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We introduce the conformally-invariant scalar product, originally devised for radiation fields, to
the study of the modes of optical resonators. This scalar product allows one to normalize and
compare resonant modes using their corresponding radiation fields. Such fields are polychromatic
fields free of divergences, which are determined from the complex frequencies and the modal fields
on the surface of the resonator. The scalar product is expressed as surface integrals involving the
modal fields, multiplied by closed-form factors incorporating the complex frequencies. In a practical
application, we study the modes of disk-shaped whispering gallery resonators, and show that the
proposed scalar product accurately predicts the geometry-dependent crossings and anti-crossings
between modes.

I. INTRODUCTION AND SUMMARY

Optical resonators allow us to control and enhance
light-matter interactions [1]. They offer strong optical
confinement, which can reduce the size of optical in-
struments and decrease optical loss [2]. Resonant re-
circulation of an input signal increases the field intensity,
which finds applications in lasers and photovoltaics [1–3].
The implementation of optical resonators differs in form,
materials, and principle of operation. Among the many
kinds of optical resonators, the ones hosting whisper-
ing gallery modes (WGMs) are particularly attractive
for many applications due to their high quality factor
and unique spectral properties, such as tunability, nar-
row linewidth, and high stability [2, 4, 5].

The physics of resonators can be conveniently studied
through their resonant modes [6], which are the natu-
ral damped resonances of the system. Such modes are
also known as quasi-normal modes, leaky modes, electro-
magnetic eigenmodes, or simply, modes. In particular,
resonant modes are being used for the study and engi-
neering of light-matter interactions [7–22]. For example,
the fields scattered by the resonator upon a given illu-
mination may be expanded to good approximation as a
linear combination of a few modal fields, at least in lim-
ited frequency ranges [23, 24]. The general question of
orthogonality and completeness of the modal fields out-
side the resonator is particularly relevant for such appli-
cations [25]. Such a question is complicated by the diver-
gence of time-harmonic modal fields as |r| → ∞, albeit,
in principle, such divergence can be mitigated by causal-
ity [12, 26]. In this context, a crucial question is which
scalar product to use for normalization and projections?
These questions have received considerable attention in
recent times. Reference [8] contains a comprehensive re-
view of the properties and suitability of several different
approaches [16, 27, 28].

For radiated fields, there is a scalar product with many

∗ These authors contributed equally.

desirable properties [29]. For example, the square of the
norm induced by such scalar product ⟨f |f⟩, gives the
number of photons of the field [30]. Also, the values of
fundamental quantities in the field, such as energy or
momentum, can be computed as “sandwiches” ⟨f |Γ|f⟩,
where Γ is the operator representing the particular fun-
damental quantity [31, Chap. 3,§9]. For example, us-
ing the energy operator H, the value of ⟨f |H|f⟩ can be
shown to be identical to the typical integral giving the
energy of the field. Such scalar product has the unique
property of being invariant upon any conformal transfor-
mation [29]. That is, the scalar product between trans-
formed fields is equal to the scalar product between the
original fields. Since the conformal group is the largest
group of invariance of Maxwell’s equations [32], the con-
formal invariance of the scalar product is a very strong
argument in favor of its use. For example, it is precisely
those invariance properties that underpin the consistent
frame-independent definition of projective measurements
in electromagnetism [33, Sec. III]. The use of this scalar
product in light-matter interactions has been recently re-
viewed [34].

Here, we introduce the use of the conformally-invariant
scalar product for radiation fields in the study of opti-
cal resonators. We start by deriving a polychromatic
radiation field free of divergences from the field profile
and the complex frequency of a given electromagnetic
eigenmode of a three-dimensional (3D) structure. Then,
a cross-energy expression between the radiations of any
two given eigenmodes, ⟨f |H|g⟩, is identified as a suitable
scalar product. The computation of ⟨f |H|g⟩ consists of
integrals of simple functions of the modal fields at the
surface of the resonator, and closed-form factors involv-
ing the complex modal frequencies (see Eq. (13)). In
contrast with several existing expressions, Eq. (13) does
not involve the material parameters of the resonator, or
the exponentially growing fields with complex wavenum-
ber. Boundary element methods such as those described
in [35, 36] are perfectly suited for the computation of the
cross-energy scalar product.

