Tn
+ ⟨ρRlun,ψn⟩Tn

(14)
= ⟨ρ∂b(un)τ ,ψ −ψn⟩Tn

− ⟨ρ[[un]]b,ψ −ψn⟩∂Tn
+ ⟨ρDn

bun,ψn⟩Tn

= −⟨(un)τ , ρ∂b (ψ −ψn)⟩Tn
+ ⟨ρDn

bun,ψn⟩Tn
,

(30)
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where we recall that div(ρb) = 0 by assumption. Since ∥ψ − ψn∥H1 ≲ hn∥ψ∥H2 and ∥un∥Xn
≲ 1, it follows

that limn→∞⟨ρDn
bun,ψn⟩Tn

= limn→∞ −⟨(un)τ , ρ∂bψn⟩Tn
. Thus, we obtain

⟨g,ψ⟩ = lim
n→∞

⟨ρDn
bun,ψ⟩ = lim

n→∞
(⟨ρDn

bun,ψ −ψn⟩Tn
+ ⟨ρDn

bun,ψn⟩Tn
)

(30)
= lim

n→∞
−⟨(un)τ , ρ∂bψ⟩Tn = −⟨u, ρ∂bψ⟩Tn .

Consequently, it holds that g = ρ∂bu and with similar arguments q = c2sρdivu. □

Theorem 13. The operator An ∈ L(Xn) approximates the operator A ∈ L(X), i.e. for each u ∈ X, it holds that

lim
n→∞

∥(Anpn − pnA)u∥Xn
= 0.

Proof. As ∥un∥Xn
= supun∈Xn,∥u′

n∥Xn=1 |⟨un,u
′
n⟩Xn

|, we can choose for any u ∈ X a sequence (un)n∈N ⊂ Xn

such that ∥un∥Xn
= 1 and

∥(Anpn − pnA)u∥Xn ≤ |⟨(Anpn − pnA)u,un⟩Xn |+ 1/n.

For any subsequence N′ ⊂ N, we can choose a subsubsequence N′′ ⊂ N′ as in Lemma 12 such that for a u′ ∈ X
it holds that

lim
n∈N′′

⟨pnAu,un⟩Xn

(21)
= lim

n∈N′′

(
⟨divAu, c2sρdiv

n
ν un⟩L2+⟨Au,un⟩L2+⟨∂bAu, ρDn

bun⟩L2

)
= ⟨divAu, c2sρ divu′⟩L2 + ⟨Au,u′⟩L2 + ⟨∂bAu, ρ∂bu′⟩L2 = ⟨Au,u′⟩X.

Furthermore, recalling (15) and (16), we have that

⟨Anpnu,un⟩Xn
= an(pnu,un) = adivn (pnu,un)− a∂b

n (pnu,un) + arn(pnu,un)

As discussed before, the trace of functions in X is not well-defined, but the normal trace is. Thus, we can plug
u ∈ X into the forms ayn(·, ·), y ∈ {div, r}, but not into a∂b

n (·, ·). For y ∈ {div, r}, we recall the definitions from
(6) and calculate

lim
n∈N′′

ayn(pnu,un) = lim
n∈N′′

(ayn(u,un) + ayn(pnu− u,un)) = ay(u,u′),

where the last equality follows from |ayn(pnu−u,un)| ≲ dn(u, pnu), Lemma 9 and Lemma 12. For the remaining
term a∂b

n (pnu,un), we calculate

a∂b
n (pnu,un) = ⟨ρ(ω + iDn

b + iΩ×)pnu, (ω + iDn
b + iΩ×)un⟩Tn

= ⟨ρ(ω + i∂b + iΩ×)u, (ω + iDn
b + iΩ×)un⟩Tn

+ ⟨ρ(ω + iΩ×)((pnu)τ − u), (ω + iDn
b + iΩ×)un⟩Tn

+ ⟨ρ(Dn
bpnu− ∂bu), (ω + iDn

b + iΩ×)un⟩Tn

While the first term converges to a∂b(u,u′) due to Lemma 12, the second and third terms are again bounded
by dn(u, pnu) and thus converge to zero by Lemma 9. Altogether, we obtain that

lim
n∈N′′

⟨Anpnu,un⟩Xn = adiv(u,u′)− a∂b(u,u′) + ar(u,u′) = ⟨Au,u′⟩X,

and therefore limn∈N′′ ∥(Anpn − pnA)u∥Xn
= 0, which completes the proof. □

Thus, we have shown in Lemma 11 that limn→∞ ∥pnu∥Xn = ∥u∥X and in Theorem 13 that An approximates A.
Consequently, we conclude that the triple (Xn, pn, An) is a DAS of (X, A) which allows us to apply the results
from Theorem 4 to analyze the discrete problem (17).
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4. Convergence Analysis

The main goal of this section is to show that the sequence of approximations (An)n∈N is stable and that the
sequence of discrete solutions (un)n∈N converges to the solution of the continuous problem with optimal order.
To this end, we want to use Theorem 4 to show that the sequence (An)n∈N is regular and apply Lemma 3
to obtain stability and convergence. In Section 4.1, we introduce T-operators T and Tn on the continuous
and the discrete level. Afterwards, we show in Section 4.2 that Tn satisfies the assumptions from Theorem 4.
In Section 4.3 we show that the remaining requirements from Theorem 4 are satisfied and in Section 4.4 we
conclude the analysis of the discrete problem (17). The roadmap for the analysis is shown in Fig. 1.

Def. of Tn&T (via (31)&(33))

(Tn)n∈N stable (Lemma 17)

Tn approximates T

(Lemma 18)

Se
ct

.
4.

1&
4.

2

Estimate Dn
b (Lemma 19)

Estimate divnν (Lemma 20)

AnTn = Bn + Kn

(Bn)n∈N stable,
(Bn)n∈N approximates B,

(Kn)n∈N compact,
(Theorem 23)Se

ct
io

n
4.

3

(An)n∈N regular

(by Theorem 4)

(An)n∈N stable

& (un)n∈N→u

(Theorem 24)

Section 4.4

Section 3.3: (Xn, pn, An) is a DAS of (X, A)

Lemma 3

Figure 1. Roadmap for the analysis of the discrete problem (17).

4.1. Construction of T and Tn

Let us recall the construction of T on the continuous level as considered in [26]. In Section 3.1, we introduced
q := c−2

s ρ−1∇p, yielding the reformulation (9) of the sesquilinear form a(·, ·); recall also the definition of
a(div +q·)(·, ·) in (10). Intuitively, the strategy to show that sesquilinear form a(·, ·) is weakly T-coercive is to
construct the operator T to flip the sign in front of a∂b(·, ·) for elements in ker{a(div +q·)(·, ·)}.

To this end, we want to decompose the space X into a subspace associated with the perturbed divergence
operator (div+q·) and its orthogonal complement. In essence, the following construction is a generalized
Helmholtz decomposition, where we want to identify the kernel of (div+q·) instead of the kernel of div. In
particular, if the pressure p is constant, we have that q = 0 and we recover the classical Helmholtz decomposition.
A similar (though less involved) argument is applied in [40, Sec. 15.1] to the Helmholtz equation.

For u ∈ H0(div) := {u ∈ H(div) : u · ν = 0 on ∂O}, let v ∈ H2
∗ solve

(div+PL2
0
q ·+M)∇v = (div+PL2

0
q ·+M)u in O,

ν · ∇v = 0 on ∂O,
(31)

where PL2
0

is the L2-projection onto L2
0 and M is a suitable finite rank operator constructed below. The operator

M is necessary to ensure the well-posedness of the problem, since (div+PL2
0
q·)∇ might not be bijective. It

is, however, a compact perturbation of a bijective operator and therefore Fredholm with index zero. For any
Fredholm operator with index zero, there exists a finite rank operator such that the sum of both operators is
bijective, cf. [22, Thm. 5.3].

Since we exploit the specific structure of M later on, we discuss an explicit construction of M . We set

H2
∗,Neu := {ϕ ∈ H2

∗ ,ν · ∇ϕ = 0 on ∂O}, N := ker
{
(div+PL2

0
q·)∇

}
⊂ H2

∗,Neu.
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Let L := dimN and (ϕl)1≤l≤L ⊂ H2
∗,Neu be an orthonormal basis of N with respect to the inner product

⟨div∇·,div∇·⟩, which is equivalent to the canonical H2
∗,Neu-inner product since ν · ∇ϕ = 0 and ⟨ϕ, 1⟩ = 0 for

all ϕ ∈ H2
∗,Neu.

Let (ψl)1≤l≤L ⊂ H2
∗,Neu be an orthonormal basis of the L2

0-orthogonal complement
(
(div+PL2

0
q·)∇H2

∗,Neu

)⊥
.

Then, we set

M :=

L∑
l=1

ψl⟨div ·,div∇ϕl⟩. (32)

By construction, M can be applied to H(div)-functions and is compact. Thus, the operator (div+PL2
0
q ·+M)

is a Fredholm operator with index zero, and hence it is bijective if and only if it is injective. However, the
construction of M ensures the injectivity of the operator and therefore the well-posedness of the problem (31).
Thus, for any u ∈ X ⊂ H0(div) there exists a unique v ∈ H2

∗ solving (31).
Thus, we can define a unique decomposition of v+w = u ∈ X by setting v := PV u := ∇v and w := u−v. In

particular, this construction yields that (div+PL2
0
q·)w = −Mw. The construction of PV : H0(div) → H1,u 7→

∇v allows us to use the compactness of the embedding H1 ↪→ L2.
If q = 0, then div∇ = ∆ is bijective and M = 0, so that we recover the standard Helmholtz decomposition

into a gradient potential and a divergence-free part.
Further, we define a bijective operator T ∈ L(X) through Tu := v − w. That a(·, ·) is indeed weakly

T-coercive with respect to this construction will be shown in Theorem 23.
Now, we want to construct a similar decomposition of the discrete space Xn. To account for the discontinuity

of the discrete functions, we have to modify the right-hand side of (31). In particular, we replace the divergence
operator and the operator M with corresponding discrete counterparts.

For un ∈ Xn, let ṽ ∈ H2
∗ be the solution to

(div+PL2
0
q ·+M)∇ṽ = (divnν +πl

nPL2
0
q ·+Mn)un in O,

ν · ∇ṽ = 0 on ∂O,
(33)

where we interpret πl
nPL2

0
q · un = πl

nPL2
0
q · (un)τ and define the operator Mn similarly to (32) as

Mn :=

L∑
l=1

ψl⟨divnν ·,div∇ϕl⟩. (34)

Since we only changed the right-hand side of the problem, the well-posedness of the problem is not affected.
Then, we define the decomposition un = vn +wn where we choose vn as the H(div)-conforming HDG interpo-
lation of ∇ṽ. To be precise, we recall the definition (20) of the projection operator π̃d

n and its properties studied
in Lemma 6 and define

vn := PVn
un := π̃d

n∇ṽ = (πd
n∇ṽ, Pν(π

d
n∇ṽ) + P⊥

ν (πFn
n ∇ṽ)), wn := un − vn. (35)

For later use, let Sn : Xn → H1, un 7→ ∇ṽ be the solution operator of (33) composed with ∇. Then, we have
that PVn

un = π̃d
nSnun. Finally, we define the operator Tn : Xn → Xn through

Tnun := vn −wn, i.e., Tn = 2PVn − idXn . (36)

Since (33) is well-posed, we have the stability estimate

∥Snun∥H1 ≲ ∥(divnν +πl
nPL2

0
q ·+Mn)un∥L2 ≲ ∥un∥Xn

for all un ∈ Xn. (37)

Furthermore, since ran(Sn) ⊂ H1, we can utilize the compact embedding H1 ↪→ L2 to expose the weakly
T-coercive structure of An in Theorem 23 below.
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Remark 14 (Alternative decomposition of Xn). In the construction above, the normal jump is attributed to wn

and the Tn-operator flips its sign. Alternatively, we can isolate the normal jump through a suitably defined lifting
operator, cf. [1,45]. In this case, we would decompose un = vn +wn + zn with vn as above and [[un]]ν = [[zn]]ν .
This construction is more natural, because since we associate wn with the divergence free part of the Helmholtz
decomposition, we would expect the normal jump to be zero. When defining Tn, we now have explicit control
over the sign of the normal jump. The previous construction corresponds to Tnun := vn−wn−zn, but we could
also define Tnun := vn −wn + zn. Note that for the latter construction, the stabilization term sn(·, ·) would
have to be redefined to have a positive sign in front of the normal contribution and in the forthcoming analysis,
the stabilization parameter α would have to be chosen sufficiently large to ensure that sn(·, ·) is positive definite.
To avoid further technicalities, we do not further consider this alternative decomposition.

