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Abstract

We consider a scalar diffusion equation with a sign-changing coefficient in its principle part.
The well-posedness of such problems has already been studied extensively provided that the
contrast of the coefficient is non-critical. Furthermore, many different approaches have been
proposed to construct stable discretizations thereof, because naive finite element discretiza-
tions are expected to be non-reliable in general. However, no explicit example proving the
actual instability is known and numerical experiments often do not manifest instabilities in
a conclusive manner. To this end we construct an explicit example with a broad family of
meshes for which we prove that the corresponding naive finite element discretizations are
unstable. On the other hand, we also provide a broad family of (non-symmetric) meshes for
which we prove that the discretizations are stable. Together, these two findings explain the
results observed in numerical experiments.

MSC: 65N12, 65N30, 78M10
Keywords: sign-changing coefficients, meta materials, finite element method, stability anal-
ysis

1 Introduction

In this article we consider diffusion equations — div(cVu) = f with a sign-changing coefficient o,
i.e., the domain © admits a decomposition in 24 for which +o|q, > 0. Such equations occur, e.g.,
for fully homogenized meta materials and their reliable simulation is essential for the development
of technical devices, e.g., to control sound [12] and for cloaking [14]. The well-posedness of prob-
lems with sign-changing coefficients has been studied extensively by means of the T-coercivity
technique [7, 8, 5] and is known to depent on the contrast of ¢ and the smoothness/geometry
of the interface Q. N Q_. An alternative approach to analyze such PDEs has been investigated
in [I7, 18] by means of the limiting absorption principle. The stability of convenient finite ele-
ment discretizations is known only for sufficiently large contrasts [6] and therefore a variety of
approaches to construct stable approximations have been explored, including locally symmetric
meshes [4], [15], optimization based methods [Il, [T} 2, 10], boundary element methods [20], weakly
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coercive reformulations [I6] and primal-dual stabilizations [9]. However, in contrast to this exten-
sive research on the development of stable discretizations the question if those specialized methods
are actually necessary has received much less attention. Indeed, for reasonably small contrasts
the error curves (for decreasing mesh sizes) of naive FEMs generally do not look reliable, but still
decrease often with a saw tooth like profile [9]. At other test cases, it can even be hard to trigger
some anomalies at all [TI6]. Actually, the analysis of [4] suggest that meshes being “almost locally
symmetric” can be expected to yield stable results, and a mesh generator might produce such
meshes without further due. However, without any quantification it is hard to obtain decisive
conclusions from this observation.

To study such questions we construct in this article an explicit example with a piece-wise
constant coefficient (o4 := o|o, ) and a discretization by nodal finite elments with uniform rect-
angular grids in 4. Thereby the ratio r of the mesh sizes in 24 will play an important role in
the analysis and acts in an inverse manner to the contrast k = o4 /o_, i.e., rx will be a crucial
quantity. We prove that depending on the parameter range that all considered discretizations are
either stable or unstable. For an unstructured mesh we expect that either case can be dominant,
which explains the unconclusive observations in numerical experiments.

The remainder of the manuscript is structured as follows. In Section [2| we specify the two con-
sidered problems and their discretization. In particular, we consider one problem on an unbouded
domain and a second problem on a bounded domain, where the first can be seen as an preper-
ational step to the second. In Section [3] we conduct our stability analysis with Theorems [3.17]
and as our main results. In Section [4] we present computational examples to confirm our
theoretical results.

2 Notation and setting

We consider all vector spaces over R and denote scalar and vectorial L2-scalar products over a
domain D C RY, 1 =1,2 as (-,-)p. Let N:={1,2,...}, L > 0 and consider the domains

Q= (—00,00) x (0,7), Q_ = (—00,0) x (0,7), Q4 = (0,00) x (0,7),
Q:=(—L,L) x (0,7), Q_ :=(—L,0) x (0,7), Q= (0,L) x (0,7).
On H}(D), D = Q,Q we work with the scalar product (u,uT>H&(D) := (Vu, Vul)p. For the

bounded domain Q the equivalence of (-, -) ni© to the standard H 1(Q)-scalar product is well
known. For the unbounded domain €2 this equivalence requires a short discussion: Let

Om(y) := \/Zsin(my), m € N.

and recall that each u € H}(Q) and u € H} () admits a representation
U(.T,y) = Z um(x)HM(y)a um(x) = (u(x, ')79m>(0,ﬂ') (1)
meN
with

lullFro) = D 10stwml 2@y + A + Dllum| 72— and
meN

@y = D 10stmlZa—r,zy + N + Dl 2.1y
meN

respectively, where



It follows that ||uHHl @ = %||u||§11(9) As usual, we consider any subspaces of H}(Q) and H}(Q)

to be equipped Wlth their inherited scalar product. R
Let o be constant on Q4 with values o_ :=o|q_ < 0 and o4 := 0|, > 0. Let f € L*(2) and
identify f with its continuation by zero to 2. We consider the following two model problems:

Find u € Hy(Q) such that — div(eVu) = f in Q; (2a)
Find u € H(Q) such that — div(eVu) = f in Q, (2b)
and their variational formulations:
Find u € H}(Q) such that ag(u,u’) = (f,ul)q for all ul € H}(Q); (3a)
Find u € H}(Q) such that ag(u,u’) = (f,ul)q for all u' € H(Q), (3b)

with the corresponding sesquilinear forms
ap(u,u’) := (cVu, Vul)p, D=Q,Q.
Furthermore, let A € L(H(2)), A € L(HA(Q)) be the associated operators defined by
<Au,uT>Hé(Q) = ag(u,u’) for all u,u’ € H}(Q), (4a)
<Au7uT>H6(Q) = ag(u,ul) for all u,u’ € H}(Q). (4b)

To specify the approxmiations of the former problems let P, be the space of polynomials in one
variable of order lower equal than one. Thence let

MeN, hy:=n/M, Ym:=hymfor m=1,..., M,

and

Wi, == {u € Hy(0,7): ul(y,, y..r) € Pr forallm=0,...,M —1}.
To discretize consider

hy >0, x,:=hgn, for n=0,1,...; z,:=h_n, for n=-1,-2,...,

and

Vi, = {ue H' (R): Ul(zp,znsey) € Prforalln=...,—1,0,1,...},
and to discretize let
NieN, hy:=L/Ny, Z,:=hgn, for n=0,...,Ny; Zp:=h_n, for n=-1,...,—N_,
and

L={u€H)(-L,L): ul, 5,,,) € P foralln=—-N_,... Ny —1}.

