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Abstract

We consider a scalar diffusion equation with a sign-changing coefficient in its principle part.
The well-posedness of such problems has already been studied extensively provided that the
contrast of the coefficient is non-critical. Furthermore, many different approaches have been
proposed to construct stable discretizations thereof, because naive finite element discretiza-
tions are expected to be non-reliable in general. However, no explicit example proving the
actual instability is known and numerical experiments often do not manifest instabilities in
a conclusive manner. To this end we construct an explicit example with a broad family of
meshes for which we prove that the corresponding naive finite element discretizations are
unstable. On the other hand, we also provide a broad family of (non-symmetric) meshes for
which we prove that the discretizations are stable. Together, these two findings explain the
results observed in numerical experiments.

MSC: 65N12, 65N30, 78M10
Keywords: sign-changing coefficients, meta materials, finite element method, stability anal-
ysis

1 Introduction

In this article we consider diffusion equations −div(σ∇u) = f with a sign-changing coefficient σ,
i.e., the domain Ω admits a decomposition in Ω± for which ±σ|Ω± > 0. Such equations occur, e.g.,
for fully homogenized meta materials and their reliable simulation is essential for the development
of technical devices, e.g., to control sound [12] and for cloaking [14]. The well-posedness of prob-
lems with sign-changing coefficients has been studied extensively by means of the T-coercivity
technique [7, 8, 5] and is known to depent on the contrast of σ and the smoothness/geometry
of the interface Ω+ ∩ Ω−. An alternative approach to analyze such PDEs has been investigated
in [17, 18] by means of the limiting absorption principle. The stability of convenient finite ele-
ment discretizations is known only for sufficiently large contrasts [6] and therefore a variety of
approaches to construct stable approximations have been explored, including locally symmetric
meshes [4, 15], optimization based methods [1, 11, 2, 10], boundary element methods [20], weakly
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dation), projects 541433971 and 258734477 – SFB 1173 and that part of this work was conducted at the Johann
Radon Institute for Computational and Applied Mathematics.

The second author acknowledges support from DFG, CRC 1456 project 432680300.
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coercive reformulations [16] and primal-dual stabilizations [9]. However, in contrast to this exten-
sive research on the development of stable discretizations the question if those specialized methods
are actually necessary has received much less attention. Indeed, for reasonably small contrasts
the error curves (for decreasing mesh sizes) of naive FEMs generally do not look reliable, but still
decrease often with a saw tooth like profile [9]. At other test cases, it can even be hard to trigger
some anomalies at all [16]. Actually, the analysis of [4] suggest that meshes being “almost locally
symmetric” can be expected to yield stable results, and a mesh generator might produce such
meshes without further due. However, without any quantification it is hard to obtain decisive
conclusions from this observation.

To study such questions we construct in this article an explicit example with a piece-wise
constant coefficient (σ± := σ|Ω±) and a discretization by nodal finite elments with uniform rect-
angular grids in Ω±. Thereby the ratio r of the mesh sizes in Ω± will play an important role in
the analysis and acts in an inverse manner to the contrast κ = σ+/σ−, i.e., rκ will be a crucial
quantity. We prove that depending on the parameter range that all considered discretizations are
either stable or unstable. For an unstructured mesh we expect that either case can be dominant,
which explains the unconclusive observations in numerical experiments.

The remainder of the manuscript is structured as follows. In Section 2 we specify the two con-
sidered problems and their discretization. In particular, we consider one problem on an unbouded
domain and a second problem on a bounded domain, where the first can be seen as an preper-
ational step to the second. In Section 3 we conduct our stability analysis with Theorems 3.17
and 3.33 as our main results. In Section 4 we present computational examples to confirm our
theoretical results.

2 Notation and setting

We consider all vector spaces over R and denote scalar and vectorial L2-scalar products over a
domain D ⊂ Rl, l = 1, 2 as ⟨·, ·⟩D. Let N := {1, 2, . . . }, L > 0 and consider the domains

Ω := (−∞,∞)× (0, π), Ω− := (−∞, 0)× (0, π), Ω+ := (0,∞)× (0, π),

Ω̃ := (−L,L)× (0, π), Ω̃− := (−L, 0)× (0, π), Ω̃+ := (0, L)× (0, π).

On H1
0 (D), D = Ω, Ω̃ we work with the scalar product ⟨u, u†⟩H1

0 (D) := ⟨∇u,∇u†⟩D. For the

bounded domain Ω̃ the equivalence of ⟨·, ·⟩H1
0 (Ω̃

to the standard H1(Ω̃)-scalar product is well

known. For the unbounded domain Ω this equivalence requires a short discussion: Let

θm(y) :=

√
2

π
sin(my), m ∈ N.

and recall that each u ∈ H1
0 (Ω) and u ∈ H1

0 (Ω̃) admits a representation

u(x, y) =
∑
m∈N

um(x)θm(y), um(x) := ⟨u(x, ·), θm⟩(0,π) (1)

with

∥u∥2H1(Ω) =
∑
m∈N

∥∂xum∥2L2(R) + (λ2m + 1)∥um∥2L2(R) and

∥u∥2
H1(Ω̃)

=
∑
m∈N

∥∂xum∥2L2(−L,L) + (λ2m + 1)∥um∥2L2(−L,L)

respectively, where

λm := m, m ∈ N.
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It follows that ∥u∥2
H1

0 (Ω)
≥ 1

2∥u∥
2
H1(Ω). As usual, we consider any subspaces of H1

0 (Ω) and H
1
0 (Ω̃)

to be equipped with their inherited scalar product.
Let σ be constant on Ω± with values σ− := σ|Ω− < 0 and σ+ := σ|Ω+

> 0. Let f ∈ L2(Ω̃) and
identify f with its continuation by zero to Ω. We consider the following two model problems:

Find u ∈ H1
0 (Ω) such that − div(σ∇u) = f in Ω; (2a)

Find u ∈ H1
0 (Ω̃) such that − div(σ∇u) = f in Ω̃, (2b)

and their variational formulations:

Find u ∈ H1
0 (Ω) such that aΩ(u, u

†) = ⟨f, u†⟩Ω for all u† ∈ H1
0 (Ω); (3a)

Find u ∈ H1
0 (Ω̃) such that aΩ̃(u, u

†) = ⟨f, u†⟩Ω̃ for all u† ∈ H1
0 (Ω̃), (3b)

with the corresponding sesquilinear forms

aD(u, u†) := ⟨σ∇u,∇u†⟩D, D = Ω, Ω̃.

Furthermore, let A ∈ L(H1
0 (Ω)), Ã ∈ L(H1

0 (Ω̃)) be the associated operators defined by

⟨Au, u†⟩H1
0 (Ω) = aΩ(u, u

†) for all u, u† ∈ H1
0 (Ω), (4a)

⟨Ãu, u†⟩H1
0 (Ω̃) = aΩ̃(u, u

†) for all u, u† ∈ H1
0 (Ω̃). (4b)

To specify the approxmiations of the former problems let P1 be the space of polynomials in one
variable of order lower equal than one. Thence let

M ∈ N, hy := π/M, ym := hym for m = 1, . . . ,M,

and

Why := {u ∈ H1
0 (0, π) : u|(ym,ym+1) ∈ P1 for all m = 0, . . . ,M − 1}.

To discretize (3a) consider

h± > 0, xn := h+n, for n = 0, 1, . . . ; xn := h−n, for n = −1,−2, . . . ,

and

Vh± := {u ∈ H1(R) : u|(xn,xn+1) ∈ P1 for all n = . . . ,−1, 0, 1, . . . },

and to discretize (3b) let

N± ∈ N, h± := L/N±, x̃n := h+n, for n = 0, . . . , N+; x̃n := h−n, for n = −1, . . . ,−N−,

and

Ṽh± := {u ∈ H1
0 (−L,L) : u|(x̃n,x̃n+1) ∈ P1 for all n = −N−, . . . , N+ − 1}.

Note that Vh± is one space which depends on both parameters h+ and h−. The same applies to

Ṽh± . Consequently we consider the Galerkin approximations of (3a) and (3b) with discrete tensor

product spaces Vh± ⊗Why
⊂ H1

0 (Ω), Ṽh± ⊗Why
⊂ H1

0 (Ω̃):

Find u ∈ Vh± ⊗Why such that aΩ(u, u
†) = ⟨f, u†⟩Ω for all u† ∈ Vh± ⊗Why ; (5a)

Find u ∈ Ṽh± ⊗Why
such that aΩ̃(u, u

†) = ⟨f, u†⟩Ω̃ for all u† ∈ Ṽh± ⊗Why
. (5b)

Let Ah±,hy
∈ L(Vh± ⊗Why

) and Ãh±,hy
∈ L(Ṽh± ⊗Why

) be the associated operators defined by

⟨Ah±,hyu, u
†⟩H1

0 (Ω) = aΩ(u, u
†) for all u, u† ∈ Vh± ⊗Why

, (6a)

⟨Ãh±,hy
u, u†⟩H1

0 (Ω̃) = aΩ̃(u, u
†) for all u, u† ∈ Ṽh± ⊗Why

. (6b)
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We will see that the constrast κ (of σ) and the ratios of the meshes sizes

κ :=
σ+
σ−

, r :=
h+
h−

, ry :=
hy
h−

,

will play a crucial role in the stability analysis. Since problem (3a) is posed on an unbounded do-
main its discretization (5a) is rather theoretical, but it allows us to perform a very explicit analysis.
On the other hand, problem (3b) is posed on a bounded domain and hence its discretization (5b)
is computationally feasable, but its analyis is a bit more technical. Indeed, the second setting
(3b)/(5b) can be considered as an approximation of (3a)/(5a) by a truncation of the domain Ω
to Ω̃. During the course of our analysis we will repeatedly use tensor product functions for which
we apply the following notation in general:

u(x, y) = v(x)w(y).