4.2. Analysis of Tn
We want to show that the sequence (Tn)n∈N is bounded, stable, and approximates the operator T . By

definition of Tn, we have that Tn = 2PVn − idXn and therefore we mainly have to focus on the properties of PVn .

Lemma 15. There exists a constant C > 0 such that ∥Tn∥L(Xn) ≤ C for all n ∈ N.

Proof. It suffices to show the statement for PVn
. Since PVn

= π̃d
nSn and Snun ∈ H1, we obtain with Lemma 6

and (37) that
∥PVn

un∥Xn
= ∥π̃d

nSnun∥Xn
≲ ∥Snun∥H1 ≲ ∥un∥Xn

. (38)

Thus, there exists a constant C > 0 such that ∥PVn
∥L(Xn) ≤ C for all n ∈ N. □

For q = 0, the projection PVn
is idempotent, that is P 2

Vn
= PVn

. In the case where q ̸= 0, we can still show
that PVn

is asymptotically idempotent.

Lemma 16. Let On := PVn
PVn

− PVn
. Then limn→∞ ∥On∥L(Xn) = 0.

Proof. Let un ∈ Xn and wn := (idXn
−PVn

)un. Since PVn
= π̃d

nSn, Lemma 6 implies that ∥(PVn
PVn

−
PVn)un∥Xn ≲ ∥Snwn∥H1 . By construction of PVn , we have that [[PVnun]]ν = 0 and divnν PVnun = div(PVnun)τ =

div πd
nSnun, and therefore Sn(PVn

un) ∈ H1
ν0 solves

(div+PL2
0
q ·+M)Sn(PVn

un)
(33)
= (div+πl

nPL2
0
q ·+M)πd

n(Snun).

Thus, we calculate that

(div+PL2
0
q ·+M)Snwn

(33)
= (div+PL2

0
q ·+M)Snun − (div+πl

nPL2
0
q ·+M)πd

n(Snun)

= div
(
idX −πd

n

)
Snun+(PL2

0
q · −πl

nPL2
0
q · πd

n)Snun+M
(
idX −πd

n

)
Snun

= div
(
idX −πd

n

)
Snun +

(
idL2

0
−πl

n

)
PL2

0
q · Snun

+ πl
nPL2

0
q ·
(
idX −πd

n

)
Snun +M

(
idX −πd

n

)
Snun

= (idL2
0
−πl

n)(div+PL2
0
q·)Snun + πl

nPL2
0
q ·
(
idX −πd

n

)
Snun

+M
(
idX −πd

n

)
Snun =: −Õnun,

(39)

where we use the commutation property div πd
n = πl

n div in the last step. Consequently, Snwn solves (33) with
right-hand side −Õnun and the stability estimate (37) implies that ∥Snwn∥H1 ≲ ∥Õnun∥Xn

. We note that the
minus in front of Õn is purely for notational convenience in later calculations.
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It remains to show that limn→∞ ∥Õn∥L(Xn,L2
0)

= 0. Due to (33), we have that

(div+PL2
0
q·)Snun = (divnν +πl

nPL2
0
q ·+Mn)un −MSnun,

πl
n(div+PL2

0
q·)Snun = (divnν +πl

nPL2
0
q ·+Mn)un − πl

nMSnun

+ (πl
n − idL2

0
)MnSnun.

(40)

Because πl
n converges to idL2

0
pointwise and the operators MSn and MnSn are compact, it follows that

∥(idL2
0
−πl

n)(div+PL2
0
q·)Sn∥L(Xn,L2

0)

≲ ∥(idL2
0
−πl

n)MSn∥L(Xn,L2
0)
+ ∥(πl

n − idL2
0
)MnSn∥L(Xn,L2

0)
n→∞→ 0.

Furthermore, by construction of the operator M , the commutation property div πd
n = πl

n div, and (40) we have
that

∥M(idX −πd
n)Sn∥L2(Xn,L2

0)
≲ ∥ div

(
idX −πd

n

)
Sn∥L2(Xn,L2

0)

≲ ∥(idL2
0
−πl

n)(div+PL2
0
q·)Sn∥L(Xn,L2

0)
+ ∥(idL2

0
−πl

n)PL2
0
q · Sn∥L(Xn,L2

0)
,

where the second term converges to zero as well, since πl
n converges to idL2

0
pointwise and PL2

0
q ·Sn is compact.

Finally, we estimate with (19)

∥πl
nPL2

0
q · (idX −πd

n)Sn∥L(Xn,L2
0)

≲ ∥(idX −πd
n)Sn∥L(Xn,L2) ≲ hn∥Sn∥L(Xn,H1)

n→∞→ 0.

Altogether, we obtain that limn→∞ ∥Õn∥L(Xn,L2
0)

= 0 and thus

∥(PVn
PVn

− PVn
)un∥Xn

≲ ∥Snwn∥H1

(37)
≲ ∥Õnun∥Xn

≲ ∥Õn∥L(Xn,L2
0)
∥un∥Xn

n→∞→ 0.

□

The calculations in (39) yield

(divnν+π
l
nPL2

0
q·)wn

(33)
= (div+PL2

0
q ·+M)Snwn−Mnwn

(39)
= −Mnwn−Õnun (41)

In particular, if q = 0, then Mn = 0 and Õn = 0, so divnν wn = 0 and we recover the standard Helmholtz
decomposition on the discrete level. From (41), we observe that even in the case where q ̸= 0 the discrete
perturbed divergence of wn consists of the compact operator Mn and Õn which can be absorbed in the compact
part of the weakly T-coercive structure.

Lemma 17. There exists an index n0 > 0 and C > 0 such that ∥T−1
n ∥L(Xn) ≤ C for all n > n0.

Proof. We have that TnTn = 4PVn
PVn

− 4PVn
+ idX = idX +4On with On as defined in Lemma 16. Since

limn→∞ ∥On∥L(Xn) = 0, there exists n0 > 0 such that ∥4On∥L(Xn) < 1 for all n > n0 and thus there exists C > 0

such that ∥(idX +4On)
−1∥L(Xn) ≤ C for all n > n0. Writing

(idX +4On)
−1Tn = (TnTn)

−1Tn = T−1
n ,

we conclude that ∥T−1
n ∥L(Xn) ≤ C∥Tn∥L(Xn) for all n > n0, which proves the claim. □

The next lemma shows that Tn indeed approximates the operator T .
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Lemma 18. For each u ∈ X, it holds that limn→∞ ∥(Tnpn − pnT )u∥Xn = 0.

Proof. As before, we only have to show the statement for PVn
. First, we estimate

∥(PVn
pn − pnPV )u∥Xn

≤ dn(PV u, pnPV u) + dn(PV u, PVn
pnu),

and note that the first term converges to zero by Lemma 9. By definition, we have that PVn
pnu = π̃d

nSnpnu
and estimate for the second term

dn(PV u, PVn
pnu)

(25)
≤ dn(PV u, π̃

d
nPV u) + ∥π̃d

n(PV u− Snpnu)∥Xn
. (42)

Since PV u ∈ H1
ν0, the first term converges to zero by Lemma 10. For the second term, we estimate

∥π̃d
n(PV u− Snpnu)∥Xn ≲ ∥PV u− Snpnu∥H1

≲ ∥ divu− divnν pnu∥Tn︸ ︷︷ ︸
(I)

+ ∥PL2
0
q · u− πl

nPL2
0
q · (pnu)τ∥Tn︸ ︷︷ ︸

(II)

+ ∥Mu−Mnpnu∥Tn︸ ︷︷ ︸
(III)

.

By definition of dn(·, ·), we have that (I) ≲ dn(u, pnu). We further estimate

(II) ≲ ∥(PL2
0
q · −πl

nPL2
0
q·)u∥L2 + ∥πl

nPL2
0
q · (u− (pnu)τ )∥Tn

≲ ∥(PL2
0
q · −πl

nPL2
0
q·)u∥L2 + dn(u, pnu).

By construction of M and Mn it holds that (III) ≲ ∥ divu− divnν pnu∥Tn
≲ dn(u, pnu).

Altogether, we obtain

∥π̃d
n(PV u− Snpnu)∥Xn

≲ ∥(PV u− Snpnu)∥Xn

≲ dn(u, pnu) + ∥(PL2
0
q · −πl

nPL2
0
q·)u∥L2

n→∞→ 0, (43)

where the first term converges to zero by Lemma 10 and the second term converges to zero due to the pointwise
convergence of πl

n to idL2
0
, which proves the claim. □

4.3. Weak T-compatibility

In the previous section, we have defined and analyzed the operators T and Tn. To prepare for the application
of Theorem 4 in Section 4.4, we have to construct a characterization AnTn = Bn + Kn that satisfies the
conditions from Theorem 4. Before we do so in Theorem 23, we introduce the following notation and prove
some auxiliary results.

For u ∈ H1
ν0, we define the weighted H1-seminorm through

|u|2H1
c2sρ

:= ∥(c2sρ)1/2∇u∥2(L2)d×d . (44)

We show that the construction of PVnun := π̃d
n∇ṽ, where ṽ ∈ H2

∗,Neu solves (33), allows us to bound the
norm of the differential operators Dn

b and divnν suitably. These estimates are crucial to show that the conditions
from Theorem 4 are satisfied.

Lemma 19. There exists constant C(19) > 0 and n0 ∈ N such that for all un ∈ Xn and n > n0, it holds that

∥ρ1/2Dn
b(PVn

un)∥2Tn
≤ C(19)∥c−1

s b∥2L∞ |Snun|2H1
c2sρ

. (45)

In particular, C(19) = 1 +O(h2n).
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Proof. For un ∈ Xn, we set vn := PVnun and denote by ṽ the solution to (33) such that Snun = ∇ṽ. For an
element τ ∈ Tn and η ∈W 1,∞ we use the notation ητ = η|τ and estimate

∥ρ1/2Dn
bvn∥L2(τ) ≤ ∥ρ1/2∂b(vn)τ∥L2(τ) + ∥ρ1/2Rlvn∥L2(τ). (46)

By definition, (vn)τ = πd
n∇ṽ, and thus we can estimate the first term by

∥ρ1/2∂b(πd
n∇ṽ)∥2L2(τ) ≤ ∥c−1

s b∥2L∞csτ
2ρτ |πd

n∇ṽ|2H1(τ) ≲ ∥c−1
s b∥2L∞csτ

2ρτ |∇ṽ|2H1(τ)

≲ ∥c−1
s b∥2L∞csτ

2ρτ (c
2
sτ ρτ )

−1|∇ṽ|2H1
c2sρ

(τ)

≲ ∥c−1
s b∥2L∞

(
1 + h2n

1

csτ
2ρτ

(CL
csρ1/2)

2

)
︸ ︷︷ ︸

=:CL
n (τ)

|∇ṽ|2H1
c2sρ

(τ),

where we use the Lipschitz continuity of csρ1/2 ∈ W 1,∞ with constant CL
csρ1/2 in the last step. Since hn → 0

for n→ ∞, there exists n0 ∈ N such that CL
n (τ) ≤ 2 for all n > n0 and all τ ∈ Tn. For the second term in (46),

we use (13) and same argumentation as in the proof of Lemma 6 to obtain

∥ρ1/2Rlvn∥2L2(τ) ≤ C2
dtρτ∥h−1/2[[vn]]b∥2L2(∂τ) ≤ ∥c−1

s b∥2L∞C2
dtcsτ

2ρτ∥h−1/2[[vn]]∥2L2(∂τ)

(28)
≲ ∥c−1

s b∥2L∞C2
dtC

L
n (τ)|∇ṽ|H1

c2sρ
(τ),

Inserting both estimates into (46) and summing over all elements τ ∈ Tn yields

∥ρ1/2Dn
bvn∥2Tn

≤ C(19)∥c−1
s b∥2L∞ |∇ṽ|2H1

c2sρ

,

where C(19) > 0 is independent of n > n0. Since vn = PVn
un and Snun = ∇ṽ, the proof is finished. □

Let us stress that the constant C(19) > 0 only depends locally on the coefficients and their Lipschitz constant,
and is independent of the ratio (cs

2ρ)/(cs
2ρ). In particular, the quadratic factor h2n mitigates the effects of

large Lipschitz constants and asymptotically, the constant tends to one with order h2n.
In the following lemma, we show that the decomposition (33) allows us to bound the norm of the discrete

divergence operator from below.

