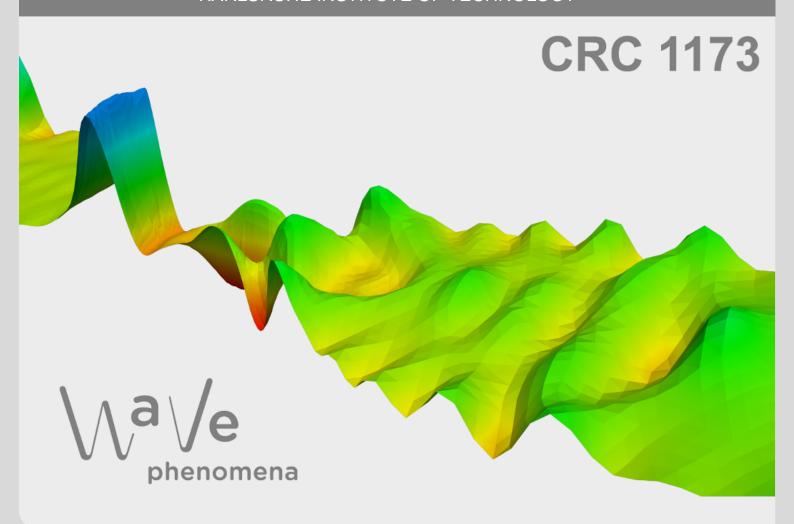


On the instabilities of naive FEM discretizations for PDEs with sign-changing coefficients

Martin Halla, Florian Oberender

CRC Preprint 2025/36, July 2025

KARLSRUHE INSTITUTE OF TECHNOLOGY



Participating universities

Funded by

ISSN 2365-662X

On the instabilities of naive FEM discretizations for PDEs with sign-changing coefficients*

Martin Halla¹ and Florian Oberender²

¹Institut für Angewandte und Numerische Mathematik, Karlsruher Institut für Technologie

²Institut für Numerische und Angewandte Mathematik, Georg-August Universität Göttingen

April 11, 2025

Abstract

We consider a scalar diffusion equation with a sign-changing coefficient in its principle part. The well-posedness of such problems has already been studied extensively provided that the contrast of the coefficient is non-critical. Furthermore, many different approaches have been proposed to construct stable discretizations thereof, because naive finite element discretizations are expected to be non-reliable in general. However, no explicit example proving the actual instability is known and numerical experiments often do not manifest instabilities in a conclusive manner. To this end we construct an explicit example with a broad family of meshes for which we prove that the corresponding naive finite element discretizations are unstable. On the other hand, we also provide a broad family of (non-symmetric) meshes for which we prove that the discretizations are stable. Together, these two findings explain the results observed in numerical experiments.

MSC: 65N12, 65N30, 78M10

Keywords: sign-changing coefficients, meta materials, finite element method, stability analysis

1 Introduction

In this article we consider diffusion equations $-\operatorname{div}(\sigma\nabla u)=f$ with a sign-changing coefficient σ , i.e., the domain Ω admits a decomposition in Ω_{\pm} for which $\pm \sigma|_{\Omega_{\pm}}>0$. Such equations occur, e.g., for fully homogenized meta materials and their reliable simulation is essential for the development of technical devices, e.g., to control sound [12] and for cloaking [14]. The well-posedness of problems with sign-changing coefficients has been studied extensively by means of the T-coercivity technique [7, 8, 5] and is known to depent on the contrast of σ and the smoothness/geometry of the interface $\overline{\Omega_+} \cap \overline{\Omega_-}$. An alternative approach to analyze such PDEs has been investigated in [17, 18] by means of the limiting absorption principle. The stability of convenient finite element discretizations is known only for sufficiently large contrasts [6] and therefore a variety of approaches to construct stable approximations have been explored, including locally symmetric meshes [4, 15], optimization based methods [1, 11, 2, 10], boundary element methods [20], weakly

^{*}The first author acknowledges funding from Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), projects 541433971 and 258734477 – SFB 1173 and that part of this work was conducted at the Johann Radon Institute for Computational and Applied Mathematics.

The second author acknowledges support from DFG, CRC 1456 project 432680300.

coercive reformulations [16] and primal-dual stabilizations [9]. However, in contrast to this extensive research on the development of stable discretizations the question if those specialized methods are actually necessary has received much less attention. Indeed, for reasonably small contrasts the error curves (for decreasing mesh sizes) of naive FEMs generally do not look reliable, but still decrease often with a saw tooth like profile [9]. At other test cases, it can even be hard to trigger some anomalies at all [16]. Actually, the analysis of [4] suggest that meshes being "almost locally symmetric" can be expected to yield stable results, and a mesh generator might produce such meshes without further due. However, without any quantification it is hard to obtain decisive conclusions from this observation.

To study such questions we construct in this article an explicit example with a piece-wise constant coefficient $(\sigma_{\pm} := \sigma|_{\Omega_{\pm}})$ and a discretization by nodal finite elments with uniform rectangular grids in Ω_{\pm} . Thereby the ratio r of the mesh sizes in Ω_{\pm} will play an important role in the analysis and acts in an inverse manner to the contrast $\kappa = \sigma_{+}/\sigma_{-}$, i.e., $r\kappa$ will be a crucial quantity. We prove that depending on the parameter range that all considered discretizations are either stable or unstable. For an unstructured mesh we expect that either case can be dominant, which explains the unconclusive observations in numerical experiments.

The remainder of the manuscript is structured as follows. In Section 2 we specify the two considered problems and their discretization. In particular, we consider one problem on an unbouded domain and a second problem on a bounded domain, where the first can be seen as an preperational step to the second. In Section 3 we conduct our stability analysis with Theorems 3.17 and 3.33 as our main results. In Section 4 we present computational examples to confirm our theoretical results.

2 Notation and setting

We consider all vector spaces over \mathbb{R} and denote scalar and vectorial L^2 -scalar products over a domain $D \subset \mathbb{R}^l$, l = 1, 2 as $\langle \cdot, \cdot \rangle_D$. Let $\mathbb{N} := \{1, 2, \dots\}, L > 0$ and consider the domains

$$\begin{split} \Omega := (-\infty, \infty) \times (0, \pi), & \Omega_- := (-\infty, 0) \times (0, \pi), & \Omega_+ := (0, \infty) \times (0, \pi), \\ \tilde{\Omega} := (-L, L) \times (0, \pi), & \tilde{\Omega}_- := (-L, 0) \times (0, \pi), & \tilde{\Omega}_+ := (0, L) \times (0, \pi). \end{split}$$

On $H^1_0(D)$, $D=\Omega,\tilde{\Omega}$ we work with the scalar product $\langle u,u^\dagger\rangle_{H^1_0(D)}:=\langle\nabla u,\nabla u^\dagger\rangle_D$. For the bounded domain $\tilde{\Omega}$ the equivalence of $\langle\cdot,\cdot\rangle_{H^1_0(\tilde{\Omega})}$ to the standard $H^1(\tilde{\Omega})$ -scalar product is well known. For the unbounded domain Ω this equivalence requires a short discussion: Let

$$\theta_m(y) := \sqrt{\frac{2}{\pi}} \sin(my), \quad m \in \mathbb{N}.$$

and recall that each $u \in H_0^1(\Omega)$ and $u \in H_0^1(\tilde{\Omega})$ admits a representation

$$u(x,y) = \sum_{m \in \mathbb{N}} u_m(x)\theta_m(y), \quad u_m(x) := \langle u(x,\cdot), \theta_m \rangle_{(0,\pi)}$$
 (1)

with

$$||u||_{H^{1}(\Omega)}^{2} = \sum_{m \in \mathbb{N}} ||\partial_{x} u_{m}||_{L^{2}(\mathbb{R})}^{2} + (\lambda_{m}^{2} + 1)||u_{m}||_{L^{2}(\mathbb{R})}^{2} \quad \text{and} \quad ||u||_{H^{1}(\tilde{\Omega})}^{2} = \sum_{m \in \mathbb{N}} ||\partial_{x} u_{m}||_{L^{2}(-L,L)}^{2} + (\lambda_{m}^{2} + 1)||u_{m}||_{L^{2}(-L,L)}^{2}$$

respectively, where

$$\lambda_m := m, \quad m \in \mathbb{N}.$$

It follows that $\|u\|_{H_0^1(\Omega)}^2 \ge \frac{1}{2} \|u\|_{H^1(\Omega)}^2$. As usual, we consider any subspaces of $H_0^1(\Omega)$ and $H_0^1(\tilde{\Omega})$ to be equipped with their inherited scalar product.

Let σ be constant on Ω_{\pm} with values $\sigma_{-} := \sigma|_{\Omega_{-}} < 0$ and $\sigma_{+} := \sigma|_{\Omega_{+}} > 0$. Let $f \in L^{2}(\tilde{\Omega})$ and identify f with its continuation by zero to Ω . We consider the following two model problems:

Find
$$u \in H_0^1(\Omega)$$
 such that $-\operatorname{div}(\sigma \nabla u) = f$ in Ω ; (2a)

Find
$$u \in H_0^1(\tilde{\Omega})$$
 such that $-\operatorname{div}(\sigma \nabla u) = f$ in $\tilde{\Omega}$, (2b)

and their variational formulations:

Find
$$u \in H_0^1(\Omega)$$
 such that $a_{\Omega}(u, u^{\dagger}) = \langle f, u^{\dagger} \rangle_{\Omega}$ for all $u^{\dagger} \in H_0^1(\Omega)$; (3a)

Find
$$u \in H_0^1(\tilde{\Omega})$$
 such that $a_{\tilde{\Omega}}(u, u^{\dagger}) = \langle f, u^{\dagger} \rangle_{\tilde{\Omega}}$ for all $u^{\dagger} \in H_0^1(\tilde{\Omega})$, (3b)

with the corresponding sesquilinear forms

$$a_D(u, u^{\dagger}) := \langle \sigma \nabla u, \nabla u^{\dagger} \rangle_D, \quad D = \Omega, \tilde{\Omega}.$$

Furthermore, let $A \in \mathcal{L}(H_0^1(\Omega))$, $\tilde{A} \in \mathcal{L}(H_0^1(\tilde{\Omega}))$ be the associated operators defined by

$$\langle \mathcal{A}u, u^{\dagger} \rangle_{H_{\sigma}^{1}(\Omega)} = a_{\Omega}(u, u^{\dagger}) \text{ for all } u, u^{\dagger} \in H_{0}^{1}(\Omega),$$
 (4a)

$$\langle \tilde{\mathcal{A}}u, u^{\dagger} \rangle_{H_0^1(\tilde{\Omega})} = a_{\tilde{\Omega}}(u, u^{\dagger}) \text{ for all } u, u^{\dagger} \in H_0^1(\tilde{\Omega}).$$
 (4b)

To specify the approximations of the former problems let P_1 be the space of polynomials in one variable of order lower equal than one. Thence let

$$M \in \mathbb{N}$$
, $h_y := \pi/M$, $y_m := h_y m$ for $m = 1, \dots, M$,

and

$$W_{h_y} := \{ u \in H_0^1(0,\pi) \colon u|_{(y_m,y_{m+1})} \in P_1 \text{ for all } m = 0,\dots, M-1 \}.$$

To discretize (3a) consider

$$h_{+} > 0$$
, $x_{n} := h_{+}n$, for $n = 0, 1, ...$; $x_{n} := h_{-}n$, for $n = -1, -2, ...$

and

$$V_{h_{\pm}} := \{ u \in H^1(\mathbb{R}) \colon u|_{(x_n, x_{n+1})} \in P_1 \text{ for all } n = \dots, -1, 0, 1, \dots \},$$

and to discretize (3b) let

 $N_{\pm} \in \mathbb{N}$, $h_{\pm} := L/N_{\pm}$, $\tilde{x}_n := h_+ n$, for $n = 0, \dots, N_+$; $\tilde{x}_n := h_- n$, for $n = -1, \dots, -N_-$, and

$$\tilde{V}_{h_+} := \{ u \in H_0^1(-L, L) : u|_{(\tilde{x}_n, \tilde{x}_{n+1})} \in P_1 \text{ for all } n = -N_-, \dots, N_+ - 1 \}.$$

Note that $V_{h_{\pm}}$ is one space which depends on both parameters h_{+} and h_{-} . The same applies to $\tilde{V}_{h_{\pm}}$. Consequently we consider the Galerkin approximations of (3a) and (3b) with discrete tensor product spaces $V_{h_{\pm}} \otimes W_{h_{y}} \subset H_{0}^{1}(\Omega)$, $\tilde{V}_{h_{\pm}} \otimes W_{h_{y}} \subset H_{0}^{1}(\tilde{\Omega})$:

Find
$$u \in V_{h_{\pm}} \otimes W_{h_{y}}$$
 such that $a_{\Omega}(u, u^{\dagger}) = \langle f, u^{\dagger} \rangle_{\Omega}$ for all $u^{\dagger} \in V_{h_{\pm}} \otimes W_{h_{y}}$; (5a)

Find
$$u \in \tilde{V}_{h_{\pm}} \otimes W_{h_y}$$
 such that $a_{\tilde{\Omega}}(u, u^{\dagger}) = \langle f, u^{\dagger} \rangle_{\tilde{\Omega}}$ for all $u^{\dagger} \in \tilde{V}_{h_{\pm}} \otimes W_{h_y}$. (5b)

Let $\mathcal{A}_{h_{\pm},h_y} \in \mathcal{L}(V_{h_{\pm}} \otimes W_{h_y})$ and $\tilde{\mathcal{A}}_{h_{\pm},h_y} \in \mathcal{L}(\tilde{V}_{h_{\pm}} \otimes W_{h_y})$ be the associated operators defined by

$$\langle \mathcal{A}_{h_+,h_n} u, u^{\dagger} \rangle_{H_0^1(\Omega)} = a_{\Omega}(u, u^{\dagger}) \text{ for all } u, u^{\dagger} \in V_{h_+} \otimes W_{h_n}, \tag{6a}$$

$$\langle \tilde{\mathcal{A}}_{h_{\pm},h_{y}}u, u^{\dagger} \rangle_{H_{0}^{1}(\tilde{\Omega})} = a_{\tilde{\Omega}}(u, u^{\dagger}) \text{ for all } u, u^{\dagger} \in \tilde{V}_{h_{\pm}} \otimes W_{h_{y}}.$$
 (6b)

We will see that the constrast κ (of σ) and the ratios of the meshes sizes

$$\kappa := \frac{\sigma_+}{\sigma_-}, \qquad r := \frac{h_+}{h_-}, \qquad r_y := \frac{h_y}{h_-},$$

will play a crucial role in the stability analysis. Since problem (3a) is posed on an unbounded domain its discretization (5a) is rather theoretical, but it allows us to perform a very explicit analysis. On the other hand, problem (3b) is posed on a bounded domain and hence its discretization (5b) is computationally feasable, but its analysis is a bit more technical. Indeed, the second setting (3b)/(5b) can be considered as an approximation of (3a)/(5a) by a truncation of the domain Ω to $\tilde{\Omega}$. During the course of our analysis we will repeatedly use tensor product functions for which we apply the following notation in general:

$$u(x,y) = v(x)w(y).$$

In addition, let $\phi_n \in V_{h_+}, \tilde{\phi}_n \in \tilde{V}_{h_+}, \psi_m \in W_{h_n}$ be the nodal basis functions defined by

$$\phi_n(x_l) = \delta_{nl}, \quad n, l \in \mathbb{Z},$$

$$\tilde{\phi}_n(\tilde{x}_l) = \delta_{nl}, \quad n, l = -N_- + 1, \dots, N_+ - 1,$$

$$\psi_m(y_l) = \delta_{ml}, \quad m, l = 1, \dots, M - 1.$$

3 Stability analysis

In this section we investigate the discretizations of (3a) and (3b).