We show that the cross-energy scalar product produces
physically consistent results, by means of a first exem-
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plary application. We study the modes of a WGM disk
resonator as the thickness of the disk changes [37]. We
observe that the absolute value of ⟨f |H|g⟩ between two
normalized modes is zero in particular when the real
frequencies of that particular pair of modes cross. In
sharp contrast, for anti-crossing modes, the same quan-
tity shows a prominent peak that grows as the real fre-
quencies of that particular pair of modes get close to each
other. The position of the peak coincides with the thick-
ness for which the two modes anti-cross, and for which
the modal overlap inside the resonator is maximized. The
increasing non-orthogonality implies a decreasing distin-
guishability of the modes in the far field.

The rest of the article is organized as follows. In Sec-
tion II, we obtain the field radiated by a given leaky
mode by using the Mittag-Leffler theorem. The result-
ing polychromatic field is free of divergences. We insert
these fields into a recent [38] surface integral expression
for ⟨f |H|g⟩, and derive the corresponding expression for
radiation fields of resonant modes of 3D structures, which
we call the cross-energy scalar product. In Section III,
we apply the cross-energy scalar product to the resonant
modes of a disk-shaped WGM resonator, with the partic-
ular aim of studying the case of pairs of modes exhibiting
avoided crossings as the thickness of the disk changes. We
finish with conclusions and an outlook in Section IV.

II. A SCALAR PRODUCT FOR THE
RADIATION OF LEAKY MODES FROM 3D

STRUCTURES

We start by obtaining the field radiated by a given
leaky mode. The resulting polychromatic field is free of
divergences.

A. Electromagnetic fields radiated by a leaky mode

Let us consider Fig. 1, where a closed surface in R3

delimits a volume D with a boundary ∂D that has con-
tinuous first derivatives. It is surrounded by an achiral,
non-absorbing, homogeneous, and isotropic background
medium, which we assume to be vacuum for simplicity,
but without loss of generality. Any other such surround-
ing medium can be readily accommodated in the formulas
by replacing the vacuum permittivity and permeability
by those of the medium. We assume the existence of
time-dependent helical fields Fλ(r ∈ ∂D, t), for helicity
λ = ±1, on the boundary surface ∂D. We will later work
with their monochromatic components Fλ(r, |k|). For
fields that contain only positive frequencies, the helical
fields are defined as:

Fλ(r, t) =

√
ε0
2
[E(r, t) + iλZ0H(r, t)] , (1)

with vacuum permittivity ε0, vacuum impedance Z0,
time and spatially dependent complex electric field

E(r, t), and complex magnetic field H(r, t). The heli-
cal fields split any electromagnetic field into its left and
right circular polarization handedness, with λ = 1 and
λ = −1, respectively.

FIG. 1. A volume D in R3 is delimited by a closed sur-
face ∂D with continuous first derivative. Helical fields
Fλ=±1(r ∈ ∂D, t) on the surface produce electromagnetic ra-
diation towards the outside of D. The dS(r) are outwards-
pointing normal vectors of the surface element at each point
r ∈ ∂D.

An expression for the scalar product between radiation
fields that only involves integrals of the fields over closed
spatial surfaces was recently derived [38]. In particular,
the Fλ(r ∈ ∂D, |k|) appear in the expressions for the
number of photons ⟨f |f⟩, and energy ⟨f |H|f⟩ of a given
field |f⟩, which can be computed as integrals on a closed
boundary [38, Eqs. (19, 21)]:

⟨f |f⟩ =
∑
λ=±1

(−iλ)

∫ ∞

>0

d|k|
ℏc0|k|∫

r∈∂D

dS(r) · [F∗
λ(r, |k|)× Fλ(r, |k|)] , (2)

⟨f |H|f⟩ =
∑
λ=±1

(−iλ)