In addition, let ϕn ∈ Vh± , ϕ̃n ∈ Ṽh± , ψm ∈Why be the nodal basis functions defined by

ϕn(xl) = δnl, n, l ∈ Z,

ϕ̃n(x̃l) = δnl, n, l = −N− + 1, . . . , N+ − 1,

ψm(yl) = δml, m, l = 1, . . . ,M − 1.

3 Stability analysis

In this section we investigate the discretizations of (3a) and (3b).

3.1 Unbounded domain

To study the discretization of (3a) we first analyze its well-posedness and subsequently analyze a
semi-discretization before treating the full discretization.

3.1.1 Well-posedness analysis

We start by discussing the well-posed of (2a) to ensure that we have chosen a meaningful prob-
lem. Secondly, our analysis will serve as recipe for the forthcoming analysis dealing with the
discretizations of (2a). Let

X± := {u ∈ H1
0 (Ω): u|Ω∓ = 0} and X0 := (X− ⊕X+)

⊥.

Lemma 3.1. The space H1
0 (Ω) admits an orthogonal decomposition

H1
0 (Ω) = X− ⊕⊥ X0 ⊕⊥ X+

where X0 is spanned by the orthonormal basis
(

1√
2λm

e−λm|x| ⊗ θm(y)
)
m∈N.

Proof. Let u ∈ X0. By means of (1) we can write u =
∑

m∈N um ⊗ θm and it follows that um
solves −∂x∂xum + m2um = 0 in R±. Thus um|R+(x) = c+1 e

−λmx + c+2 e
λmx and um|R−(x) =

c−1 e
λmx + c−2 e

−λmx with constants c±1 , c
±
2 ∈ R. Since um ∈ H1(R) it follows that c+2 = c−2 = 0

and the continuity at the origin demands c+1 = c−1 =: c, i.e., um(x) = ce−λm|x|. The equality
c = 1/(4λm) follows from a simple computation.

Lemma 3.2. The operator A is block diagonal with respect to the decomposition of Lemma 3.1.
The blocks corresponding to X−, X+ and X0 equal the identity times σ−, σ+ and σ++σ−

2 = σ−
1+κ
2

respectively. Non-verbally: For each u−, u
†
− ∈ X−, u0, u

†
0 ∈ X0, u+, u

†
+ ∈ X+ it holds that

aΩ(u− + u0 + u+, u
†
− + u†0 + u†+) = σ−⟨u−, u†−⟩H1

0 (Ω) + σ−
1 + κ

2
⟨u0, u†0⟩H1

0 (Ω) + σ+⟨u+, u†+⟩H1
0 (Ω).
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Proof. Since the supports of functions in X− and X+ are disjoint it holds that aΩ(u+, u−) =
aΩ(u−, u+) = 0 for all u± ∈ X±. We note that

aΩ(u0, u±) = ⟨σ∇u0,∇u±⟩Ω = ⟨σ±∇u0,∇u±⟩Ω± = σ±⟨∇u0,∇u±⟩Ω = σ±⟨u0, u±⟩H1
0 (Ω) = 0

and likewise aΩ(u±, u0) = 0 for all u0 ∈ X0, u± ∈ X±. It remains to prove aΩ(u0, u
†
0) =

σ−
1+κ
2 ⟨u0, u†0⟩H1

0 (Ω), which follows from plugging in the orthonormal basis functions given in
Lemma 3.1.

Corollary 3.3. If κ ̸= −1, then A is bijective and ∥A−1∥L(H1
0 (Ω)) ≤ 1

|σ−|min{1,κ,| 1+κ
2 |} .

Proof. From Lemma 3.2 we know that on each of the three subspaces A is the identity operator
multiplied by the constants σ−, σ+ and σ−

1+κ
2 respectively. This implies that these are the only

eigenvalues of the operator. It is therefore bijective as long as all of the three constant are nonzero,
which is the case if κ ̸= −1, and the norm of the inverse is the reciprocal of the smallest of the
three eigenvalues.

3.1.2 Semi discretization

In this section we consider a semi discretization of problem (2a) by means of Galerkin spaces

Vh± ⊗H1
0 (0, π)

cl
H1

0(Ω) :

Find u ∈ Vh± ⊗H1
0 (0, π)

cl
H1

0(Ω) such that aΩ(u, u
†) = ⟨f, u†⟩Ω for all u† ∈ Vh± ⊗H1

0 (0, π)
cl

H1
0(Ω) .
(7)

Let Ah± ∈ L(Vh± ⊗H1
0 (0, π)

cl
H1

0(Ω)) be the associated operator defined by

⟨Ah±u, u
†⟩H1

0 (Ω) = aΩ(u, u
†) for all u, u† ∈ Vh± ⊗H1

0 (0, π)
cl

H1
0(Ω) . (8)

Note that by means of (1) we can express:

aΩ(u, u
†) =

∑
m∈N

⟨σ∂xum, ∂xu†m⟩R + λ2m⟨σum, u†m⟩R. (9)

In addition, for um =
∑

n∈Z αnϕn, u
†
m =

∑
n∈Z α

†
nϕn, αn, α

†
n ∈ R it follows that

⟨σ∂xum, ∂xu†m⟩R + λ2m⟨σum, u†m⟩R =
∑

n,n′∈Z
α†
n′A

(m)
n′,nαn,

where

A(m) :=



. . .
. . .

. . . 2σ−a
(m)
− σ−b

(m)
−

σ−b
(m)
− σ−a

(m)
− + σ+a

(m)
+ σ+b

(m)
+

σ+b
(m)
+ 2σ+a

(m)
+

. . .

. . .
. . .


with

a
(m)
± :=

1

h±
+ λ2m

1

3
h±, (10a)

b
(m)
± := − 1

h±
+ λ2m

1

6
h±. (10b)
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Note that since (ϕn)n∈Z is not a Hilbert space basis the former expansion is only justified under
certain decay conditions on (αn)n∈Z, (α

†
n)n∈Z. However, this will not pose any problem for our

forthcoming analysis.

We note that the analysis of the case b
(m)
± = 0 is rather trivial, because thence A(m) is diagonal.

Thus to unify our formulas we introduce the following case-wise definition

µm,1,± :=

 1

b
(m)
±

(
−a(m)

± +

√
(a

(m)
± )2 − (b

(m)
± )2

)
, b

(m)
± ̸= 0,

0, b
(m)
± = 0,

µm,2,± :=

 1

b
(m)
±

(
−a(m)

± −
√

(a
(m)
± )2 − (b

(m)
± )2

)
, b

(m)
± ̸= 0,

1, b
(m)
± = 0.

Henceforth we will only discuss the case b
(m)
± ̸= 0 and just note that the statements of all Lemmas

and Theorems also hold for the case b
(m)
± = 0. Indeed µm,1,±, µm,2,± are the roots of the polynomial

µ 7→ b
(m)
± µ2 + 2a

(m)
± µ+ b

(m)
± .

Note that it follows from µm,1,±µm,2,± = 1 and (a
(m)
± )2 − (b

(m)
± )2 > 0 that |µm,1,±| < |µm,2,±|

and therefore

|µm,1,±| < 1 and |µm,2,±| > 1. (11)

We introduce the abbreviation

µm,± := µm,1,± (12)

and note that per definition |µm,±| < 1. As the next step we further exploit the former
representations in the following two lemmas which are in analogy to Section 3.1.1. To avoid
misconceptions we emphasize that the n in µ±n

m,± appearing Lemma 3.4 is an actual power and
not an index.

Lemma 3.4. The space Vh± ⊗H1
0 (0, π)

cl
H1

0(Ω) admits an orthogonal decomposition

Vh± ⊗H1
0 (0, π)

cl
H1

0(Ω) =
(
V −
h±

⊗H1
0 (0, π)

cl
H1

0(Ω)
)
⊕⊥ V 0

h±
⊕⊥

(
V +
h±

⊗H1
0 (0, π)

cl
H1

0(Ω)
)
,

where V −
h±

:= {v ∈ Vh± : v|R+ = 0} and V +
h±

:= {v ∈ Vh± : v|R− = 0}. The subspace V 0
h±

is spanned

by the orthonormal basis
(
vm(x)⊗ θm(y)

)
m∈N, where

vm(x) :=
1√

b
(m)
− µm,− + a

(m)
− + a

(m)
+ + b

(m)
+ µm,+

(
ϕ0(x) +

∑
n∈N

µn
m,+ϕn(x) +

∑
n∈N

µn
m,−ϕ−n(x)

)
.