3.1 Unbounded domain

To study the discretization of (3a) we first analyze its well-posedness and subsequently analyze a semi-discretization before treating the full discretization.

3.1.1 Well-posedness analysis

We start by discussing the well-posed of (2a) to ensure that we have chosen a meaningful problem. Secondly, our analysis will serve as recipe for the forthcoming analysis dealing with the discretizations of (2a). Let

$$X_{\pm} := \{ u \in H_0^1(\Omega) \colon u|_{\Omega_{\mp}} = 0 \} \text{ and } X_0 := (X_- \oplus X_+)^{\perp}.$$

Lemma 3.1. The space $H_0^1(\Omega)$ admits an orthogonal decomposition

$$H_0^1(\Omega) = X_- \oplus^{\perp} X_0 \oplus^{\perp} X_+$$

where X_0 is spanned by the orthonormal basis $\left(\frac{1}{\sqrt{2\lambda_m}}e^{-\lambda_m|x|}\otimes\theta_m(y)\right)_{m\in\mathbb{N}}$.

Proof. Let $u \in X_0$. By means of (1) we can write $u = \sum_{m \in \mathbb{N}} u_m \otimes \theta_m$ and it follows that u_m solves $-\partial_x \partial_x u_m + m^2 u_m = 0$ in \mathbb{R}^{\pm} . Thus $u_m|_{\mathbb{R}^+}(x) = c_1^+ e^{-\lambda_m x} + c_2^+ e^{\lambda_m x}$ and $u_m|_{\mathbb{R}^-}(x) = c_1^- e^{\lambda_m x} + c_2^- e^{-\lambda_m x}$ with constants $c_1^{\pm}, c_2^{\pm} \in \mathbb{R}$. Since $u_m \in H^1(\mathbb{R})$ it follows that $c_2^+ = c_2^- = 0$ and the continuity at the origin demands $c_1^+ = c_1^- =: c$, i.e., $u_m(x) = ce^{-\lambda_m |x|}$. The equality $c = 1/(4\lambda_m)$ follows from a simple computation.

Lemma 3.2. The operator \mathcal{A} is block diagonal with respect to the decomposition of Lemma 3.1. The blocks corresponding to X_- , X_+ and X_0 equal the identity times σ_- , σ_+ and $\frac{\sigma_+ + \sigma_-}{2} = \sigma_- \frac{1+\kappa}{2}$ respectively. Non-verbally: For each $u_-, u_-^{\dagger} \in X_-$, $u_0, u_0^{\dagger} \in X_0$, $u_+, u_+^{\dagger} \in X_+$ it holds that

$$a_{\Omega}(u_{-}+u_{0}+u_{+},u_{-}^{\dagger}+u_{0}^{\dagger}+u_{+}^{\dagger}) = \sigma_{-}\langle u_{-},u_{-}^{\dagger}\rangle_{H_{0}^{1}(\Omega)} + \sigma_{-}\frac{1+\kappa}{2}\langle u_{0},u_{0}^{\dagger}\rangle_{H_{0}^{1}(\Omega)} + \sigma_{+}\langle u_{+},u_{+}^{\dagger}\rangle_{H_{0}^{1}(\Omega)}.$$

Proof. Since the supports of functions in X_- and X_+ are disjoint it holds that $a_{\Omega}(u_+, u_-) = a_{\Omega}(u_-, u_+) = 0$ for all $u_{\pm} \in X_{\pm}$. We note that

$$a_{\Omega}(u_0, u_{\pm}) = \langle \sigma \nabla u_0, \nabla u_{\pm} \rangle_{\Omega} = \langle \sigma_{\pm} \nabla u_0, \nabla u_{\pm} \rangle_{\Omega_{\pm}} = \sigma_{\pm} \langle \nabla u_0, \nabla u_{\pm} \rangle_{\Omega} = \sigma_{\pm} \langle u_0, u_{\pm} \rangle_{H_0^1(\Omega)} = 0$$

and likewise $a_{\Omega}(u_{\pm}, u_0) = 0$ for all $u_0 \in X_0, u_{\pm} \in X_{\pm}$. It remains to prove $a_{\Omega}(u_0, u_0^{\dagger}) = \sigma_{-} \frac{1+\kappa}{2} \langle u_0, u_0^{\dagger} \rangle_{H_0^1(\Omega)}$, which follows from plugging in the orthonormal basis functions given in Lemma 3.1.

Corollary 3.3. If
$$\kappa \neq -1$$
, then \mathcal{A} is bijective and $\|\mathcal{A}^{-1}\|_{\mathcal{L}(H_0^1(\Omega))} \leq \frac{1}{|\sigma_-|\min\{1,\kappa,\lfloor\frac{1+\kappa}{2}\rfloor\}}$

Proof. From Lemma 3.2 we know that on each of the three subspaces \mathcal{A} is the identity operator multiplied by the constants σ_{-} , σ_{+} and $\sigma_{-}\frac{1+\kappa}{2}$ respectively. This implies that these are the only eigenvalues of the operator. It is therefore bijective as long as all of the three constant are nonzero, which is the case if $\kappa \neq -1$, and the norm of the inverse is the reciprocal of the smallest of the three eigenvalues.

3.1.2 Semi discretization

In this section we consider a semi discretization of problem (2a) by means of Galerkin spaces $\overline{V_{h_+} \otimes H_0^1(0,\pi)}^{\operatorname{cl}_{H_0^1(\Omega)}}$:

Find
$$u \in \overline{V_{h_{\pm}} \otimes H_0^1(0,\pi)}^{\operatorname{cl}_{H_0^1(\Omega)}}$$
 such that $a_{\Omega}(u,u^{\dagger}) = \langle f, u^{\dagger} \rangle_{\Omega}$ for all $u^{\dagger} \in \overline{V_{h_{\pm}} \otimes H_0^1(0,\pi)}^{\operatorname{cl}_{H_0^1(\Omega)}}$. (7)

Let $\mathcal{A}_{h_{\pm}} \in \mathcal{L}(\overline{V_{h_{\pm}} \otimes H_0^1(0,\pi)}^{\operatorname{cl}_{H_0^1(\Omega)}})$ be the associated operator defined by

$$\langle \mathcal{A}_{h_{\pm}} u, u^{\dagger} \rangle_{H_0^1(\Omega)} = a_{\Omega}(u, u^{\dagger}) \text{ for all } u, u^{\dagger} \in \overline{V_{h_{\pm}} \otimes H_0^1(0, \pi)}^{\operatorname{cl}_{H_0^1(\Omega)}}.$$
 (8)

Note that by means of (1) we can express:

$$a_{\Omega}(u, u^{\dagger}) = \sum_{m \in \mathbb{N}} \langle \sigma \partial_x u_m, \partial_x u_m^{\dagger} \rangle_{\mathbb{R}} + \lambda_m^2 \langle \sigma u_m, u_m^{\dagger} \rangle_{\mathbb{R}}.$$
 (9)

In addition, for $u_m = \sum_{n \in \mathbb{Z}} \alpha_n \phi_n$, $u_m^{\dagger} = \sum_{n \in \mathbb{Z}} \alpha_n^{\dagger} \phi_n$, $\alpha_n, \alpha_n^{\dagger} \in \mathbb{R}$ it follows that

$$\langle \sigma \partial_x u_m, \partial_x u_m^{\dagger} \rangle_{\mathbb{R}} + \lambda_m^2 \langle \sigma u_m, u_m^{\dagger} \rangle_{\mathbb{R}} = \sum_{n,n' \in \mathbb{Z}} \alpha_{n'}^{\dagger} \mathbf{A}_{n',n}^{(m)} \alpha_n,$$

where

with

$$a_{\pm}^{(m)} := \frac{1}{h_{+}} + \lambda_{m}^{2} \frac{1}{3} h_{\pm},$$
 (10a)

$$b_{\pm}^{(m)} := -\frac{1}{h_{+}} + \lambda_{m}^{2} \frac{1}{6} h_{\pm}. \tag{10b}$$

Note that since $(\phi_n)_{n\in\mathbb{Z}}$ is not a Hilbert space basis the former expansion is only justified under certain decay conditions on $(\alpha_n)_{n\in\mathbb{Z}}$, $(\alpha_n^{\dagger})_{n\in\mathbb{Z}}$. However, this will not pose any problem for our forthcoming analysis.

We note that the analysis of the case $b_{\pm}^{(m)}=0$ is rather trivial, because thence $\mathbf{A}^{(m)}$ is diagonal. Thus to unify our formulas we introduce the following case-wise definition

$$\mu_{m,1,\pm} := \begin{cases} \frac{1}{b_{\pm}^{(m)}} \left(-a_{\pm}^{(m)} + \sqrt{(a_{\pm}^{(m)})^2 - (b_{\pm}^{(m)})^2} \right), & b_{\pm}^{(m)} \neq 0, \\ 0, & b_{\pm}^{(m)} = 0, \end{cases}$$

$$\mu_{m,2,\pm} := \begin{cases} \frac{1}{b_{\pm}^{(m)}} \left(-a_{\pm}^{(m)} - \sqrt{(a_{\pm}^{(m)})^2 - (b_{\pm}^{(m)})^2} \right), & b_{\pm}^{(m)} \neq 0, \\ 1, & b_{\pm}^{(m)} = 0. \end{cases}$$

Henceforth we will only discuss the case $b_{\pm}^{(m)} \neq 0$ and just note that the statements of all Lemmas and Theorems also hold for the case $b_{\pm}^{(m)} = 0$. Indeed $\mu_{m,1,\pm}, \mu_{m,2,\pm}$ are the roots of the polynomial $\mu \mapsto b_{\pm}^{(m)} \mu^2 + 2a_{\pm}^{(m)} \mu + b_{\pm}^{(m)}$.

Note that it follows from $\mu_{m,1,\pm}\mu_{m,2,\pm} = 1$ and $(a_{\pm}^{(m)})^2 - (b_{\pm}^{(m)})^2 > 0$ that $|\mu_{m,1,\pm}| < |\mu_{m,2,\pm}|$ and therefore

$$|\mu_{m,1,\pm}| < 1 \quad \text{and} \quad |\mu_{m,2,\pm}| > 1.$$
 (11)

We introduce the abbreviation

$$\mu_{m,\pm} := \mu_{m,1,\pm} \tag{12}$$

and note that per definition $|\mu_{m,\pm}| < 1$. As the next step we further exploit the former representations in the following two lemmas which are in analogy to Section 3.1.1. To avoid misconceptions we emphasize that the n in $\mu_{m,\pm}^{\pm n}$ appearing Lemma 3.4 is an actual power and not an index.

Lemma 3.4. The space $\overline{V_{h_{\pm}} \otimes H_0^1(0,\pi)}^{\operatorname{cl}_{H_0^1(\Omega)}}$ admits an orthogonal decomposition

$$\overline{V_{h_{\pm}} \otimes H_{0}^{1}(0,\pi)}^{\text{cl}_{H_{0}^{1}(\Omega)}} = \left(\overline{V_{h_{\pm}}^{-} \otimes H_{0}^{1}(0,\pi)}^{\text{cl}_{H_{0}^{1}(\Omega)}}\right) \oplus^{\perp} V_{h_{\pm}}^{0} \oplus^{\perp} \left(\overline{V_{h_{\pm}}^{+} \otimes H_{0}^{1}(0,\pi)}^{\text{cl}_{H_{0}^{1}(\Omega)}}\right),$$

where $V_{h_{\pm}}^{-} := \{v \in V_{h_{\pm}} : v|_{\mathbb{R}_{+}} = 0\}$ and $V_{h_{\pm}}^{+} := \{v \in V_{h_{\pm}} : v|_{\mathbb{R}_{-}} = 0\}$. The subspace $V_{h_{\pm}}^{0}$ is spanned by the orthonormal basis $(v_{m}(x) \otimes \theta_{m}(y))_{m \in \mathbb{N}}$, where

$$v_m(x) := \frac{1}{\sqrt{b_-^{(m)} \mu_{m,-} + a_-^{(m)} + a_+^{(m)} + b_+^{(m)} \mu_{m,+}}} \Big(\phi_0(x) + \sum_{n \in \mathbb{N}} \mu_{m,+}^n \phi_n(x) + \sum_{n \in \mathbb{N}} \mu_{m,-}^n \phi_{-n}(x) \Big).$$

Proof. Let $v \in \left(\overline{V_{h_{\pm}}^{-} \otimes H_{0}^{1}(0,\pi)}^{\operatorname{cl}_{H_{0}^{1}(\Omega)}} \oplus \overline{V_{h_{\pm}}^{+} \otimes H_{0}^{1}(0,\pi)}^{\operatorname{cl}_{H_{0}^{1}(\Omega)}}\right)^{\perp}$. By means of (1) we can write $v = \sum_{m \in \mathbb{N}} v_{m} \otimes \theta_{m}$. We can write $v_{m} = \sum_{n \in \mathbb{Z}} \beta_{n}^{(m)} \phi_{n}$. The span of the functions $\phi_{n} \otimes \theta_{m}$ for $m, n \in \mathbb{Z}, n \neq 0$ is dense in $\left(\overline{V_{h_{\pm}}^{-} \otimes H_{0}^{1}(0,\pi)}^{\operatorname{cl}_{H_{0}^{1}(\Omega)}} \oplus \overline{V_{h_{\pm}}^{+} \otimes H_{0}^{1}(0,\pi)}^{\operatorname{cl}_{H_{0}^{1}(\Omega)}}\right)$. By orthogonality we then have

$$0 = \langle v, \phi_{\pm n} \otimes \theta_m \rangle_{H_0^1(\Omega)} = \langle \partial_x v_m, \partial_x \phi_{\pm n} \rangle_{\mathbb{R}} + \lambda_m^2 \langle v_m, \phi_{\pm n} \rangle_{\mathbb{R}}$$

$$= \langle \beta_{\pm n-1}^{(m)} \partial_x \phi_{\pm n-1}, \partial_x \phi_{\pm n} \rangle_{\mathbb{R}} + \langle \beta_{\pm n}^{(m)} \partial_x \phi_{\pm n}, \partial_x \phi_{\pm n} \rangle_{\mathbb{R}} + \langle \beta_{\pm n+1}^{(m)} \partial_x \phi_{\pm n+1}, \partial_x \phi_{\pm n} \rangle_{\mathbb{R}}$$

$$+ \lambda_m^2 \left(\langle \beta_{\pm n-1}^{(m)} \phi_{\pm n-1}, \phi_{\pm n} \rangle_{\mathbb{R}} + \langle \beta_{\pm n}^{(m)} \phi_{\pm n}, \phi_{\pm n} \rangle_{\mathbb{R}} + \langle \beta_{\pm n+1}^{(m)} \phi_{\pm n+1}, \phi_{\pm n} \rangle_{\mathbb{R}} \right)$$

$$= \sigma_{\pm} \left(\beta_{\pm n-1}^{(m)} b_{\pm}^{(m)} + 2\beta_{\pm n}^{(m)} a_{\pm}^{(m)} + \beta_{\pm n+1}^{(m)} b_{\pm}^{(m)} \right).$$