Lemma 20. For any δ ∈ (0, 1), there exist Cδ > 0, so that

∥csρ1/2divnνPVnun∥2Tn
≥
(
(1−δ)2|Snun|2H1

c2sρ

− Cδ∥Snun∥2L2

)
+⟨Ǒnun,un⟩Xn, (47)

for all un ∈ Xn and limn→∞ ∥Ǒn∥L(Xn) = 0.

Proof. For un ∈ Xn, let ṽ ∈ H2
∗,Neu be the solution to (33) such that Snun = ∇ṽ. Due to the properties of π̃d

n

discussed in Lemma 6, we obtain for PVn = π̃d
nSn that divnν PVnun = div(PVnun)τ = div πd

n∇ṽ.
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Using the commutation property πl
n div = div πd

n, we calculate

div πd
n∇ṽ = πl

n div∇ṽ
(33)
= πl

n

(
−(PL2

0
q ·+M)∇ṽ + (divnν +πl

nPL2
0
q ·+Mn)un

)
= −(PL2

0
q ·+M)∇ṽ + (divnν +πl

nPL2
0
q ·+Mn)un

+ (id−πl
n)(PL2

0
q ·+M)∇ṽ + (πl

n − id)Mnun

(33)
= div∇ṽ + (id−πl

n)(PL2
0
q ·+M)Snun + (πl

n − id)Mnun

=: div∇ṽ + Ônun.

Thus, we have that
∥csρ1/2 divnν PVn

un∥2Tn
= ⟨c2sρdiv πd

n∇ṽ,div πd
n∇ṽ⟩

= ⟨c2sρdiv∇ṽ,div∇ṽ⟩+ ⟨Ǒnun,un⟩Xn
,

(48)

where we define the operator Ǒn through

⟨Ǒnun,u
′
n⟩Xn

:=⟨c2sρdiv πd
n∇ṽ, Ônu

′
n⟩+ ⟨c2sρÔnun,div(π

d
n∇ṽ)′⟩

+ ⟨c2sρÔnun, Ônu
′
n⟩.

With similar arguments as in Lemma 16, we can show limn→∞ ∥Ôn∥L(Xn,L2
0)

= 0 and thus limn→∞ ∥Ǒn∥L(Xn) =
0.

In the following, we use similar techniques as in the proof of [27, Thm. 3.5] to show that the first term can be
estimated suitably by a weighted H1-seminorm. By assumption, O is a convex Lipschitz polyhedron and thus,
we can apply [23, Thm. 3.1.1.2] to estimate for any v ∈ H1

ν0

∥ div(v)∥2L2 =

d∑
i,j=1

⟨∂xj
vi, ∂xi

vj⟩L2−
∫
∂O
B(P⊥

ν v, P⊥
ν v)ds ≥

d∑
i,j=1

⟨∂xj
vi, ∂xi

vj⟩L2 . (49)

where B(τ , τ ′) := −∂τν · τ ′ is the second fundamental quadratic form of ∂O applied to tangential vector fields
τ , τ ′ and ∂τ is the tangential derivative. The last estimate follows since the form B is non-positive for convex
domains [23, Sec. 3.1.1].

For any η ∈W 1,∞(O), the product rule gives that η divv = div(ηv)− v · ∇η and thus we estimate with the
weighted Young’s inequality for any δ ∈ (0, 1) that

∥η divv∥2L2 ≥ (1− δ)∥ div(ηv)∥2L2 + (1− 1

δ
)∥v · ∇η∥2L2 . (50)

Since ηv ∈ H1
ν0, we can apply (49) to the first term to obtain

∥ div(ηv)∥2L2 ≥
d∑

i,j=1

⟨∂xj (ηvi), ∂xi(ηvj)⟩L2

≥
d∑

i,j=1

(⟨η∂xj
vi, η∂xi

vj⟩L2 + ⟨vi∂xj
η,vj∂xi

η⟩L2 + ⟨vi∂xj
η, η∂xi

vj⟩L2

+ ⟨η∂xj
vi,vj∂xi

η⟩L2).
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Applying this estimate to v = ∇ṽ, we notice that ∂xjvi = ∂xivj and consequently

∥ div(ηv)∥2L2 ≥ ∥η∇v∥2L2 +

d∑
i,j=1

(⟨vi∂xjη,vj∂xiη⟩L2 + ⟨vi∂xjη, η∂xivj⟩L2

+ ⟨η∂xjvi,vj∂xiη⟩L2)

≥ ∥η∇v∥2L2 − C
(
∥v · ∇η∥2L2 + ∥η∇v∥L2∥v · ∇η∥L2

)
≥ (1− δ)∥η∇v∥2L2 − (C +

1

4δ
)∥v · ∇η∥2L2 ,

where we use the Cauchy-Schwarz and the weighted Young’s inequality in the last two lines. Inserting this into
the estimate (50) yields

∥η divv∥2L2 ≥ (1− δ)2∥η∇v∥2L2 +

(
C(δ − 1)− 5

4δ
+

5

4

)
︸ ︷︷ ︸

=:−C̃δ

∥v · ∇η∥2L2 ,

where we note that C̃δ ≥ 0 for all δ ∈ (0, 1). Since η ∈W 1,∞ is Lipschitz continuous, ∇η is bounded such that
∥v · ∇η∥2L2 ≤ C∇η∥v∥L2 . Inserting v = ∇ṽ = Snun and η = csρ

1/2 we obtain together with (48) that

∥csρ1/2divnν PVnun∥2Tn
≥ (1−δ)2|Snun|2H1

c2sρ

−Cδ∥Snun∥2L2 + ⟨Ǒnun,un⟩Xn, (51)

where Cδ := C̃δC∇η. Thus, the claim is proven. □

To prove our main result, we have to assume that the Mach number of the background flow is bounded
suitably. To be precise, we define the matrix m := −ρ−1 Hess(p) + Hess(ϕ) and denote by λ−(m) ∈ L∞ its
smallest eigenvalue1. Then, we set for ω ̸= 0

Cm := max

{
0, sup

x∈O

λ−(m(x))

γ(x)

}
, θ := arctan(Cm/|ω|) ∈ [0, π/2). (52)

This definition of θ allows us to estimate

⟨ρmuτ ,uτ ⟩ ≥ −|ω| tan(θ)∥(γρ)1/2uτ∥L2 ∀uτ ∈ XTn , (53)

which we will use in the proof of Theorem 23. In preparation of Theorem 23, we make the following assumption.

Assumption 21. The background flow b ∈ W1,∞ satisfies

∥c−1
s b∥2L∞ <

1

C(19)(1 + C2
m/|ω|2)

= (C(19)(1 + tan2(θ)))−1, (54)

where C(19) = 1 +O(h2n) > 0 is the constant appearing in Lemma 19.

Remark 22. The strict inequality in Assumption 21 implies that the inequality holds even for a slightly smaller
r.h.s., i.e. there is δ0 ∈ (0, 1) so that

∥c−1
s b∥2L∞<

(1− δ0)
2

C(19)(1+(1+δ0)2 tan
2(θ)/|ω|2)

⇔ (1− δ0)
2

C(19)∥c−1
s b∥2L∞

>1 + (1 + δ0)
2tan2(θ)

1Note that m is symmetric.
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where we made use of the definition of θ. Similarly, we can bound tan2(θ) from below by κ−1 tan2(θ + τ) with
κ > 1 close to 1 for τ > 0 sufficiently small. To be precise, there is τ0 ∈ (0, π/2 − θ) and ϵ0 ∈ (0, 1/2) so that
for all τ ∈ (0, τ0) and ϵ ∈ (0, ϵ0) we have that

(1− δ0)
2

C(19)∥c−1
s b∥2L∞

− 1 > (1 + δ0)
2 tan2(θ) > tan2(θ + τ)(1− ϵ)−1(1− 2ϵ)−1. (55)

Multiplying with (1 − ϵ) and rearranging the terms, we obtain that for ϵ ∈ (0, ϵ0), δ ∈ (0, δ0), and τ ∈ (0, τ0),
we have that

Cθ,τ,ϵ,δ :=(1− ϵ)(1− δ)2−C(19)∥c−1
s b∥2L∞

(
1+tan2(θ + τ)(1− 2ϵ)−1− ϵ

)
>0. (56)

This constant appears in the proof of Theorem 23 below and its positivity is essential to obtain stability. In [29],
where an H1-conforming discretization of (8) was analyzed, the following smallness assumption was assumed:

∥c−1
s b∥2L∞ < β2

h

cs
2ρ

cs
2ρ

(1 + tan2(θ))−1. (57)

Here βh is the discrete stability constant of the divergence operator. This assumption is much more restrictive
than (54) because it depends on the ratio cs2ρ/cs2ρ, whereas the constant C(19) > 0 is independent of this ratio.
In particular, the constant C(19) tends to one asymptotically, and thus Assumption 21 tends to the boundedness
assumption from the continuous analysis, cf. [27, Thm. 3.11].

To avoid the dependence on the ratio, we used the weighted H1-seminorm |·|H1
c2sρ

in Lemma 19 and Lemma 20,

and the constants C(19) can be interpreted as the continuity of the operator Dn
b with respect to | · |H1

c2sρ
. We

compare both assumptions numerically in Section 5.4.

Theorem 23. Assume that Assumption 21 is satisfied. Then, there exist sequences (Bn)n∈N, (Kn)n∈N, Bn ∈
L(Xn), Kn ∈ L(Xn), n ∈ N such that AnTn = Bn + Kn with (Bn)n∈N being uniformly bounded. (Bn)n∈N is
stable, (Kn)n∈N is compact and there exists a bijective operator B ∈ L(Xn) such that Bn approximates B.

Proof. We split the proof of the statement into four steps. In the first step, we define the sequences (Bn)n∈N
and (Kn)n∈N and argue that indeed AnTn = Bn +Kn. Afterwards, we show in the second and third step that
the sequence (Bn)n∈N is stable. In the last step, we show that there exists a bijective operator B ∈ L(X) and
a compact operator K ∈ L(X) such that AT = B +K and Bn approximates B. In the following, we denote
vn := PVn

un, wn := un − vn for an element un ∈ Xn and v′
n,w

′
n defined analogously for an element u′

n ∈ Xn.
Step 1: Definition of Bn and Kn. We want to define Bn,Kn ∈ L(Xn) such that AnTn = Bn + Kn, where
(Bn)n∈N is uniformly coercive and (Kn)n∈N is compact. In particular, we define Bn = B

(1)
n +B

(2)
n , where B(1)

n

is constructed to yield the essential control of the ∥ · ∥Xn
-norm and B

(2)
n contains the remaining terms, which

we will estimate in Step 3. We add compact terms K(1)
n and K(2)

n to both operators which are subtracted again
through Kn = −K(1)

n −K
(2)
n .