∫ ∞

>0

d|k|∫
r∈∂D

dS(r) · [F∗
λ(r, |k|)× Fλ(r, |k|)] , (3)

where c0 is the speed of light in vacuum, ℏ is Planck’s
constant divided by 2π, H the energy operator, dS the
infinitesimal surface element at the position r, and the in-
tegral is over any piecewise smooth surface ∂D enclosing
a compact volume containing the sources of radiation.
The fact that electromagnetic fields on a boundary act

as sources of radiation fields is well-known in electromag-
netism (see, e.g., [39][40, Chap. 5]). The components of
the electric and magnetic fields tangential to the surface
uniquely determine the whole field outside the enclosed
volume. This enables us to obtain the field radiated by a
given leaky mode. It is important to note that the bound-
ary ∂D does not need to be twice continuously differen-
tiable as stated in, e.g., [39], rather once continuously
differentiable is enough [40, Chap. 5] because Maxwell’s
equations for helical fields only contain first-order deriva-
tives [40, §1-2.3]. This condition increases the class of
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surfaces to which the results apply from “continuous cur-
vature” surfaces such as an ellipsoid, to “continuous tan-
gent” surfaces such as a disk with rounded corners.

Let us now assume that the boundary ∂D in Fig. 1
is the boundary of an object, and that the electromag-
netic eigenmodes of the object are available to us. Such
eigenmodes will, in general, be leaky, and each of those
modes with finite lifetimes can be characterized by spa-
tial field profiles {E(r),H(r)}, and complex frequencies
ω = Ω− iΓ, with {Ω,Γ} ∈ R+. Eigenmodes come in con-
jugate pairs [28, Sec. 2.3]: If there exists a leaky mode
with complex frequency ω = Ω − iΓ, and modal fields
E(r) and H(r), then there exists another leaky mode
with complex frequency −ω∗ and modal fields E∗(r) and
H∗(r). From now on, and unless otherwise specified, we
assume that r is a point on the surface of the object.

We want to obtain the Fλ(r, |k|) that specify a physical
radiation field. Importantly, the Fλ(r, |k|) must meet the
condition

Fλ(r, |k|) = F∗
λ(r,−|k|), (4)

because in electromagnetism the same information must
be contained in the two sides of the real frequency axis
[41, §3.1]. After a two-sided Fourier transform, the condi-
tion in Eq. (4) ensures (r, t)-dependent real-valued fields.

We advance towards the specification of the Fλ(r, |k|)
for leaky modes by considering the complex frequencies ω
and −ω∗ as the two poles of a complex vectorial function
Fλ(r, z ∈ C), whose respective residues are the helical
combinations of the electric and magnetic modal fields

ω = Ω− iΓ , Mλ(r) =

√
ε0
2
[E(r) + iλZ0H(r)] ,

−ω∗ = −Ω− iΓ , M∗
λ(r) =

√
ε0
2
[E(r) + iλZ0H(r)]

∗
.

(5)

At first sight, and in light of Eq. (1), M∗
λ(r) =√

ε0
2 [E∗(r)− iλZ0H∗(r)] seems to be a field with helic-

ity −λ, but this is not so: such field is also a field with
helicity λ because the definition of handedness changes
sign with the sign of the real part of the frequency [42,
p. 210],[41, Sec. 3.1].

The sought after Fλ(r, |k|) can be obtained using the
Mittag-Leffler theorem [43, p. 515], which allows one to
expand a function f(z) of a complex variable z as:

f(z) = f(0) +

∞∑
n=1

bn

(
1

z − zn
+

1

zn

)
. (6)

For the expansion to hold, f(z) should be analytical ev-
erywhere, excluding infinity and a set of discrete points
zn with residues bn, and |f(z)/z| → 0 as |z| → ∞. We as-
sume that each scalar component of the vectors Fλ(r, z)
meets such conditions. This kind of assumption under-
lies the common use of the Mittag-Leffer theorem in the

context of resonant modes [8, Sec. 2.3]. One can then
write:

Fλ(r, k) = Fλ(r, 0)+

ic0√
2π

[
Mλ(r)

c0k − ω
+

Mλ(r)

ω
+

M∗
λ(r)

c0k + ω∗ − M∗
λ(r)

ω∗

]
,

(7)

where k ∈ R. The expression in Eq. (7) meets the re-
quirement in Eq. (4).
For Fλ(r, k) to be suitable for the inverse Fourier trans-

form, it must vanish as k → ±∞. We are hence led to
set

Fλ(r, 0) = − ic0√
2π

[
Mλ(r)

ω
− M∗

λ(r)

ω∗

]
. (8)

Finally, since we are interested in k = |k| > 0, we reach:

Fλ(r, |k|) =
ic0Mλ(r)√

2π (c0|k| − ω)
+

ic0M
∗
λ(r)√

2π (c0|k|+ ω∗)
. (9)

Real-valued time-domain fields at each point r of the
surface of the object can be obtained with the inverse
Fourier transform,

Fλ(r, t) =

∫ ∞

−∞

dk√
2π

Fλ(r, k) exp(−ic0kt)

= 2Re

{∫ ∞

0

d|k|√
2π

Fλ(r, |k|) exp(−ic0|k|t)
}
,

(10)

which results in:

Fλ(r, t) =

[Mλ(r) exp (−iΩt) +M∗
λ(r) exp (iΩt)] exp(−Γt)u(t),

(11)

where u(t) is the Heaviside step function.
The Heaviside function avoids the amplification that

occurs in exp (−Γt) for t < 0 while keeping the damp-
ing that occurs for t > 0. Moreover, and importantly,
the fields Fλ(r, |k|) exp (−ic0|k|t) result in radiated fields
that decay as 1/|r| outside the resonator when |r| → ∞
[39, Eq. (35)], also avoiding the divergence of the modal
fields as |r| grows. Hence, the presented strategy avoids
the two exponential growths of the modal field outside
the resonator, as t → −∞, and as |r| → ∞, which
have been tied to each other by causality [26]. Here,
the wavenumbers of the radiation fields are always real.
In contrast, taking the complex eigenfrequency to im-
ply a complex wavenumber causes the field outside the
resonator to grow exponentially as |r| increases. While
such growing fields are being used for expanding scat-
tered fields, typically in the monochromatic case, the ex-
ponential growth is clearly incompatible with a physical
emission.
The appearance of u(t) has the following physical in-

terpretation. The surface fields specified in Eq. (9) or
Eq. (11) will radiate an outgoing polychromatic pulse.
Such pulse is the radiative decay of energy stored inside
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the object by that given conjugate pair of leaky modes.
The time t = 0 is the start of the emission. The procedure
that lead us to Eq. (9) does not make any assumption re-
garding how the energy was previously acquired by the
leaky modes. From now on, when we refer to a leaky
mode, we mean one such conjugate pair.

We note that, even though the surface fields that act
as sources must be defined on the surrounding medium,
and {E(r),H(r),E∗(r),H∗(r)} are the fields inside the
object, this is not a problem because the tangential com-
ponents of the electric and magnetic fields are continuous
at the interface between the object and the surrounding
medium. The surface integrals in Eq. (2) and Eq. (3) en-
sure that only the components tangential to the surface
affect the result. In this way, the potentially compli-
cated material functions characterizing the object, and
their derivatives, will not appear in the expression for
the scalar product that we propose in the next section,
in contrast with many of the existing expressions.

There are many computational strategies for obtaining
the {Mλ(r), ω} [28, Sec. 3]. For example, for sufficiently
small 3D objects the leaky modes can be obtained with
use of software packages such as JCMsuite [44], Lumerical

[45], or COMSOL [46], to name just a few.

B. The cross-energy scalar product

Equation (2) can be used to compute the number of
photons of a leaky mode by inserting the monochromatic
components from Eq. (9). However, there are difficulties
in evaluating the corresponding expression for a scalar
product between two leaky modes, ⟨f |g⟩. If we instead
focus on the expression for the radiated energy, we find
that the cross-energy ⟨f |H|g⟩, between arbitrary modes f
and g, meets the requirements of a scalar product, which
can be readily verified using the fact that the energy op-
erator H is self-adjoint. The use of a cross-energy scalar
product is reminiscent of the scalar product derived from
the Poynting vector for the propagating modes of waveg-
uides [47, 48], which can be used to investigate the or-
thogonality between the modes [49]. This motivates us
to use ⟨f |H|g⟩ as the scalar product for leaky modes. It
is obtained by inserting Eq. (9) into Eq. (3), and we call
it the cross-energy scalar product:

⟨f |H|g⟩ =
∑
λ=±1

(−iλ)

∫ ∞

>0

d|k|
∫
r∈∂D

dS(r) · [Fλ(r, |k|)∗ ×Gλ(r, |k|)]