Note that V},, is one space which depends on both parameters hy and h_. The same applies to
Vi, . Consequently we consider the Galerkin approximations of and (3b)) with discrete tensor
product spaces Vi,, @ Wy, C Hg(Q), Vi, @ Wy, C Hg(Q):

Find u € Vj,, ® W}, such that ag(u,ul) = (f,ul)q for all u' €V, ® Wh,; (5a)
Find u € Vj,, ® W), such that ag(u,u') = (f,u')g for all u' € Vi, ® Wh, - (5b)

Let Apy n, € L(Vh, ® Wy,) and Ahi,hy IS L(Vhi ® Wh,) be the associated operators defined by

(Ang n,u ’U/T>H1(Q) = ag(u,u’) for all u,ul € Vi, @ Wy, (6a)
<Ahi)h u uT)Hl(Q = ag(u,ul) for all u,u’ € Vj,, @ Wh,. (6b)



We will see that the constrast x (of o) and the ratios of the meshes sizes

_ T+ _ _ Dy
—0__, T.—h_7 Ty.—h_,

will play a crucial role in the stability analysis. Since problem is posed on an unbounded do-
main its discretization is rather theoretical, but it allows us to perform a very explicit analysis.
On the other hand, problem is posed on a bounded domain and hence its discretization
is computationally feasable, but its analyis is a bit more technical. Indeed, the second setting

(Bb])/(5b) can be considered as an approximation of / by a truncation of the domain
to 2. During the course of our analysis we will repeatedly use tensor product functions for which
we apply the following notation in general:

u(z,y) = v(z)w(y).
In addition, let ¢, € V}, i,d;n eV +»%m € Wh, be the nodal basis functions defined by

¢n(zl) = 5nl’ ’/l,l S Z,
an(i‘l):drbl) nyl:_N—+1,...,N+—1’
wm(?ﬂ):(sml» m,l:L...,M_l_

3 Stability analysis

In this section we investigate the discretizations of and (3D).

3.1 Unbounded domain

To study the discretization of we first analyze its well-posedness and subsequently analyze a
semi-discretization before treating the full discretization.

3.1.1 Well-posedness analysis

We start by discussing the well-posed of to ensure that we have chosen a meaningful prob-
lem. Secondly, our analysis will serve as recipe for the forthcoming analysis dealing with the
discretizations of . Let

Xy :={ue H}(Q): ulo, =0} and Xo := (X_ o X))t
Lemma 3.1. The space Hg(2) admits an orthogonal decomposition

HI(Q)=X_ot X ot X,

where X is spanned by the orthonormal basis (Vgl)\—me’x’"‘w' ® Gm(y))meN.

Proof. Let u € Xy. By means of we can write u = ZmEN U, ® 0,, and it follows that wu,,
+

solves —0, 0, + MUy, = 0 in RE. Thus uy,|p: () = cfe Am® 4 cg'e)‘mm and U, |- (z) =
creMm® 4 ey e~ n® with constants ¢, ¢ € R. Since u,, € H'(R) it follows that ¢ = ¢; =0
and the continuity at the origin demands cf = ¢ =:¢ le, up(r) = ce= 12l The equality
¢ =1/(4)\,) follows from a simple computation. O

Lemma 3.2. The operator A is block diagonal with respect to the decomposition of Lemma|3.1
The blocks corresponding to X_, X4 and X equal the identity times o_, o4+ and % = U,H'T’“

respectively. Non-verbally: For each u_,uT e X_, uo,ug € Xo, uy, ul € X it holds that

+ kK
2 <u0’u8>Hé(Q) + U+<“+7“3—>Hé(ﬂ)~

ag(u_ +up +up,ul + ug + ui) = U_<u_,uT_>H6(Q) +o_



Proof. Since the supports of functions in X_ and Xy are disjoint it holds that ag(uq,u_) =
ag(u_,us) =0 for all uy € X;. We note that

aq(uop, ux) = (cVug, Vus)g = (0 Vug, Vux)a, = 0+ (Vug, Vur)g = 0i<uo,ui>Hé(Q) =0

and likewise aq(ut,up) = 0 for all ug € Xo,ux € Xi. It remains to prove QQ(U07U$) =
U_H7'{<u0,u8> HL(Q)> which follows from plugging in the orthonormal basis functions given in
Lemma [3.11 O

Corollary 3.3. If k # —1, then A is bijective and || A~ £y (a))

1
< lo— | min{1,x,|2E=]}"

Proof. From Lemma [3.2) we know that on each of the three subspaces A is the identity operator

multiplied by the constants o_, o4 and U,H'T” respectively. This implies that these are the only

eigenvalues of the operator. It is therefore bijective as long as all of the three constant are nonzero,
which is the case if kK # —1, and the norm of the inverse is the reciprocal of the smallest of the
three eigenvalues. O

3.1.2 Semi discretization

In this section we consider a semi discretization of problem ([2a)) by means of Galerkin spaces
—  l
Vi, ® HY(0,7) "0

cl — <l ;1
Find u € V,, ® HI(0,7) "0 such that ag(u,u’) = (f,ul)q for all uf € Vi, @ HI(0,7) "0,

(7)
_—
Let A, € L(Vih, ® HE(0, 7r)C Hé(m) be the associated operator defined by
L — |
(Ap u, uT>Hé(Q) = aq(u,u’) for all u,u’ € Vi, @ H(0, 7T)C HY) (8)
Note that by means of we can express:

ag(u,ul) = Z (00U, Opuil Vi 4 A2 (U, ul k. 9)
meN

In addition, for w,, =, c; ndn, ul = Y nez al ¢, an,al € R it follows that

m

(U@ium,awuin)R + A%(Uum,ujnm = Z aL,Agfzan,

n,n’' €z
where
20_a™ o_b™
A = a_b(,m) U_a(,m) + 0+a5rm) 0’+b§rm)
O'+bg_m) 20’+G,S_m)
with
m 1 1
e e dn (100)
1 1
p™ = — = A2 hy. 10b
+ h/i + mg + ( )



Note that since (¢, )nez is not a Hilbert space basis the former expansion is only justified under
certain decay conditions on (v )nez, (af )nez. However, this will not pose any problem for our
forthcoming analysis.

We note that the analysis of the case b(;") = 0 is rather trivial, because thence A (™) is diagonal.
Thus to unify our formulas we introduce the following case-wise definition

o (el e el 2o,

Hm,1,+ =
07 bgtm) = O,
o (e = 0l ) 2
1, (™ = 0.