We will consider a splitting an(·, ·) = a
(1)
n (·, ·) + a

(2)
n (·, ·) so that terms that directly help for (Tn-)coercivity

will be collected in a(1)n (·, ·) and the remainder will be collected in a(2)n (·, ·). By construction, Tn swaps the sign
in front of wn such that ⟨AnTnun,u

′
n⟩ = an(vn −wn,v

′
n +w′

n).
We recall q := c−2

s ρ−1∇p, the associated rewriting of the sesquilinear form (9), and note that we can use a
corresponding split on the discrete level: an(·, ·) = a

(div +q·)
n (·, ·) + sn(·, ·)− a∂b

n (·, ·) + a
(r−q·)
n (·, ·).

We have that divnν vn = divvτ and thus

a(div +q·)
n (Tnun,u

′
n) = ⟨c2sρ(div

n
ν +q·)un, (div

n
ν +q·)u′

n⟩ =
∑

J=I,II,III,IV (58J)

=⟨c2sρ(div+q·)vτ , (div+q·)v′
τ ⟩+ ⟨c2sρ(div+q·)vτ , (div

n
ν +q·)w′

n⟩
− ⟨c2sρ(div

n
ν +q·)wn, (div+q·)v′

τ ⟩ − ⟨c2sρ(div
n
ν +q·)wn, (div

n
ν +q·)w′

n⟩
(58)
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The div-parts of the first term in (58I) will directly be used in a
(1)
n (·, ·) to control the divergence, below. To

rewrite (58IV), we want to use that (divnν +πl
nPL2

0
q·)wn

(41)
= −Mnwn − Õnun for both arguments, so we shift in

the terms involving the projection πl
nPL2

0
. Then, we obtain2 that

(58IV) =−⟨c2sρ(Mnwn+Õnun),Mnw
′
n+Õnu

′
n⟩−⟨c2sρdiv

n
ν wn, (id−πl

nPL2
0
)q·w′

n⟩

− ⟨c2sρ(id−πl
nPL2

0
)q ·wn,div

n
ν w′

n⟩+⟨c2sρπl
nPL2

0
q ·wn, π

l
nPL2

0
q ·w′

n⟩ (59)

−⟨c2sρq⊗ q ·wτ ,w
′
τ ⟩.

We apply the same argumentation to the mixed terms (58II) and (58III), and note that the terms ⟨c2sρq⊗ q ·
zτ , z

′
τ ⟩, zτ ∈ {vτ ,wτ}, z′τ ∈ {v′

τ ,w
′
τ}, cancel out with the q-terms in a

(r−q·)
n (Tnun,u

′
n). Thus, these terms do

not appear in the following, and we are left with arn(·, ·) instead of a(r−q·)
n (·, ·).

For a(1)n (·, ·), we will only use the fourth term of (59) and shift the remaining terms into a(2)n (·, ·). Hence, we
define

a(1)n (un,u
′
n) := (60|a(1)n )

⟨c2sρ divvτ ,divv
′
τ ⟩+ ⟨c2sρπl

nPL2
0
q ·wτ , π

l
nPL2

0
q ·w′

τ ⟩ − sn(wn,w
′
n) (60a|a(1)n )

− ⟨ρiDn
bvn, iD

n
bv

′
n⟩+ ⟨ρ(ω+iDn

b+iΩ×)wn, (ω+iD
n
b+iΩ×)w′

n⟩ (60b|a(1)n )

+ ⟨ρ(ω+iDn
b+iΩ×)wn, iD

n
bv

′
n⟩ − ⟨ρiDn

bvn, (ω + iDn
b + iΩ×)w′

n⟩ (60c|a(1)n )

+ ⟨ρ(m+ iωγ)wτ ,w
′
τ ⟩. (60d|a(1)n )

The div-terms of (58I) and the fourth term in (59) from a
(div +q·)
n (Tnun,u

′
n) together with sn(Tnun,u

′
n) form

line (60a|a(1)n ), where we note that sn(Tnun,u
′
n) = −sn(wn,w

′
n) since [[PVn

un]]ν = 0 for all un ∈ Xn by

construction of PVn . The terms in the lines (60b|a(1)n ) and (60c|a(1)n ) arise naturally from a selection of terms from
a∂b
n (Tnun,u

′
n). By definition of m = −ρ−1 Hess(p)+Hess(ϕ), we can write arn(un,u

′
n) = −⟨ρ(m+ iωγ)un,u

′
n⟩,

which is where the line (60d|a(1)n ) originates from.
Below, in Step 2, we want to estimate these terms from below by applying Lemmas 19 and 20. To this end,

we add suitable compact terms to B(1)
n which we simultaneously subtract from Kn. For C1 > 0 to be specified

later on, we set

⟨K(1)
n un,u

′
n⟩Xn

:=⟨vτ ,v
′
τ ⟩+C1⟨Snun,Snu

′
n⟩+⟨c2sρMnwn,Mnw

′
n⟩+⟨c2sρÕnun,Õnu

′
n⟩. (60|K(1)

n )

Then, we define ⟨B(1)
n un,u

′
n⟩Xn

:= a
(1)
n (un,u

′
n) + ⟨K(1)

n un,u
′
n⟩Xn

. To account for the remaining terms in
an(Tnun,u

′
n), we define

a(2)n (un,u
′
n) := an(Tnun,u

′
n)− a(1)n (un,u

′
n). (60|a(2)n )

To treat the terms in a
(2)
n (un,u

′
n) we add suitable compact terms which together with a

(2)
n (un,u

′
n) can be

bounded from below. To this end, we define, for C2 > 0 to be specified later on,

⟨K(2)
n un,u

′
n⟩Xn

:= C2(⟨vτ ,v
′
τ ⟩+ ⟨Snun, Snu

′
n⟩+ ⟨c2sρÕnun, Õnu

′
n⟩ (61a|K(2)

n )

+ ⟨c2sρMnwn,Mnw
′
n⟩+ ⟨mean(q ·wτ ),mean(q ·w′

τ )⟩) (61b|K(2)
n )

2We use that ⟨a + b, a′ + b′⟩ = ⟨a + c, a′ + c′⟩ + ⟨a, b′ − c′⟩ + ⟨b − c, a′⟩ + ⟨b, b′⟩ − ⟨c, c′⟩ with a = divnν wn, b = q · wn, and
c = πl

nPL2
0
q ·wn; a′, b′, c′ analogously with w′

n.
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where mean denotes the mean value operator 1
O
∫
O ·dx, and set ⟨B(2)

n un,u
′
n⟩Xn

:= a
(2)
n (un,u

′
n)+⟨K(2)

n un,u
′
n⟩Xn ,

which we analyze in Step 3.
With Kn := −K(1)

n − K
(2)
n and Bn := B

(1)
n + B

(2)
n , we then obtain that AnTn = Bn + Kn. The explicit

expressions for the operators B(1)
n and especially the lenghty one for B(2)

n are written out in Appendix A. We
note that the uniform boundedness of Bn, n ∈ N, follows straightforwardly. Furthermore, it can be shown that
the sequence (Kn)n∈N is indeed compact with the same argumentation as in [26, Lem. 17]. In particular, we
note that limn→∞ ∥Õn∥L(Xn,L2) = 0, that the operators Mn and mean(·) give rise to compact terms, and that
the construction of Sn allows us to use the compact embedding H1 ↪→ L2.

Step 2: Uniform coercivity of B(1)
n . First of all, we show that there exists an index n0 > 0 such that B(1)

n is
uniformly coercive for all n > n0.

Let un ∈ Xn be arbitrary and δ0, ϵ0 ∈ (0, 1), τ0 ∈ (0, π/2 − θ) be such that the constant Cθ,τ,ϵ,δ defined by
(56) is positive for all δ ∈ (0, δ0), ϵ ∈ (0, ϵ0) and τ ∈ (0, τ0). We recall that this is possible due to Assumption 21,
as detailed in Remark 22. We further recall that by definition of θ, the estimate (53) holds.

Targeting at coercivity of B(1)
n in the sense of (2), we set ξ := e−i(θ+τ)sgnω, |ξ| = 1, so that Re(ξ(a +

ib))/ cos(θ + τ) = a + sgn(ω) tan(θ + τ)b for a, b ∈ R. Using (60|a(1)n ) and (60|K(1)
n ), we note that (60c|a(1)n )

becomes purely imaginary for (v′
n,w

′
n) = (vn,wn) and obtain

Re
(
ξ⟨B(1)

n un,un⟩Xn

)
/ cos(θ + τ)

= ∥csρ1/2 divvτ∥2L2 − ∥ρ1/2Dn
bvn∥2L2 + ∥vτ∥L2 + C1∥Snun∥2L2 + ∥csρ1/2Mnwn∥2L2

+ ∥csρ1/2Õnun∥2L2 + ∥csρ1/2πl
nPL2

0
q ·wτ∥2L2 + ∥ρ1/2(ω + iDn

b + iΩ×)wn∥2L2

+ 2 tan(θ + τ)sgn(ω) Im (⟨ρ(ω + iDn
b + iΩ×)wn, iD

n
bvn⟩)− sn(wn,wn)

+ ⟨ρmwτ ,wτ ⟩L2 + |ω| tan(θ + τ)∥(γρ)1/2wτ∥L2 ≥ . . .

Regrouping and applying a weighted Young’s inequality (2ab ≤ (1 − 2ϵ)−1a2 + (1 − 2ϵ)b2) on the mixed term
(involving wn and vn) and using (53) yields

. . .≥ ∥csρ1/2 divvτ∥2L2 − ∥ρ1/2Dn
bvn∥2L2(1+tan2(θ+τ)(1−2ϵ)−1︸ ︷︷ ︸

=:Cθ,τ,ϵ

)+∥vτ∥2L2 (I)

+ C1∥Snun∥2L2 (II)

+ ∥csρ1/2Mnwn∥2L2 + ∥csρ1/2Õnun∥2L2 + ∥csρ1/2πl
nPL2

0
q ·wτ∥2L2 (III)

+2ϵ∥ρ1/2(ω + iDn
b + iΩ×)wn∥2L2

+|ω| (tan(θ + τ)− tan(θ)) ∥(γρ)1/2wτ∥L2 − sn(wn,wn)

}
(IV)

(I) and (II) allow us to control vn while (III) and (IV) are responsible for wn. We start with estimating (I)
from below. Splitting off an ϵ-scaled Xn-norm of vn (note that [[[vn]]]∂Tn,1/2,ν

= 0), and using Lemmas 19 and 20
and (56) for the remainder, we obtain

(I)=ϵ∥vn∥2Xn
+(1− ϵ)∥csρ1/2divvτ∥2L2−(1+Cθ,τ,ϵ−ϵ)∥ρ1/2Dn

bvn∥2L2+

≥0︷ ︸︸ ︷
(1−ϵ)∥vτ∥2L2

≥ϵ∥vn∥2Xn
+ Cθ,τ,ϵ,δ|Snun|2H1

c2sρ︸ ︷︷ ︸
≥0

+(1− ϵ)
(
⟨Ǒnun,un⟩ − Cδ∥Snun∥2L2

)
We then have

(I)+(II) ≥ϵ∥vn∥2Xn
+ (C1−(1−ϵ)Cδ)∥Snun∥2L2 − (1− ϵ)∥Ǒn∥L(Xn)∥un∥2Xn

.
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Furthermore, recalling (41), i.e. (divnν +πl
nPL2

0
q·)wn = −Mnwn − Õnun, we see

(III) = ∥csρ1/2Mnwn∥2L2 + ∥csρ1/2Õnun∥2L2 + ∥csρ1/2πl
nPL2

0
q ·wτ∥2L2

≥ 1

4
∥csρ1/2 divnν wn∥2Tn

.

For the first term in (IV) we obtain from a weighted Young’s inequality (as in [27])

2ϵ∥ρ1/2(ω + iDn
b + iΩ×)wn∥2L2 ≥ ϵ∥ρ1/2Dn

bwn∥2L2 − Cϵ∥ρ1/2wτ∥2L2

for C ∈ R only depending on ω and Ω. For sufficiently small ϵ we can dominate the latter part by the second
line of (IV). Exploiting −sn(wn,wn) ≥ α[[[wn]]]

2
∂Tn,1/2,ν

and choosing ϵ small enough (compared to α, 1
4 and

especially τ), we get control of the Xn-norm of vn:

(III) + (IV) ≥ ϵ∥wn∥2Xn
.