Solving this three-term recurrence relation and recalling (12), (11) we obtain that

$$\beta_n^{(m)} = \beta_0^{(m)} \mu_{m,+}^n \text{ and } \beta_{-n}^{(m)} = \beta_0^{(m)} \mu_{m,-}^n \quad \forall n \in \mathbb{N}.$$

Finally we compute the normalization constant by

$$1 = \langle \partial_x v_m, \partial_x v_m \rangle_{\mathbb{R}} + \lambda_m^2 \langle v_m, v_m \rangle_{\mathbb{R}} = \sum_{n \in \mathbb{Z}} \beta_n^{(m)} \left(\langle \partial_x \phi_n, \partial_x v_m \rangle_{\mathbb{R}} + \lambda_m^2 \langle \phi_n, v_m \rangle_{\mathbb{R}} \right)$$
$$= \beta_0^{(m)} \left(\langle \partial_x \phi_0, \partial_x v_m \rangle_{\mathbb{R}} + \lambda_m^2 \langle \phi_0, v_m \rangle_{\mathbb{R}} \right)$$
$$= (\beta_0^{(m)})^2 \left(\mu_{m,-} b_-^{(m)} + a_-^{(m)} + a_+^{(m)} + \mu_{m,+} b_+^{(m)} \right),$$

i.e.,

$$\beta_0^{(m)} = \frac{1}{\sqrt{\mu_{m,-}b_-^{(m)} + a_-^{(m)} + a_+^{(m)} + \mu_{m,+}b_+^{(m)}}}.$$

Note that this calculation also ensures that $v_m \otimes \theta_m$ has finite $H_0^1(\Omega)$ -norm, i.e., $v_m \otimes \theta_m \in H_0^1(\Omega)$ is well defined.

Lemma 3.5. The operator $\mathcal{A}_{h_{\pm}}$ is block diagonal with respect to the orthogonal decomposition given in Lemma 3.4. The blocks corresponding to $\overline{V_{h_{\pm}}^- \otimes H_0^1(0,\pi)}^{\operatorname{cl}_{H_0^1(\Omega)}}$ and $\overline{V_{h_{\pm}}^+ \otimes H_0^1(0,\pi)}^{\operatorname{cl}_{H_0^1(\Omega)}}$ equal the identity times σ_- and σ_+ respectively. The block corresponding to $V_{h_{\pm}}^0$ is diagonal with respect to the basis given in Lemma 3.4 and the diagonal entries are given by

$$d_{m} := \frac{\sigma_{-}b_{-}^{(m)}\mu_{m,-} + \sigma_{-}a_{-}^{(m)} + \sigma_{+}a_{+}^{(m)} + \sigma_{+}b_{+}^{(m)}\mu_{m,+}}{b_{-}^{(m)}\mu_{m,-} + a_{-}^{(m)} + a_{+}^{(m)} + b_{+}^{(m)}\mu_{m,+}}, \quad m \in \mathbb{N}.$$

$$(13)$$

Non-verbally: For each $u_{-}, u_{-}^{\dagger} \in \overline{V_{h_{\pm}}^{-} \otimes H_{0}^{1}(0, \pi)}^{\operatorname{cl}_{H_{0}^{1}(\Omega)}}, u_{0}, u_{0}^{\dagger} \in V_{h_{\pm}}^{0}, u_{+}, u_{+}^{\dagger} \in \overline{V_{h_{\pm}}^{+} \otimes H_{0}^{1}(0, \pi)}^{\operatorname{cl}_{H_{0}^{1}(\Omega)}}$ and $u_{0} = \sum_{m \in \mathbb{N}} \beta_{m} v_{m} \otimes \theta_{m}, u_{0}^{\dagger} = \sum_{m \in \mathbb{N}} \beta_{m}^{\dagger} v_{m} \otimes \theta_{m}, (\beta_{m})_{m \in \mathbb{N}}, (\beta_{m}^{\dagger})_{m \in \mathbb{N}} \in \ell^{2}(\mathbb{N}) \text{ it holds that }$

$$a_{\Omega}(u_{-}+u_{0}+u_{+},u_{-}^{\dagger}+u_{0}^{\dagger}+u_{+}^{\dagger}) = \sigma_{-}\langle u_{-},u_{-}^{\dagger}\rangle_{H_{0}^{1}(\Omega)} + \sum_{m\in\mathbb{N}} d_{m}\beta_{m}\beta_{m}^{\dagger} + \sigma_{+}\langle u_{+},u_{+}^{\dagger}\rangle_{H_{0}^{1}(\Omega)}.$$

Proof. The arguments are essentially the same as in the continuous case (see Lemma 3.2) where we now use Lemma 3.4 instead of Lemma 3.1. With this we directly get $a_{\Omega}(u_{-}, u_{+}^{\dagger}) = a_{\Omega}(u_{+}, u_{-}^{\dagger}) = 0$ and that $\mathcal{A}_{h_{\pm}}$ is the identity times σ_{+} and σ_{-} on $\overline{V_{h_{\pm}}^{-} \otimes H_{0}^{1}(0, \pi)}^{\operatorname{cl}_{H_{0}^{1}(\Omega)}}$ and $\overline{V_{h_{\pm}}^{+} \otimes H_{0}^{1}(0, \pi)}^{\operatorname{cl}_{H_{0}^{1}(\Omega)}}$ respectively. By the orthogonality of the decomposition we also get $a_{\Omega}(u_{0}, u_{\pm}^{\dagger}) = \sigma_{\pm}\langle u_{0}, u_{\pm}^{\dagger} \rangle_{H_{0}^{1}(\Omega)} = 0$ as in the continuous case. It remains to show, that operator is diagonal on $V_{h_{\pm}}^{0}$ with the claimed values. That it is indeed diagonal follows directly from the decomposition in (9). To compute the values we use the same calculation as for the normalization constant and get

$$\begin{split} a_{\Omega}(v_{m}\otimes\theta_{m},v_{m}\otimes\theta_{m}) &= \frac{\sum_{n\in\mathbb{N}}a_{\Omega}(\mu_{m,-}^{n}\phi_{-n}\otimes\theta_{m},v_{m}\otimes\theta_{m}) + \sum_{n\in\mathbb{N}}a_{\Omega}(\mu_{m,+}^{n}\phi_{n}\otimes\theta_{m},v_{m}\otimes\theta_{m})}{b_{-}^{(m)}\mu_{m,-} + a_{-}^{(m)} + a_{+}^{(m)} + b_{+}^{(m)}\mu_{m,+}} \\ &+ \frac{a_{\Omega}(\phi_{0}\otimes\theta_{m},v_{m}\otimes\theta_{m})}{b_{-}^{(m)}\mu_{m,-} + a_{-}^{(m)} + a_{+}^{(m)} + b_{+}^{(m)}\mu_{m,+}} \\ &= \frac{a_{\Omega}(\phi_{0}\otimes\theta_{m},v_{m}\otimes\theta_{m})}{b_{-}^{(m)}\mu_{m,-} + a_{-}^{(m)} + a_{+}^{(m)} + b_{+}^{(m)}\mu_{m,+}} \\ &= \frac{\sigma_{-}b_{-}^{(m)}\mu_{m,-} + \sigma_{-}a_{-}^{(m)} + \sigma_{+}a_{+}^{(m)} + \sigma_{+}b_{+}^{(m)}\mu_{m,+}}{b_{-}^{(m)}\mu_{m,-} + a_{-}^{(m)} + a_{+}^{(m)} + b_{+}^{(m)}\mu_{m,+}}, \end{split}$$

where we exploited the orthogonality properties of v_m .

We observe that in contrast to Lemma 3.2 the block corresponding to $V_{h_{\pm}}^0$ is not a multiple of the identity, but still diagonal. To analyze the diagonal entries d_m we introduce the function

$$\mathfrak{f}_{\kappa,r}(t) := \frac{1 + \frac{\kappa \sqrt{r^2 t^2 + 12}}{\sqrt{t^2 + 12}}}{1 + \frac{\sqrt{r^2 t^2 + 12}}{\sqrt{t^2 + 12}}}.$$

Lemma 3.6. The diagonal entries d_m defined in (13) satisfy $d_m = \sigma_- \mathfrak{f}_{\kappa,r}(\lambda_m h_-)$.

Proof. To start with, plugging in the definitions (12), (10) of $\mu_{m,\pm}$ and $b_{\pm}^{(m)}, a_{\pm}^{(m)}$ respectively yields that

$$b_{\pm}^{(m)}\mu_{m,\pm} + a_{\pm}^{(m)} = \sqrt{\left(a_{\pm}^{(m)}\right)^2 - \left(b_{\pm}^{(m)}\right)^2} = \lambda_m \sqrt{1 + \frac{1}{12}\lambda_m^2 h_{\pm}^2}.$$

Inserting this into the definition (13) of d_m we obtain that

$$\begin{split} d_m &= \frac{\sigma_-(b_-^{(m)}\mu_{m,-} + a_-^{(m)}) + \sigma_+(a_+^{(m)} + b_+^{(m)}\mu_{m,+})}{(b_-^{(m)}\mu_{m,-} + a_-^{(m)}) + (a_+^{(m)} + b_+^{(m)}\mu_{m,+})} = \frac{\sigma_-\sqrt{1 + \frac{1}{12}\lambda_m^2h_-^2} + \sigma_+\sqrt{1 + \frac{1}{12}\lambda_m^2h_+^2}}{\sqrt{1 + \frac{1}{12}\lambda_m^2h_-^2} + \sqrt{1 + \frac{1}{12}\lambda_m^2h_-^2}} \\ &= \sigma_-\frac{1 + \kappa\frac{\sqrt{12 + \lambda_m^2h_+^2}}{\sqrt{12 + \lambda_m^2h_-^2}}}{1 + \frac{\sqrt{12 + \lambda_m^2h_-^2}}{\sqrt{12 + \lambda_m^2h_-^2}}} = \sigma_-\frac{1 + \kappa\frac{\sqrt{12 + \lambda_m^2h_-^2r^2}}{\sqrt{12 + \lambda_m^2h_-^2}}}{1 + \frac{\sqrt{12 + \lambda_m^2h_-^2r^2}}{\sqrt{12 + \lambda_m^2h_-^2}}} = \sigma_-\mathfrak{f}_{\kappa,r}(\lambda_mh_-), \end{split}$$

where we recall that $r = h_{+}/h_{-}$.

In the following lemmas we analyze the function $f_{\kappa,r}$.

Lemma 3.7. If one of the following two conditions

$$\underbrace{|\kappa| < 1 \text{ and } r|\kappa| > 1}_{(14a)} \quad or \quad \underbrace{|\kappa| > 1 \text{ and } r|\kappa| < 1}_{(14b)}$$
 (14)

is satisfied, then the only root of $\mathfrak{f}_{\kappa,r}$ in $[0,+\infty)$ is

$$t_{\kappa,r} := \sqrt{\frac{12(1-\kappa^2)}{\kappa^2 r^2 - 1}}.$$

Proof. Since the denominator of $\mathfrak{f}_{\kappa,r}$ ranges for $t \geq 0$ between 2 and 1+r, it suffices to analyze its nominator. Because we only consider non-negative t and negative κ we get

$$0 = 1 + \frac{\kappa\sqrt{r^2t^2 + 12}}{\sqrt{t^2 + 12}} \Leftrightarrow \sqrt{t^2 + 12} = |\kappa|\sqrt{r^2t^2 + 12} \Leftrightarrow t^2 + 12 = \kappa^2(r^2t^2 + 12)$$
$$\Leftrightarrow t^2(1 - \kappa^2r^2) = 12(\kappa^2 - 1).$$

The condition (14) now guarantees that $\kappa^2 - 1$ and $1 - \kappa^2 r^2$ have the same sign so the only solution is $t_{\kappa,r} = \sqrt{\frac{12(1-\kappa^2)}{\kappa^2 r^2 - 1}}$.

Lemma 3.8. If (14) is satisfied, then $\lim_{h_-\to 0+}\inf_{m\in\mathbb{N}}|\mathfrak{f}_{\kappa,r}(\lambda_m h_-)|=0$.

Proof. Write $h_- = \frac{1}{l+\epsilon} t_{\kappa,r}$ with $l \in \mathbb{N}_0$ and $\epsilon \in [0,1)$. Choose m=l, recall that $\lambda_m = m$ and exploit that $\lim_{l \to +\infty} \frac{l}{l+\epsilon} \to 1$ uniformly in $\epsilon \in [0,1)$. Apply Lemma 3.7 and the continuity of $\mathfrak{f}_{\kappa,r}$.

Lemma 3.9. If one of the following two conditions

$$\underbrace{|\kappa| < 1 \text{ and } r|\kappa| < 1}_{(15a)} \quad or \quad \underbrace{|\kappa| > 1 \text{ and } r|\kappa| > 1}_{(15b)}$$
 (15)

is satisfied, then $\inf_{t\geq 0} |\mathfrak{f}_{\kappa,r}(t)| \geq \min\{\left|\frac{1+\kappa}{2}\right|, \left|\frac{1+r\kappa}{1+r}\right|\}$.

Proof. We note that $\mathfrak{f}'_{\kappa,r}(t)=\frac{12(\kappa-1)(r^2-1)t}{\sqrt{t^2+12}\sqrt{r^2t^2+12}(\sqrt{r^2t^2+12}+\sqrt{t^2+12})^2}$ and hence $\mathfrak{f}_{\kappa,r}(t)$ is a monotone function. This implies

$$\mathfrak{f}_{\kappa,r}(t) \in \left[\min\left\{\mathfrak{f}_{\kappa,r}(0), \lim_{s \to +\infty}\mathfrak{f}_{\kappa,r}(s)\right\}, \max\left\{\mathfrak{f}_{\kappa,r}(0), \lim_{s \to +\infty}\mathfrak{f}_{\kappa,r}(s)\right\}\right] \quad \forall t \in [0,+\infty).$$

Computing these values we get $\mathfrak{f}_{\kappa,r}(t) \in [\min\{\frac{1+\kappa}{2},\frac{1+r\kappa}{1+r}\},\max\{\frac{1+\kappa}{2},\frac{1+r\kappa}{1+r}\}]$. The conditions now ensure that both values have the same sign so the absolute value of $\mathfrak{f}_{\kappa,r}(t)$ is always bigger than the minimal absolute value occurring in one of the bounds.