Henceforth we will only discuss the case bim) # 0 and just note that the statements of all Lemmas
and Theorems also hold for the case b(im)
e b 2 4 20 4 b0,

Note that it follows from fiy, 1,4 ftm 2.+ = 1 and (a m)) — (b(m)) > 0 that [gm,1,4] < |ftm,2,+]
and therefore

= 0. Indeed 41,4, ftm,2,+ are the roots of the polynomial

|m1+] <1 and |pmo+| > 1. (11)

We introduce the abbreviation

Pont 1= o, 1,4 (12)

and note that per definition |gm, 4| < 1. As the next step we further exploit the former
representations in the following two lemmas which are in analogy to Section 3.1.1] To avoid
misconceptions we emphasize that the n in uf,i’fi appearing Lemma is an actual power and
not an index.

—_—
Lemma 3.4. The space Vi, @ H (0, 7T)C HOD g dmits an orthogonal decomposition
—— S S
Vhe ® H01(077r) HE@) _ (Vhi ®H0 (0 71') H (sz)) EBL Vf?i EBL (th ®H&(O,Tr) Hé(SZ)),

where Vi == {v € Vy,: v[g, =0} and th i={v € Viy: v|r_ = 0}. The subspace V;), is spanned

by the orthonormal basis (vy,(z) ® Gm(y))meN, where

) 1= 1 (0@)+ 3ty bl + 3 - 6n(2)).

\/b(_m)umv_ +a™ 4 aim) + bim)um,+ neN neN

Proof. Let v € (m o @W 1Hé(ﬂ)>L. By means of we can write
V= enUm ® O We can write vy, = ), o, @(Lm)d)n. The span of the functions ¢, ® 6,,, for
m,n € Z, n # 0 is dense in (md%(m @Wd%(m). By orthogonality we
then have
0= (v, pxn ® Om) 13 () = (O2Vim;, D Bin ) + Aoy (Um, Pin )R

= (8L 0ebn1, Debin) + (BLY o bin, Oobn) + (BLr 100 tnt1, Ordn)r

+ A2, (<5in 1P4n—1, P4n)R + <ﬂin Gty Ptn)r + <5in+1¢in+1, G+n)R )

= o (B0 08" +288al" 4 5L, 1007).



Solving this three-term recurrence relation and recalling , we obtain that
Bl — ﬁém)u"m# and 5(_72) = ém),u;’%f Vn € N.
Finally we compute the normalization constant by

1= <8111m, 8zvm>R + )‘3n<vmvvm>R = Z Br(Lm) (<aw¢m 8z11m>JR + )\?n<¢navm>R)
nez

= B(()m) (<am¢07 az“m)lR + >‘72n<¢07 Um)R)
= (B5"™)? (Mm,fb(_m) +a"™ 4o um,+b5rm)) :
ie.,

(m) _ 1
Bo = :
\/um,fb(_m) +a™ 4 al™ 4 g b

Note that this calculation also ensures that vy, ® 6,, has finite H} (Q)-norm, i.e., v, ®6,, € H3(Q)
is well defined. O

Lemma 3.5. The operator Ay, is block diagonal with respect to the orthogonal decomposition

- - .
given in Lemma . The blocks corresponding to V, . @ HL(0,m) and VhJ; ® H}(0, )
equal the identity times o_ and o4 respectively. The block corresponding to V,?i is diagonal with
respect to the basis given in Lemma and the diagonal entries are given by

ClHé(Q) lHé(m

g a™ g™ g,
Ay = o= to — +U+“+m +or £ et e, (13)
0+ 0™ 6+ b g

Lt (o)

1 | 1 e —
Non-verbally: For eachu_,ul € V,, ® Hy(0,m) Ho () uo,ug) eV, uy, ul € Vh"'i ® H}(0,7)
and ug =Y, ey BmVm @ O, ug = meN Bl Vm @ Oy (B )mens (B, men € £2(N) it holds that

ao(u- +uo +uy,ul +uf+ul) = 07<U7»UT—>H3(Q) + Z o B B, + U+<u+au1>H[§(Q)~

meN
Proof. The arguments are essentially the same as in the continuous case (see Lemmal|3.2]) where we
now use Lemmainstead of Lemma With this we directly g(let aq(u_, ui) = ag(uy, qu_l) =0
T — T ——

and that Ay, is the identity times o and o on V,, @ Hg (0, 7) "6 and VhJ; ® H}(0,7) ()
respectively. By the orthogonality of the decomposition we also get aq (ug, ul) = o4 (ug, ul} Q) =
0 as in the continuous case. It remains to show, that operator is diagonal on V}? .. with the claimed
values. That it is indeed diagonal follows directly from the decomposition in @ To compute the
values we use the same calculation as for the normalization constant and get

ZneN aQ(,UfZL,_d)—n (24 emv Um & am) + ZnEN aQ(u:Lm_p(bn & ema VU & 6m)

B pi— 4 0™ + a4+ 0™
GQ(¢0 & 9m7 U @ 9m>

CLQ('Um ® evmvm oy om) =

e pm,— + @™ +al™ 0 i
aq (o ® O,y Vi Q O,)
B b pry 4+ al™ + ang) + bgrm)um7+
- o 0" i+ o_a"™ + U+a(+m) + a+b§rm)um,+
D A A S AT
where we exploited the orthogonality properties of vy,. O



We observe that in contrast to Lemma the block corresponding to V,?i is not a multiple of
the identity, but still diagonal. To analyze the diagonal entries d,,, we introduce the function

n\/m)
Vi2+12

1+ VrIZE12)
ViZ+12

Lemma 3.6. The diagonal entries d,, defined in satisfy dp, = 0_frr(Amh_).

1+

fn,r(t) =

Proof. To start with, plugging in the definitions (12, of i+ and b7 al™ respectively
yields that

b pom e + ) = \/(a; N = (o) =1+ SN

Inserting this into the definition of d,,, we obtain that

£ = - (b(_m)pmy, + a(_m)) + U+(as_m) + bim)um,+) o 1+ 5A2 82 + o /1+ 52202
O = + a4+ (@ 400 1) 1+ 5202 + 1+ 52202
1+ V1247, 0% 14 V12022 k2 12
qu/12+)\2 h?% k 12422 A2
= = = = = Amh
SO Y O e O ernlo)
* V1243, h2 + V12422, k2
where we recall that r = hy /h_. O

In the following lemmas we analyze the function f ;.