Combining all estimates and ∥un∥2Xn
≤ 2∥vn∥2Xn

+ 2∥wn∥2Xn
, we obtain

Re
(
ξ⟨B(1)

n un,un⟩Xn

)
/ cos(θ + τ) ≥ (I) + (II) + (III) + (IV)

≥ ϵ

2
∥un∥2Xn

+ (C1 − (1− ϵ)Cδ) ∥Snun∥2L2 − (1− ϵ)∥Ǒn∥L(Xn)∥un∥2Xn
.

Since limn→∞ ∥Ǒn∥L(Xn) = 0, we can choose n1 > n0 large enough such that (1− ϵ)∥Ǒn∥L(Xn) < ϵ/4 and thus
with C1 > (1− ϵ)Cδ

Re
(
ξ⟨B(1)

n un,un⟩Xn

)
/ cos(θ + τ) ≥ ϵ

4
∥un∥2Xn

for n > n1. Thus, B(1)
n is uniformly coercive (in the sense of (2)) for all n > n1.

Step 3: Uniform coercivity of Bn. We have shown that B(1)
n is uniformly coercive in Step 2, so it remains to

show that Bn (after addition of B(2)
n ) is uniformly coercive as well. To this end, we want to derive a bound for

B
(2)
n of the form

Re(ξ⟨B(2)
n un,un⟩Xn)/cos(θ + τ)≥−(ϵ/8+ζ1,n)∥un∥2Xn

+ (C2− ζ2)|un|2K(2)
n

(62)

for (ζ1,n)n∈N and ζ1,n, ζ2 ∈ R+ with the semi-norm

|un|2K(2)
n

:=∥vτ∥2L2+∥Snun∥2L2+∥csρ1/2Õnun∥2L2+∥csρ1/2Mnwn∥2L2+∥mean(q·wτ )∥2L2

= C−1
2 K(2)

n (un,un).

We will show that ζ1,n → 0 for n→ ∞ so that −(ϵ/8+ζ1,n)∥un∥2Xn
can be dominated by the B(1)

n -contribution for
sufficiently large n. The bound (62) allows us to choose C2 sufficiently large to compensate for the −ζ2|un|2

K
(2)
n

term and obtain the uniform coercivity of Bn.
To prove (62), it suffices to show the boundedness of a(2)n in the following form

|⟨a(2)n un,un⟩Xn | ≤ η1,n∥un∥2Xn
+ η2∥un∥Xn |un|K(2)

n
. (63)
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for (η1,n)n∈N → 0 for n → ∞ and η2 bounded. Then, a weighted Young’s inequality of the form η2ab ≤
1
2

ϵ
4 cos(θ+τ)a

2 + 1
2
4 cos(θ+τ)η2

2

ϵ b2 yields

|⟨a(2)n un,un⟩Xn
| ≤ ϵ/8 + ζ1,n

cos(θ + τ)
∥un∥2Xn

+
ζ2

cos(θ + τ)
|un|2K(2)

n
. (64)

with ζ1,n = η1,n cos(θ + τ) and ζ2 = 2/ϵ cos2(θ + τ)η22 which implies (62). It hence remains to show (63).
a
(2)
n (·, ·) effectively contains all the terms of an(·, ·) that are not considered in a(1)n (·, ·). Most terms are of the

form that they pair a term that can be bounded by | · |
K

(2)
n

with another term that can be bounded by | · |Xn
.

Those terms are thence directly suitable for (64) and in the following, we only discuss the terms that do not
match this pattern; for completeness we state the full expression a(2)n (·, ·) in Appendix A.

The terms of (64) that do not match the pattern described above stem from contributions of divnν wn + q ·wn.
We then shift in πl

nPL2
0
(q ·wn), cf. (59), and make use of (41) to bound divnν wn + πl

nPL2
0
q ·wn by |un|K(2)

n
.

The remaining terms are then of the form ⟨c2sρ(id−πl
nPL2

0
)(q ·wτ ),div

n
ν zn⟩ for zn ∈ {v′

n,w
′
n}. To exploit

the approximation properties of πl
n here, we first shift in another mean(q ·wn) term (which is itself bounded

by constant times ∥un∥K(2)
n

) and only have to deal with the following expression where we abbreviate Π∗ =

id−mean − πl
nPL2

0
:

|⟨c2sρΠ∗(q ·wτ ),div
n
ν zn⟩| = |⟨q ·wτ ,Π

∗(c2sρ div
n
ν zn)⟩|

≤ ∥q∥L∞∥wτ∥L2∥Π∗(c2sρdiv
n
ν zn)∥L2 ≲ ∥un∥Xn

∥Π∗(c2sρdiv
n
ν zn)∥L2 ,

We estimate the last term using a discrete commutator technique [3] to obtain

∥Π∗(c2sρ div
n
ν zn)∥2L2 =

∑
τ∈Tn

∥Π∗(c2sρdiv
n
ν zn)∥2L2(τ)=

∑
τ∈Tn

∥Π∗((c2sρ−cτ ) div
n
ν zn)∥2L2(τ)

≤
∑
τ∈Tn

∥c2sρ− cτ∥2L∞(τ)∥div
n
ν zn∥2L2(τ) ≤ (CL

c2sρ
)2h2n∥zn∥2Xn

≲ h2n∥un∥2Xn
.

Here, we used that Π∗r = 0 for any piecewise polynomial r of degree k − 1 and hence Π∗cτ div
n
ν zn = 0 for any

piecewise constant cτ .
This reveals that all terms in a

(2)
n are suitable for (63) and hence (62) holds. Together with Step 2, C2 and

n sufficiently large we hence obtain

Re(ξ⟨Bnun,un⟩Xn)≥3ϵ/16 cos(θ + τ)∥un∥2Xn
. (65)

Step 4: Asymptotic consistency of Bn. In the last step, we want to show that there exists a bijective operator
B ∈ L(X) such that Bn approximates B.

For u,u′ ∈ X, we define

⟨Ku,u′⟩X :=− (1 + C2)⟨v,v′⟩ − (C1 + C2)⟨v,v′⟩ (K-a)

− (1 + C2)⟨c2sρMw,Mw′⟩ − C2⟨mean(q ·w),mean(q ·w′)⟩ (K-b)

and set B := AT −K. Since M is of finite rank and v = PV u ∈ H1, the compactness of the operator K follows
from the compact embedding H1 ↪→ L2. Rewriting the operator B with similar arguments as in Step 1, cf. (79),
we can show that B is coercive using the same arguments as in Step 2 and Step 3. Thus, B is bijective. It
remains to show that Bn approximates B, that is limn→∞ ∥(Bnpn − pnB)u∥Xn = 0.
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To this end, we note that it suffices to show that Kn approximates K, since we can use that Bn = AnTn−Kn,
B = AT −K and estimate

∥(Bnpn − pnB)u∥Xn
≤ ∥(Knpn − pnK)u∥Xn

+ ∥(AnTnpn − pnAT )u∥Xn

≤ ∥(Knpn − pnK)u∥Xn
+ ∥(Anpn − pnA)Tu∥Xn

+ ∥An∥L(Xn)∥(Tnpn − pnT )u∥X.

By Theorem 13 and Lemma 18, An approximates A and Tn approximates T so the last two terms converge to
zero. Thus, it indeed suffices to show that Kn approximates K to conclude that Bn approximates B.

Similar to the proof of Theorem 13, we choose u′
n ∈ Xn, n ∈ N, ∥u′

n∥Xn
= 1, such that ∥(Knpn−pnK)u∥Xn

≤
|⟨(Knpn−pnK)u,u′

n⟩Xn
|+1/n. For an arbitrary subsequence N′ ⊂ N, we can choose u′ ∈ X and a subsequence

N′′ ⊂ N such that u′
n

L2

⇀ u′, c2sρdiv
n
ν u′

n
L2

⇀ c2sρdivu
′ and ρDn

bu
′
n

L2

⇀ ρ∂bu
′ due to Lemma 12.

We compute that

⟨pnKu,u′
n⟩Xn

(21)
= ⟨divKu, c2sρdiv

n
ν u′

n⟩+ ⟨Ku,u′
n⟩+ ⟨∂bKu, ρDn

bu
′
n⟩

n∈N′′

→ ⟨c2sρdivKu,u′⟩+ ⟨Ku,u′⟩+ ⟨ρ∂bKu, ∂bu
′⟩ = ⟨Ku,u′⟩X.

Thus, we have to show that limn∈N′′⟨Knpnu,u
′
n⟩Xn = −⟨Ku,u′⟩X. We recall that Kn := −K(1)

n −K
(2)
n and

therefore

⟨Knpnu,u
′
n⟩Xn

=− (1 + C2)⟨(PVn
pnu)τ ,v

′
τ ⟩ − (C1 + C2)⟨Snpnu, Snu

′
n⟩ (Kn-a)

− (1 + C2)⟨c2sρÕnpnu, Õnu
′
n⟩ − (1 + C2)⟨c2sρMn(idXn −PVn)pnu,w

′
n⟩ (Kn-b)

− (1 + C2)⟨mean(q · (idXn
−PVn

)(pnu)τ ),mean(q ·w′
τ )⟩. (Kn-c)

In the following, we show that (Kn-a) converges to (K-a) and (Kn-b) + (Kn-c) converges to (K-b).
Step 4a: Convergence of (Kn-a). To show that (Kn-a) converges to (K-a), we exploit the convergence of

pnu. Using the approximation properties of πd
n and the same argumentation as in Lemma 18, cf. especially

(43), we have

|⟨v,v′
τ ⟩ − ⟨(PVn

pnu)τ ,v
′
τ ⟩| = |(⟨PV − πd

nSnpn)u,v
′
τ ⟩|

≲ |⟨(PV − πd
nPV )u,v

′
τ ⟩|+ |⟨πd

n(PV − Snpn)u,v
′
τ ⟩|

≲ hn∥PV u∥H1 + dn(u, pnu) + ∥(idL2
0
−πl

n)PL2
0
q · u∥L2

n∈N′′

→ 0,

and |⟨v, Snu
′
n⟩ − ⟨Snpnu, Snu

′
n⟩|= |⟨(PV − Snpn)u, Snu

′
n⟩|

≲∥(PV − Snpn)u∥L2 ≲ dn(u, pnu) + ∥(idL2
0
−πl

n)PL2
0
q · u∥L2

n∈N′′

→ 0,

where we used Lemma 9 and the pointwise convergence of πl
n to idL2

0
. Hence,

lim
n∈N′′

(Kn-a) = lim
n∈N′′

(−(1 + C2)⟨v,v′
τ ⟩ − (C1 + C2)⟨v, Snu

′
n⟩) .
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It remains to show that the right-hand side converges to (K-a), i.e. ⟨v, Snu
′
n⟩

n∈N′′

→ ⟨v,v′⟩. Let S :=
∇((div+PL2

0
q ·+M)∇)−1 such that

⟨v, Snu
′
n⟩ − ⟨v,v′⟩ = ⟨v, Snu

′
n − PV u

′⟩

=⟨v, S((divnν +πl
nPL2

0
q ·+Mn)u

′
n − (div+PL2

0
q ·+M)u′)⟩

=⟨S∗v,divnν u′
n−divu′⟩+⟨S∗v, πl

nPL2
0
q · (u′

n)τ−PL2
0
q · u′⟩+⟨S∗v,Mnu

′
n−Mu′⟩.