Proof. Let v ∈
(
V −
h±

⊗H1
0 (0, π)

cl
H1

0(Ω) ⊕ V +
h±

⊗H1
0 (0, π)

cl
H1

0(Ω)
)⊥

. By means of (1) we can write

v =
∑

m∈N vm ⊗ θm. We can write vm =
∑

n∈Z β
(m)
n ϕn. The span of the functions ϕn ⊗ θm for

m,n ∈ Z, n ̸= 0 is dense in
(
V −
h±

⊗H1
0 (0, π)

cl
H1

0(Ω) ⊕ V +
h±

⊗H1
0 (0, π)

cl
H1

0(Ω)
)
. By orthogonality we

then have

0 = ⟨v, ϕ±n ⊗ θm⟩H1
0 (Ω) = ⟨∂xvm, ∂xϕ±n⟩R + λ2m⟨vm, ϕ±n⟩R

= ⟨β(m)
±n−1∂xϕ±n−1, ∂xϕ±n⟩R + ⟨β(m)

±n ∂xϕ±n, ∂xϕ±n⟩R + ⟨β(m)
±n+1∂xϕ±n+1, ∂xϕ±n⟩R

+ λ2m

(
⟨β(m)

±n−1ϕ±n−1, ϕ±n⟩R + ⟨β(m)
±n ϕ±n, ϕ±n⟩R + ⟨β(m)

±n+1ϕ±n+1, ϕ±n⟩R
)

= σ±
(
β
(m)
±n−1b

(m)
± + 2β

(m)
±n a

(m)
± + β

(m)
±n+1b

(m)
±
)
.

6



Solving this three-term recurrence relation and recalling (12), (11) we obtain that

β(m)
n = β

(m)
0 µn

m,+ and β
(m)
−n = β

(m)
0 µn

m,− ∀n ∈ N.

Finally we compute the normalization constant by

1 = ⟨∂xvm, ∂xvm⟩R + λ2m⟨vm, vm⟩R =
∑
n∈Z

β(m)
n

(
⟨∂xϕn, ∂xvm⟩R + λ2m⟨ϕn, vm⟩R

)
= β

(m)
0

(
⟨∂xϕ0, ∂xvm⟩R + λ2m⟨ϕ0, vm⟩R

)
= (β

(m)
0 )2

(
µm,−b

(m)
− + a

(m)
− + a

(m)
+ + µm,+b

(m)
+

)
,

i.e.,

β
(m)
0 =

1√
µm,−b

(m)
− + a

(m)
− + a

(m)
+ + µm,+b

(m)
+

.

Note that this calculation also ensures that vm⊗θm has finite H1
0 (Ω)-norm, i.e., vm⊗θm ∈ H1

0 (Ω)
is well defined.

Lemma 3.5. The operator Ah± is block diagonal with respect to the orthogonal decomposition

given in Lemma 3.4. The blocks corresponding to V −
h±

⊗H1
0 (0, π)

cl
H1

0(Ω)
and V +

h±
⊗H1

0 (0, π)
cl

H1
0(Ω)

equal the identity times σ− and σ+ respectively. The block corresponding to V 0
h±

is diagonal with
respect to the basis given in Lemma 3.4 and the diagonal entries are given by

dm :=
σ−b

(m)
− µm,− + σ−a

(m)
− + σ+a

(m)
+ + σ+b

(m)
+ µm,+

b
(m)
− µm,− + a

(m)
− + a

(m)
+ + b

(m)
+ µm,+

, m ∈ N. (13)

Non-verbally: For each u−, u
†
− ∈ V −

h±
⊗H1

0 (0, π)
cl

H1
0(Ω)

, u0, u
†
0 ∈ V 0

h±
, u+, u

†
+ ∈ V +

h±
⊗H1

0 (0, π)
cl

H1
0(Ω)

and u0 =
∑

m∈N βmvm ⊗ θm, u†0 =
∑

m∈N β
†
mvm ⊗ θm, (βm)m∈N, (β

†
m)m∈N ∈ ℓ2(N) it holds that

aΩ(u− + u0 + u+, u
†
− + u†0 + u†+) = σ−⟨u−, u†−⟩H1

0 (Ω) +
∑
m∈N

dmβmβ
†
m + σ+⟨u+, u†+⟩H1

0 (Ω).

Proof. The arguments are essentially the same as in the continuous case (see Lemma 3.2) where we

now use Lemma 3.4 instead of Lemma 3.1. With this we directly get aΩ(u−, u
†
+) = aΩ(u+, u

†
−) = 0

and that Ah± is the identity times σ+ and σ− on V −
h±

⊗H1
0 (0, π)

cl
H1

0(Ω)
and V +

h±
⊗H1

0 (0, π)
cl

H1
0(Ω)

respectively. By the orthogonality of the decomposition we also get aΩ(u0, u
†
±) = σ±⟨u0, u†±⟩H1

0 (Ω) =

0 as in the continuous case. It remains to show, that operator is diagonal on V 0
h±

with the claimed

values. That it is indeed diagonal follows directly from the decomposition in (9). To compute the
values we use the same calculation as for the normalization constant and get

aΩ(vm ⊗ θm, vm ⊗ θm) =

∑
n∈N aΩ(µ

n
m,−ϕ−n ⊗ θm, vm ⊗ θm) +

∑
n∈N aΩ(µ

n
m,+ϕn ⊗ θm, vm ⊗ θm)

b
(m)
− µm,− + a

(m)
− + a

(m)
+ + b

(m)
+ µm,+

+
aΩ(ϕ0 ⊗ θm, vm ⊗ θm)

b
(m)
− µm,− + a

(m)
− + a

(m)
+ + b

(m)
+ µm,+

=
aΩ(ϕ0 ⊗ θm, vm ⊗ θm)

b
(m)
− µm,− + a

(m)
− + a

(m)
+ + b

(m)
+ µm,+

=
σ−b

(m)
− µm,− + σ−a

(m)
− + σ+a

(m)
+ + σ+b

(m)
+ µm,+

b
(m)
− µm,− + a

(m)
− + a

(m)
+ + b

(m)
+ µm,+

,

where we exploited the orthogonality properties of vm.
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We observe that in contrast to Lemma 3.2 the block corresponding to V 0
h±

is not a multiple of
the identity, but still diagonal. To analyze the diagonal entries dm we introduce the function

fκ,r(t) :=
1 + κ

√
r2t2+12)√
t2+12

1 +
√
r2t2+12)√
t2+12

.

Lemma 3.6. The diagonal entries dm defined in (13) satisfy dm = σ−fκ,r(λmh−).

Proof. To start with, plugging in the definitions (12), (10) of µm,± and b
(m)
± , a

(m)
± respectively

yields that

b
(m)
± µm,± + a

(m)
± =

√(
a
(m)
±

)2
−
(
b
(m)
±

)2
= λm

√
1 +

1

12
λ2mh

2
±.

Inserting this into the definition (13) of dm we obtain that

dm =
σ−(b

(m)
− µm,− + a

(m)
− ) + σ+(a

(m)
+ + b

(m)
+ µm,+)

(b
(m)
− µm,− + a

(m)
− ) + (a

(m)
+ + b

(m)
+ µm,+)

=
σ−

√
1 + 1

12λ
2
mh

2
− + σ+

√
1 + 1

12λ
2
mh

2
+√

1 + 1
12λ

2
mh

2
− +

√
1 + 1

12λ
2
mh

2
+

= σ−

1 + κ

√
12+λ2

mh2
+√

12+λ2
mh2

−

1 +

√
12+λ2

mh2
+√

12+λ2
mh2

−

= σ−

1 + κ

√
12+λ2

mh2
−r2√

12+λ2
mh2

−

1 +

√
12+λ2

mh2
−r2√

12+λ2
mh2

−

= σ−fκ,r(λmh−),

where we recall that r = h+/h−.

In the following lemmas we analyze the function fκ,r.

Lemma 3.7. If one of the following two conditions

|κ| < 1 and r|κ| > 1︸ ︷︷ ︸
(14a)

or |κ| > 1 and r|κ| < 1︸ ︷︷ ︸
(14b)

(14)

is satisfied, then the only root of fκ,r in [0,+∞) is

tκ,r :=

√
12(1− κ2)

κ2r2 − 1
.

Proof. Since the denominator of fκ,r ranges for t ≥ 0 between 2 and 1 + r, it suffices to analyze
its nominator. Because we only consider non-negative t and negative κ we get

0 = 1 +
κ
√
r2t2 + 12)√
t2 + 12

⇔
√
t2 + 12 = |κ|

√
r2t2 + 12 ⇔ t2 + 12 = κ2(r2t2 + 12)

⇔ t2(1− κ2r2) = 12(κ2 − 1).