Lemma 3.7. If one of the following two conditions

|kl <1l andrlkl>1 or |k >1andrk <1 (14)
(L4f) (L4p)

is satisfied, then the only root of f . in [0, +00) is

L 2=
e K2r2 —1°

Proof. Since the denominator of f, , ranges for ¢ > 0 between 2 and 1 + r, it suffices to analyze
its nominator. Because we only consider non-negative ¢ and negative xk we get

KVT2t2 + 1

2)
0=1+ —L & Vt2+12=1k 7“2152—1—12(:)752—1—12——/{27“2252—#12
V12 12 \/ | |\/ ( )

& 21— k*r?) = 12(k* - 1).

The condition now guarantees that £2—1 and 1— k22 have the same sign so the only solution
12(1—k2) 0

K2r2—1 °

iste, =
Lemma 3.8. If is satisfied, then limy, _oy inf ey |frr(Amh_)] = 0.

Proof. Write h_ = H%t,w with [ € Ny and € € [0,1). Choose m = [, recall that \,, = m and

exploit that lim;_, | z%e — 1 uniformly in € € [0,1). Apply Lemma and the continuity of
e O



Lemma 3.9. If one of the following two conditions

k| <1landrls| <1l or |k >1andr|k>1 (15)
(13k) (13p)
is satisfied, then infy>g [fur ()] > min{|“’7“| , 11':”"; 1.

12(k—1)(r*—1)¢ .
Proof. We note that fj, .(t) = —=—5 thh(r';( )E’Zt2+)12+\/t2+12)2 and hence §, . (t) is a monotone

function. This implies

bor) € [min (i 0) tmn_fur(6) e {5 00 tim_fus )] v € D0.400)

s——+o0 s——+oo

Computing these values we get f, ,(t) € [min{1£=, ﬂt:f},max{?, 17} The conditions now
ensure that both values have the same sign so the absolute value of . (t) is always bigger than

the minimal absolute value occurring in one of the bounds. O

14k 147k

Now we are in the position to conclude our analysis of the semi discretization ([7)) in the following
theorem.

Theorem 3.10. If is satisfied, then A;il exists and satisfies

1
Ail P —_ | S
e ) = (o i (1 ] [}
forall h_,hy =rh_ > 0. Contrary, if is satisfied, then
li e =
ho S0t 4. ||E(Vhi®Hé(O,7r) (@) o0
hy=rh_

(where we define ||A;i1|| == o0, if A,jil does not exist), and in particular:

—cl
(Vi ®HF(0.m) "0)
Ay, admits a nontrivial kernel for each

1 :i M hy=rh_, meN.

h_ = —t
Am T m VY k2217

Proof. By Lemma we know that the eigenvalues of A, are oy,0_ and d,, for m € N. From
Lemma we get a lower bound on the absolute values of d,,, which implies the first statement
of the theorem. Then from Lemma [3.9]it follows that such a bound does not exist in the other
case which implies the second statement and finally Lemma [3.7] gives us the precise values where
we have a zero eigenvalue which implies a nontrivial kernel. O

3.1.3 Full discretization

Next we consider the full discretization by means of the Galerkin spaces Vj,, ® W, . To this
end much of the analysis of Section |3.1.2f can be repeated, but we have to replace the orthogonal
basis (0m)men of HE(0,7) by a suitable discrete orthogonal basis (6., )m=1... a—1 of Wh, , and as

a general rule we denote respective modified quantities by the same symbol as previously'used but
with an additional hat. Hence we consider the following eigenvalue problem:

Find (7,w) € R" x Wh, \ {0} such that <8yw,8ywt>(0’2,r) = T2<w,wT>(0’2ﬂ) vu' e Wh,. (16)
To solve this problem we define

(B(T))nz’,m = <ay7/}ma ayql)m’>(0,271') - 72<’¢)M7 wm'>(0,27r)7 m, m' = L,...,M—1.



Then we use that 7 is an eigenvalue if and only if B(") has a zero eigenvalue. It holds that

It follows that [3] [13]
2 6 1 —cos(hym)
"™ h2 2+ cos(hym)’
with respective L?(0, 7)-normalized eigenfunctions

M—-1

M—-1
é = Zsmmhlm HZsmmhlwl‘

—1
L2(0, 7r)

This leads us to introduce

5 _ V6 |1 —cos(ryh_m) _ @ 1 — cos(hym) me1 M1
maryh ryh_ \| 2+ cos(ryh—m)  hy \ 2+ cos(hym)’ T '

Hence we define respective modified quantities

~(m) | _ 32

ai = hf + mry,h Shi,

R 1 R

= — 32 7hi,
hi Ty

. 1 ol a™)2 — (B2
P14 = ZA)(T) < + \/ )2,
+

~ 1 ~(m ~(m 7(m
fimas = s (a8 =@l - i )>2) ,

by
ﬂ 4= ﬂm,lyﬂ:v EEN:M) 7& 0
m, . 0’ bg:m) _ 07 )
J - (T_b(_m)ﬂ _+0 A(m)+0 A(m)+o_ b(M)ﬂm-t,-

B(,m)/lmyf + d(m) + AS*M) + b(m)ﬂm N

O (2) 1= —3 L ( Z fim, +®n (2 Z fim )

VBT 4™ 4 6™ 4 5 A ez
form=1,..., M — 1. The forthcoming two lemmas follow in analogy to Section [3.1.2

Lemma 3.11. The space V, ® Why admits an orthogonal decomposition
Vi, @ Wy, = (Vh; ® Why) et Vo, ot (Vhft ® Why),

where V. = {v € V1 vlr, = 0} and VhJ;f = {v € Vs, :v|lg_ = 0}. The subspace V}?i is
spanned by the orthonormal basis (om (z) ® QAm(y))m:1 BTE

Proof. The proof can be obtained by following the steps of the proof of Lemma 3.4 one-to-one. [

10



Lemma 3.12. The operator Ap, p, is block diagonal with respect to the orthogonal decomposition
given in Lemma . The blocks corresponding to Vh_i @ Wh, and Vh‘; ® Wh, equal the identity

times o_ and o4 respectively The block corresponding to V}? is diagonal with respect to the

basis given in Lemma and the diagonal entries are given by dm Non-verbally: For each

iV v .
uU_ uT Vhi Q Wy uo,uo € Vhi, U+,u1 € Vh'; ® Wy, and ug = Zm=11 BmOm Q O, ug =

fo;l Bl O @ Oy (Br) ML, (BE)M_| € RM=1 it holds that

R

M-—1
ag(u— +uo+up,ul +uf +ul) =0 (u_ul ) o)+ D dnBmBl + op (ug, ul) )
m=1

Proof. The proof can be obtained by following the steps of the proof of Lemma one-to-one. [

To analyze the diagonal entries d,,, we define

6 1— cos(s)

bry(s) = %2 +COS(S)

and introduce the following lemmas.