=
∑
λ=±1

(−iλ)
c20
2π

{∫ ∞

>0

d|k| 1(
c0|k| − ω∗

f

) 1

(c0|k| − ωg)

∫
r∈∂D

dS(r) ·
[
M∗

λ,f (r)×Mλ,g(r)
]

+

∫ ∞

>0

d|k| 1(
c0|k| − ω∗

f

) 1(
c0|k|+ ω∗

g

) ∫
r∈∂D

dS(r) ·
[
M∗

λ,f (r)×M∗
λ,g(r)

]
+

∫ ∞

>0

d|k| 1

(c0|k|+ ωf )

1

(c0|k| − ωg)

∫
r∈∂D

dS(r) · [Mλ,f (r)×Mλ,g(r)]

+

∫ ∞

>0

d|k| 1

(c0|k|+ ωf )

1(
c0|k|+ ω∗

g

) ∫
r∈∂D

dS(r) ·
[
Mλ,f (r)×M∗

λ,g(r)
]}

,

(12)

where the subscripts f , g denote the two considered modes. Appendix A shows that the result of the d|k| integral
can be obtained in closed form, with which one obtains:

⟨f |H|g⟩ = c0
2π

∑
λ=±1

(−iλ)
Log(−ω∗

f )− Log(−ωg)

−ω∗
f + ωg

∫
r∈∂D

dS(r) ·
[
M∗

λ,f (r)×Mλ,g(r)
]

+
c0
2π

∑
λ=±1

(−iλ)
Log(−ω∗

f )− Log(ω∗
g)

−ω∗
f − ω∗

g

∫
r∈∂D

dS(r) ·
[
M∗

λ,f (r)×M∗
λ,g(r)

]
+

c0
2π

∑
λ=±1

(−iλ)
Log(ωf )− Log(−ωg)

ωf + ωg

∫
r∈∂D

dS(r) · [Mλ,f (r)×Mλ,g(r)]

+
c0
2π

∑
λ=±1

(−iλ)
Log(ωf )− Log(ω∗

g)

ωf − ω∗
g

∫
r∈∂D

dS(r) ·
[
Mλ,f (r)×M∗

λ,g(r)
]
.

(13)

In the following section, we use the cross-energy scalar product to study the modes of a disk resonator as the
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thickness of the disk changes.

III. APPLICATION TO WHISPERING
GALLERY RESONATORS

A. The modes of a disk

Here, we consider a WGM resonator, modeled as a disk
of radius 25µm and thickness changing from 1.8 µm to
3.1 µm. The electric and magnetic fields and the reso-
nance frequencies are computed with the finite element
method (FEM) simulation software JCMsuite. It solves
the resonant mode problem by finding electric and mag-
netic fields (Ef (r), Hf (r)) of the modes f and corre-
sponding eigenvalues ωf = Ωf − iΓf , satisfying the time-
harmonic Maxwell equations with outgoing boundary
conditions in a source-free medium. In our case, the nu-
merical implementation exploits the rotational symmetry
of the disk with respect to the z-axis, and the eigenmode
computation is reduced to a two-dimensional problem in

the plane (ρ =
√

x2 + y2, φ = arctan2(y, x) = 0, z), as
visualized in Fig. 2. At any point of the disk, the fields
of a given solution (in Cartesian coordinates) obey

E(mf )
f (ρ cosφ, ρ sinφ, z) = R · E(mf )

f (ρ, 0, z)eim
fφ , (14)

and similarly for H(mf )
f , with azimuth φ, integer az-

imuthal mode number mf , and the rotation matrix1 [44]

R =

 cosφ − sinφ 0
sinφ cosφ 0
0 0 1

 . (15)

1 Note, that JCMsuite uses a different convention where the y-axis
is the axis of rotational symmetry.

FIG. 2. The radial component of the real part of the electric
field of the fundamental mode on the disk surface (left). Be-
cause of the azimuthal symmetry, we consider resonant modes
computed in a slice of the disk in the xz plane (projected
on the right). The discretization in the radial direction is
nonuniform, and finer close to the rim. The field decreases
by several orders of magnitude at the borders of the chosen
computational domain. For the sake of visibility, the domain
in the figure differs from the size of the actual computational
domain, and the scale of the z-axis is different from that of
the other two axes.