The condition (14) now guarantees that κ2−1 and 1−κ2r2 have the same sign so the only solution

is tκ,r =
√

12(1−κ2)
κ2r2−1 .

Lemma 3.8. If (14) is satisfied, then limh−→0+ infm∈N |fκ,r(λmh−)| = 0.

Proof. Write h− = 1
l+ϵ tκ,r with l ∈ N0 and ϵ ∈ [0, 1). Choose m = l, recall that λm = m and

exploit that liml→+∞
l

l+ϵ → 1 uniformly in ϵ ∈ [0, 1). Apply Lemma 3.7 and the continuity of
fκ,r.
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Lemma 3.9. If one of the following two conditions

|κ| < 1 and r|κ| < 1︸ ︷︷ ︸
(15a)

or |κ| > 1 and r|κ| > 1︸ ︷︷ ︸
(15b)

(15)

is satisfied, then inft≥0 |fκ,r(t)| ≥ min{
∣∣ 1+κ

2

∣∣ , ∣∣∣ 1+rκ
1+r

∣∣∣}.
Proof. We note that f′κ,r(t) = 12(κ−1)(r2−1)t√

t2+12
√
r2t2+12(

√
r2t2+12+

√
t2+12)2

and hence fκ,r(t) is a monotone

function. This implies

fκ,r(t) ∈
[
min

{
fκ,r(0), lim

s→+∞
fκ,r(s)

}
,max

{
fκ,r(0), lim

s→+∞
fκ,r(s)

}]
∀t ∈ [0,+∞).

Computing these values we get fκ,r(t) ∈ [min{ 1+κ
2 , 1+rκ

1+r },max{ 1+κ
2 , 1+rκ

1+r }]. The conditions now
ensure that both values have the same sign so the absolute value of fκ,r(t) is always bigger than
the minimal absolute value occurring in one of the bounds.

Now we are in the position to conclude our analysis of the semi discretization (7) in the following
theorem.

Theorem 3.10. If (15) is satisfied, then A−1
h±

exists and satisfies

∥A−1
h±

∥
L(Vh±⊗H1

0 (0,π)
cl

H1
0(Ω) )

≤ 1

|σ−|min
{
1, |κ|,

∣∣ 1+κ
2

∣∣ , ∣∣∣ 1+rκ
1+r

∣∣∣}
for all h−, h+ = rh− > 0. Contrary, if (14) is satisfied, then

lim
h−→0+
h+=rh−

∥A−1
h±

∥
L(Vh±⊗H1

0 (0,π)
cl

H1
0(Ω) )

= +∞

(where we define ∥A−1
h±

∥
L(Vh±⊗H1

0 (0,π)
cl

H1
0(Ω) )

:= +∞, if A−1
h±

does not exist), and in particular:

Ah± admits a nontrivial kernel for each

h− =
1

λm
tκ,r =

1

m

√
12(1− κ2)

κ2r2 − 1
, h+ = rh−, m ∈ N.

Proof. By Lemma 3.5 we know that the eigenvalues of Ah± are σ+,σ− and dm for m ∈ N. From
Lemma 3.8 we get a lower bound on the absolute values of dm which implies the first statement
of the theorem. Then from Lemma 3.9 it follows that such a bound does not exist in the other
case which implies the second statement and finally Lemma 3.7 gives us the precise values where
we have a zero eigenvalue which implies a nontrivial kernel.

3.1.3 Full discretization

Next we consider the full discretization (5a) by means of the Galerkin spaces Vh± ⊗Why
. To this

end much of the analysis of Section 3.1.2 can be repeated, but we have to replace the orthogonal
basis (θm)m∈N of H1

0 (0, π) by a suitable discrete orthogonal basis (θ̂m)m=1,...,M−1 of Why , and as
a general rule we denote respective modified quantities by the same symbol as previously used but
with an additional hat. Hence we consider the following eigenvalue problem:

Find (τ, w) ∈ R+ ×Why
\ {0} such that ⟨∂yw, ∂yw†⟩(0,2π) = τ2⟨w,w†⟩(0,2π) ∀w† ∈Why

. (16)

To solve this problem we define

(B(τ))m′,m := ⟨∂yψm, ∂yψm′⟩(0,2π) − τ2⟨ψm, ψm′⟩(0,2π), m,m′ = 1, . . . ,M − 1.
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Then we use that τ is an eigenvalue if and only if B(τ) has a zero eigenvalue. It holds that

B(τ) =



2a b

b 2a
. . .

. . .
. . .

. . .

. . . 2a b
b 2a


, a :=

1

hy
− τ2

1

3
hy, b := − 1

hy
− τ2

1

6
hy.

It follows that [3, 13]

τ2m =
6

h2y

1− cos(hym)

2 + cos(hym)
, m = 1, . . . ,M − 1

with respective L2(0, π)-normalized eigenfunctions

θ̂m(y) := c

M−1∑
l=1

sin(mhyl)ψl(y), c :=
∥∥∥M−1∑

l=1

sin(mhyl)ψl

∥∥∥−1

L2(0,π)
, m = 1, . . . ,M − 1.

This leads us to introduce

λ̂m,ry,h− :=

√
6

ryh−

√
1− cos(ryh−m)

2 + cos(ryh−m)
=

√
6

hy

√
1− cos(hym)

2 + cos(hym)
, m = 1, . . . ,M − 1.

Hence we define respective modified quantities

â
(m)
± :=

1

h±
+ λ̂2m,ry,h−

1

3
h±,

b̂
(m)
± := − 1

h±
+ λ̂2m,ry,h−

1

6
h±,

µ̂m,1,± :=
1

b̂
(m)
±

(
−â(m)

± +

√
(â

(m)
± )2 − (b̂

(m)
± )2

)
,

µ̂m,2,± :=
1

b̂
(m)
±

(
−â(m)

± −
√
(â

(m)
± )2 − (b̂

(m)
± )2

)
,

µ̂m,± :=

{
µ̂m,1,±, b̂

(m)
± ̸= 0,

0, b̂
(m)
± = 0,

,

d̂m :=
σ−b

(m)
− µ̂m,− + σ−â

(m)
− + σ+â

(m)
+ + σ+b̂

(m)
+ µ̂m,+

b̂
(m)
− µ̂m,− + â

(m)
− + â

(m)
+ + b̂

(m)
+ µ̂m,+

,

v̂m(x) :=
1√

b̂
(m)
− µ̂m,− + â

(m)
− + â

(m)
+ + b̂

(m)
+ µ̂m,+

(
ϕ0(x) +

∑
n∈Z+

µ̂n
m,+ϕn(x) +

∑
n∈Z−

µ̂−n
m,−ϕn(x)

)
for m = 1, . . . ,M − 1. The forthcoming two lemmas follow in analogy to Section 3.1.2.

Lemma 3.11. The space Vh± ⊗Why
admits an orthogonal decomposition

Vh± ⊗Why
=
(
V −
h±

⊗Why

)
⊕⊥ V̂ 0

h±
⊕⊥

(
V +
h±

⊗Why

)
,

where V −
h±

= {v ∈ Vh± : v|R+
= 0} and V +

h±
− = {v ∈ Vh± : v|R− = 0}. The subspace V̂ 0

h±
is

spanned by the orthonormal basis
(
v̂m(x)⊗ θ̂m(y)

)
m=1,...,M−1

.

Proof. The proof can be obtained by following the steps of the proof of Lemma 3.4 one-to-one.
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Lemma 3.12. The operator Ah±,hy
is block diagonal with respect to the orthogonal decomposition

given in Lemma 3.11. The blocks corresponding to V −
h±

⊗Why and V +
h±

⊗Why equal the identity

times σ− and σ+ respectively. The block corresponding to V̂ 0
h±

is diagonal with respect to the

basis given in Lemma 3.11 and the diagonal entries are given by d̂m. Non-verbally: For each
u−, u

†
− ∈ V −

h±
⊗ Why , u0, u

†
0 ∈ V̂ 0

h±
, u+, u

†
+ ∈ V +

h±
⊗ Why and u0 =

∑M−1
m=1 βmv̂m ⊗ θ̂m, u†0 =∑M−1

m=1 β
†
mv̂m ⊗ θ̂m, (βm)M−1

m=1 , (β
†
m)Mm=1 ∈ RM−1 it holds that

aΩ(u− + u0 + u+, u
†
− + u†0 + u†+) = σ−⟨u−, u†−⟩H1

0 (Ω) +

M−1∑
m=1

d̂mβmβ
†
m + σ+⟨u+, u†+⟩H1

0 (Ω).

Proof. The proof can be obtained by following the steps of the proof of Lemma 3.5 one-to-one.

To analyze the diagonal entries d̂m we define

hry (s) :=

√
6

r2y

1− cos(s)

2 + cos(s)

and introduce the following lemmas.

Lemma 3.13. It holds that λ̂m,ry,h−h− = hry (rymh−) and d̂m = σ−fκ,r
(
hry (rymh−)

)
for m =

1, . . . ,M − 1.