By choice of the subsequence N′′ ⊂ N and Lemma 12, we have that c2sρdiv
n
ν u′

n
L2

⇀ c2sρ divu
′ (and hence

divnν u′
n

L2

⇀ divu′) and therefore Mnu
′
n →Mu′ by construction of Mn and M . Therefore, the first and the last

term converge to zero as S∗v ∈ L2. Furthermore, we have that

⟨S∗v, πl
nPL2

0
q · (u′

n)τ − PL2
0
q · u′⟩

=⟨S∗v, (πl
n − id)PL2

0
q · u⟩+ ⟨S∗v, πl

nPL2
0
q · ((u′

n)τ − u′)⟩

The first term converges to zero due to the pointwise convergence of πl
n to id. For the second term, we first

notice that πl
n is uniformly bounded and by Lemma 12 (u′

n)τ
L2

⇀ u′. Therefore PL2
0
q · u′

n
L2

⇀ PL2
0
q · u′ because

the compact operator PL2
0
q· maps weakly convergent sequences onto weakly convergent sequences. We conclude

⟨v, Snu
′
n⟩

n∈N′′

→ ⟨v,v′⟩ and hence limn∈N′′ (Kn-a) = (K-a).
Step 4b: Convergence of (Kn-b) & (Kn-c) to (K-b). For (Kn-b), we first note that limn→∞ ∥Õn∥L(Xn,L2

0)
= 0

due to the arguments in Lemma 16 so that we only have to consider the second term. With similar arguments
as in the proof of Lemma 18 we have (recall that w = (id−PV )u)

|⟨Mw,Mnw
′
n⟩ − ⟨Mn(id−PVn

)(pnu),Mnw
′
n⟩|

≲ ∥ div(u− PV u)− divnν(pnu− PVnpnu)∥L2 ≲ dn(u, pnu) + dn(PV u, PVnpnu),

where the first term converges to zero due to Lemma 9 and the second term converges to zero with the same
argumentation as in the proof of Lemma 18, cf. (42). Applying Lemma 12 yields limn∈N′′ (Kn-b) = limn∈N′′(1+
C2)⟨Mw,Mnw

′
n⟩ = (1 + C2)⟨Mw,Mw′⟩.

Finally, we consider (Kn-c) and calculate that

|⟨mean(q ·w),mean(q ·w′
τ )⟩ − ⟨mean(q · ((id−PVn

)(pnu))τ ),mean(q ·w′
τ )⟩|

≲ ∥u− PV u− (pnu− PVn
pnu)τ∥L2

≲ ∥pnPV u− (PVnpnu)τ∥L2 + dn(u, pnu) + dn(PV u, pnPVnu)
n∈N′′

→ 0,

where we again apply Lemma 9 and Lemma 18.
Altogether, we obtain that limn∈N′′ (Kn-a) = (K-a) and limn∈N′′((Kn-b) + (Kn-c)) = (K-b) and thus Kn

approximates K. Due to the argumentation above, we conclude that Bn approximates B which finishes the
proof.

To summarize, in Step 1 we have defined the decomposition AnTn = Bn +Kn, where the sequence (Kn)n∈N
is compact. In Step 2 and Step 3, we have shown that the sequence (Bn)n∈N is uniformly coercive and therefore
stable. Finally, in Step 4, we have shown that there exists a bijective operator B ∈ L(X) such that Bn

approximates B. □
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4.4. Convergence estimates

To conclude the analysis of the discrete problem, we show that the sequence of discrete solutions (un)n∈N con-
verges to the solution of the continuous problem. Further, if we assume additional regularity for the continuous
solution, we obtain convergence with optimal order.

Theorem 24. Assume that Assumption 21 holds. For f ∈ L2, let u ∈ X be the solution to (8). Then,
there exists an index n0 > 0 such that for all n > n0 the problem (17) has a unique solution un ∈ Xn and
limn→∞ dn(u,un) = 0.

Proof. In Theorem 13, Lemma 18, and Theorem 23, we have shown that the operators A, (An)n∈N, T , and
(Tn)n∈N fulfill the necessary conditions for the application of Theorem 4 to conclude that the sequence (An)n∈N
is regular. To be able to apply Lemma 3, which yields stability and convergence, we still have to show that
the continuous right-hand side converges to the discrete right-hand side in the sense of discrete approximation
schemes. Let g ∈ X be such that ⟨g,u⟩X = ⟨f ,u⟩L2 for all u ∈ X and gn ∈ Xn be such that ⟨gn,un⟩Xn

= ⟨f ,un⟩L2

for all un ∈ Xn. Take u′
n ∈ Xn, ∥u′

n∥Xn
= 1 such that ∥png−gn∥Xn

≤ |⟨png−gn,u′
n⟩|+1/n and for an arbitrary

subsequence N′ ⊂ N choose N′′ ⊂ N′ according to Lemma 12. Then, we have that with (21)

⟨png − gn,u′
n⟩Xn

= ⟨png,u′
n⟩Xn

− ⟨f ,u′
n⟩L2

=⟨c2sρdiv g,div
n
ν u′

n⟩−⟨g,u′
n⟩+⟨ρ∂bg,Dn

bu
′
n⟩−⟨f ,u′

n⟩L2
n∈N′′

→ ⟨g,u′⟩X−⟨f ,u′⟩L2=0.

Thus, we can apply Lemma 3 to conclude that the sequence (An)n∈N is stable, i.e. there exists an index n0
such that A−1

n exists and is bounded for all n > n0 and problem (17) has a unique solution for all n > n0.
Furthermore, it holds that limn→∞ ∥pnu− un∥Xn

= 0. We estimate with Lemma 7

dn(u,un) ≤ dn(u, pnu) + ∥pnu− un∥Xn ≤ dn(u, πnu) + ∥pnu− un∥Xn , (68)

and apply Lemma 10 to conclude that limn→∞ dn(u, pnu) = 0. □

Theorem 25. Let the assumptions from Theorem 24 be satisfied. If additionally u ∈ X ∩ H2+s, s > 0,
ρ ∈W 1+s,∞, and b ∈ W1+s,∞, then there exists a constant C > 0 independent of n such that

dn(u,un) ≤ Chmin{s,k,l}
n ∥u∥H2+s .

Proof. To show the convergence rate, we continue to estimate (68). For the first term, Lemma 8 yields that
dn(u, πnu) ≲ h

min{1+s,k}
n . For the second term, we note that

∥pnu− un∥Xn
≤ ( sup

n>n0

∥A−1
n ∥L(Xn))∥An(pnu− un)∥Xn

and compute with similar arguments as in Theorem 13 that

∥An(pnu− un)∥Xn
= sup

u′
n∈Xn∥u′

n∥Xn=1

|an(pnu− un,u
′
n)|

≤ Cdn(u, pnu) + sup
u′

n∈Xn∥u′
n∥Xn=1

|⟨c2sρdivu,div
n
ν u′

n⟩

− ⟨ρ(ω + i∂b + iΩ×)u, (ω + iDn
b + iΩ×)u′

n⟩
+ ⟨divu,∇p · u′

n⟩+ ⟨∇p · u,divnν u′
n⟩+ ⟨(Hess(p)− ρHess(ϕ))u,u′

n⟩
− iω⟨γρu,u′

n⟩ − ⟨f ,u′
n⟩|.

For the first term, we again use the estimates from Lemma 7 and Lemma 8. For the remainder, we want to
integrate by parts and use the fact that u solves (1). This requires that u ∈ H2 is regular enough, because a right
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hand-side f ∈ L2 only grants −∇(c2sρdivu) + ρ∂b∂bu which however does not imply that −∇(c2sρ divu) ∈ L2

or ρ∂b∂bu ∈ L2.
Let ψn ∈ [Pl(Tn)]d be a suitable H1-projection of (ω + i∂b + iΩ×)u, for example as in [16]. Then, we have

that
⟨(ω + i∂b + iΩ×)u, ρDn

bu
′
n⟩ = ⟨ψn, ρD

n
bu

′
n⟩+ ⟨(ω + i∂b + iΩ×)u−ψn, ρD

n
bu

′
n⟩,

and similar to (30) we calculate with the definition (12a) and div(ρb) = 0 that

⟨ψn,ρD
n
bu

′
n⟩ = ⟨ψn, ρ∂bu

′
τ ⟩Tn + ⟨ψn, ρR

lu′
n⟩Tn

= −⟨ρ∂bψn,u
′
τ ⟩Tn + ⟨ψn, ρ[[u

′
n]]b⟩∂Tn + ⟨ψn, ρR

lu′
n⟩Tn

= −⟨ρ∂b(ω + i∂b + iΩ×)u,u′
τ ⟩Tn

+ ⟨ρ∂b((ω + i∂b + iΩ×)u−ψn),u
′
τ ⟩Tn

.

With similar techniques, cf. [45, Thm. 6.26], we obtain for ψn, ψ̃n ∈ Pl(Tn) being suitable H1-projections of
c2sρdivu and ∇p · u that

⟨c2sρdivu,div
n
ν u′

n⟩ =− ⟨∇(c2sρdivu),u
′
n⟩+ ⟨∇(c2sρdivu− ψn),u

′
n⟩

+ ⟨c2sρdivu− ψn,div
n
ν u′

n⟩,

⟨∇p · u,divnν u′
n⟩ =− ⟨∇(∇p · u),u′

n⟩+ ⟨∇(∇p · u− ψ̃n),u
′
n⟩

+ ⟨∇p · u− ψ̃n,div
n
ν u′

n⟩.

Altogether, we obtain that

sup
u′

n∈Xn∥u′
n∥Xn=1

|⟨c2sρdivu,div
n
ν u′

n⟩ − ⟨ρ(ω + i∂b + iΩ×)u, (ω + iDn
b + iΩ×)u′

n⟩

+ ⟨divu,∇p · u′
n⟩+⟨∇p · u,divnν u′

n⟩+⟨(Hess(p)− ρHess(ϕ))u,u′
n⟩

− iω⟨γρu,u′
n⟩ − ⟨f ,u′

n⟩|
≲ ∥ρ(ω + i∂b + iΩ×)u−ψn∥H1 + ∥c2sρ divu− ψn∥H1

+ ∥∇p · u− ψ̃n∥H1

≲ hmin{l,s}.

Combining all estimates, we obtain the desired result. □

Remark 26 (The case l = k − 1). While the convergence estimate in Theorem 25 suggest the choice l = k for
the degree of the lifting operator Rl, the numerical experiments in Section 5.3 suggest that the choice l = k− 1
(together with a reduced facet space XFn

= Pk−1(Fn)) might be sufficient to obtain optimal convergence
rates. Thus, it might be possible to improve the results presented in Theorem 25 to obtain the estimate
dn(u,un) ≲ h

min{s,k,l+1}
n .

5. Numerical Experiments

In this section, we study the discretization of Galbrun’s equation with HDG methods numerically. After some
preliminary discussions in Section 5.1 and implementational aspects in Section 5.2, we study the convergence
of different HDG methods towards an exact solution in Section 5.3. The main goal is to verify the convergence
rates obtained in Theorem 25 numerically. In Section 5.4, we investigate the influence of the Mach number on
the discretization error. Afterwards, we compare the proposed discretization of the convection term through
lifting operators with a naive SIP discretization in Section 5.5. To conclude, we consider numerical examples
with physically relevant coefficients from the Sun in Section 5.6. For the implementation we use the finite
element software NGSolve [41, 42]. Replication data is available in [30].
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5.1. Preliminaries

In the numerical examples presented below, we want to compare different HDG discretizations. The most
natural choices are a fully nonconforming HDG method or an H(div)-conforming HDG method, cf. Remark 5.
However, choosing polynomials of order k for the facet unknowns might not be optimal in terms of computational
efficiency. For different problems, optimal convergence rates have been obtained with facet unknowns of only
order k − 1, i.e. one order reduced compared to the volume unknowns. This can be achieved by involving only
the L2-projection on polynomials of degree k − 1 for the hybrid DG jump operator on the facets. For a SIP
discretization this has been achieved through the projected jumps modification in [36].