The fields (E(mf )
f , H(mf )

f ) can be used to construct

(helical) modal fields M
(mf )
λ,f (r) following the definition

in Eq. (5), and then then corresponding Fmf

λ (r, |k|) in
Eq. (9). It is straightforward to show that under the
cross-energy scalar product two modes are orthogonal un-
less

∣∣mf
∣∣ = |mg|: For instance, the surface integral in the

first line of Eq. (13) contains a term ei(m
g−mf )φ, which

makes the integral vanish identically if mg ̸= mf . Im-
portantly, modes of opposite azimuthal mode number,
that is, for mf = −mg, can be non-orthogonal. This
is because the monochromatic components in Eq. (9)
contain the modal fields and their complex conjugate
and, therefore, combine terms of azimuthal dependence
e±imφ. This can be understood as a direct consequence
of Eq. (4), which is a necessary condition for real-valued
fields in (r, t).
This non-orthogonality motivates one to find a differ-

ent way to build modes for the analysis of our resonator.
To such end, we consider a mirror reflection across a plane
that contains the symmetry axis of the disk, for example
My, which acts by changing the sign of the y-coordinate.
Such operation is a symmetry of the disk, which means
that applying it to a given leaky mode produces a po-
tentially different mode, but with the same modal fre-
quency. For cylindrically symmetric systems that are
mirror symmetric with respect to a plane that includes
the axis of rotation, such as the disk, the corresponding

modal field M
(−mf )
λ,f (r) is readily found by the mirror re-

flection, which transforms the fields in Eq. (14) into those

that exhibit an azimuthal dependence of ei(−mf )φ. See
Appendix B for details. The fields obtained in this way
for the disk resonator match the ones numerically com-
puted for −mf precisely up to phase factors, which are
explained by the rotational degree of freedom in choos-
ing a mirror plane that contains the symmetry axis. It
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therefore suffices to compute the fields only for one sign
of m.

We show in Appendix B that the leaky modes con-
structed with Eq. (9), using the following even and odd
(τy = ±1) combinations

M
(τy)
λ,f (r) =

1√
2

(
M

(mf )
λ,f (r) + τyM

(−mf )
λ,f (r)

)
, (16)

are orthogonal when their τy values are not the same, in-
dependently of the values of their azimuthal numbers.
Note that the mirror transformation relates the fields
with opposite signs of λ, since it changes the handed-
ness of the fields. The combinations in Eq. (16) result in
leaky modes that are eigenstates of My with eigenvalue
τy. They are also eigenstates of rotations along the z-
axis by discrete angles π/|mf |. We will work with the
My-symmetric modes constructed with Eq. (16), defined
for τy = ±1 and, without loss of generality, with mf ≥ 0.

Let us now advance to the study of the modes
of the disk resonator, selecting |m| = 139 to match
[37]. The modes are calculated for a real permittivity
εrres = (1.481)2 and imaginary permittivity εires = 10−4

of the disk resonator, and the surrounding permittivity
of air εsur = (1.000275)2, following [37]. Note that the
surrounding medium here is not vacuum as assumed in
the construction of the fields before. However, εsur dif-
fers only marginally from unity and we can neglect its
influence, since the results are virtually identical to the
vacuum case. Due to the field localization near the res-
onator rim, the region from which the fields are extracted
can be limited to [19.5, 27.0] µm along ρ and [−3, 3] µm
in z-direction. The target relative precision of resonance
frequencies is set to 10−6, and an adaptive mesh refine-
ment scheme with two maximum refinement steps is used.
The computational domain is surrounded by perfectly
matched layers (PMLs) [44].

The resonance frequencies of the modes change with
varying thickness of the disk. The real parts of the fre-
quencies of the first ten modes emerging from the FEM
computation are plotted in Fig. 3 for disk thicknesses
ranging from 1.8 µm to 3.1 µm. As a result of the FEM
computation, the modes are sorted independently for ev-
ery disk thickness, and assigned a spectral order number
according to their increasing real part of the resonance.
However, it is known from symmetry analysis in [37] that
some modes exhibit crossings over the course of the vary-
ing disk thickness, and some exhibit avoided crossings,
also called anti-crossings. In particular, the disk is in-
variant under the mirror reflection Mz: z 7→ −z. Then,
the electric field distribution Ef (r) of each mode is an
eigenstate of such reflection with eigenvalue τz = 1 or
τz = −1, and the magnetic field distribution Hf (r) is
also an eigenstate of the reflection z 7→ −z with the op-
posite eigenvalue −τz. The sign difference is due to the
polar and axial character of electric and magnetic fields,
respectively. For example, the field in Fig. 2 transforms
with an eigenvalue τz = −1. Modes of opposite τz cross
and modes with the same τz anti-cross, as seen in [37].