Proof. An elementary computation shows

λ̂2m,ry,h−
h2− =

6

r2yh
2
−

1− cos(ryh−m)

2 + cos(ryh−m)
h2− = hry (rymh−)

2.

Then as in Lemma 3.6 it follows that d̂m = σ−fκ,r
(
λ̂m,ry,h−h−

)
and combining these two identities

yields that d̂m = σ−fκ,r
(
hry (rymh−)

)
.

Lemma 3.14. If one of the following two conditions

|κ| < 1 and r2κ2 > 1 + r2y(1− κ2)︸ ︷︷ ︸
(17a)

or |κ| > 1 and r2κ2 < 1 + r2y(1− κ2)︸ ︷︷ ︸
(17b)

(17)

is satisfied, then the problem to find s ∈ (0, π] such that hry (s) = tκ,r admits the unique solution

sκ,r,ry := arccos

1− r2yt
2
κ,r

3

1 +
r2yt

2
κ,r

6

 = arccos

(
1 +

6r2y(1− κ2)

(1− κ2r2)− 2r2y(1− κ2)

)
.

Proof. First, one can check, that the inequalities guarantee that
6r2y(1−κ2)

(1−κ2r2)−2r2y(1−κ2) ∈ (−2, 0) so

sκ,r,ry is well defined. Now we compute

hry (sκ,r,ry )
2 =

6

r2y

1− cos(sκ,r,ry )

2 + cos(sκ,r,ry )
=

6

r2y

1− 1−
r2yt2κ,r

3

1+
r2yt2κ,r

6

2 +
1−

r2yt2κ,r
3

1+
r2yt2κ,r

6

=
6

r2y

3
r2yt

2
κ,r

6

3
= t2κ,r.

Before we formulate the next Lemma 3.15, let us recall that h− =
hy

ry
= π

ryM
.

Lemma 3.15. If (17) is satisfied, then limM→+∞ infm∈{1,...,M−1}
∣∣fκ,r(hry (mπ

M )
)∣∣ = 0.
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Proof. Because the rational numbers are dense in the real numbers, for each ϵ > 0 there exists
Mϵ ∈ N such that for allM ∈ N,M > Mϵ there existsm ∈ {1, ..,M−1} such that

∣∣m
M π − sκ,r,ry

∣∣ <
ϵ. The theorem now follows from the continuity of fκ,r ◦ hry and fκ,r(hry (sκ,r,ry )) = 0.

Lemma 3.16. If one of the following two conditions

|κ| < 1 and r2κ2 < 1 + r2y(1− κ2)︸ ︷︷ ︸
(18a)

or |κ| > 1 and r2κ2 > 1 + r2y(1− κ2)︸ ︷︷ ︸
(18b)

(18)

is satisfied, then infs∈R |fκ,r
(
hry (s)

)
| ≥ min

{ ∣∣ 1+κ
2

∣∣ , ∣∣∣∣√1+r2y+κ
√

r2+r2y√
1+r2y+

√
r2+r2y

∣∣∣∣ } > 0.

Proof. The reasoning is the same as in the proof of Lemma 3.9. The only difference in this case

is, that hry (s) ∈ [0,
√
12
ry

] so we do not consider the limit at infinity and get

fκ,r

(√
12

ry

)
=

1 + κ

√
r2+r2y
1+r2y

1 +

√
r2+r2y
1+r2y

=

√
1 + r2y + κ

√
r2 + r2y√

1 + r2y +
√
r2 + r2y

instead. Again, the condition (18) ensures, that both bounds have the same sign, so we can safely
take the minimum of their absolute values.

Now we are in the position to conclude our analysis of the full discretization (7) in the following
theorem.

Theorem 3.17. If (18) is satisfied, then A−1
h±,hy

exists and satisfies

∥A−1
h±,hy

∥L(Vh±⊗Why )
≤ 1

|σ−|min

{
1, |κ|,

∣∣ 1+κ
2

∣∣ , ∣∣∣∣√1+r2y+κ
√

r2+r2y√
1+r2y+

√
r2+r2y

∣∣∣∣}
Contrary, if (17) is satisfied, then

lim
h−→0

∥A−1
h±,hy

∥L(Vh±⊗Why )
= +∞

(where we define ∥A−1
h±,hy

∥L(Vh±⊗Why )
:= +∞, if A−1

h±,hy
does not exist), and in particular Ah±,hy

admits a nontrivial kernel for each

h− =
1

m

1

ry
sκ,r,ry =

1

m

1

ry
arccos

(
1 +

6r2y(1− κ2)

(1− κ2r2)− 2r2y(1− κ2)

)
, m ∈ N.

Note that to simultaneously satisfy π
hy

∈ N we can choose a particular ry or r such that sκ,r,ry =

πl/k, l, k ∈ N, which yields that π
hy

∈ N for m ∈ kN.

Proof. The proof can be obtained by following the steps of the proof of Theorem 3.10 one-to-one
and replacing needed lemmas by the corresponding lemmas from this section.

3.2 Bounded domain

Now we consider a bounded domain for which actual numerical computations are possible. Since
the well-posedness analysis follows along the lines of Section 3.1.1 we suffice ourselves with stating
following lemma without proof.
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Lemma 3.18. The space H1
0 (Ω̃) admits an orthogonal decomposition H1

0 (Ω̃) = X̃−⊕⊥ X̃0⊕⊥ X̃+

where X̃± := {u ∈ H1
0 (Ω̃) : u|Ω̃∓

= 0} and X̃0 is spanned by the orthonormal basis(
1√

2λm(e4λmL − 1)

(
e2λmLe−λm|x| − eλm|x|

)
⊗ θm(y)

)
m∈N

.

The operator Ã is block diagonal and the statements of Lemma 3.2 and Corollary 3.3 apply with
A, X±, X0 being replaced by Ã, X̃±, X̃0.

3.2.1 Semi discretization

We consider a semi discretization of problem (2b) by means of Galerkin spaces Ṽh± ⊗H1
0 (0, π):

Find u ∈ Ṽh± ⊗H1
0 (0, π) such that aΩ̃(u, u

†) = ⟨f, u†⟩Ω̃ for all u† ∈ Ṽh± ⊗H1
0 (0, π). (19)

Let Ãh± ∈ L(Ṽh± ⊗H1
0 (0, π)) be the associated operator defined by

⟨Ãh±u, u
†⟩H1

0 (Ω̃) = aΩ̃(u, u
†) for all u, u† ∈ Ṽh± ⊗H1

0 (0, π). (20)

As in the unbounded case we can use (1) and derive a decomposition into Fourier modes as in

(9). Similarly we then also get that for um =
∑N+

n=−N−
αnϕn, u

†
m =

∑N+

n=−N−
α†
nϕn, αn, α

†
n ∈ R

it follows that

⟨σ∂xum, ∂xu†m⟩R + λ2m⟨σum, u†m⟩R =

N+∑
n=−N−

N+∑
n′=−N−

α†
n′A

(m)
n′,nαn,

where

Ã(m) :=



2σ−a
(m)
− σ−b

(m)
−

σ−b
(m)
−

. . .
. . .

. . . 2σ−a
(m)
− σ−b

(m)
−

σ−b
(m)
− σ−a

(m)
− + σ+a

(m)
+ σ+b

(m)
+

σ+b
(m)
+ 2σ+a

(m)
+

. . .

. . .
. . . σ+b

(m)
+

σ+b
(m)
+ 2σ+a

(m)
+


.

After these considerations we can again derive an orthogonal decomposition as follows.

Lemma 3.19. The space Ṽh± ⊗H1
0 (0, π) admits an orthogonal decomposition

Ṽh± ⊗H1
0 (0, π) =

(
Ṽ −
h±

⊗H1
0 (0, π)

)
⊕⊥ Ṽ 0

h±
⊕⊥

(
Ṽ +
h±

⊗H1
0 (0, π)

)
,

where Ṽ −
h±

:= {v ∈ Ṽh± : v|(0,L) = 0} and Ṽ +
h±

− := {v ∈ Ṽh± : v|(−L,0) = 0}. The subspace Ṽ 0
h±

is

spanned by the orthonormal basis
(
ṽm(x)⊗ θm(y)

)
m∈N, where

ṽm(x) :=
1√

1+ν
N−
m,−

1−ν
N−
m,−

√
(a

(m)
− )2 − (b

(m)
− )2 +

1+ν
N+
m,+

1−ν
N+
m,+

√
(a

(m)
+ )2 − (b

(m)
+ )2

(
ϕ0(x)

+

−1∑
n=−N−

µ−n
m,1,− − ν

N−
m,−µ

−n
m,2,−

1− ν
N−
m,−

ϕn(x) +

N+∑
n=1

µn
m,1,+ − ν

N+

m,+µ
n
m,2,+

1− ν
N+

m,+

ϕn(x)

)
.