Lemma 3.13. It holds that S\m,ry,h, h_ = b, (rymh_) and d,y, = 0_frr (h,,y (rymh,)) form =
1 M —1.

Proof. An elementary computation shows

6 1—cos(ryh_m)
)\2 h2 — Y h2 =5, h_ 2'
mory h— r2h? 2 4 cos(ryh_m) br, (rymh-)

Then as in Lemmalt follows that dm = 0_f, T( R ) and combining these two identities
yields that dy = o,f,w(hry (rymh,)). O

Lemma 3.14. If one of the following two conditions
k| <1 and r?k? > 1+r§(17n2) or |k| >1 and r’k? < 1+7’§(17/<;2) (17)
(7) @)

is satisfied, then the problem to find s € (0, 7] such that b, (s) = t., admits the unique solution

2
1— Tvt% 6r2(1 — K?)
sliﬂ“ﬂ”y := arccos W = arccos | 1 + (1 — K,2’I“2) — 27“5(1 — K,2) .

2
Proof. First, one can check, that the inequalities guarantee that = HGZQ)(IQT'Z& = € (—2,0) so

Sk, 18 well defined. Now we compute

6 1 —cos(sk,rr,) B

[)m,(sn,r,ry)z =3 = % 5 % =lgr
: : 722+ cos(Skrr,)  TE ot Tylee o123

Before we formulate the next Lemma , let us recall that h_ = };—y = I,
Yy

Lemma 3.15. If is satisfied, then limps— 400 nfpeq, ar—1y [Frr (br, (%)) | = 0.

11



Proof. Because the rational numbers are dense in the real numbers, for each € > 0 there exists
M, € N such that for all M € N, M > M, there exists m € {1,.., M —1} such that ’%77 — Sk, | <
€. The theorem now follows from the continuity of f. . o by, and fer(br, (5xrr,)) = 0. O

Lemma 3.16. If one of the following two conditions

k| <1 and r?k? < 1 +r§(1 — k%) or |kl >1 and r’k* > 1 +r§(1 — K?) (18)

(18k) (L8p)

1+r2+K,/T2+72 } -0

N
Proof. The reasoning is the same as in the proof of Lemma [3.9] The only difference in this case
is, that b, (s) € [0, ‘f—ﬁ] so we do not consider the limit at infinity and get
Y

r24r?
f (Vm) R R AR R A

2472 2 2 2
14 r1++rr2y \/1+ry+ ety
Y

is satisfied, then infsep [frr (b, (5))] > min{ |1+TN

)

Ty

instead. Again, the condition ensures, that both bounds have the same sign, so we can safely
take the minimum of their absolute values. O

Now we are in the position to conclude our analysis of the full discretization ([7)) in the following
theorem.

Theorem 3.17. If is satisfied, then A,:il’hy exists and satisfies

||Agi,hy||c(vh,i®why)§ 1 . _
|o min{l || |1+?n| ' T2+ /r2+412
_ 15l ,

N 1FTE /T2t

|

Contrary, if is satisfied, then

. 1 .
hl,HEO ”‘Ahi,hy L(Vhy ®Wh, ) = +00

-1 L . 1 . . .
(where we define ||,Ahi,hy L(Viy @Wy,) = 100, zfAhi’hy does not exist), and in particular An, p,
admits a nontrivial kernel for each

1 ]. 1 67,.2 1 _ K/2
—Sg,rry, — — — AICCOS <1 + ( y( )  meN.

h 1
T omry mry 1 —w%r2) = 2r2(1 — k2)

Note that to simultaneously satisfy 7~ € N we can choose a particular r, or r such that sy ., =
Y

wl/k,l k € N, which yields that hly €N for m € kN.

Proof. The proof can be obtained by following the steps of the proof of Theorem [3.10| one-to-one

and replacing needed lemmas by the corresponding lemmas from this section. O

3.2 Bounded domain

Now we consider a bounded domain for which actual numerical computations are possible. Since
the well-posedness analysis follows along the lines of Section we suffice ourselves with stating
following lemma without proof.

12



Lemma 3.18. The space H; (Q) admits an , orthogonal decomposition Hj Q) =X_atXoat X,
where X+ = {u € H}(Q): u|Q =0} and X, is spanned by the orthonormal basis

1 22 L, —Amle| _ Amlz|
( 2\ (etAml — 1) (e ‘ o ) @ omt)

The operator A is block diagonal and the statements of Lemmaﬂ and Comllary. apply with
A, X1, X, being replaced by A, X4, X,.

meN

3.2.1 Semi discretization

We consider a semi discretization of problem by means of Galerkin spaces Vi L ® H}0,7):
Find u € Vj,, ® H{(0,7) such that ag(u,u’) = (f,ul)s for all ul € Vi, ® H}(0, 7). (19)
Let Ay, € L(V,, ® H}(0,7)) be the associated operator defined by
<AhiU,UT>Hé(Q) = ag(u,ul) for all u,u’ € Vi, @ HY(0,7). (20)

As in the unbounded case we can use and derive a decomposition into Fourier modes as in
(E[). Similarly we then also get that for u,, = ZN+ N_ On®n, U ul, = ZNjiN al én, an,af, €R
it follows that

<Uaxum7axUTm>R+)\ (Uum, ul) Z Z TA( )am
—N_n'=—N_
where
20_a™  o_p™
(T_b(_m)
QU_a(m) O_bgm)
Alm) . U,b(m) ( )+U a( ) U+b( )
b\ 20, a(™
O'+b3,m)
(m)

0'+bs_m) 20'+(Z+
After these considerations we can again derive an orthogonal decomposition as follows.