Now we are in the position to conclude our analysis of the semi discretization (7) in the following theorem.

Theorem 3.10. If (15) is satisfied, then A_{h+}^{-1} exists and satisfies

$$\|\mathcal{A}_{h_{\pm}}^{-1}\|_{\mathcal{L}(\overline{V_{h_{\pm}} \otimes H_{0}^{1}(0,\pi)}^{\operatorname{cl}}H_{0}^{1}(\Omega))} \leq \frac{1}{|\sigma_{-}| \min\left\{1, |\kappa|, \left|\frac{1+\kappa}{2}\right|, \left|\frac{1+r\kappa}{1+r}\right|\right\}}$$

for all $h_-, h_+ = rh_- > 0$. Contrary, if (14) is satisfied, then

$$\lim_{\substack{h_{-}\to 0+\\h_{+}=rh}}\|\mathcal{A}_{h_{\pm}}^{-1}\|_{\mathcal{L}(\overline{V_{h_{\pm}}\otimes H_{0}^{1}(0,\pi)}^{\operatorname{cl}}H_{0}^{1}(\Omega))}=+\infty$$

(where we define $\|\mathcal{A}_{h_{\pm}}^{-1}\|_{\mathcal{L}(\overline{V_{h_{\pm}}\otimes H_0^1(0,\pi)}^{c_1}H_0^1(\Omega))}:=+\infty$, if $\mathcal{A}_{h_{\pm}}^{-1}$ does not exist), and in particular: $\mathcal{A}_{h_{\pm}}$ admits a nontrivial kernel for each

$$h_{-} = \frac{1}{\lambda_{m}} t_{\kappa,r} = \frac{1}{m} \sqrt{\frac{12(1-\kappa^{2})}{\kappa^{2}r^{2}-1}}, \quad h_{+} = rh_{-}, \quad m \in \mathbb{N}.$$

Proof. By Lemma 3.5 we know that the eigenvalues of $\mathcal{A}_{h_{\pm}}$ are σ_{+},σ_{-} and d_{m} for $m \in \mathbb{N}$. From Lemma 3.8 we get a lower bound on the absolute values of d_{m} which implies the first statement of the theorem. Then from Lemma 3.9 it follows that such a bound does not exist in the other case which implies the second statement and finally Lemma 3.7 gives us the precise values where we have a zero eigenvalue which implies a nontrivial kernel.

3.1.3 Full discretization

Next we consider the full discretization (5a) by means of the Galerkin spaces $V_{h_{\pm}} \otimes W_{h_y}$. To this end much of the analysis of Section 3.1.2 can be repeated, but we have to replace the orthogonal basis $(\theta_m)_{m\in\mathbb{N}}$ of $H_0^1(0,\pi)$ by a suitable discrete orthogonal basis $(\hat{\theta}_m)_{m=1,\dots,M-1}$ of W_{h_y} , and as a general rule we denote respective modified quantities by the same symbol as previously used but with an additional hat. Hence we consider the following eigenvalue problem:

Find
$$(\tau, w) \in \mathbb{R}^+ \times W_{h_y} \setminus \{0\}$$
 such that $\langle \partial_y w, \partial_y w^{\dagger} \rangle_{(0,2\pi)} = \tau^2 \langle w, w^{\dagger} \rangle_{(0,2\pi)} \quad \forall w^{\dagger} \in W_{h_y}.$ (16)

To solve this problem we define

$$(\mathbf{B}^{(\tau)})_{m',m} := \langle \partial_y \psi_m, \partial_y \psi_{m'} \rangle_{(0,2\pi)} - \tau^2 \langle \psi_m, \psi_{m'} \rangle_{(0,2\pi)}, \quad m, m' = 1, \dots, M - 1.$$

Then we use that τ is an eigenvalue if and only if $\mathbf{B}^{(\tau)}$ has a zero eigenvalue. It holds that

It follows that [3, 13]

$$\tau_m^2 = \frac{6}{h_y^2} \frac{1 - \cos(h_y m)}{2 + \cos(h_y m)}, \quad m = 1, \dots, M - 1$$

with respective $L^2(0,\pi)$ -normalized eigenfunctions

$$\hat{\theta}_m(y) := c \sum_{l=1}^{M-1} \sin(mh_y l) \psi_l(y), \quad c := \left\| \sum_{l=1}^{M-1} \sin(mh_y l) \psi_l \right\|_{L^2(0,\pi)}^{-1}, \quad m = 1, \dots, M-1.$$

This leads us to introduce

$$\hat{\lambda}_{m,r_y,h_-} := \frac{\sqrt{6}}{r_y h_-} \sqrt{\frac{1 - \cos(r_y h_- m)}{2 + \cos(r_y h_- m)}} = \frac{\sqrt{6}}{h_y} \sqrt{\frac{1 - \cos(h_y m)}{2 + \cos(h_y m)}}, \quad m = 1, \dots, M - 1.$$

Hence we define respective modified quantities

$$\begin{split} \hat{a}_{\pm}^{(m)} &:= \frac{1}{h_{\pm}} + \hat{\lambda}_{m,r_{y},h_{-}}^{2} \frac{1}{3} h_{\pm}, \\ \hat{b}_{\pm}^{(m)} &:= -\frac{1}{h_{\pm}} + \hat{\lambda}_{m,r_{y},h_{-}}^{2} \frac{1}{6} h_{\pm}, \\ \hat{\mu}_{m,1,\pm} &:= \frac{1}{\hat{b}_{\pm}^{(m)}} \left(-\hat{a}_{\pm}^{(m)} + \sqrt{(\hat{a}_{\pm}^{(m)})^{2} - (\hat{b}_{\pm}^{(m)})^{2}} \right), \\ \hat{\mu}_{m,2,\pm} &:= \frac{1}{\hat{b}_{\pm}^{(m)}} \left(-\hat{a}_{\pm}^{(m)} - \sqrt{(\hat{a}_{\pm}^{(m)})^{2} - (\hat{b}_{\pm}^{(m)})^{2}} \right), \\ \hat{\mu}_{m,\pm} &:= \begin{cases} \hat{\mu}_{m,1,\pm}, & \hat{b}_{\pm}^{(m)} \neq 0, \\ 0, & \hat{b}_{\pm}^{(m)} \neq 0, \end{cases} \\ 0, & \hat{b}_{\pm}^{(m)} = 0, \end{cases} \\ \hat{d}_{m} &:= \frac{\sigma_{-}b_{-}^{(m)}\hat{\mu}_{m,-} + \sigma_{-}\hat{a}_{-}^{(m)} + \sigma_{+}\hat{a}_{+}^{(m)} + \sigma_{+}\hat{b}_{+}^{(m)}\hat{\mu}_{m,+}}{\hat{b}_{-}^{(m)}\hat{\mu}_{m,-} + \hat{a}_{-}^{(m)} + \hat{a}_{-}^{(m)} + \hat{a}_{+}^{(m)} + \hat{b}_{+}^{(m)}\hat{\mu}_{m,+}}, \\ \hat{v}_{m}(x) &:= \frac{1}{\sqrt{\hat{b}_{-}^{(m)}\hat{\mu}_{m,-} + \hat{a}_{-}^{(m)} + \hat{a}_{-}^{(m)} + \hat{b}_{-}^{(m)}\hat{\mu}_{m,+}}} \left(\phi_{0}(x) + \sum_{n \in \mathbb{Z}^{+}} \hat{\mu}_{m,+}^{n} \phi_{n}(x) + \sum_{n \in \mathbb{Z}^{-}} \hat{\mu}_{m,-}^{-n} \phi_{n}(x) \right) \end{split}$$

for m = 1, ..., M - 1. The forthcoming two lemmas follow in analogy to Section 3.1.2.

Lemma 3.11. The space $V_{h_{\pm}} \otimes W_{h_y}$ admits an orthogonal decomposition

$$V_{h_{\pm}} \otimes W_{h_y} = \left(V_{h_{\pm}}^- \otimes W_{h_y} \right) \oplus^{\perp} \hat{V}_{h_{\pm}}^0 \oplus^{\perp} \left(V_{h_{\pm}}^+ \otimes W_{h_y} \right),$$

where $V_{h_{\pm}}^{-} = \{v \in V_{h_{\pm}} : v|_{\mathbb{R}_{+}} = 0\}$ and $V_{h_{\pm}}^{+} - = \{v \in V_{h_{\pm}} : v|_{\mathbb{R}_{-}} = 0\}$. The subspace $\hat{V}_{h_{\pm}}^{0}$ is spanned by the orthonormal basis $(\hat{v}_{m}(x) \otimes \hat{\theta}_{m}(y))_{m=1,...,M-1}$.

Proof. The proof can be obtained by following the steps of the proof of Lemma 3.4 one-to-one. \Box

Lemma 3.12. The operator $\mathcal{A}_{h_{\pm},h_y}$ is block diagonal with respect to the orthogonal decomposition given in Lemma 3.11. The blocks corresponding to $V_{h_{\pm}}^- \otimes W_{h_y}$ and $V_{h_{\pm}}^+ \otimes W_{h_y}$ equal the identity times σ_- and σ_+ respectively. The block corresponding to $\hat{V}_{h_{\pm}}^0$ is diagonal with respect to the basis given in Lemma 3.11 and the diagonal entries are given by \hat{d}_m . Non-verbally: For each $u_-, u_-^{\dagger} \in V_{h_{\pm}}^- \otimes W_{h_y}$, $u_0, u_0^{\dagger} \in \hat{V}_{h_{\pm}}^0$, $u_+, u_+^{\dagger} \in V_{h_{\pm}}^+ \otimes W_{h_y}$ and $u_0 = \sum_{m=1}^{M-1} \beta_m \hat{v}_m \otimes \hat{\theta}_m$, $u_0^{\dagger} = \sum_{m=1}^{M-1} \beta_m^{\dagger} \hat{v}_m \otimes \hat{\theta}_m$, $(\beta_m)_{m=1}^{M-1}, (\beta_m^{\dagger})_{m=1}^M \in \mathbb{R}^{M-1}$ it holds that

$$a_{\Omega}(u_{-} + u_{0} + u_{+}, u_{-}^{\dagger} + u_{0}^{\dagger} + u_{+}^{\dagger}) = \sigma_{-}\langle u_{-}, u_{-}^{\dagger} \rangle_{H_{0}^{1}(\Omega)} + \sum_{m=1}^{M-1} \hat{d}_{m} \beta_{m} \beta_{m}^{\dagger} + \sigma_{+}\langle u_{+}, u_{+}^{\dagger} \rangle_{H_{0}^{1}(\Omega)}.$$

Proof. The proof can be obtained by following the steps of the proof of Lemma 3.5 one-to-one. \Box To analyze the diagonal entries \hat{d}_m we define

$$\mathfrak{h}_{r_y}(s) := \sqrt{\frac{6}{r_y^2} \frac{1 - \cos(s)}{2 + \cos(s)}}$$

and introduce the following lemmas.

Lemma 3.13. It holds that $\hat{\lambda}_{m,r_y,h_-}h_- = \mathfrak{h}_{r_y}(r_ymh_-)$ and $\hat{d}_m = \sigma_-\mathfrak{f}_{\kappa,r}(\mathfrak{h}_{r_y}(r_ymh_-))$ for $m = 1,\ldots,M-1$.

Proof. An elementary computation shows

$$\hat{\lambda}_{m,r_y,h_-}^2 h_-^2 = \frac{6}{r_y^2 h_-^2} \frac{1 - \cos(r_y h_- m)}{2 + \cos(r_y h_- m)} h_-^2 = \mathfrak{h}_{r_y} (r_y m h_-)^2.$$

Then as in Lemma 3.6 it follows that $\hat{d}_m = \sigma_- \mathfrak{f}_{\kappa,r} (\hat{\lambda}_{m,r_y,h_-} h_-)$ and combining these two identities yields that $\hat{d}_m = \sigma_- \mathfrak{f}_{\kappa,r} (\mathfrak{h}_{r_y}(r_y m h_-))$.

Lemma 3.14. If one of the following two conditions

$$\underbrace{|\kappa| < 1 \text{ and } r^2 \kappa^2 > 1 + r_y^2 (1 - \kappa^2)}_{(17a)} \quad or \quad \underbrace{|\kappa| > 1 \text{ and } r^2 \kappa^2 < 1 + r_y^2 (1 - \kappa^2)}_{(17b)}$$
 (17)

is satisfied, then the problem to find $s \in (0,\pi]$ such that $\mathfrak{h}_{r_y}(s) = t_{\kappa,r}$ admits the unique solution

$$s_{\kappa,r,r_y} := \arccos\left(\frac{1 - \frac{r_y^2 t_{\kappa,r}^2}{3}}{1 + \frac{r_y^2 t_{\kappa,r}^2}{6}}\right) = \arccos\left(1 + \frac{6r_y^2 (1 - \kappa^2)}{(1 - \kappa^2 r^2) - 2r_y^2 (1 - \kappa^2)}\right).$$

Proof. First, one can check, that the inequalities guarantee that $\frac{6r_y^2(1-\kappa^2)}{(1-\kappa^2r^2)-2r_y^2(1-\kappa^2)} \in (-2,0)$ so s_{κ,r,r_y} is well defined. Now we compute

$$\mathfrak{h}_{r_y}(s_{\kappa,r,r_y})^2 = \frac{6}{r_y^2} \frac{1 - \cos(s_{\kappa,r,r_y})}{2 + \cos(s_{\kappa,r,r_y})} = \frac{6}{r_y^2} \frac{1 - \frac{1 - \frac{r_y^2 t_{\kappa,r}^2}{y}}{1 + \frac{r_y^2 t_{\kappa,r}^2}{6}}}{2 + \frac{1 - \frac{r_y^2 t_{\kappa,r}^2}{6}}{1 + \frac{r_y^2 t_{\kappa,r}^2}{y}}} = \frac{6}{r_y^2} \frac{3 \frac{r_y^2 t_{\kappa,r}^2}{6}}{3} = t_{\kappa,r}^2.$$

Before we formulate the next Lemma 3.15, let us recall that $h_{-} = \frac{h_{y}}{r_{y}} = \frac{\pi}{r_{y}M}$.

Lemma 3.15. If (17) is satisfied, then $\lim_{M\to+\infty}\inf_{m\in\{1,\ldots,M-1\}}\left|\mathfrak{f}_{\kappa,r}\left(\mathfrak{h}_{r_y}\left(\frac{m\pi}{M}\right)\right)\right|=0.$

11

Proof. Because the rational numbers are dense in the real numbers, for each $\epsilon > 0$ there exists $M_{\epsilon} \in \mathbb{N}$ such that for all $M \in \mathbb{N}, M > M_{\epsilon}$ there exists $m \in \{1, ..., M-1\}$ such that $\left|\frac{m}{M}\pi - s_{\kappa,r,r_y}\right| < \epsilon$. The theorem now follows from the continuity of $\mathfrak{f}_{\kappa,r} \circ \mathfrak{h}_{r_y}$ and $\mathfrak{f}_{\kappa,r}(\mathfrak{h}_{r_y}(s_{\kappa,r,r_y})) = 0$.