Here µm,1,±, µm,2,± are as defined in Section 3.1.2 and νm,± :=
µm,1,±
µm,2,±

.
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Proof. The structure and beginning of the proof is the same as in Lemma 3.4. We again get the
orthogonality of Ṽ −

h±
⊗H1

0 (0, π) and Ṽ
+
h±

⊗H1
0 (0, π) because of non-intersecting supports and we

get that the coefficients of ṽm in the finite element basis given by ṽm =
∑N+

n=−N−
β̃
(m)
n ϕn satisfy

the system of equations

b
(m)
− β̃(m)

n + 2a
(m)
− β̃

(m)
n+1 + b

(m)
− β̃

(m)
n+2 = 0, −N− ≤ n ≤ −2,

b
(m)
+ β̃(m)

n + 2a
(m)
+ β̃

(m)
n+1 + b

(m)
+ β̃

(m)
n+2 = 0, 0 ≤ n ≤ N+ − 2.

We now first treat the case when b
(m)
− , b

(m)
+ ̸= 0 and get that this system is solved by

β̃(m)
n = c1,−µ

−n
m,1,− + c2,−µ

−n
m,2,−, −N− ≤ n ≤ 0,

β̃(m)
n = c1,+µ

n
m,1,+ + c2,+µ

n
m,2,+, 0 ≤ n ≤ N+.

where only the constants c1,±, c2,± still have to be determined. To do this, we use that both

equations hold for n = 0 and that β̃
(m)
−N−

= β̃
(m)
N+

= 0 because of the Dirichlet boundary conditions.
This leads to the system

c1,− + c2,− = c1,+ + c2,+,

c1,−µ
−N−
m,1,− + c2,−µ

−N−
m,2,− = 0,

c1,+µ
N+

m,1,+ + c2,+µ
N+

m,2,+ = 0,

with the solution

c1,+ =
β̃
(m)
0

1− ν
N+

m,+

, c2,+ = − β̃
(m)
0

1− ν
N+

m,+

ν
N+

m,+, c1,− =
β̃
(m)
0

1− ν
N−
m,−

, c2,− = − β̃
(m)
0

1− ν
N−
m,−

ν
N−
m,+.

Here β̃
(m)
0 still has to be determined. This means, that

β̃(m)
n = β̃

(m)
0

µ−n
m,1,− − ν

N−
m,−µ

−n
m,2,−

1− ν
N−
m,−

, −N− ≤ n ≤ 0

β̃(m)
n = β̃

(m)
0

µn
m,1,+ − ν

N+

m,+µ
n
m,2,+

1− ν
N+

m,+

, 0 ≤ n ≤ N+.

One can check that these formulas still hold in the case where b
(m)
− or b

(m)
+ is zero if we then set

µm,1,± to zero as we have done before and set µm,2,± to an arbitrary positive number. Finally

we compute β̃
(m)
0 to normalize the solution. For this we only have to consider the scalar product
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with ϕ0 because of orthogonality. This leads to

1 = ⟨∂xṽm, ∂xṽm⟩R + λ2m⟨ṽm, ṽm⟩R

=

N+∑
n=N−

β̃(m)
n

(
⟨∂xϕn, ∂xṽm⟩R + λ2m⟨ϕn, ṽm⟩R

)
= β̃

(m)
0

(
⟨∂xϕ0, ∂xṽm⟩R + λ2m⟨ϕ0, ṽm⟩R

)
= (β̃

(m)
0 )2

(
µm,1,− − ν

N−
m,−µm,2,−

1− ν
N−
m,−

b
(m)
− + a

(m)
− + a

(m)
+ +

µm,1,+ − ν
N+

m,+µm,2,+

1− ν
N+

m,+

b
(m)
+

)

=
(
β̃
(m)
0

)2( (µm,1,−b
(m)
− + a

(m)
− )− ν

N−
m,−(µm,2,−b

(m)
− + a

(m)
− )

1− ν
N−
m,−

+
(µm,1,+b

(m)
+ + a

(m)
+ )− ν

N+

m,+(µm,2,+b
(m)
+ + a

(m)
+ )

1− ν
N+

m,+

)

=
(
β̃
(m)
0

)2
√
(a

(m)
− )2 − (b

(m)
− )2 + ν

N−
m,−

√
(a

(m)
− )2 − (b

(m)
− )2

1− ν
N−
m,−

+

√
(a

(m)
+ )2 − (b

(m)
+ )2 + ν

N+

m,+

√
(a

(m)
+ )2 − (b

(m)
+ )2

1− ν
N+

m,+


=
(
β̃
(m)
0

)2(1 + ν
N−
m,−

1− ν
N−
m,−

√
(a

(m)
− )2 − (b

(m)
− )2 +

1 + ν
N+

m,+

1− ν
N+

m,+

√
(a

(m)
+ )2 − (b

(m)
+ )2

)
,

i.e.,

β̃
(m)
0 =

1√
1+ν

N−
m,−

1−ν
N−
m,−

√
(a

(m)
− )2 − (b

(m)
− )2 +

1+ν
N+
m,+

1−ν
N+
m,+

√
(a

(m)
+ )2 − (b

(m)
+ )2

.

Lemma 3.20. The operator Ãh± is block diagonal with respect to the orthogonal decomposition

given in Lemma 3.19. The blocks corresponding to Ṽ −
h±

⊗H1
0 (0, π) and Ṽ +

h±
⊗H1

0 (0, π) equal the

identity times σ− and σ+ respectively. The block corresponding to Ṽ 0
h±

is diagonal with respect to
the basis given in Lemma 3.19 and the diagonal entries are given by

d̃m :=

σ−
1+ν

N−
m,−

1−ν
N−
m,−

√
(a

(m)
− )2 − (b

(m)
− )2 + σ+

1+ν
N+
m,+

1−ν
N+
m,+

√
(a

(m)
+ )2 − (b

(m)
+ )2

1+ν
N−
m,−

1−ν
N−
m,−

√
(a

(m)
− )2 − (b

(m)
− )2 +

1+ν
N+
m,+

1−ν
N+
m,+

√
(a

(m)
+ )2 − (b

(m)
+ )2

, m ∈ N. (21)

Non-verbally: For each u−, u
†
− ∈ Ṽ −

h±
⊗ H1

0 (0, π), u0, u
†
0 ∈ Ṽ 0

h±
, u+, u

†
+ ∈ Ṽ +

h±
⊗ H1

0 (0, π) and

u0 =
∑

m∈N βmṽm ⊗ θm, u†0 =
∑

m∈N β
†
mṽm ⊗ θm, (βm)m∈N, (β

†
m)m∈N ∈ ℓ2(N) it holds that

aΩ̃(u− + u0 + u+, u
†
− + u†0 + u†+) = σ−⟨u−, u†−⟩H1

0 (Ω̃) +
∑
m∈N

d̃mβmβ
†
m + σ+⟨u+, u†+⟩H1

0 (Ω̃).

Proof. The statement can be obtained by repeating the steps from Lemma 3.5 one-to-one.
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We will now analyze the diagonal entries d̃m and to do this we introduce the following functions:

f̃κ,r,λm
(t) :=

1 + κ
√
r2t2+12√
t2+12

zr,λm
(t)

1 +
√
r2t2+12√
t2+12

zr,λm
(t)

, zr,λm
(t) :=

jλmL(q(t))

jλmL(q(rt))
,

q(t) :=

1 + 1
3 t

2 − t
√
1 + 1

12 t
2

1 + 1
3 t

2 + t
√
1 + 1

12 t
2


1
t

, jn(q) :=
1− qn

1 + qn
.

Lemma 3.21. The diagonal entries d̃m defined in (21) satisfy d̃m = σ− f̃κ,r,λm
(λmh−).

Proof. We first compute

ν
N−
m,− =

(
µm,1,−

µm,2,−

) L
h−

=

1 + 1
3λ

2
mh

2
− − h−λm

√
1 + 1

12λ
2
mh

2
−

1 + 1
3λ

2
mh

2
− + h−λm

√
1 + 1

12λ
2
mh

2
−


λmL

λmh−

= q(h−λm)λmL.

In the same way, we get ν
N+

m,+ = q(rh−λm)λmL. Now we calculate

d̃m =

σ−
1+ν

N−
m,−

1−ν
N−
m,−

√
(a

(m)
− )2 − (b

(m)
− )2 + σ+

1+ν
N+
m,+

1−ν
N+
m,+

√
(a

(m)
+ )2 − (b

(m)
+ )2

1+ν
N−
m,−

1−ν
N−
m,−

√
(a

(m)
− )2 − (b

(m)
− )2 +

1+ν
N+
m,+

1−ν
N+
m,+

√
(a

(m)
+ )2 − (b

(m)
+ )2

=

σ−λm

jλmL(q(λmh−))

√
1 + 1

12λ
2
mh

2
− + σ+λm

jλmL(q(rλmh−))

√
1 + 1

12r
2λ2mh

2
−

λm

jλmL(q(λmh−))

√
1 + 1

12λ
2
mh

2
− + λm

jλmL(q(rλmh−))

√
1 + 1

12r
2λ2mh

2
−

= σ−

√
1 + 1

12λ
2
mh

2
− +

κjλmL(q(λmh−))
jλmL(q(rλmh−))

√
1 + 1

12r
2λ2mh

2
−√

1 + 1
12λ

2
mh

2
− +

jλmL(q(λmh−))
jλmL(q(rλmh−))

√
1 + 1

12r
2λ2mh

2
−

= σ−

1 + κzr,λm(λmh−)

√
12+r2λ2

mh2
−√

12+λ2
mh2

−

1 + zr,λm(λmh−)

√
12+r2λ2

mh2
−√

12+λ2
mh2

−

= σ− f̃κ,r,λm
(λmh−).