Lemma 3.19. The space Vhi ® H}(0,7) admits an orthogonal decomposition
Vi, ® H2(0,7) = (f/h; ® H&(O,w)) ol V0, ot (f/,ji ® Hg(o,w)),

where Vh; ={v e V,: |,y = 0} and f/hi— ={v eV, : v|(~r,0) = 0}. The subspace f/,?i is
spanned by the orthonormal basis (O (z) ® Gm(y))meN, where

Uy (1) o= — ! = <¢0($)
\/” N i A

1=v, _ 1-v, 4

N_

fom 1, — = Vi, P2 By = Vi o
+ Z m,1,— '”]l\}j m, :— +Z m,1,+ 77]1\[1' m, ’+¢n(x) )

1—v,_ 1-v, 5

Here pim 1+, fhm,2,+ are as defined in Section and Uy, 4 1= bmbE

Hm, 2,4+

13



Proof. The structure and beginning of the proof is the same as in Lemma [3.4] We again get the
orthogonality of V ® HL(0,7) and VJr ® H}(0,7) because of non-intersecting supports and we

get that the coefﬁments of ¥, in the finite element basis given by v,, = N* _N_ 0 ¢n satisfy

the system of equations

b(m 37(1 +2a(m)ﬁn+ —|—b Bn:’g:o —N_<n< -2,

™ B 424 B 4 0TV ET, =0, 0<n< Ny -2
We now first treat the case when 5™, bi;m) # 0 and get that this system is solved by
g = Lt~ C2flyy s =N <n <0,
Bém) = Cltlma4 T C2lma g, 0<n < Ni.

where only the constants c; +,cz + still have to be determined. To do this, we use that both

equations hold for n = 0 and that B(j@i = B](Vni) = 0 because of the Dirichlet boundary conditions.
This leads to the system

C1,— +C2,— =C14 +Cay,
—N_ —N_
017_,Ltm71’7 + C2y—lu‘m,2,f = 0’
Ny Ny o
Clv‘f‘:u“m,l,+ + 627+um,2,+ - 0’

with the solution

B(M) 5(m) 3 m) B(m)
0 0 Ny 0 0 N_
Cly =——, Cgp=——"—VU Cl_.=————, Cg_—=———"V
1,+ N, 2,+ Ny “m,+> 1,— N_ 2,— N_ Ym,+-
e 2 1—v, 7 1—v,_ 1—-v,_

Here B(()m) still has to be determined. This means, that

gom — ﬁ(m) i1+ — n}\jil‘maﬂr7 0<n<N,.
1- Vm +

One can check that these formulas still hold in the case where b™ or bg_m) is zero if we then set
fm,1,+ to zero as we have done before and set i, 2+ to an arbitrary positive number. Finally

we compute B(()m) to normalize the solution. For this we only have to consider the scalar product

14



with ¢ because of orthogonality. This leads to

1= <81{)7n7 81{)7n>R + Afn <77m7 ﬁm>]R

Ny
_ Z Br(lm) (<aq;¢n7 ax'[}m>R + )‘En <¢n7 f)m>R)

n=N_
= ~(gM) (<ar¢07 axﬁm>R + A%n <¢0, 6m>]R)

I — U p ju — U tp
:(55m>)2< s e PR ) () gy Pt Tt m’2’+b<+m)>

N_ N
1-— Vm,f 1- Vm,Jr

- (B(m))Q (Mm,l,fb(,m) + a(,m)) - Vn]\ijf (:u’m,Q,fb(,m) + a(,m))
’ 1-— I/TIZ,__
+ (Mm’l’erS-m) + ag_m)) - Vﬁf+(ﬂm,2,+bim) + aﬁfn))
1— VN+
m,+

_ (B(m))Q \/(a(,m))2 - (b(,m))2 + uﬁ; (a(,m))2 — (b(,m))2

0 1—- VTJZ;
m m N. m m
= G2 el - 00
1= V’Zn\iir
N_ N
Alm 2 1 + Vm - m m 1 + Vm+ m m
— (ﬁé )) ( s \/(a(_ ))2 _ (b(_ ))2+ N,:r \/(aEIr ))2 _ (bgr ))2) :
1- VnL,— 1- Vm,—i—
ie.,
5m) _ 1 .
’ Lvm ™ [ mvg g o Hms [ (mvg  p(miyg
e )2 - 0+ e - o)

O

Lemma 3.20. The operator .,Zlhi is block diagonal with respect to the orthogonal decomposition
given in Lemma . The blocks corresponding to V, . @ Hg(0,7) and th ® HE(0,7) equal the
identity times o_ and o4 respectively. The block corresponding to f/}?i is diagonal with respect to
the basis given in Lemma|3.19 and the diagonal entries are given by

N N.
1+v,, m m 1+Vm,_.*— m m
S = \/(a(_ 2= ()2 4oy T \/(CLSr N2 — i)
oy = = Tt , meN.  (21)
v, [ (m) (m) 14v,, (m) (m)
ey - 0 el - ol

Non-verbally: For each u_,ul € f/h_i ® H}(0,7), uo,ug € f/hoi, u+,ui € Vh‘; ® H}(0,7) and
o = 3 e BmnBm @ Oy 1l = 3, B0 @ Oy (B mens (Bl )men € £2(N) it holds that

ag(u— +uo + g ul +ub +ul) = o fumul) gy )+ D dBnBh+ o {ur ul) gy ).
meN

Proof. The statement can be obtained by repeating the steps from Lemma [3.5] one-to-one. O
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We will now analyze the diagonal entries d,, and to do this we introduce the following functions:

Vr2t2412 .
1+ H\/t2+12 drm () _ix.r(a(®)

%H,T,Am (t) = 55 s 3 Am (t) = T
I === W () ix,z(a(rt))

1+ 22—ty /1 + 52

q(t) = : in(q) ==

1+ 382+ t4/1 + 7512

Lemma 3.21. The diagonal entries d, defined in satisfy dyy = a,ﬁ,,ﬂm (Amh_).

Proof. We first compute

Am L

L 142 72 12 12 pYY
V- = (“m’L) I Rt A1+ X = q(h_Am) L.
Hom,2, - 1+ 2X2 02 + ho Ay /1 + 522,02
In the same way, we get V,J,\:j; = q(rh_Am) L. Now we calculate
N N
14v, " m m 1+Vm+ m m
o (@) = )2 4 0 e (a2 — 02
J . Vi V4
m N
Lv, [0 (m) (m) L+, (m) (m)
W\/(‘L )? = (027)? + 17%{ \/(a+ )2 = (b))

O_Am 1y2 12 04 Am 1 .,.2\2 2
s @onr DV T AR sy VL AR
Am 1y2 32 Am 1.,.2)2 p2
oA CTewy ) RVA ST R TR S rww i cowy R VA e P L L
142 ;2 Fiam L (@Amh_)) 1,2\2 32
1+ $5AZR2 4 FRmbdmi s 14+ fr2A2 02
14y2 3,2 Inm L (@(Amh-)) 1,2y2 1,2
1+ SAzh2 4 2at@Onl ) 14 Ly2)z b2
V1241222 h?2
L+ Kgrn,, Amh ) Yo
Am 12422 K2 ~
ol = Uffmr)\m()‘mhf)

A/ 12+7'2A%Lh3
Lt Amh=)2 i

= 0_

=0_

In preperation of Lemma [3.:23] we formulate the following Lemma.
Lemma 3.22. For each ¢ > 0 it holds that limj,_ 04 Supy~g ap_>cdra(A-) = 1.