The anti-crossings are marked with gray circles in Fig. 3.
It is important to highlight that crossings affect the or-

dering of the modes. The spectral order coming from the
numerical tool naturally swaps the labels for modes that
cross as the thickness of the disk increases, and, therefore,
does not reflect their true order. In our case, however,
this can be circumvented by considering the spectral or-
der of modes separately for different τz, since crossings
only occur between modes of opposite τz. More complex
resonators may not allow such “manual” tracking. Then,
the cross-energy scalar product between eigenmodes can
be used as a general way to track the modes as some res-
onator parameters change smoothly. This can be done
by projecting the radiation field of each mode for a given
set of parameters onto the radiation field of each mode
in the next set, and connecting a given mode of the first
set to the mode of the second set which results in the
maximum value of their mutual projection.

FIG. 3. Real part of the angular resonance frequency of the
five pairs of lowest order modes as a function of disk thick-
ness. Solid lines follow modes with negative τz, and dashed
lines mark the resonance frequencies of modes with positive
τz, where τz is the eigenvalue of the mode upon a z 7→ −z mir-
ror transformation Mz. Modes of equal τz undergo avoided
crossings at the spots marked with gray circles.

B. The cross-energy scalar product. Similarity
between modes

We analyze the orthogonality properties of the modes
as a function of the disk thickness using the following
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quantity:

| ⟨f̂ |H|ĝ⟩ |2 =
|⟨f |H|g⟩|2

⟨f |H|f⟩ ⟨g|H|g⟩
, (17)

where the normalization of each mode is considered so
that each normalized mode radiates the same amount of
energy: |f̂⟩ = |f⟩ /

√
⟨f |H|f⟩, and |ĝ⟩ = |g⟩ /

√
⟨g|H|g⟩.

The expression in Eq. (13) is further simplified by ex-
ploiting the cylindrical symmetry of the system, which
reduces the two-dimensional surface integrals to one-
dimensional contour integrals. See Appendix B for de-
tails. The integral is then computed using the trape-
zoidal rule over the contour C drawn with a white line
in the projection in Fig. 2. The discretization of the
contour has been chosen with enough resolution so that
the simple trapezoidal rule produces satisfactory results,
as shown by convergence analysis. Higher-order quadra-
ture rules can be beneficial for reducing the number of
sampling points for a given desired accuracy, in partic-
ular for asymmetric resonators where the integrals must
be carried out over the whole surface of the resonator
[35, 36]. We choose the dimensions of the contour (the
height and width) to be 2 % larger than the actual con-
tour of the φ = 0 slice of the disk to avoid regions of nu-
merical artifacts in the simulated fields, which are found
near the edges of the disk resonator. Sampling the fields
slightly outside the resonator technically means sampling
fields that feature an exponentially divergent behavior
towards spatial infinity due to being associated with a
complex wavenumber. However, the rate of divergence is
related to the radiative damping of the resonant modes.
For fairly high-quality resonances, indicated by the ratio
Ω/Γ, in the order of 105 for the modes discussed here,
the exponential divergence is slow enough to be negligi-
ble this close to the resonator surface. Correspondingly,
this is a good approximation to the desired fields at the
surface of the disk. The contour is discretized finer close
to the rim of the disk, where the fields are localized.