In preperation of Lemma 3.23 we formulate the following Lemma.

Lemma 3.22. For each c > 0 it holds that limh−→0+ supλ>0,λh−≥c zr,λ(λh−) = 1.

Proof. Note that the auxiliary function jn in the definition of zr,λm was chosen this way to deal
with a particular technicality in proof Lemma 3.26. Here however, we exploit the more explicit
representation

zr,λ(λh−) =
1−

(
q(λh−)

λh−
) L

h−

1 + (q(λh−)λh−)
L

h−

1 +
(
q(rλh−)

rλh−
) L

rh−

1− (q(rλh−)rλh−)
L

rh−

The claim follows now from supt≥ c
max(1,r)

q(t)t < 1.

The following lemma is the pendant to Lemma 3.8.

Lemma 3.23. If (14) is satisfied, then limh−→0+ infm∈N
∣∣̃fκ,r,λm

(λmh−)
∣∣ = 0.
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Proof. We proceed as in the proof of Lemma 3.8:
Let h− = 1

l+ϵ tκ,r with l ∈ N0 and ϵ ∈ [0, 1). We choosem = l and exploit that liml→+∞
l

l+ϵ → 1

uniformly in ϵ ∈ [0, 1). Thus also λmh− = l
l+ϵ tκ,r

l→+∞−−−−→ tκ,r uniformly in ϵ ∈ [0, 1).

Lemma 3.22 yields that liml→+∞ zr,λl
( l
l+ϵ tκ,r) = 1, which in combination with the continuity

of fκ,r and fκ,r(tκ,r) = 0 provides the claim.

In preperation of Lemma 3.26 we introduce the following Lemmas 3.24 and 3.25, where
Lemma 3.24 is itself an auxiliary result for Lemma 3.25.

Lemma 3.24. Let I be a closed subintervall of (0, 1) and c > 0. Then the following statements
hold:

1. The family {jn : n ∈ [c,∞)} and the family of their derivatives are both uniformly bounded
on I.

2. The family { 1
jn

: n ∈ [c,∞)} and the family of their derivatives are both uniformly bounded
on I.

3. q is continuously differentiable on [0,∞).

4. limt→0+ q(t) = e−2.

Proof. Let I = [a, b], a, b ∈ (0, 1). Thence qn ∈ (0, bc] ⊂ (0, 1) for q ∈ [a, b]. Thus jn(q) ≤ 1 and

1/jn(q) ≤ sups∈(0,bc]
1+s
1−s = 1+bc

1−bc . Furthermore, j′n(q) = 2nqn−1

(1−qn)2 and (1/jn)
′(q) = −2nqn−1

(1+qn)2 from

which we can deduce the first two claims. The differentiability of q follows in a straightforward
fashion. The last claim follows by applying the de l’Hospital rule to log q.

Lemma 3.25. For r, c > 0 the family {zr,λ : λ ∈ [c,∞)} is equicontinuous from the right at 0 and
limt→0+ zr,λ(t) = 1.

Proof. Due to the second half of Lemma 3.24 there exist δ > 0 and q1, q2 ∈ (0, 1), q1 < q2 such
that q(t), q(rt) ∈ (q1, q2) for all t ∈ [0, δ). Then Lemma 3.24 and the product rule yield that
t 7→ zr,λ(t) is uniformly equicontinuous on t ∈ [0, δ), λ ≥ c. At last we obtain limt→0+ zr,λ(t) = 1
from limt→0+ q(t) = e−2 = limt→0+ q(rt).

Lemma 3.26. If ϵ ∈ (0, 1) and one of the following two conditions

|κ|(1 + ϵ) < 1 and r|κ|(1 + ϵ) < 1︸ ︷︷ ︸
(22a)

or |κ|(1− ϵ) > 1 and r|κ|(1− ϵ) > 1︸ ︷︷ ︸
(22b)

(22)

is satisfied, then there exists δ > 0 such that

inf
h−∈(0,δ)

λ≥1

|̃fκ,r,λ(λh−)| ≥ min
p∈{±1}

min

{
|1 + (1 + pϵ)κ|

2 + ϵ
,
|1 + (1 + pϵ)κr|
1 + (1 + ϵ)r

}
.

Proof. Due to Lemma 3.25 we can find τ > 0 such that zr,λ(λh−) ∈ [1 − ϵ, 1 + ϵ] for all λh− ∈
[0, τ ], h− > 0, λ ≥ 1. On the other hand, Lemma 3.22 yields the existence of δ > 0 such that
zr,λ(λh−) ∈ [1 − ϵ, 1 + ϵ] for all λh− ≥ τ, h− ∈ (0, δ), λ ≥ 1. Thus zr,λ(t) ∈ [1 − ϵ, 1 + ϵ] for all
t = λh−, λ ≥ 1, h− ∈ (0, δ). Thence

inf
h−∈(0,δ)

λ≥1

|̃fκ,r,λ(λh−)| ≥ inf
t>0,p∈{±1}

∣∣∣1 + κ(1 + pϵ)
√

12+r2t2

12+t2

∣∣∣
1 + (1 + ϵ)

√
12+t2h2

−
12+t2

,

from which the claim follows.

Having analyzed f̃κ,r,λm
we can now proof the following theorem about the stability of Ãh± .
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Theorem 3.27. If for some ϵ ∈ (0, 1) (22) is satisfied, then Ã−1
h±

exists and satisfies

∥Ã−1
h±

∥L(Ṽh±⊗H1
0 (0,π))

≤ 1

|σ−|min
{
1, |κ|, |1+(1+ϵ)κ|

2+ϵ , |1+(1−ϵ)κ|
2+ϵ , |1+(1+ϵ)κr|

1+(1+ϵ)r , |1+(1−ϵ)κr|
1+(1+ϵ)r

}
for all h− ∈ (0, δ) with δ > 0 as in Lemma 3.26. Contrary, if (14) is satisfied then

lim
h−→0

∥Ã−1
h±

∥L(Ṽh±⊗H1
0 (0,π))

= +∞

(where we define ∥Ã−1
h±

∥L(Ṽh±⊗H1
0 (0,π))

:= +∞, if Ã−1
h±

does not exist).

Proof. As in the previous sections the theorem follows directly from the properties of f̃κ,r,λm
that

where shown in the Lemmas 3.23 and 3.26.

3.2.2 Full discretization

As for the unbounded domain, the only difference is that we now consider λ̂m,ry,h− that also

depend on h− and where in variables that depend on λm we replace it by λ̂m,ry,h− and indicate

this by adding a hat. In addition, we define ν̂m,± :=
µ̂m,1,±
µ̂m,2,±

. The following three lemmas can then

be derived correspondingly to Lemmas 3.19 to 3.21.

Lemma 3.28. The space Ṽh± ⊗Why
admits an orthogonal decomposition

Ṽh± ⊗Why
=
(
Ṽ −
h±

⊗Why

)
⊕⊥ ˆ̃V 0

h±
⊕⊥

(
Ṽ +
h±

⊗Why

)
,

where Ṽ −
h±

:= {v ∈ Ṽh± : v|R+
= 0} and Ṽ +

h±
− := {v ∈ Ṽh± : v|R− = 0}. The subspace ˆ̃V 0

h±
is

spanned by the orthonormal basis
(
ˆ̃vm(x)⊗ θ̂m(y)

)
m=1,...,M−1

, where

ˆ̃vm(x) :=
1√

1+ν̂
N−
m,−

1−ν̂
N−
m,−

√
(â

(m)
− )2 − (b̂

(m)
− )2 +

1+ν̂
N+
m,+

1−ν̂
N+
m,+

√
(â

(m)
+ )2 − (b̂

(m)
+ )2

(
ϕ0(x)

+

−1∑
n=−N−

µ̂−n
m,1,− − ν̂

N−
m,−µ̂

−n
m,2,−

1− ν̂
N−
m,−

ϕn(x) +

N+∑
n=1

µ̂n
m,1,+ − ν̂

N+

m,+µ̂
n
m,2,+

1− ν̂
N+

m,+

ϕn(x)

)
.