Lemma 3.16. If one of the following two conditions

$$\underbrace{|\kappa| < 1 \text{ and } r^2 \kappa^2 < 1 + r_y^2 (1 - \kappa^2)}_{(18a)} \quad or \quad \underbrace{|\kappa| > 1 \text{ and } r^2 \kappa^2 > 1 + r_y^2 (1 - \kappa^2)}_{(18b)}$$
 (18)

is satisfied, then
$$\inf_{s\in\mathbb{R}} |\mathfrak{f}_{\kappa,r}(\mathfrak{h}_{r_y}(s))| \ge \min\left\{ \left| \frac{1+\kappa}{2} \right|, \left| \frac{\sqrt{1+r_y^2}+\kappa\sqrt{r^2+r_y^2}}{\sqrt{1+r_y^2}+\sqrt{r^2+r_y^2}} \right| \right\} > 0.$$

Proof. The reasoning is the same as in the proof of Lemma 3.9. The only difference in this case is, that $\mathfrak{h}_{r_y}(s) \in [0, \frac{\sqrt{12}}{r_y}]$ so we do not consider the limit at infinity and get

$$\mathfrak{f}_{\kappa,r}\left(\frac{\sqrt{12}}{r_y}\right) = \frac{1 + \kappa \sqrt{\frac{r^2 + r_y^2}{1 + r_y^2}}}{1 + \sqrt{\frac{r^2 + r_y^2}{1 + r_y^2}}} = \frac{\sqrt{1 + r_y^2} + \kappa \sqrt{r^2 + r_y^2}}{\sqrt{1 + r_y^2} + \sqrt{r^2 + r_y^2}}$$

instead. Again, the condition (18) ensures, that both bounds have the same sign, so we can safely take the minimum of their absolute values.

Now we are in the position to conclude our analysis of the full discretization (7) in the following theorem.

Theorem 3.17. If (18) is satisfied, then $\mathcal{A}_{h_{\pm},h_{y}}^{-1}$ exists and satisfies

$$\|\mathcal{A}_{h_{\pm},h_{y}}^{-1}\|_{\mathcal{L}(V_{h_{\pm}}\otimes W_{h_{y}})} \leq \frac{1}{|\sigma_{-}|\min\left\{1,|\kappa|,\left|\frac{1+\kappa}{2}\right|,\left|\frac{\sqrt{1+r_{y}^{2}}+\kappa\sqrt{r^{2}+r_{y}^{2}}}{\sqrt{1+r_{y}^{2}}+\sqrt{r^{2}+r_{y}^{2}}}\right|\right\}}$$

Contrary, if (17) is satisfied, then

$$\lim_{h_{+}\to 0} \|\mathcal{A}_{h_{\pm},h_{y}}^{-1}\|_{\mathcal{L}(V_{h_{\pm}}\otimes W_{h_{y}})} = +\infty$$

(where we define $\|\mathcal{A}_{h_{\pm},h_{y}}^{-1}\|_{\mathcal{L}(V_{h_{\pm}}\otimes W_{h_{y}})}:=+\infty$, if $\mathcal{A}_{h_{\pm},h_{y}}^{-1}$ does not exist), and in particular $\mathcal{A}_{h_{\pm},h_{y}}$ admits a nontrivial kernel for each

$$h_{-} = \frac{1}{m} \frac{1}{r_y} s_{\kappa,r,r_y} = \frac{1}{m} \frac{1}{r_y} \arccos \left(1 + \frac{6r_y^2 (1 - \kappa^2)}{(1 - \kappa^2 r^2) - 2r_y^2 (1 - \kappa^2)} \right), \quad m \in \mathbb{N}.$$

Note that to simultaneously satisfy $\frac{\pi}{h_y} \in \mathbb{N}$ we can choose a particular r_y or r such that $s_{\kappa,r,r_y} = \pi l/k, l, k \in \mathbb{N}$, which yields that $\frac{\pi}{h_y} \in \mathbb{N}$ for $m \in k\mathbb{N}$.

Proof. The proof can be obtained by following the steps of the proof of Theorem 3.10 one-to-one and replacing needed lemmas by the corresponding lemmas from this section. \Box

3.2 Bounded domain

Now we consider a bounded domain for which actual numerical computations are possible. Since the well-posedness analysis follows along the lines of Section 3.1.1 we suffice ourselves with stating following lemma without proof. **Lemma 3.18.** The space $H_0^1(\tilde{\Omega})$ admits an orthogonal decomposition $H_0^1(\tilde{\Omega}) = \tilde{X}_- \oplus^{\perp} \tilde{X}_0 \oplus^{\perp} \tilde{X}_+$ where $\tilde{X}_{\pm} := \{u \in H_0^1(\tilde{\Omega}) : u|_{\tilde{\Omega}_{\mp}} = 0\}$ and \tilde{X}_0 is spanned by the orthonormal basis

$$\left(\frac{1}{\sqrt{2\lambda_m(e^{4\lambda_m L}-1)}}\left(e^{2\lambda_m L}e^{-\lambda_m|x|}-e^{\lambda_m|x|}\right)\otimes\theta_m(y)\right)_{m\in\mathbb{N}}.$$

The operator A is block diagonal and the statements of Lemma 3.2 and Corollary 3.3 apply with $\mathcal{A}, X_{\pm}, X_0$ being replaced by $\mathcal{A}, X_{\pm}, X_0$.

Semi discretization 3.2.1

We consider a semi discretization of problem (2b) by means of Galerkin spaces $V_{h_{\pm}} \otimes H_0^1(0,\pi)$:

Find
$$u \in \tilde{V}_{h_{\pm}} \otimes H_0^1(0,\pi)$$
 such that $a_{\tilde{\Omega}}(u,u^{\dagger}) = \langle f, u^{\dagger} \rangle_{\tilde{\Omega}}$ for all $u^{\dagger} \in \tilde{V}_{h_{\pm}} \otimes H_0^1(0,\pi)$. (19)

Let $\tilde{\mathcal{A}}_{h_+} \in \mathcal{L}(\tilde{V}_{h_+} \otimes H_0^1(0,\pi))$ be the associated operator defined by

$$\langle \tilde{\mathcal{A}}_{h_+} u, u^{\dagger} \rangle_{H_1^1(\tilde{\Omega})} = a_{\tilde{\Omega}}(u, u^{\dagger}) \text{ for all } u, u^{\dagger} \in \tilde{V}_{h_+} \otimes H_0^1(0, \pi).$$
 (20)

As in the unbounded case we can use (1) and derive a decomposition into Fourier modes as in (9). Similarly we then also get that for $u_m = \sum_{n=-N_-}^{N_+} \alpha_n \phi_n$, $u_m^{\dagger} = \sum_{n=-N_-}^{N_+} \alpha_n^{\dagger} \phi_n$, $\alpha_n, \alpha_n^{\dagger} \in \mathbb{R}$ it follows that

$$\langle \sigma \partial_x u_m, \partial_x u_m^{\dagger} \rangle_{\mathbb{R}} + \lambda_m^2 \langle \sigma u_m, u_m^{\dagger} \rangle_{\mathbb{R}} = \sum_{n=-N_-}^{N_+} \sum_{n'=-N_-}^{N_+} \alpha_{n'}^{\dagger} \mathbf{A}_{n',n}^{(m)} \alpha_n,$$

where

where
$$\tilde{\mathbf{A}}^{(m)} := \begin{pmatrix} 2\sigma_{-}a_{-}^{(m)} & \sigma_{-}b_{-}^{(m)} & & & & & & \\ & \sigma_{-}b_{-}^{(m)} & \ddots & \ddots & & & & & \\ & & \ddots & 2\sigma_{-}a_{-}^{(m)} & \sigma_{-}b_{-}^{(m)} & & & & & \\ & & & \sigma_{-}b_{-}^{(m)} & \sigma_{-}a_{-}^{(m)} + \sigma_{+}a_{+}^{(m)} & \sigma_{+}b_{+}^{(m)} & & & \\ & & & & \sigma_{+}b_{+}^{(m)} & 2\sigma_{+}a_{+}^{(m)} & \ddots & & \\ & & & & \ddots & \ddots & \sigma_{+}b_{+}^{(m)} \\ & & & & & \sigma_{+}b_{+}^{(m)} & 2\sigma_{+}a_{+}^{(m)} \end{pmatrix}$$

After these considerations we can again derive an orthogonal decomposition as follows.

Lemma 3.19. The space $\tilde{V}_{h_{\pm}} \otimes H_0^1(0,\pi)$ admits an orthogonal decomposition

$$\tilde{V}_{h_\pm} \otimes H^1_0(0,\pi) = \left(\tilde{V}_{h_\pm}^- \otimes H^1_0(0,\pi)\right) \oplus^\perp \tilde{V}_{h_\pm}^0 \oplus^\perp \left(\tilde{V}_{h_\pm}^+ \otimes H^1_0(0,\pi)\right),$$

 $\textit{where $\tilde{V}_{h_{\pm}}^{-}:=\{v\in \tilde{V}_{h_{\pm}}\colon v|_{(0,L)}=0\}$ and $\tilde{V}_{h_{\pm}}^{+}-:=\{v\in \tilde{V}_{h_{\pm}}\colon v|_{(-L,0)}=0\}$. The subspace $\tilde{V}_{h_{\pm}}^{0}$ is $\tilde{V}_{h_{\pm}}^{0}:v|_{(-L,0)}=0$.}$ spanned by the orthonormal basis $(\tilde{v}_m(x) \otimes \bar{\theta}_m(y))_{m \in \mathbb{N}}$, where

$$\tilde{v}_{m}(x) := \frac{1}{\sqrt{\frac{1+\nu_{m,-}^{N_{-}}}{1-\nu_{m,-}^{N_{-}}}} \sqrt{(a_{-}^{(m)})^{2} - (b_{-}^{(m)})^{2}} + \frac{1+\nu_{m,+}^{N_{+}}}{1-\nu_{m,+}^{N_{+}}} \sqrt{(a_{+}^{(m)})^{2} - (b_{+}^{(m)})^{2}}} \left(\phi_{0}(x) + \sum_{n=-N_{-}}^{-1} \frac{\mu_{m,1,-}^{-n} - \nu_{m,-}^{N_{-}} \mu_{m,2,-}^{-n}}{1-\nu_{m,-}^{N_{-}}} \phi_{n}(x) + \sum_{n=1}^{N_{+}} \frac{\mu_{m,1,+}^{n} - \nu_{m,+}^{N_{+}} \mu_{m,2,+}^{n}}{1-\nu_{m,+}^{N_{+}}} \phi_{n}(x)\right).$$

Here $\mu_{m,1,\pm}, \mu_{m,2,\pm}$ are as defined in Section 3.1.2 and $\nu_{m,\pm} := \frac{\mu_{m,1,\pm}}{\mu_{m,2,\pm}}$

Proof. The structure and beginning of the proof is the same as in Lemma 3.4. We again get the orthogonality of $\tilde{V}_{h\pm}^- \otimes H_0^1(0,\pi)$ and $\tilde{V}_{h\pm}^+ \otimes H_0^1(0,\pi)$ because of non-intersecting supports and we get that the coefficients of \tilde{v}_m in the finite element basis given by $\tilde{v}_m = \sum_{n=-N_-}^{N_+} \tilde{\beta}_n^{(m)} \phi_n$ satisfy the system of equations

$$b_{-}^{(m)}\tilde{\beta}_{n}^{(m)} + 2a_{-}^{(m)}\tilde{\beta}_{n+1}^{(m)} + b_{-}^{(m)}\tilde{\beta}_{n+2}^{(m)} = 0, \quad -N_{-} \le n \le -2,$$

$$b_{+}^{(m)}\tilde{\beta}_{n}^{(m)} + 2a_{+}^{(m)}\tilde{\beta}_{n+1}^{(m)} + b_{+}^{(m)}\tilde{\beta}_{n+2}^{(m)} = 0, \quad 0 \le n \le N_{+} - 2.$$

We now first treat the case when $b_{-}^{(m)}, b_{+}^{(m)} \neq 0$ and get that this system is solved by

$$\begin{split} \tilde{\beta}_n^{(m)} &= c_{1,-} \mu_{m,1,-}^{-n} + c_{2,-} \mu_{m,2,-}^{-n}, & -N_- \leq n \leq 0, \\ \tilde{\beta}_n^{(m)} &= c_{1,+} \mu_{m,1,+}^n + c_{2,+} \mu_{m,2,+}^n, & 0 \leq n \leq N_+. \end{split}$$

where only the constants $c_{1,\pm}, c_{2,\pm}$ still have to be determined. To do this, we use that both equations hold for n=0 and that $\tilde{\beta}_{-N_-}^{(m)}=\tilde{\beta}_{N_+}^{(m)}=0$ because of the Dirichlet boundary conditions. This leads to the system

$$\begin{split} c_{1,-} + c_{2,-} &= c_{1,+} + c_{2,+}, \\ c_{1,-} \mu_{m,1,-}^{-N_-} + c_{2,-} \mu_{m,2,-}^{-N_-} &= 0, \\ c_{1,+} \mu_{m,1,+}^{N_+} + c_{2,+} \mu_{m,2,+}^{N_+} &= 0, \end{split}$$

with the solution

$$c_{1,+} = \frac{\tilde{\beta}_0^{(m)}}{1 - \nu_{m,+}^{N_+}}, \quad c_{2,+} = -\frac{\tilde{\beta}_0^{(m)}}{1 - \nu_{m,+}^{N_+}} \nu_{m,+}^{N_+}, \quad c_{1,-} = \frac{\tilde{\beta}_0^{(m)}}{1 - \nu_{m,-}^{N_-}}, \quad c_{2,-} = -\frac{\tilde{\beta}_0^{(m)}}{1 - \nu_{m,-}^{N_-}} \nu_{m,+}^{N_-}.$$

Here $\tilde{\beta}_0^{(m)}$ still has to be determined. This means, that

$$\tilde{\beta}_{n}^{(m)} = \tilde{\beta}_{0}^{(m)} \frac{\mu_{m,1,-}^{-n} - \nu_{m,-}^{N_{-}} \mu_{m,2,-}^{-n}}{1 - \nu_{m,-}^{N_{-}}}, \quad -N_{-} \le n \le 0$$

$$\tilde{\beta}_{n}^{(m)} = \tilde{\beta}_{0}^{(m)} \frac{\mu_{m,1,+}^{n} - \nu_{m,+}^{N_{+}} \mu_{m,2,+}^{n}}{1 - \nu_{m,+}^{N_{+}}}, \quad 0 \le n \le N_{+}.$$