For our proposed discretizations, reducing the lifting order to l = k−1 implicitly includes a projection of the
facet jumps onto the desired space as well and we can therefore also reduce the order of the facet unknowns to
k− 1 without further modifications. In the following, we call the simultaneous reduction of the facet and lifting
degree to k − 1 a reduced method, e.g. a reduced fully non-conforming HDG and a reduced H(div)-conforming
HDG method. To obtain this improved efficiency also for the normal component, we also consider an optimized
HDG method. Here the finite element space, which we denote by BDM−

k as discussed in Remark 5, has so-called
relaxed H(div)-conformity. In this case, we set sn(·, ·) = 0 to avoid an additional penalty on the highest order
normal jump.

An overview of the different discretizations together with their associated costs is given in Table 1. The
analysis from Section 4.4 yields optimal converges rates for the fully-nonconforming and the H(div)-conforming
HDG method, but not for the reduced methods where we choose the lifting degree l = k − 1.

HDG method discrete spaces associated costs

XTn
XFn

lifting ndofs ncdofs nze

full [Pk(Tn)]d [Pk(Fn)]
d [Pk(Tn)]d 124 20 784

red. full [Pk(Tn)]d [Pk−1(Fn)]
d [Pk−1(Tn)]d 74 10 196

H(div) BDMk(Tn) [Pk,tang(Fn)]
d [Pk(Tn)]d 88 20 784

red. H(div) BDMk(Tn) [Pk−1,tang(Fn)]
d [Pk−1(Tn)]d 51 15 441

optimized BDM−
k (Tn) [Pk−1,tang(Fn)]

d [Pk−1(Tn)]d 56 10 196

Table 1. We compare different HDG methods in terms of the associated computational costs
measured through the number of degrees of freedom (ndofs), the number of coupling degrees
of freedom (ncdofs), and the number of non-zero entries in the system matrices (nze) for poly-
nomial degree k = 1 and a mesh with 6 elements. The red. full and the optimzed method have
significantly fewer nzes than the full HDG method. This reduction becomes less pronounced
for higher polynomial degree.

For the experiments carried out below, we consider background flows of the following form

bη := ηcb

(
−y
x

)
, (69)

where η ∈ W 1,∞ is chosen in the specific experiment and the parameter cb ∈ R controls the Mach number of
the flow. For all experiments, we restrict ourselves to the case where the gravitational potential ϕ is constant.

5.2. Computational aspects

In the next two remarks, we briefly address computational aspects of the implementation of the lifting.
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Remark 27 (Implementation of the lifting operator). In practice, we implement the lifting operator Rl through
a mixed formulation adding an auxiliary equation and variable. For all un,u

′
n ∈ Xn, we need to form

⟨ρDn
bun,D

n
bu

′
n⟩Tn

=⟨ρ∂bun, ∂bu
′
n⟩Tn

+ ⟨ρRlun, ∂bu
′
n⟩Tn

+ ⟨ρ∂bun,R
lu′

n⟩Tn

+ ⟨ρRlun,R
lu′

n⟩Tn
.

(70)

For the mixed terms, we obtain by definition (12a) that

⟨ρRlun, ∂bu
′
n⟩Tn+⟨ρ∂bun,R

lu′
n⟩Tn =−⟨ρ[[un]]b, ∂bu

′
n⟩∂Tn− ⟨ρ∂bun, [[u

′
n]]b⟩∂Tn. (71)

For the remaining term, we introduce an auxiliary variable r = Rlun ∈ [Pl(Tn)]d with the defining that r fulfills
⟨ρr, s⟩Tn

= −⟨ρ[[un]]b, s⟩∂Tn
for all s ∈ [Pl(Tn)]d. Then, we have

⟨ρRlun,R
lu′

n⟩Tn
= ⟨ρr,Rlu′

n⟩Tn
= ⟨ρRlu′

n, r⟩Tn
= −⟨ρr, [[u′

n]]b⟩∂Tn
, (72)

Thus, we can implement the term (70) through a mixed formulation with the auxiliary variable r (and cor-
responding test function s). As discussed in Section 3.2 the scalar lifting operator Rl is only introduced for
notational convenience in the analysis and by definition of the stabilization term sn, we are considering a SIP
method for the diffusion term. Thus, we do not have to implement the scalar lifting operator Rl explicitly.

Remark 28 (Computational costs associated with the lifting operator). In a DG setting, the implementation
of lifting operators is usually associated with higher computational costs in the resulting linear systems because
the lifting operator introduces new, less local couplings compared to classical SIP operators. In contrast, the
support of the HDG-lifting operator is local since the volume unknowns only couple through the facet unknowns
indirectly. Note that especially r and s in Remark 27 only occur locally on each element and can be eliminated
locally. Thus, in an HDG setting, the implementation of the lifting operators leads to similar computational
costs than the implementation of a corresponding SIP variant. To visualize the associated computational costs,
we consider the sparsity pattern of the respective system matrices in Fig. 2.

5.3. Convergence studies

We consider the unit disk O = {x ∈ R2 : ∥x∥ < 1} and choose the parameters

ρ =
√
10/π exp(−10(x2 + y2)), c2s = 1.44 + 0.25ρ, ω = 0.78× 2π, (73a)

γ = 0.1, Ω = (0, 0), p = 1.44ρ+ 0.08ρ2. (73b)

While these parameters are artificially chosen, the density and the sound speed are modeled to behave similarly
(though less extreme) than the respective parameters in the Sun. We consider the background flow bcs given
by (69) and note that div(ρbcs) = 0, bcs · ν = 0 and ∥c−1

s bcs∥L∞ = cb. The source term f is calculated such
that the exact solution is given by

uex =
1

ρ
sin(x2 + y2) sin((x2 + y2)− 1) () ,+(1 + i)g − (1 + i)g (74)

where g =
√
α/π exp(−α(x2 + y2)), α = log(109), is a Gaussian.

In Fig. 3, we compare the discretization error in the ∥·∥X(Tn)-norm of the methods from Table 1. As expected
by Theorem 25, the fully non-conforming and H(div)-conforming HDG methods converge with optimal order.
Additionally, the reduced and the optimized methods converge with optimal order as well, even though these
cases are not covered by Theorem 25. The absolute error of the optimized HDG method is larger than the error
of the other methods by a constant factor while the degrees of freedom are reduced significantly3. For the fully
non-conforming methods, we observe that the stabilization parameter α = 100 seems to be more robust than
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H(div)-DG+Lift

nzes: 235, 036

H(div)-DG+SIP

nzes: 133, 652

H(div)-HDG+Lift

nzes: 30, 096

H(div)-HDG+SIP

nzes: 30, 096

Figure 2. We compare the sparsity pattern of the stiffness matrix obtained with the following
four methods: H(div)-conforming DG with lifting stabilization (left), H(div)-conforming DG
with SIP (middle-left), H(div)-conforming HDG with lifting stabilization (middle-right), and
H(div)-conforming HDG with SIP (right). For the HDG methods, we use static condensation
and for the DG method with the lifting operator, we apply the Schur complement to eliminate
the unknowns associated with the lifting operator. In the HDG setting, both methods lead to
the same number of non-zero entries (nzes) (even though the couplings differ slightly), whereas
in the DG setting, the lifting operator almost doubles the number of non-zero entries. For the
computations, we chose a mesh with 27 elements and the polynomial degree k = 5.

α = 10, where we observe a longer preasymptotic phase. Overall, the numerical results confirm the theoretical
results from Theorem 25, and suggest that the dependence of the convergence order on the lifting degree l might
be improved, cf. Remark 26.

5.4. Mach number robustness

As formalized in Assumption 21, the stability of the method depends on the Mach number of the background
flow. Here, we want to study the influence of the Mach number on the error of the discretization. In particular,
we want to compare the methods considered in this manuscript with the H1-conforming discretization introduced
in [29], and therefore the assumptions on the Mach number from (54) and (57).

We consider the parameters given by (73), but choose the right-hand side independent of the background
flow:

f(x, y) :=
1

2

√
55/π exp(−55((x− 0.35)2 + (y − 0.35)2))

(
1
0

)
. (75)

To measure the discretization error, we calculate a reference solution on a fine mesh (h ∼ 0.55) with high
polynomial degree (k = 7) with the H(div)-conforming HDG method, cf. Table 1. Then, we solve the problem
on a coarser mesh (h ∼ 0.54) with polynomial degree k = 5 using the H(div)-conforming HDG and the H1-
conforming discretization. To compare the resulting discretization error with the approximation quality of the
discrete space, we calculate the best-approximation of the reference solution with respect to the X(Tn)-inner
product, i.e. we compute ΠXnuref ∈ Xn such that ⟨ΠXnuref,vn⟩X(Tn) = ⟨u,vn⟩X(Tn) for all vn ∈ Xn.

The results for three different background flows bη, η ∈ {1, cs, cs/ρ}, modeled by (69) are displayed in Fig. 4.
For the flows b1 and bcs , we observe that the discretization error of the H(div)-conforming HDG method is
close to the best-approximation error until ∥c−1

s b∥L∞ ≈ 1.0. In contrast, the discretization error of the H1-
conforming method starts to deviate from the best-approximation error as soon as the Mach number approaches

3For k = 4 on the finest mesh level, we have the following number of non-zero matrix entries for the system matrix: ∼ 5 · 106
(full HDG & H(div)-conforming HDG), ∼ 4 · 106 (red. H(div)-conforming HDG), ∼ 3 · 106 (optimized HDG).
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Figure 3. Convergence of the methods listed in Table 1 against (74) for polynomial degrees
k = 3 and k = 4 with Mach number ∥c−1

s bcs∥2L∞ = 0.25. For the fully non-conforming methods,
we consider the choices α ∈ {10k2, 100k2} (dashed, solid). The error is measured in the X(Tn)-
norm. In the embedded bar charts we show the number of coupled degrees of freedom for each
method at the last refinement level L = 4.

0.3. Thus, the H(div)-conforming method seems to be more robust with respect to the Mach number than the
H1-conforming method.

For the background flow bcs/ρ, the methods produce much more similar results and in particular, the error
does not increase drastically once the Mach number exceeds 1.0.
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Figure 4. X(Tn)-error of the H1-conforming discretization, the H(div)-conforming HDG dis-
cretization and the respective best-approximation error for bη, η ∈ {1, cs, cs/ρ}, for increasing
Mach numbers from 0.05 to 1.25.

5.5. Comparison with SIP

The lifting operator Rl allows us to stabilize the directional derivative ∂b without balancing a stabilization
parameter against the Mach number of the background flow b. In this section, we compare the proposed method
with a SIP version to assess its practical relevance. To avoid balancing two stabilization parameters against
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each other, we only consider the H(div)-conforming HDG method. For the SIP version, we simply replace the
term

−⟨ρ(ω + iDn
b + iΩ×)un, (ω + iDn

b + iΩ×)u′
n⟩Tn

by

−⟨ρ(ω + i∂b + iΩ×)uτ , (ω + i∂b + iΩ×)u′
τ ⟩Tn

− i⟨ρ(ω + i∂b + iΩ×)uτ , [[u
′
n]]b⟩∂Tn

− i⟨[[un]]b, ρ(ω + i∂b + iΩ×)u′
τ ⟩∂Tn

+ ⟨ρλh−1[[un]]b, [[u
′
n]]b⟩∂Tn

,

where λ > 0 is a stabilization parameter that has to be chosen sufficiently large to ensure stability. We choose the
same examples as considered in Section 5.3, where the parameters are given by (73) and the reference solution
by (74). In Fig. 5, we compare the discretization error of the lifting stabilized method with the SIP method for
stabilization parameters λ ∈ {1k2, 10k2, 100k2} and polynomial degree k = 5. We choose the background flow
bcs and consider the Mach numbers ∥csb∥L∞ ∈ {0.01, 0.45}.