Lemma 3.29. The operator Ãh±,hy is block diagonal with respect to the orthogonal decomposition

given in Lemma 3.28. The blocks corresponding to Ṽ −
h±

⊗Why
and Ṽ +

h±
⊗Why

equal the identity

times σ− and σ+ respectively. The block corresponding to ˆ̃V 0
h±

is diagonal with respect to the basis
given in Lemma 3.28 and the diagonal entries are given by

ˆ̃
dm :=

σ−
1+ν̂

N−
m,−

1−ν̂
N−
m,−

√
(a

(m)
− )2 − (b

(m)
− )2 + σ+

1+ν̂
N+
m,+

1−ν̂
N+
m,+

√
(a

(m)
+ )2 − (b

(m)
+ )2

1+ν̂
N−
m,−

1−ν̂
N−
m,−

√
(a

(m)
− )2 − (b

(m)
− )2 +

1+ν̂
N+
m,+

1−ν̂
N+
m,+

√
(a

(m)
+ )2 − (b

(m)
+ )2

, m = 1, . . . ,M − 1. (23)

Non-verbally: For each u−, u
†
− ∈ Ṽ −

h±
⊗ Why

, u0, u
†
0 ∈ ˆ̃V 0

h±
, u+, u

†
+ ∈ Ṽ +

h±
⊗ Why

and u0 =∑M−1
m=1 βm

ˆ̃vm ⊗ θ̂m, u†0 =
∑M−1

m=1 β
†
m
ˆ̃vm ⊗ θ̂m, (βm)M−1

m=1 , (β
†
m)Mm=1 ∈ RM−1 it holds that

aΩ̃(u− + u0 + u+, u
†
− + u†0 + u†+) = σ−⟨u−, u†−⟩H1

0 (Ω̃) +

M−1∑
m=1

ˆ̃
dmβmβ

†
m + σ+⟨u+, u†+⟩H1

0 (Ω̃).
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Lemma 3.30. The diagonal entries
ˆ̃
dm satisfy

ˆ̃
dm = σ− f̃κ,r,λ̂m,ry,h−

(
hry (rymh−)

)
for m =

1, . . . ,M − 1.

Now we investigate f̃κ,r,λ̂m,ry,h−

(
hry (rymh−)

)
. Since we have already shown, that f̃κ,r,λ is

equicontinuous at zero in λ ≥ 1 and because λ̂m,ry,h− ≥ λm ≥ 1, the only difference to the
previous analysis concerning the unbounded domain is that we have to deal with the additional
composition with the continuous function hry . Before we formulate the next Lemma 3.15, let us

recall that h− =
hy

ry
= π

ryM
.

Lemma 3.31. If (17) is satisfied, then limM→+∞ infm∈{1,...,M−1}
∣∣̃fκ,r,λ̂m,ry,h−

(
hry (

mπ
ryM

)
)∣∣ = 0.

Proof. The proof follows along the lines of the proof of Lemma 3.15, where in addition we apply
Lemma 3.22 to cope with the replacement of fκ,r by f̃κ,r,λ̂m,ry,h−

.

Lemma 3.32. If for ϵ ∈ (0, 1) one of the following two conditions

|κ|(1 + ϵ) < 1 and r2κ2(1 + ϵ)2 < 1 + ry(1− κ2(1 + ϵ)2) (24a)

or

|κ|(1− ϵ) > 1 and r2κ2(1− ϵ)2 > 1 + r2y(1− κ2(1− ϵ)2) (24b)

is satisfied, then there exists δ > 0 such that

inf
h−∈(0,δ)

m∈{1,...,M−1}

∣∣̃fκ,r,λ̂m,ry,h−

(
hry (rymh−)

)∣∣
≥ min

p∈{±1}
min

{
|1 + (1 + pϵ)κ|

2 + ϵ
,

∣∣√1 + r2y + (1 + pϵ)κ
√
r2 + r2y

∣∣√
1 + r2y + (1 + ϵ)

√
r2 + r2y

}
> 0.

Proof. It suffices to combine the techniques used for Lemma 3.16 and Lemma 3.26. As in the
proof of Lemma 3.26 we choose δ > 0 such that zr,λ̂m,ry,h−

(λ̂m,ry,h−h−) ∈ [1 − ϵ, 1 + ϵ] for all

λ̂m,ry,h− ≥ 1, h− ∈ (0, δ). Thence

inf
h−∈(0,δ)

m∈{1,...,M−1}

∣∣̃fκ,r,λ̂m,ry,h−

(
hry (rymh−)

)∣∣ ≥ inf
t∈[0,

√
12/ry ],p∈{±1}

∣∣∣1 + κ(1 + pϵ)
√

12+r2t2

12+t2

∣∣∣
1 + (1 + ϵ)

√
12+t2h2

−
12+t2

,

from which the claim follows.

Now we are in the position to conclude our analysis of the full discretization of (2b) in the
following theorem.

Theorem 3.33. If (24) is satisfied for some ϵ ∈ (0, 1), then Ã−1
h±,hy

exists and satisfies

∥Ã−1
h±,hy

∥L(Ṽh±⊗Why )
≤ 1

|σ−|minp∈{±1} min

{
1, |κ|, |1+(1+pϵ)κ|

2+ϵ ,
|
√

1+r2y+(1+pϵ)κ
√

r2+r2y|√
1+r2y+(1+ϵ)

√
r2+r2y

}
for all h− ∈ (0, δ) with δ > 0 as in Lemma 3.16. Contrary, if (17) is satisfied, then

lim
h−→0

∥Ã−1
h±,hy

∥L(Ṽh±⊗Why )
= +∞

(where we define ∥Ã−1
h±,hy

∥L(Ṽh±⊗Why )
:= +∞, if Ã−1

h±,hy
does not exist).

Proof. As for Theorems 3.10, 3.17 and 3.27 the claims follow directly from the respective Lem-
mas 3.29 to 3.32.
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4 Computational examples

We will now confirm our theoretical results by testing them in explicit computational examples.
The code to reproduce all of them is provided in [19]. We consider the following problem posed
on a bounded domain:

Find u ∈ H1
0 (Ω̃) such that − div(σ∇u) = f in Ω̃ = (−L,L)× (0, π),

with f(x, y) = −σ
[
−2y(y − π)(y − 2π)

L2
+ 6

(
1− x2

L2

)
(y − π)

]
,

which has the solution

u(x, y) =

(
1− x2

L2

)
y(y − π)(y − 2π).

First we examine the case of unstable discretizations. To this end we consider parameters as
follows:

σ− = −1, σ+ = 1.2, r = 0.5, ry =
2√
11
.

Hence the contrast at hand κ = −1.2 is rather moderate. Nevertheless, we are going to exhibit
instabilities with this particular choice of parameters, whereas convenient examples of instabilities
often require a much more critical contrast |κ− κcrit| ≈ 10−3 [1, Fig. 1], [9, Fig. 3]. We choose a
sufficiently large L ≈ 26 such that our problem is adequately close to an unbounded domain, and
hence we can expect the critical values

h− :=
1

m

1

ry
arccos

(
1 +

6r2y(1− κ2)

(1− κ2r2)− 2r2y(1− κ2)

)
=

√
11

2

1

m
arccos (1− 1)) =

√
11π

4m
m ∈ N.

(25)

given in Theorem 3.17 to yield also sensible values for our example. In particular, we choose

L := 10
√
11π
4 such that

N− =
L

h−
= 10

√
11π

4

4m√
11π

= 10m, N+ =
L

h−
= 10

√
11π

4

8m√
11π

= 20m,

M =
π

ryh−
= π

4m√
11π

√
11

2
= 2m

are natural numbers of each m ∈ N. Even though we cannot expect our discretizations to have
a non-trivial kernel at h− we observe in Figure 1 (solid lines) exorbitant errors. Nevertheless, we
recognize a decrease in the error which can be explained as follows: The drastic error is triggered
by the basis function ˆ̃vm ⊗ θ̂m for which the respective coefficient ⟨f, ˆ̃vm ⊗ θ̂m⟩L2 of f decreases
w.r.t. m ∈ N. In Figure 2 we see the numerical solution for a critical value of h− and we observe
the oscillating behaviour of ˆ̃vm ⊗ θ̂m that is corrupting the solution as predicted.

To further explore the possible behaviours of different discretizations we keep all parameters

apart from h− unchanged and choose now h− =
√
11π

4(m+ 1
2 )

to maximize the distance of h− to the

critical values (25) (while keeping N−, N+,M ∈ N). In contrast to our previous results, we observe
in Figure 1 (dashed lines) a distinct convergence of errors with convenient rates.

Finally, we consider meshes with the values of h− and h+ being exchanged. We observe in
Figure 3 a convergence with convenient rates as predicted by Theorem 3.17.

To conclude, for problems with more complicated geometries and discretizations with non-
uniform meshes we expect a mixed behaviour, where at each new mesh refinement a stable or
unstable setting is dominant in an unpredictable way, giving rise to the commonly observed zigzag
error curves.
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Figure 1: Relative errors for critical values of h− (solid lines) and for nearly critical values of h−
(dashed lines).

Figure 2: Computed solution for h− ≈ 0.26048 in a neighborhood of the interface {0} × (0, π).
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Figure 3: Relative errors for a mesh satisfying (24).

Figure 4: Computed solution for h+ ≈ 0.26048 on a flipped mesh in a neighborhood of the interface
{0} × (0, π).
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