One can check that these formulas still hold in the case where $b_{-}^{(m)}$ or $b_{+}^{(m)}$ is zero if we then set $\mu_{m,1,\pm}$ to zero as we have done before and set $\mu_{m,2,\pm}$ to an arbitrary positive number. Finally we compute $\tilde{\beta}_{0}^{(m)}$ to normalize the solution. For this we only have to consider the scalar product

with ϕ_0 because of orthogonality. This leads to

$$\begin{split} &1 = \langle \partial_x \tilde{v}_m, \partial_x \tilde{v}_m \rangle_{\mathbb{R}} + \lambda_m^2 \langle \tilde{v}_m, \tilde{v}_m \rangle_{\mathbb{R}} \\ &= \sum_{n=N_-}^{N_+} \tilde{\beta}_n^{(m)} \left(\langle \partial_x \phi_n, \partial_x \tilde{v}_m \rangle_{\mathbb{R}} + \lambda_m^2 \langle \phi_n, \tilde{v}_m \rangle_{\mathbb{R}} \right) \\ &= \tilde{\beta}_0^{(m)} \left(\langle \partial_x \phi_0, \partial_x \tilde{v}_m \rangle_{\mathbb{R}} + \lambda_m^2 \langle \phi_0, \tilde{v}_m \rangle_{\mathbb{R}} \right) \\ &= (\tilde{\beta}_0^{(m)})^2 \left(\frac{\mu_{m,1,-} - \nu_{m,-}^{N_-} \mu_{m,2,-}}{1 - \nu_{m,-}^{N_-}} b_-^{(m)} + a_-^{(m)} + a_+^{(m)} + \frac{\mu_{m,1,+} - \nu_{m,+}^{N_+} \mu_{m,2,+}}{1 - \nu_{m,+}^{N_+}} b_+^{(m)} \right) \\ &= \left(\tilde{\beta}_0^{(m)} \right)^2 \left(\frac{(\mu_{m,1,-} b_-^{(m)} + a_-^{(m)}) - \nu_{m,-}^{N_-} (\mu_{m,2,-} b_-^{(m)} + a_-^{(m)})}{1 - \nu_{m,-}^{N_-}} \right. \\ &+ \frac{(\mu_{m,1,+} b_+^{(m)} + a_+^{(m)}) - \nu_{m,+}^{N_+} (\mu_{m,2,+} b_+^{(m)} + a_+^{(m)})}{1 - \nu_{m,+}^{N_+}} \right) \\ &= \left(\tilde{\beta}_0^{(m)} \right)^2 \left(\frac{\sqrt{(a_-^{(m)})^2 - (b_-^{(m)})^2} + \nu_{m,-}^{N_-} \sqrt{(a_-^{(m)})^2 - (b_-^{(m)})^2}}{1 - \nu_{m,-}^{N_+}} \right. \\ &+ \frac{\sqrt{(a_+^{(m)})^2 - (b_+^{(m)})^2} + \nu_{m,+}^{N_+} \sqrt{(a_+^{(m)})^2 - (b_+^{(m)})^2}}{1 - \nu_{m,+}^{N_+}} \right. \\ &= \left(\tilde{\beta}_0^{(m)} \right)^2 \left(\frac{1 + \nu_{m,-}^{N_-}}{1 - \nu_{m,-}^{N_-}} \sqrt{(a_-^{(m)})^2 - (b_-^{(m)})^2} + \frac{1 + \nu_{m,+}^{N_+}}{1 - \nu_{m,+}^{N_+}} \sqrt{(a_+^{(m)})^2 - (b_+^{(m)})^2} \right), \end{split}$$

i.e.,

$$\tilde{\beta}_0^{(m)} = \frac{1}{\sqrt{\frac{1+\nu_{m,-}^{N_-}}{1-\nu_{m,-}^{N_-}}}\sqrt{(a_-^{(m)})^2-(b_-^{(m)})^2} + \frac{1+\nu_{m,+}^{N_+}}{1-\nu_{m,+}^{N_+}}\sqrt{(a_+^{(m)})^2-(b_+^{(m)})^2}}.$$

Lemma 3.20. The operator $\tilde{\mathcal{A}}_{h_{\pm}}$ is block diagonal with respect to the orthogonal decomposition given in Lemma 3.19. The blocks corresponding to $\tilde{V}_{h_{\pm}}^{-} \otimes H_{0}^{1}(0,\pi)$ and $\tilde{V}_{h_{\pm}}^{+} \otimes H_{0}^{1}(0,\pi)$ equal the identity times σ_{-} and σ_{+} respectively. The block corresponding to $\tilde{V}_{h_{\pm}}^{0}$ is diagonal with respect to the basis given in Lemma 3.19 and the diagonal entries are given by

$$\tilde{d}_{m} := \frac{\sigma_{-} \frac{1 + \nu_{m,-}^{N_{-}}}{1 - \nu_{m,-}^{N_{-}}} \sqrt{(a_{-}^{(m)})^{2} - (b_{-}^{(m)})^{2}} + \sigma_{+} \frac{1 + \nu_{m,+}^{N_{+}}}{1 - \nu_{m,+}^{N_{+}}} \sqrt{(a_{+}^{(m)})^{2} - (b_{+}^{(m)})^{2}}}{\frac{1 + \nu_{m,-}^{N_{-}}}{1 - \nu_{m,-}^{N_{-}}} \sqrt{(a_{-}^{(m)})^{2} - (b_{-}^{(m)})^{2}} + \frac{1 + \nu_{m,+}^{N_{+}}}{1 - \nu_{m,+}^{N_{+}}} \sqrt{(a_{+}^{(m)})^{2} - (b_{+}^{(m)})^{2}}}, \quad m \in \mathbb{N}.$$
(21)

Non-verbally: For each $u_-, u_-^{\dagger} \in \tilde{V}_{h_{\pm}}^- \otimes H_0^1(0, \pi)$, $u_0, u_0^{\dagger} \in \tilde{V}_{h_{\pm}}^0$, $u_+, u_+^{\dagger} \in \tilde{V}_{h_{\pm}}^+ \otimes H_0^1(0, \pi)$ and $u_0 = \sum_{m \in \mathbb{N}} \beta_m \tilde{v}_m \otimes \theta_m$, $u_0^{\dagger} = \sum_{m \in \mathbb{N}} \beta_m^{\dagger} \tilde{v}_m \otimes \theta_m$, $(\beta_m)_{m \in \mathbb{N}}, (\beta_m^{\dagger})_{m \in \mathbb{N}} \in \ell^2(\mathbb{N})$ it holds that

$$a_{\tilde{\Omega}}(u_-+u_0+u_+,u_-^\dagger+u_0^\dagger+u_+^\dagger) = \sigma_-\langle u_-,u_-^\dagger\rangle_{H_0^1(\tilde{\Omega})} + \sum_{m\in\mathbb{N}} \tilde{d}_m\beta_m\beta_m^\dagger + \sigma_+\langle u_+,u_+^\dagger\rangle_{H_0^1(\tilde{\Omega})}.$$

Proof. The statement can be obtained by repeating the steps from Lemma 3.5 one-to-one. \Box

We will now analyze the diagonal entries \tilde{d}_m and to do this we introduce the following functions:

$$\begin{split} \widetilde{\mathfrak{f}}_{\kappa,r,\lambda_m}(t) &:= \frac{1 + \frac{\kappa \sqrt{r^2 t^2 + 12}}{\sqrt{t^2 + 12}} \mathfrak{z}_{r,\lambda_m}(t)}{1 + \frac{\sqrt{r^2 t^2 + 12}}{\sqrt{t^2 + 12}} \mathfrak{z}_{r,\lambda_m}(t)}, \qquad \qquad \mathfrak{z}_{r,\lambda_m}(t) := \frac{\mathfrak{j}_{\lambda_m L}(\mathfrak{q}(t))}{\mathfrak{j}_{\lambda_m L}(\mathfrak{q}(rt))}, \\ \mathfrak{q}(t) &:= \left(\frac{1 + \frac{1}{3} t^2 - t \sqrt{1 + \frac{1}{12} t^2}}{1 + \frac{1}{3} t^2 + t \sqrt{1 + \frac{1}{12} t^2}}\right)^{\frac{1}{t}}, \qquad \qquad \mathfrak{j}_n(q) := \frac{1 - q^n}{1 + q^n}. \end{split}$$

Lemma 3.21. The diagonal entries \tilde{d}_m defined in (21) satisfy $\tilde{d}_m = \sigma_- \tilde{\mathfrak{f}}_{\kappa,r,\lambda_m}(\lambda_m h_-)$.

Proof. We first compute

$$\nu_{m,-}^{N_{-}} = \left(\frac{\mu_{m,1,-}}{\mu_{m,2,-}}\right)^{\frac{L}{h_{-}}} = \left(\frac{1 + \frac{1}{3}\lambda_{m}^{2}h_{-}^{2} - h_{-}\lambda_{m}\sqrt{1 + \frac{1}{12}\lambda_{m}^{2}h_{-}^{2}}}{1 + \frac{1}{3}\lambda_{m}^{2}h_{-}^{2} + h_{-}\lambda_{m}\sqrt{1 + \frac{1}{12}\lambda_{m}^{2}h_{-}^{2}}}\right)^{\frac{\lambda_{m}L}{\lambda_{m}h_{-}}} = \mathfrak{q}(h_{-}\lambda_{m})^{\lambda_{m}L}.$$

In the same way, we get $\nu_{m,+}^{N_+} = \mathfrak{q}(rh_-\lambda_m)^{\lambda_m L}$. Now we calculate

$$\begin{split} \tilde{d}_{m} &= \frac{\sigma_{-} \frac{1 + \nu_{m,-}^{N_{-}}}{1 - \nu_{m,-}^{N_{-}}} \sqrt{(a_{-}^{(m)})^{2} - (b_{-}^{(m)})^{2}} + \sigma_{+} \frac{1 + \nu_{m,+}^{N_{+}}}{1 - \nu_{m,+}^{N_{+}}} \sqrt{(a_{+}^{(m)})^{2} - (b_{+}^{(m)})^{2}}}{\frac{1 + \nu_{m,-}^{N_{-}}}{1 - \nu_{m,-}^{N_{-}}} \sqrt{(a_{-}^{(m)})^{2} - (b_{-}^{(m)})^{2}} + \frac{1 + \nu_{m,+}^{N_{+}}}{1 - \nu_{m,+}^{N_{+}}} \sqrt{(a_{+}^{(m)})^{2} - (b_{+}^{(m)})^{2}}}\\ &= \frac{\frac{\sigma_{-} \lambda_{m}}{j_{\lambda_{m}L}(\mathfrak{q}(\lambda_{m}h_{-}))} \sqrt{1 + \frac{1}{12} \lambda_{m}^{2} h_{-}^{2}} + \frac{\sigma_{+} \lambda_{m}}{j_{\lambda_{m}L}(\mathfrak{q}(r\lambda_{m}h_{-}))} \sqrt{1 + \frac{1}{12} r^{2} \lambda_{m}^{2} h_{-}^{2}}}{\frac{\lambda_{m}}{j_{\lambda_{m}L}(\mathfrak{q}(\lambda_{m}h_{-}))} \sqrt{1 + \frac{1}{12} r^{2} \lambda_{m}^{2} h_{-}^{2}}} \\ &= \sigma_{-} \frac{\sqrt{1 + \frac{1}{12} \lambda_{m}^{2} h_{-}^{2} + \frac{\kappa j_{\lambda_{m}L}(\mathfrak{q}(\lambda_{m}h_{-}))}{j_{\lambda_{m}L}(\mathfrak{q}(r\lambda_{m}h_{-}))} \sqrt{1 + \frac{1}{12} r^{2} \lambda_{m}^{2} h_{-}^{2}}}}{\sqrt{1 + \frac{1}{12} \lambda_{m}^{2} h_{-}^{2} + \frac{j_{\lambda_{m}L}(\mathfrak{q}(\lambda_{m}h_{-}))}{j_{\lambda_{m}L}(\mathfrak{q}(r\lambda_{m}h_{-}))} \sqrt{1 + \frac{1}{12} r^{2} \lambda_{m}^{2} h_{-}^{2}}}}} \\ &= \sigma_{-} \frac{1 + \kappa \mathfrak{F}_{r,\lambda_{m}}(\lambda_{m}h_{-}) \frac{\sqrt{12 + r^{2} \lambda_{m}^{2} h_{-}^{2}}}{\sqrt{12 + \lambda_{m}^{2} h_{-}^{2}}}}}{1 + \mathfrak{F}_{r,\lambda_{m}}(\lambda_{m}h_{-}) \frac{\sqrt{12 + r^{2} \lambda_{m}^{2} h_{-}^{2}}}}{\sqrt{12 + \lambda_{m}^{2} h_{-}^{2}}}}} = \sigma_{-} \tilde{\mathfrak{f}}_{\kappa,r,\lambda_{m}}(\lambda_{m}h_{-}). \end{split}$$

In preparation of Lemma 3.23 we formulate the following Lemma.

Lemma 3.22. For each c > 0 it holds that $\lim_{h_- \to 0+} \sup_{\lambda > 0, \lambda h_- > c} \mathfrak{z}_{r,\lambda}(\lambda h_-) = 1$.

Proof. Note that the auxiliary function \mathfrak{j}_n in the definition of $\mathfrak{z}_{r,\lambda_m}$ was chosen this way to deal with a particular technicality in proof Lemma 3.26. Here however, we exploit the more explicit representation

$$\mathfrak{z}_{r,\lambda}(\lambda h_{-}) = \frac{1 - \left(\mathfrak{q}(\lambda h_{-})^{\lambda h_{-}}\right)^{\frac{L}{h_{-}}}}{1 + \left(\mathfrak{q}(\lambda h_{-})^{\lambda h_{-}}\right)^{\frac{L}{h_{-}}}} \frac{1 + \left(\mathfrak{q}(r\lambda h_{-})^{r\lambda h_{-}}\right)^{\frac{L}{rh_{-}}}}{1 - \left(\mathfrak{q}(r\lambda h_{-})^{r\lambda h_{-}}\right)^{\frac{L}{rh_{-}}}}$$

The claim follows now from $\sup_{t \ge \frac{c}{\max(1,r)}} \mathfrak{q}(t)^t < 1$.

The following lemma is the pendant to Lemma 3.8.

Lemma 3.23. If (14) is satisfied, then $\lim_{h_-\to 0+}\inf_{m\in\mathbb{N}}\left|\tilde{\mathfrak{f}}_{\kappa,r,\lambda_m}(\lambda_m h_-)\right|=0.$

Proof. We proceed as in the proof of Lemma 3.8:

Let $h_- = \frac{1}{l+\epsilon} t_{\kappa,r}$ with $l \in \mathbb{N}_0$ and $\epsilon \in [0,1)$. We choose m = l and exploit that $\lim_{l \to +\infty} \frac{l}{l+\epsilon} \to 1$ uniformly in $\epsilon \in [0,1)$. Thus also $\lambda_m h_- = \frac{l}{l+\epsilon} t_{\kappa,r} \xrightarrow{l\to+\infty} t_{\kappa,r}$ uniformly in $\epsilon \in [0,1)$. Lemma 3.22 yields that $\lim_{l\to+\infty} \mathfrak{z}_{r,\lambda_l}(\frac{l}{l+\epsilon}t_{\kappa,r}) = 1$, which in combination with the continuity

of $\mathfrak{f}_{\kappa,r}$ and $\mathfrak{f}_{\kappa,r}(t_{\kappa,r})=0$ provides the claim.