Proof. Note that the auxiliary function j,, in the definition of 3, ,, was chosen this way to deal
with a particular technicality in proof Lemma [3:26] Here however, we exploit the more explicit
representation

dra(Aho) =

The claim follows now from sup;>

The following lemma is the pendant to Lemma |3.8

Lemma 3.23. If is satisfied, then limy_ o4 inf,,en |}H,r,>\m(x\mh_)| =0.



Proof. We proceed as in the proof of Lemma |3.8
Let h_ = l%ﬁtmﬁ with! € Ny and € € [0,1). We choose m = [ and exploit that lim;_, | o, Hie —1
l—+oc0

uniformly in € € [0,1). Thus also A\, h_ = z%etmr —— t, uniformly in € € [0,1).
Lemma [3.22[ yields that lim;— 40 372, (H_%t,w) =1, which in combination with the continuity
J,r

of . » and t..r) = 0 provides the claim. O

In preperation of Lemma we introduce the following Lemmas and where
Lemma is itself an auxiliary result for Lemma [3.25

Lemma 3.24. Let I be a closed subintervall of (0,1) and ¢ > 0. Then the following statements
hold:

1. The family {jn : n € [c,00)} and the family of their derivatives are both uniformly bounded
on 1.

2. The family {Jin :n € [e,00)} and the family of their derivatives are both uniformly bounded
on I.

3. q is continuously differentiable on [0, 00).

4. limy_,o+ q(t) = e 2.

Proof. Let I = [a,b], a,b € (0,1). Thence ¢" € (0,b°] C (0,1) for ¢ € [a,b]. Thus j,(¢) <1 and
< . ng" . —2ng" !

1/in(q) < SUP4e(0,bc] i%i = ﬁ—gc. Furthermore, j/,(¢) = (zl_qu and (1/i,) (¢) = &_#)2 from

which we can deduce the first two claims. The differentiability of g follows in a straightforward

fashion. The last claim follows by applying the de I’'Hospital rule to logg. O

Lemma 3.25. Forr,c > 0 the family {3, x : A € [c,00)} is equicontinuous from the right at 0 and
1imt_>0+ 3r7)\(t) =1.

Proof. Due to the second half of Lemma there exist 6 > 0 and ¢1,¢2 € (0,1),q1 < g2 such
that q(t),q(rt) € (q1,g2) for all t € [0,d). Then Lemma and the product rule yield that
t +— 3, (%) is uniformly equicontinuous on ¢ € [0,), A > c. At last we obtain lim; o4 3,2 () =1
from limy o4 q(t) = 72 = limy 0 q(rt). O

Lemma 3.26. Ife € (0,1) and one of the following two conditions

|k[(1+¢e)<landrs|(l4+€) <1 or |k(l—€)>1andr|s|(l—¢) >1 (22)
) Eh)

is satisfied, then there exists § > 0 such that

{|1 + (1 +pe)k| 141 +pe)m|}

inf  fjxra(Aho)| > min mi :
in )|fﬂ>\( )] > min min e T+ +or

h_€(0,6 pe{£1}
A>1

Proof. Due to Lemma we can find 7 > 0 such that 3, x(Ah_) € [1 — ¢, 1+ ¢] for all Ah_ €
[0,7],h— > 0,A > 1. On the other hand, Lemma yields the existence of § > 0 such that
3ra(A_) € 1 — ¢, 1+ ¢ for all Ah_ > 7,h_ € (0,0),A > 1. Thus 3,1(t) € [L —¢,1+ ¢ for all
t=MAh_,A>1,h_ € (0,0). Thence

3 ‘1 + k(1 + pe) 1247242
inf |fera(ARZ)| > inf 1247
h_€(0,5) ’

T t>0,pe{+1 [12+t2h?%
)\2(1 pe{Ft} 1+ (1 + 6) 1242

from which the claim follows. ]

Having analyzed f,ﬁm \,, We can now proof the following theorem about the stability of An 4
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Theorem 3.27. If for some e € (0,1) is satisfied, then A,:il exists and satisfies

e .
ht z:vhi®H1(07r)) lo_ | min {1, x| 1+(1+e)k| [1+(1—€)k| [1+(1+e)rr| |1+(1—e)rr|
O-mIny L KL =51 " 2xe 0 I+(+eor ° 1+(1+teor

or all h— € (0,0) with 6 > 0 as in Lemma|3.26L Contrary, i is satisfied then
Ilh 0,0) with 6 >0 as in L 3.26, Cont if (14) is satisfied th
. i1
A e, om0,y = +00
(where we define ”A;ilnﬁ(‘%i@Hé(O,w)) = 400, if /I,:il does not exist).

Proof. As in the previous sections the theorem follows directly from the properties of f,wy A, that
where shown in the Lemmas [3.23] and [3.26 O
3.2.2 Full discretization

As for the unbounded domain, the only difference is that we now consider /A\mmy’hf that also
depend on h_ and where in variables that depend on \,, we replace it by S\m ry,h_ and indicate

this by adding a hat. In addition, we define 7, 4 := 5 Ui ; i The following three lemmas can then
be derived correspondingly to Lemmas [3.19 to [3.21}

Lemma 3.28. The space f/hi @ Wh, admits an orthogonal decomposition

Vi, @ Wy, = (Vh; ® Why) et vy, ot (f/,ji ® Why),

where V = {v € Vi, : v[g, =0} and V+ = {v € Vi, :v|g_ = 0}. The subspace ‘:/;(L is
spanned by the orthonormal basis (vm( )® Qm( ))m 1..a—1 Where
S(@) = S <¢0(9c)
\/ e R U *—m% (@2 - ()2
| b Ny on N+ o
" Z Nm 1,— ZL\L Mm 2,— + Z Mm,17+ An]z\}iﬂm72,+ ¢n($)> _
m,— m,+

Lemma 3.29. The operator flhi’hy 1s block diagonal with respect to the orthogonal decomposition
given in Lemma . The blocks corresponding to Vh; ®AWhy and th ® Wh, equal the identity

times o_ and o4 respectively. The block corresponding to 172 . 18 diagonal with respect to the basis
gwen in Lemma[3.28 and the diagonal entries are given by

N N
140, m m 1+l7m+ m m
oot @) = ()2 o (a2 — )2

1-o

133

dm = 1+AN77 1+AT;’++ ) mzlaaM_l (23)
Vi, — (m) (m) Vm, (m) (m)
i VA e U SR V(AR G