The lifting stabilized discretization seems to be more stable and the error is (significantly) smaller. In
particular, the choice of a suitable SIP stabilization parameter λ seems to depend on the Mach number. It’s
also worth mentioning that the condition number of the system matrix grows with the stabilization parameter λ
in the SIP version, which is not the case for the lifting stabilized version. Altogether, we conclude that the lifting
stabilized version is more robust and reliable than the SIP version, in particular because the computational costs
are not significantly higher, cf. Remark 28.
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Figure 5. Discretization error measured in the ∥·∥X(Tn)-norm for the lifting stabilized method
and the SIP variant with λ ∈ {1k2, 10k2, 100k2} for polynomial degree k = 5 and Mach numbers
∥csbcs∥L∞ ∈ {0.01, 0.45}. The choice of a suitable penalty parameters λ seems to depend on
the Mach number and the error of the lifting stabilized method is smaller.

5.6. Sun parameters

Finally, let us consider a numerical example using the density, sound speed and pressure provided by the
modelS [13] for the Sun. Due to the extreme variation of these coefficients towards the boundary of the domain,
we use special meshes that are finer towards the boundary but more coarse in the interior, see Fig. 6. In addition
to the parameters given by the modelS, we follow [11] and set

ω = 0.003 · 2π ·R◦, γ = ω/100, Ω = (0, 0),
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where R◦ ≈ 1.0007126 is the radius of the sun. We choose the right-hand side

f = 107
(
g
0

)
,

where g(x, y) =
√
(log(106)/0.12)/π exp((− log(106)/0.12)((x− 0.5)2 + (y − 0.5)2)) is a Gaussian. We consider

the case of a uniform and a non-uniform background flow. Specifically, we consider the flows b1/R◦ and bcs/R◦

which are of the form (69) such that we can use the parameter cb to control the Mach number. We note that
in both cases, we have that div(ρb) = 0.
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Figure 6. The density and sound speed provided by the modelS (right) and an example mesh
adapted to these coefficients (left).

To improve the computational efficiency, we use the optimized HDG method as described in Table 1. In
Figs. 7 and 8, we display the real part of the x-components of the computed solutions for the two backgrounds
flows. For the background flow b1/R◦ , the computed solution seems to be stable, even when the Mach number
exceed 1.0. In contrast, we observe instabilities in the solutions computed for the second background flow bcs/R◦

once the Mach number grows large, which is however still in agreement with the results from Theorem 23.
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Appendix A. Supplementary material to Theorem 23

This section contains the operators defined in the proof of Theorem 23. In Step 1, we defined the operator
B

(1)
n as the sum of a(1)n and K(1)

n , i.e.

⟨B(1)
n un,u

′
n⟩Xn

:=

⟨c2sρ divvτ ,divv
′
τ ⟩+ ⟨c2sρπl

nPL2
0
q ·wτ , π

l
nPL2

0
q ·w′

τ ⟩ − sn(wn,w
′
n) (76a)

− ⟨ρiDn
bvn, iD

n
bv

′
n⟩+ ⟨ρ(ω+iDn

b+iΩ×)wn, (ω+iD
n
b+iΩ×)w′

n⟩ (76b)

+ ⟨ρ(ω+iDn
b+iΩ×)wn, iD

n
bv

′
n⟩ − ⟨ρiDn

bvn, (ω + iDn
b + iΩ×)w′

n⟩ (76c)

+ ⟨vτ ,v
′
τ ⟩+C1⟨Snun, Snu

′
n⟩+⟨c2sρMnwn,Mnw

′
n⟩+⟨c2sρÕnun, Õnu

′
n⟩ (76d)

+ ⟨ρ(m+ iωγ)wτ ,w
′
τ ⟩. (76e)

and the operator B(2)
n as the sum of a(2)n and K(2)

n . With a(2)n as follows

a(2)n (un,u
′
n) := an(Tnun,u

′
n)− a(1)n (un,u

′
n)

= a(2)n (vn,v
′
n) + a(2)n (vn,w

′
n) + a(2)n (wn,v

′
n) + a(2)n (wn,w

′
n) with

a(2)n (vn,v
′
n) =⟨c2sρq · vτ ,divv

′
τ ⟩+ ⟨c2sρdivvτ ,q · v′

τ ⟩+ ⟨c2sρq·vτ ,q·v′
τ ⟩

− ⟨ρ(ω + iΩ×)vτ , (ω + iΩ×)v′
τ ⟩ − ⟨ρ(m+ iωγ)vτ ,v

′
τ ⟩

− ⟨ρ(ω + iΩ×)vτ , iD
n
bv

′
n⟩ − ⟨ρiDn

bvn, (ω + iΩ×)v′
τ ⟩
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a(2)n (vn,w
′
n) =−⟨ρ(ω+iΩ×)vτ , (ω+iD

n
b+iΩ×)w′

n⟩−⟨ρ(m+iωγ)vτ ,w
′
τ ⟩+ ⟨c2sρq·vτ ,q·w′

τ ⟩

−⟨c2sρ(div+πl
nPL2

0
q·)vτ ,Mnw

′
n+Õnu

′
n⟩+⟨c2sρ(id−πl

nPL2
0
)(q · vτ),div

n
ν w′

n⟩

+ ⟨c2sρdivvτ , (id−πl
nPL2

0
)q ·w′

n⟩ − ⟨c2sρπl
nPL2

0
(q · vτ ), π

l
nPL2

0
(q ·w′

τ )⟩

a(2)n (wn,v
′
n) =⟨ρ(ω+iDn

b+iΩ×)wn, (ω+iΩ×)v′
τ ⟩+ ⟨ρ(m+iωγ)wτ ,v

′
τ ⟩ − ⟨c2sρq·wτ ,q·v′

τ ⟩

+ ⟨c2sρ(Mnwn+Õnun), (div+π
l
nPL2

0
q·)v′

τ ⟩−⟨c2sρdiv
n
ν wn, (id−πl

nPL2
0
)(q · v′

τ )⟩

− ⟨c2sρ(id−πl
nPL2

0
)(q ·wτ ),divv

′
τ ⟩+ ⟨c2sρπl

nPL2
0
(q ·wτ ), π

l
nPL2

0
(q · v′

τ )⟩

a(2)n (wn,w
′
n) =− ⟨c2sρ(id−πl

nPL2
0
)(q ·wτ ),div

n
ν w′

n⟩ − ⟨c2sρdiv
n
ν wn, (id−πl

nPL2
0
)(q ·w′

τ )⟩

− ⟨c2sρ(Mnwn + Õnun),Mnw
′
n + Õnu

′
n⟩

we obtain

⟨B(2)
n un,u

′
n⟩Xn

:=

C2(⟨vτ ,v
′
τ ⟩+ ⟨Snun, Snu

′
n⟩+ ⟨c2sρÕnun, Õnu

′
n⟩

+ ⟨c2sρMnwn,Mnw
′
n⟩+ ⟨mean(q ·wτ ),mean(q ·w′

τ )⟩)

+ ⟨c2sρq ·vτ ,divv
′
τ ⟩+ ⟨c2sρdivvτ ,q ·v′

τ ⟩+ ⟨c2sρq·vτ ,q·v′
τ ⟩

− ⟨ρ(ω + iΩ×)vτ , (ω + iΩ×)v′
τ ⟩ − ⟨ρ(m+ iωγ)vτ ,v

′
τ ⟩

− ⟨ρ(ω + iΩ×)vτ , iD
n
bv

′
n⟩ − ⟨ρiDn

bvn, (ω + iΩ×)v′
τ ⟩

−⟨ρ(ω+iΩ×)vτ , (ω+iD
n
b + iΩ×)w′

n⟩−⟨ρ(m+iωγ)vτ ,w
′
τ ⟩+⟨c2sρq·vτ ,q·w′

τ ⟩

−⟨c2sρ(div+πl
nPL2

0
q·)vτ ,Mnw

′
n+Õnu

′
n⟩+⟨c2sρ(id−πl

nPL2
0
)(q ·vτ),div

n
ν w′

n⟩

+ ⟨c2sρdivvτ , (id−πl
nPL2

0
)q ·w′

n⟩ − ⟨c2sρπl
nPL2

0
(q ·vτ ), π

l
nPL2

0
(q ·w′

τ )⟩

+ ⟨ρ(ω+iDn
b + iΩ×)wn,(ω+iΩ×)v′

τ ⟩+⟨ρ(m+iωγ)wτ ,v
′
τ ⟩−⟨c2sρq·wτ ,q·v′

τ ⟩

+ ⟨c2sρ(Mnwn+Õnun), (div+π
l
nPL2

0
q·)v′

τ ⟩−⟨c2sρdiv
n
ν wn, (id−πl

nPL2
0
)(q ·v′

τ )⟩

− ⟨c2sρ(id−πl
nPL2

0
)(q ·wτ ),divv

′
τ ⟩+ ⟨c2sρπl

nPL2
0
(q ·wτ ), π

l
nPL2

0
(q ·v′

τ )⟩

− ⟨c2sρ(id−πl
nPL2

0
)(q ·wτ ),div

n
ν w′

n⟩ − ⟨c2sρdiv
n
ν wn, (id−πl

nPL2
0
)(q ·w′

τ )⟩

− ⟨c2sρ(Mnwn + Õnun),Mnw
′
n + Õnu

′
n⟩.

The terms added with K(1)
n and K(2)

n are subtracted through the operator Kn, which is given by

⟨Knun,u
′
n⟩Xn

:=

− (1 + C2)⟨vτ ,v
′
τ ⟩ − (C1 + C2)⟨Snun, Snu

′
n⟩ (78a)

− (1 + C2)⟨c2sρMnwn,Mnw
′
n⟩ − C2⟨mean(q ·wτ ),mean(q ·w′

τ )⟩ (78b)
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− (1 + C2)⟨c2sρÕnun, Õnu
′
n⟩. (78c)

In Step 4, we defined the compact operator K in (K-a)-(K-b) and set B := AT −K, i.e.

⟨Bu,u′⟩X :=

⟨c2sρdivv,divv′⟩ − ⟨ρi∂bv, i∂bv′⟩+ ⟨c2sρPL2
0
(q ·w), PL2

0
(q ·w′)⟩ (79a)

− ⟨ρi∂bv, (ω + i∂b + iΩ×)w′⟩+ ⟨ρ(ω + i∂b + iΩ×)w, i∂bv
′⟩ (79b)

+ ⟨ρ(ω + i∂b + iΩ×)w, (ω + i∂b + iΩ×)w′⟩+ ⟨ρ(iωγ +m)w,w′⟩ (79c)

+ ⟨v,v′⟩+ C1⟨v,v′⟩+ ⟨c2sρMw,Mw′⟩ (79d)

+ C2(⟨v,v′⟩+ ⟨v,v′⟩+ ⟨c2sρMw,Mw′⟩+ ⟨mean(q ·w),mean(q ·w′)⟩) (79e)

+ ⟨c2sρq · v,divv′⟩+ ⟨c2sρdivv,q · v′⟩ − ⟨ρ(ω + iΩ×)v, (ω + iΩ×)v′⟩ (79f)

− ⟨ρ(ω + iΩ×)v, i∂bv
′⟩ − ⟨ρi∂bv, (ω + iΩ×)v′⟩ − iω⟨γρv,v′⟩ − ⟨ρmv,v′⟩ (79g)

− ⟨ρmv,w′⟩ − iω⟨γρv,w′⟩ − ⟨c2sρPL2
0
(q · v), PL2

0
(q ·w′)⟩ (79h)

− ⟨ρ(ω + iΩ×)v, (ω + i∂b + iΩ×)w′⟩ − ⟨c2sρ(div+PL2
0
q·)v,Mw′⟩ (79i)

+ ⟨c2sρmean(q · v),divw′⟩ (79j)

+ ⟨ρmw,v′⟩+ iω⟨γρw,v′⟩+ ⟨c2sρPL2
0
(q ·w), PL2

0
(q · v′)⟩ (79k)

+ ⟨ρ(ω + i∂b + iΩ×)w, (ω + iΩ×)v′⟩+ ⟨c2sρMw, (div+PL2
0
q·)v′⟩ (79l)

− ⟨c2sρ divw,mean(q · v′)⟩ (79m)

− ⟨c2sρmean(q ·w),divw′⟩ − ⟨c2sρdivw,mean(q ·w′)⟩ − ⟨c2sρMw,Mw′⟩. (79n)
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