In preperation of Lemma 3.26 we introduce the following Lemmas 3.24 and 3.25, where Lemma 3.24 is itself an auxiliary result for Lemma 3.25.

Lemma 3.24. Let I be a closed subinterval of (0,1) and c>0. Then the following statements hold:

- 1. The family $\{j_n : n \in [c,\infty)\}$ and the family of their derivatives are both uniformly bounded
- 2. The family $\{\frac{1}{j_n}: n \in [c,\infty)\}$ and the family of their derivatives are both uniformly bounded on I.
- 3. \mathfrak{g} is continuously differentiable on $[0,\infty)$.
- 4. $\lim_{t\to 0^+} \mathfrak{q}(t) = e^{-2}$.

Proof. Let I = [a,b], $a,b \in (0,1)$. Thence $q^n \in (0,b^c] \subset (0,1)$ for $q \in [a,b]$. Thus $\mathfrak{j}_n(q) \leq 1$ and $1/\mathfrak{j}_n(q) \leq \sup_{s \in (0,b^c]} \frac{1+s}{1-s} = \frac{1+b^c}{1-b^c}$. Furthermore, $\mathfrak{j}'_n(q) = \frac{2nq^{n-1}}{(1-q^n)^2}$ and $(1/\mathfrak{j}_n)'(q) = \frac{-2nq^{n-1}}{(1+q^n)^2}$ from which we can deduce the first two claims. The differentiability of \mathfrak{q} follows in a straightforward fashion. The last claim follows by applying the de l'Hospital rule to $\log \mathfrak{q}$.

Lemma 3.25. For r, c > 0 the family $\{\mathfrak{z}_{r,\lambda} : \lambda \in [c,\infty)\}$ is equicontinuous from the right at 0 and $\lim_{t\to 0+} \mathfrak{z}_{r,\lambda}(t) = 1.$

Proof. Due to the second half of Lemma 3.24 there exist $\delta > 0$ and $q_1, q_2 \in (0,1), q_1 < q_2$ such that $q(t), q(rt) \in (q_1, q_2)$ for all $t \in [0, \delta)$. Then Lemma 3.24 and the product rule yield that $t\mapsto \mathfrak{z}_{r,\lambda}(t)$ is uniformly equicontinuous on $t\in[0,\delta),\ \lambda\geq c$. At last we obtain $\lim_{t\to 0+}\mathfrak{z}_{r,\lambda}(t)=1$ from $\lim_{t\to 0+}\mathfrak{q}(t)=e^{-2}=\lim_{t\to 0+}\mathfrak{q}(rt)$.

Lemma 3.26. If $\epsilon \in (0,1)$ and one of the following two conditions

$$\underbrace{\lfloor \kappa | (1+\epsilon) < 1 \text{ and } r | \kappa | (1+\epsilon) < 1}_{(22a)} \quad or \quad \underbrace{\lfloor \kappa | (1-\epsilon) > 1 \text{ and } r | \kappa | (1-\epsilon) > 1}_{(22b)}$$
 (22)

is satisfied, then there exists $\delta > 0$ such that

$$\inf_{\substack{h_{-\epsilon}(0,\delta)\\\lambda>1}} |\tilde{\mathfrak{f}}_{\kappa,r,\lambda}(\lambda h_{-})| \ge \min_{p\in\{\pm 1\}} \min\left\{ \frac{|1+(1+p\epsilon)\kappa|}{2+\epsilon}, \frac{|1+(1+p\epsilon)\kappa r|}{1+(1+\epsilon)r} \right\}.$$

Proof. Due to Lemma 3.25 we can find $\tau > 0$ such that $\mathfrak{z}_{r,\lambda}(\lambda h_-) \in [1 - \epsilon, 1 + \epsilon]$ for all $\lambda h_- \in$ $[0,\tau], h_->0, \lambda\geq 1$. On the other hand, Lemma 3.22 yields the existence of $\delta>0$ such that $\mathfrak{z}_{r,\lambda}(\lambda h_-) \in [1-\epsilon,1+\epsilon]$ for all $\lambda h_- \geq \tau, h_- \in (0,\delta), \lambda \geq 1$. Thus $\mathfrak{z}_{r,\lambda}(t) \in [1-\epsilon,1+\epsilon]$ for all $t = \lambda h_-, \lambda \ge 1, h_- \in (0, \delta)$. Thence

$$\inf_{\substack{h_{-} \in (0,\delta) \\ \lambda \ge 1}} |\tilde{\mathfrak{f}}_{\kappa,r,\lambda}(\lambda h_{-})| \ge \inf_{t>0, p \in \{\pm 1\}} \frac{\left| 1 + \kappa(1+p\epsilon)\sqrt{\frac{12+r^2t^2}{12+t^2}} \right|}{1 + (1+\epsilon)\sqrt{\frac{12+t^2h_{-}^2}{12+t^2}}},$$

from which the claim follows.

Having analyzed $\tilde{\mathfrak{f}}_{\kappa,r,\lambda_m}$ we can now proof the following theorem about the stability of $\tilde{\mathcal{A}}_{h_{\pm}}$.

Theorem 3.27. If for some $\epsilon \in (0,1)$ (22) is satisfied, then $\tilde{\mathcal{A}}_{h_{\pm}}^{-1}$ exists and satisfies

$$\|\tilde{\mathcal{A}}_{h_{\pm}}^{-1}\|_{\mathcal{L}(\tilde{V}_{h_{\pm}}\otimes H_{0}^{1}(0,\pi))} \leq \frac{1}{|\sigma_{-}|\min\left\{1,|\kappa|,\frac{|1+(1+\epsilon)\kappa|}{2+\epsilon},\frac{|1+(1-\epsilon)\kappa|}{2+\epsilon},\frac{|1+(1+\epsilon)\kappa r|}{1+(1+\epsilon)r},\frac{|1+(1-\epsilon)\kappa r|}{1+(1+\epsilon)r}\right\}}$$

for all $h_{-} \in (0, \delta)$ with $\delta > 0$ as in Lemma 3.26. Contrary, if (14) is satisfied then

$$\lim_{h \to 0} \|\tilde{\mathcal{A}}_{h_{\pm}}^{-1}\|_{\mathcal{L}(\tilde{V}_{h_{+}} \otimes H_{0}^{1}(0,\pi))} = +\infty$$

(where we define $\|\tilde{\mathcal{A}}_{h_{\pm}}^{-1}\|_{\mathcal{L}(\tilde{V}_{h_{+}}\otimes H_{0}^{1}(0,\pi))}:=+\infty$, if $\tilde{\mathcal{A}}_{h_{\pm}}^{-1}$ does not exist).

Proof. As in the previous sections the theorem follows directly from the properties of $\tilde{\mathfrak{f}}_{\kappa,r,\lambda_m}$ that where shown in the Lemmas 3.23 and 3.26.

3.2.2 Full discretization

As for the unbounded domain, the only difference is that we now consider $\hat{\lambda}_{m,r_y,h_-}$ that also depend on h_- and where in variables that depend on λ_m we replace it by $\hat{\lambda}_{m,r_y,h_-}$ and indicate this by adding a hat. In addition, we define $\hat{\nu}_{m,\pm} := \frac{\hat{\mu}_{m,1,\pm}}{\hat{\mu}_{m,2,\pm}}$. The following three lemmas can then be derived correspondingly to Lemmas 3.19 to 3.21.

Lemma 3.28. The space $\tilde{V}_{h_+} \otimes W_{h_y}$ admits an orthogonal decomposition

$$\tilde{V}_{h_{\pm}} \otimes W_{h_y} = \left(\tilde{V}_{h_{\pm}}^- \otimes W_{h_y}\right) \oplus^{\perp} \hat{\tilde{V}}_{h_{\pm}}^0 \oplus^{\perp} \left(\tilde{V}_{h_{\pm}}^+ \otimes W_{h_y}\right),$$

where $\tilde{V}_{h_{\pm}}^{-} := \{v \in \tilde{V}_{h_{\pm}} : v|_{\mathbb{R}_{+}} = 0\}$ and $\tilde{V}_{h_{\pm}}^{+} - := \{v \in \tilde{V}_{h_{\pm}} : v|_{\mathbb{R}_{-}} = 0\}$. The subspace $\hat{\tilde{V}}_{h_{\pm}}^{0}$ is spanned by the orthonormal basis $(\hat{\tilde{v}}_{m}(x) \otimes \hat{\theta}_{m}(y))_{m=1,...,M-1}$, where

$$\hat{v}_{m}(x) := \frac{1}{\sqrt{\frac{1+\hat{\nu}_{m,-}^{N_{-}}}{1-\hat{\nu}_{m,-}^{N_{-}}}} \sqrt{(\hat{a}_{-}^{(m)})^{2} - (\hat{b}_{-}^{(m)})^{2}} + \frac{1+\hat{\nu}_{m,+}^{N_{+}}}{1-\hat{\nu}_{m,+}^{N_{+}}} \sqrt{(\hat{a}_{+}^{(m)})^{2} - (\hat{b}_{+}^{(m)})^{2}}} \left(\phi_{0}(x)\right) \\
+ \sum_{n=-N_{-}}^{-1} \frac{\hat{\mu}_{m,1,-}^{-n} - \hat{\nu}_{m,-}^{N_{-}} \hat{\mu}_{m,2,-}^{-n}}{1-\hat{\nu}_{m,-}^{N_{-}}} \phi_{n}(x) + \sum_{n=1}^{N_{+}} \frac{\hat{\mu}_{m,1,+}^{n} - \hat{\nu}_{m,+}^{N_{+}} \hat{\mu}_{m,2,+}^{n}}{1-\hat{\nu}_{m,+}^{N_{+}}} \phi_{n}(x)\right).$$

Lemma 3.29. The operator $\tilde{\mathcal{A}}_{h_{\pm},h_y}$ is block diagonal with respect to the orthogonal decomposition given in Lemma 3.28. The blocks corresponding to $\tilde{V}_{h_{\pm}}^- \otimes W_{h_y}$ and $\tilde{V}_{h_{\pm}}^+ \otimes W_{h_y}$ equal the identity times σ_- and σ_+ respectively. The block corresponding to $\hat{\tilde{V}}_{h_{\pm}}^0$ is diagonal with respect to the basis given in Lemma 3.28 and the diagonal entries are given by

$$\hat{\tilde{d}}_{m} := \frac{\sigma_{-} \frac{1 + \hat{\nu}_{m,-}^{N_{-}}}{1 - \hat{\nu}_{m,-}^{N_{-}}} \sqrt{(a_{-}^{(m)})^{2} - (b_{-}^{(m)})^{2}} + \sigma_{+} \frac{1 + \hat{\nu}_{m,+}^{N_{+}}}{1 - \hat{\nu}_{m,+}^{N_{+}}} \sqrt{(a_{+}^{(m)})^{2} - (b_{+}^{(m)})^{2}}}{\frac{1 + \hat{\nu}_{m,-}^{N_{-}}}{1 - \hat{\nu}_{m,-}^{N_{-}}} \sqrt{(a_{-}^{(m)})^{2} - (b_{-}^{(m)})^{2}} + \frac{1 + \hat{\nu}_{m,+}^{N_{+}}}{1 - \hat{\nu}_{m,+}^{N_{+}}} \sqrt{(a_{+}^{(m)})^{2} - (b_{+}^{(m)})^{2}}}, \quad m = 1, \dots, M - 1. \quad (23)$$

Non-verbally: For each $u_{-}, u_{-}^{\dagger} \in \tilde{V}_{h_{\pm}}^{-} \otimes W_{h_{y}}, \ u_{0}, u_{0}^{\dagger} \in \hat{V}_{h_{\pm}}^{0}, \ u_{+}, u_{+}^{\dagger} \in \tilde{V}_{h_{\pm}}^{+} \otimes W_{h_{y}} \ and \ u_{0} = \sum_{m=1}^{M-1} \beta_{m} \hat{v}_{m} \otimes \hat{\theta}_{m}, \ u_{0}^{\dagger} = \sum_{m=1}^{M-1} \beta_{m}^{\dagger} \hat{v}_{m} \otimes \hat{\theta}_{m}, \ (\beta_{m})_{m=1}^{M-1}, (\beta_{m}^{\dagger})_{m=1}^{M} \in \mathbb{R}^{M-1} \ it \ holds \ that$

$$a_{\tilde{\Omega}}(u_{-}+u_{0}+u_{+},u_{-}^{\dagger}+u_{0}^{\dagger}+u_{+}^{\dagger}) = \sigma_{-}\langle u_{-},u_{-}^{\dagger}\rangle_{H_{0}^{1}(\tilde{\Omega})} + \sum_{m=1}^{M-1} \hat{d}_{m}\beta_{m}\beta_{m}^{\dagger} + \sigma_{+}\langle u_{+},u_{+}^{\dagger}\rangle_{H_{0}^{1}(\tilde{\Omega})}.$$

Lemma 3.30. The diagonal entries \hat{d}_m satisfy $\hat{d}_m = \sigma_- \tilde{\mathfrak{f}}_{\kappa,r,\hat{\lambda}_m,r,h}$ $(\mathfrak{h}_{r_y}(r_ymh_-))$ for m=1 $1, \ldots, M - 1.$

Now we investigate $\tilde{\mathfrak{f}}_{\kappa,r,\hat{\lambda}_{m,r_y,h_-}}(\mathfrak{h}_{r_y}(r_ymh_-))$. Since we have already shown, that $\tilde{\mathfrak{f}}_{\kappa,r,\lambda}$ is equicontinuous at zero in $\lambda \geq 1$ and because $\hat{\lambda}_{m,r_y,h_-} \geq \lambda_m \geq 1$, the only difference to the previous analysis concerning the unbounded domain is that we have to deal with the additional composition with the continuous function \mathfrak{h}_{r_y} . Before we formulate the next Lemma 3.15, let us recall that $h_{-} = \frac{h_{y}}{r_{y}} = \frac{\pi}{r_{y}M}$.

Lemma 3.31. If (17) is satisfied, then $\lim_{M\to+\infty}\inf_{m\in\{1,\dots,M-1\}}\left|\tilde{\mathfrak{f}}_{\kappa,r,\hat{\lambda}_{m,r-k}}\left(\mathfrak{h}_{r_y}\left(\frac{m\pi}{r_yM}\right)\right)\right|=0.$

Proof. The proof follows along the lines of the proof of Lemma 3.15, where in addition we apply Lemma 3.22 to cope with the replacement of $\mathfrak{f}_{\kappa,r}$ by $\mathfrak{f}_{\kappa,r,\hat{\lambda}_{m,r_n,h}}$.