Non-verbally: For each u_ uT S f/7 Q@ Wh,, uo,ug) S f/,?i, u+,u1 € f/,fi ® Wy, and ug =
ML B @ Oy, ud = ZM LB O @ Oy (Be) ML (BE)M_ € RM=1 it holds that

M-
aQ(u_+u0+u+,ui+ug+ul):0 (u_,ul) HL(S) Z mﬁmﬁ —|—0+<u+,uT+>H1(Q)

m=1
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Lemma 3.30. The diagonal entries jm satisfy c?m = U_i”; . (bry(rymh_)) for m =
1,...,M—1. '

Now we investigate hr;\m . (f)ry (rymh,)). Since we have already shown, that %K’T,A is

equicontinuous at zero in A > 1 and because 5\m,ry,h_ > A, > 1, the only difference to the
previous analysis concerning the unbounded domain is that we have to deal with the additional
composition with the continuous function b, . Before we formulate the next Lemma let us

recall that h_ = }TL—;’ = TyLM

Lemma 3.31. If is satisfied, then limps oo infreq1, . -1y ﬁm«?\m o (bry i )| =0.

Proof. The proof follows along the lines of the proof of Lemma where in addition we apply

Lemma f3.22| to cope with the replacement of .. by f, .5 . O
Lemma 3.32. If for e € (0,1) one of the following two conditions
lk[(1+€) <1 and 7*k*(1+€)* <1+71,(1—r*(1+¢€)?) (24a)
or
|k[(1—€) >1 and m*k*(1 —€)? > 1+ r§(1 — K21 —€)?) (24b)

is satisfied, then there exists § > 0 such that

inf ﬁr@ ) (hry (rymh )) |

h,e(O,é) Am, Ty, h
me{l,...,M—1}
(1505 SN 1+p6m/7“2+r2!}
2+ \J1+72 4+ (1 +e€)y/r?+ 72

Proof. 1t suffices to combine the techniques used for Lemma |3.16| and Lemma As in the
proof of Lemma [3.26| we choose 6 > 0 such that 3, . Ay ho) € [L— €1+ ¢ for all
Amry

j\m,ry,h, >1,h_ €(0,6). Thence

‘1 +/€(1 +p€) 1241r2¢2

~ 12+t2
inf ‘f 5 (hr (rymh_ ))’ > inf ,
h—€(0,6 ol Amr v /12422
mE{l,..EM)fl} v te[0,v12/ry].pe{£1} +(1+e e
from which the claim follows. O

Now we are in the position to conclude our analysis of the full discretization of (2b]) in the
following theorem.

Theorem 3.33. If is satisfied for some € € (0,1), then A;il hy exists and satisfies

1

. . [14+(14pe)s| |\ 1+re+(1+pe)ry/r2+r7]
lo_ | minye (413 min < 1, &), ,
P 24€ VI+r2+(14e)/r2+r2

for all h— € (0,6) with § >0 as in Lemma[3.16 Contrary, if is satisfied, then

”Ahi,h ||£(V;Li®Wn ) <

. 1—1 =
Jim A e, @wa,) = 09

(where we define ||A}:i7hy||£(f/hi®why) = +o00, if .A;Lhy does not exist).

Proof. As for Theorems [3.10} [3.17] and [3.27] the claims follow directly from the respective Lem-
mas [3.29] to [3.32 O
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4 Computational examples

We will now confirm our theoretical results by testing them in explicit computational examples.
The code to reproduce all of them is provided in [I9]. We consider the following problem posed
on a bounded domain:

Find u € H(Q) such that — div(oVu) = f in Q = (L, L) x (0,7),

with f(z,y) = —0 [_2y(y _;)(y —2m) +6 (1 — EZ) (y— W)} ,

which has the solution )

u(z,y) = (1 - 22) y(y —m)(y — 2m).

First we examine the case of unstable discretizations. To this end we consider parameters as
follows:

2
o_=-1, o04.=12, r=0.5, r,=—.
* YV
Hence the contrast at hand x = —1.2 is rather moderate. Nevertheless, we are going to exhibit

instabilities with this particular choice of parameters, whereas convenient examples of instabilities
often require a much more critical contrast |k — et & 1073 [1, Fig. 1], [9, Fig. 3]. We choose a
sufficiently large L =~ 26 such that our problem is adequately close to an unbounded domain, and
hence we can expect the critical values

11 6ry(1— K° VIL 1 V11
h_:=——arccos [ 1+ "y ) = — arccos (1 — 1)) = T meN.
( m dm

mry 1 —K?r2) = 2r2(1 — Kk?2) 2

(25)

given in Theorem to yield also sensible values for our example. In particular, we choose
L:= 10@ such that

No= L _qvlm Am o N+:£:10\/ﬁ7r Gl

h_ 4 1lrn h_ 4 1ln

™ 4m /11
=T

Tyh— \/].].ﬂ' 2

are natural numbers of each m € N. Even though we cannot expect our discretizations to have
a non-trivial kernel at h_ we observe in Figure [1| (solid lines) exorbitant errors. Nevertheless, we
recognize a decrease in the error which can be explained as follows: The drastic error is triggered
by the basis function O @ O, for which the respective coefficient (f, Om @ ém> 12 of f decreases
w.r.t. m € N. In Figure [2| we see the numerical solution for a critical value of h_ and we observe
the oscillating behaviour of O @ O,, that is corrupting the solution as predicted.

To further explore the possible behaviours of different discretizations we keep all parameters
critical values (while keeping N_, N;, M € N). In contrast to our previous results, we observe
in Figure [1| (dashed lines) a distinct convergence of errors with convenient rates.

Finally, we consider meshes with the values of h_ and h; being exchanged. We observe in
Figure [3] a convergence with convenient rates as predicted by Theorem (3.1

To conclude, for problems with more complicated geometries and discretizations with non-
uniform meshes we expect a mixed behaviour, where at each new mesh refinement a stable or
unstable setting is dominant in an unpredictable way, giving rise to the commonly observed zigzag
€rror curves.

= 20m,

M: :2m

to maximize the distance of h_ to the

apart from h_ unchanged and choose now h_ =
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Figure 1: Relative errors for critical values of h_ (solid lines) and for nearly critical values of h_
(dashed lines).
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Figure 2: Computed solution for h_ = 0.26048 in a neighborhood of the interface {0} x (0, ).
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Figure 3: Relative errors for a mesh satisfying (24)).
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Figure 4: Computed solution for A, = 0.26048 on a flipped mesh in a neighborhood of the interface

{0} x (0,7).
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