Lemma 3.32. If for $\epsilon \in (0,1)$ one of the following two conditions

$$|\kappa|(1+\epsilon) < 1 \text{ and } r^2\kappa^2(1+\epsilon)^2 < 1 + r_y(1-\kappa^2(1+\epsilon)^2)$$
 (24a)

$$|\kappa|(1-\epsilon) > 1 \text{ and } r^2\kappa^2(1-\epsilon)^2 > 1 + r_y^2(1-\kappa^2(1-\epsilon)^2)$$
 (24b)

is satisfied, then there exists $\delta > 0$ such that

$$\inf_{\substack{h_{-} \in (0,\delta) \\ m \in \{1,...,M-1\}}} \left| \tilde{\mathfrak{f}}_{\kappa,r,\hat{\lambda}_{m,r_{y},h_{-}}} \left(\mathfrak{h}_{r_{y}}(r_{y}mh_{-}) \right) \right|$$

$$\geq \min_{p \in \{\pm 1\}} \min \left\{ \frac{|1 + (1 + p\epsilon)\kappa|}{2 + \epsilon}, \frac{\left|\sqrt{1 + r_y^2} + (1 + p\epsilon)\kappa\sqrt{r^2 + r_y^2}\right|}{\sqrt{1 + r_y^2} + (1 + \epsilon)\sqrt{r^2 + r_y^2}} \right\} > 0.$$

Proof. It suffices to combine the techniques used for Lemma 3.16 and Lemma 3.26. As in the proof of Lemma 3.26 we choose $\delta > 0$ such that $\mathfrak{z}_{r,\hat{\lambda}_{m,r_y,h_-}}(\hat{\lambda}_{m,r_y,h_-}h_-) \in [1-\epsilon,1+\epsilon]$ for all $\hat{\lambda}_{m,r_y,h_-} \geq 1, h_- \in (0,\delta)$. Thence

$$\inf_{\substack{h_- \in (0,\delta) \\ m \in \{1,\dots,M-1\}}} \left| \tilde{\mathfrak{f}}_{\kappa,r,\hat{\lambda}_{m,r_y,h_-}} \left(\mathfrak{h}_{r_y}(r_y m h_-) \right) \right| \geq \inf_{t \in [0,\sqrt{12}/r_y], p \in \{\pm 1\}} \frac{\left| 1 + \kappa (1+p\epsilon) \sqrt{\frac{12 + r^2 t^2}{12 + t^2}} \right|}{1 + (1+\epsilon) \sqrt{\frac{12 + t^2 h^2}{12 + t^2}}},$$

from which the claim follows.

Now we are in the position to conclude our analysis of the full discretization of (2b) in the following theorem.

Theorem 3.33. If (24) is satisfied for some $\epsilon \in (0,1)$, then $\tilde{\mathcal{A}}_{h_{\pm},h_y}^{-1}$ exists and satisfies

$$\|\tilde{\mathcal{A}}_{h_{\pm},h_{y}}^{-1}\|_{\mathcal{L}(\tilde{V}_{h_{\pm}}\otimes W_{h_{y}})} \leq \frac{1}{|\sigma_{-}|\min_{p\in\{\pm1\}}\min\left\{1,|\kappa|,\frac{|1+(1+p\epsilon)\kappa|}{2+\epsilon},\frac{|\sqrt{1+r_{y}^{2}}+(1+p\epsilon)\kappa\sqrt{r^{2}+r_{y}^{2}}|}{\sqrt{1+r_{y}^{2}}+(1+\epsilon)\sqrt{r^{2}+r_{y}^{2}}}\right\}}$$

for all $h_{-} \in (0, \delta)$ with $\delta > 0$ as in Lemma 3.16. Contrary, if (17) is satisfied, then

$$\lim_{h_-\to 0}\|\tilde{\mathcal{A}}_{h_\pm,h_y}^{-1}\|_{\mathcal{L}(\tilde{V}_{h_\pm}\otimes W_{h_y})}=+\infty$$

(where we define $\|\tilde{\mathcal{A}}_{h_{\pm},h_{y}}^{-1}\|_{\mathcal{L}(\tilde{V}_{h_{\pm}}\otimes W_{h_{y}})}:=+\infty$, if $\tilde{\mathcal{A}}_{h_{\pm},h_{y}}^{-1}$ does not exist).

Proof. As for Theorems 3.10, 3.17 and 3.27 the claims follow directly from the respective Lemmas 3.29 to 3.32.

4 Computational examples

We will now confirm our theoretical results by testing them in explicit computational examples. The code to reproduce all of them is provided in [19]. We consider the following problem posed on a bounded domain:

Find
$$u \in H_0^1(\tilde{\Omega})$$
 such that $-\operatorname{div}(\sigma \nabla u) = f$ in $\tilde{\Omega} = (-L, L) \times (0, \pi)$, with $f(x, y) = -\sigma \left[\frac{-2y(y - \pi)(y - 2\pi)}{L^2} + 6\left(1 - \frac{x^2}{L^2}\right)(y - \pi) \right]$,

which has the solution

$$u(x,y) = \left(1 - \frac{x^2}{L^2}\right) y(y-\pi)(y-2\pi).$$

First we examine the case of unstable discretizations. To this end we consider parameters as follows:

$$\sigma_{-} = -1, \quad \sigma_{+} = 1.2, \quad r = 0.5, \quad r_{y} = \frac{2}{\sqrt{11}}.$$

Hence the contrast at hand $\kappa = -1.2$ is rather moderate. Nevertheless, we are going to exhibit instabilities with this particular choice of parameters, whereas convenient examples of instabilities often require a much more critical contrast $|\kappa - \kappa_{\rm crit}| \approx 10^{-3}$ [1, Fig. 1], [9, Fig. 3]. We choose a sufficiently large $L \approx 26$ such that our problem is adequately close to an unbounded domain, and hence we can expect the critical values

$$h_{-} := \frac{1}{m} \frac{1}{r_{y}} \arccos \left(1 + \frac{6r_{y}^{2}(1 - \kappa^{2})}{(1 - \kappa^{2}r^{2}) - 2r_{y}^{2}(1 - \kappa^{2})} \right) = \frac{\sqrt{11}}{2} \frac{1}{m} \arccos (1 - 1) = \frac{\sqrt{11}\pi}{4m} \quad m \in \mathbb{N}.$$

$$(25)$$

given in Theorem 3.17 to yield also sensible values for our example. In particular, we choose $L:=10\frac{\sqrt{11}\pi}{4}$ such that

$$\begin{split} N_{-} &= \frac{L}{h_{-}} = 10 \frac{\sqrt{11}\pi}{4} \frac{4m}{\sqrt{11}\pi} = 10m, \quad N_{+} = \frac{L}{h_{-}} = 10 \frac{\sqrt{11}\pi}{4} \frac{8m}{\sqrt{11}\pi} = 20m, \\ M &= \frac{\pi}{r_{y}h_{-}} = \pi \frac{4m}{\sqrt{11}\pi} \frac{\sqrt{11}}{2} = 2m \end{split}$$

are natural numbers of each $m \in \mathbb{N}$. Even though we cannot expect our discretizations to have a non-trivial kernel at h_- we observe in Figure 1 (solid lines) exorbitant errors. Nevertheless, we recognize a decrease in the error which can be explained as follows: The drastic error is triggered by the basis function $\hat{v}_m \otimes \hat{\theta}_m$ for which the respective coefficient $\langle f, \hat{v}_m \otimes \hat{\theta}_m \rangle_{L^2}$ of f decreases w.r.t. $m \in \mathbb{N}$. In Figure 2 we see the numerical solution for a critical value of h_- and we observe the oscillating behaviour of $\hat{v}_m \otimes \hat{\theta}_m$ that is corrupting the solution as predicted.

To further explore the possible behaviours of different discretizations we keep all parameters apart from h_- unchanged and choose now $h_- = \frac{\sqrt{11}\pi}{4(m+\frac{1}{2})}$ to maximize the distance of h_- to the critical values (25) (while keeping $N_-, N_+, M \in \mathbb{N}$). In contrast to our previous results, we observe in Figure 1 (dashed lines) a distinct convergence of errors with convenient rates.

Finally, we consider meshes with the values of h_{-} and h_{+} being exchanged. We observe in Figure 3 a convergence with convenient rates as predicted by Theorem 3.17.

To conclude, for problems with more complicated geometries and discretizations with non-uniform meshes we expect a mixed behaviour, where at each new mesh refinement a stable or unstable setting is dominant in an unpredictable way, giving rise to the commonly observed zigzag error curves.

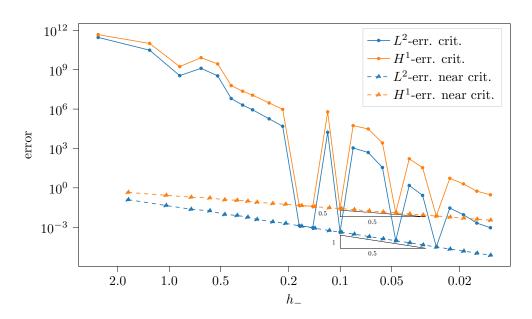


Figure 1: Relative errors for critical values of h_{-} (solid lines) and for nearly critical values of h_{-} (dashed lines).

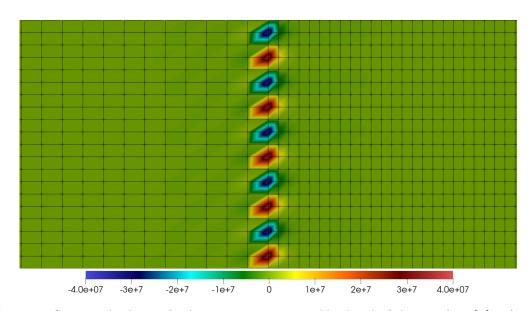


Figure 2: Computed solution for $h_{-} \approx 0.26048$ in a neighborhood of the interface $\{0\} \times (0, \pi)$.

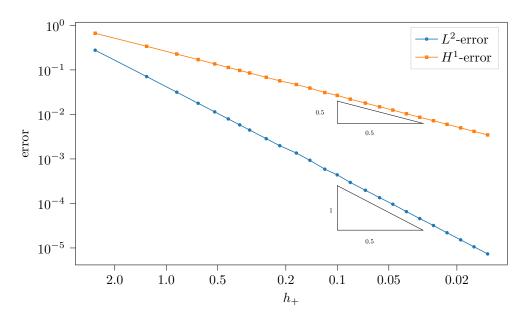


Figure 3: Relative errors for a mesh satisfying (24).

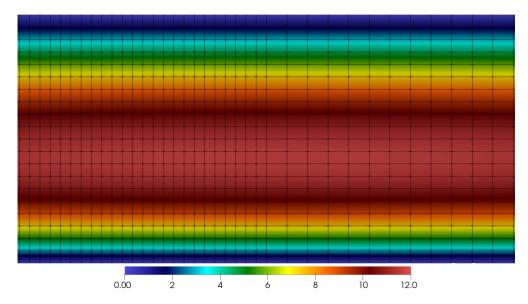


Figure 4: Computed solution for $h_+ \approx 0.26048$ on a flipped mesh in a neighborhood of the interface $\{0\} \times (0,\pi)$.

References

- A. Abdulle, M. E. Huber, and S. Lemaire. An optimization-based numerical method for diffusion problems with sign-changing coefficients. *Comptes Rendus Mathematique*, 355(4):472– 478, 2017.
- [2] A. Abdulle and S. Lemaire. An optimization-based method for sign-changing elliptic PDEs. *ESAIM Math. Model. Numer. Anal.*, 2024.
- [3] D. Boffi. Finite element approximation of eigenvalue problems. Acta Numer., 19:1–120, 2010.
- [4] A.-S. Bonnet-Ben Dhia, C. Carvalho, and P. Ciarlet. Mesh requirements for the finite element approximation of problems with sign-changing coefficients. *Numerische Mathematik*, 138(4):801–838, Apr 2018.
- [5] A.-S. Bonnet-Ben Dhia, L. Chesnel, and P. Ciarlet, Jr. Two-dimensional Maxwell's equations with sign-changing coefficients. *Appl. Numer. Math.*, 79:29–41, 2014.
- [6] A.-S. Bonnet-Ben Dhia, P. Ciarlet Jr, and C. M. Zwölf. Time harmonic wave diffraction problems in materials with sign-shifting coefficients. *Journal of Computational and Applied Mathematics*, 234(6):1912–1919, 2010.
- [7] A.-S. Bonnet-BenDhia, L. Chesnel, and P. Ciarlet. T-coercivity for scalar interface problems between dielectrics and metamaterials. *Math. Mod. Num. Anal.*, 46:363–1387, 2012.
- [8] A.-S. Bonnet-BenDhia, L. Chesnel, and P. Ciarlet. T-coercivity for the Maxwell problem with sign-changing coefficients. Communications in Partial Differential Equations, 39:1007–1031, 2014.
- [9] E. Burman, J. Preuss, and A. Ern. A hybridized Nitsche method for sign-changing elliptic PDEs, 2024. https://hal.science/hal-04571185v2.
- [10] F. Chaaban, P. Ciarlet, and M. Rihani. Solving numerically the two-dimensional time harmonic Maxwell problem with sign-changing coefficients, 2025. https://hal.science/hal-04909034.
- [11] P. Ciarlet, Jr., D. Lassounon, and M. Rihani. An optimal control-based numerical method for scalar transmission problems with sign-changing coefficients. *SIAM J. Numer. Anal.*, 61(3):1316–1339, 2023.
- [12] S. A. Cummer, J. Christensen, and A. Alù. Controlling sound with acoustic metamaterials. Nature Reviews Materials, 1(3):1–13, 2016.
- [13] S.-E. Ekström and S. Serra-Capizzano. Eigenvalues and eigenvectors of banded Toeplitz matrices and the related symbols. *Numer. Linear Algebra Appl.*, 25(5):e2137, 17, 2018.
- [14] A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann. Cloaking devices, electromagnetic wormholes, and transformation optics. SIAM Rev., 51(1):3–33, 2009.
- [15] M. Halla. On the approximation of dispersive electromagnetic eigenvalue problems in two dimensions. *IMA J. Numer. Anal.*, 43(1):535–559, 2023.
- [16] M. Halla, T. Hohage, and F. Oberender. A new numerical method for scalar eigenvalue problems in heterogeneous, dispersive, sign-changing materials, 2024. https://arxiv.org/abs/2401.16368.
- [17] H.-M. Nguyen. Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients. J. Math. Pures Appl. (9), 106(2):342–374, 2016.

- [18] H.-M. Nguyen and S. Sil. Limiting absorption principle and well-posedness for the time-harmonic Maxwell equations with anisotropic sign-changing coefficients. *Comm. Math. Phys.*, 379(1):145–176, 2020.
- [19] F. Oberender. Replication Data for: On the instabilities of naive FEM discretizations for PDEs with sign-changing coefficients. https://doi.org/10.25625/BHHLLP, 2025.
- [20] G. Unger. Convergence analysis of a Galerkin boundary element method for electromagnetic resonance problems. *Partial Differ. Equ. Appl.*, 2(3):Paper No. 39, 2021.