The modes that cross, having opposite τz, are orthog-
onal under the cross-energy scalar product. This is read-
ily seen by splitting the surface integrals in Eq. (13) into
their z > 0 and z < 0 pieces, whose sum (including the
sum over λ) cancels out if the modes have opposite τz.
Figure 4 shows the result of Eq. (17) for selected pairs
of modes of the same τz and same parameter τy = 1 as
introduced in Eq. (16). As explained in Appendix B, the
values of the scalar products for this example are virtu-
ally the same for both signs of τy, because the differences
are of the order of the inverse of the Q-factors of the
modes. In the general case, the results for both values
of τy = ±1 should be considered. Each line of Fig. 4
shows how a prominent peak grows as the real frequen-
cies of that particular pair of modes get close to each
other in Fig. 3. The position of the peak neatly aligns
with the thicknesses at which the two modes anti-cross,
which here translates into enlarged non-orthogonality of
the respective modal radiations. The origin of this non-
orthogonality is further elucidated by the example sin-

FIG. 4. Result of Eq. (17) for chosen pairs of modes as a
function of disk thickness. The peaks coincide with the thick-
ness for which the anti-crossing occurs between the particular
modes, as marked in Fig. 3.

gled out in Fig. 5, which shows the value of Eq. (17) for
a pair of modes of τz = −1. The inset figures present the
electric field density profiles of the investigated modes
for chosen values of disk thickness. As the disk thickness
increases, the profiles deform, reach approximately the
same shape, and then separate but with interchanged
field profiles and modal numbers (2, 3) ↔ (3, 2). The
cross-energy scalar product peaks exactly when the two
mode profiles have maximum overlap. The cross-energy
scalar product can be seen as a measure of the similarity
between the radiation fields of two modes, in particular
in the far-field. It is therefore reassuring that the radia-
tions are most similar exactly when the modal eigenfields
inside the resonator are most similar.

IV. CONCLUSION AND OUTLOOK

We have put forward a scalar product for the study of
optical resonators using the conformally-invariant scalar
product for radiation fields. We showed how any given
resonant mode, obtained for example from a Maxwell
solver, can be used to determine fields on the surface
of the resonator that produce a finite-energy polychro-
matic emission free of divergences. Then, we identified a
cross-energy expression between the radiations of any two
given modes as a suitable scalar product. The application
to the modes of a disk-shaped WGM resonator showed
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FIG. 5. Result of Eq. (17) for the modes of spectral order 2
and 3 and τz = −1 as a function of the disk thickness. The
inset figures show the normalized energy density distribution
of the modal fields at particular values of the thickness. The
field distributions plotted here are closely related to the ones
in [37, Fig. 3].

that the cross-energy scalar product produces physically
relevant information, as it predicts the crossing or anti-
crossing between modes upon smooth changes of the geo-
metrical parameters of the disk, and provides information
regarding the ability to distinguish between the radiation
patterns of different leaky modes.

This work opens a path for a different elucidation of
the orthogonality and degree of asymptotic completeness
of a given series of resonant modes. The same cross-
energy scalar product can be used between the radiation
of a given mode and any general radiation field, thereby
allowing the decomposition of the latter into normalized
modes.
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Appendix A: A general simplification

The integrals over |k| in Eq. (12) can be solved ana-
lytically, using∫ ∞

0

dx
1

x− z∗1

1

x− z2
=

Log(−z∗1)− Log(−z2)

−z∗1 + z2
(A1)

for z1,2 /∈ R. Identifying x with c0|k| and (z1, z2) with
one of the combinations (ωf , ωg), (ωf ,−ω∗

g), (−ω∗
f , ωg),

and (−ω∗
f ,−ω∗

g), and using Eq. (A1) four times yields

Eq. (13).

Appendix B: Application to an achiral disk

In the case of cylindrical symmetry, the surface inte-
grals in Eq. (13) can be rewritten using the azimuthal
dependence of the modes described in Eq. (14), for ex-
ample from the first line of Eq. (13):∫

r∈∂D

dS(r) ·
[(

M
(mf )
λ,f (r)

)∗
×M

(mg)
λ,g (r)

]
=

∫
C
dsρv̂(r) ·

[(
M

(mf )
λ,f (r)

)∗
×M

(mg)
λ,g (r)

]
×

∫ 2π

0

dφei(−mf+mg)φ . (B1)

Here, we have written dS(r) = ds ·ρdφv̂(r) in cylindrical
coordinates (ρ, φ, z), with the surface normal vector v̂.
The contour C refers to the 1D curve defined as the φ = 0
slice of ∂D, and ds denotes a differential line element of
C. The integral over φ in Eq. (B1) evaluates to 2π only
in the case where mf = mg, making the entire surface
integral vanish otherwise.

Analogously, we can simplify the surface integral in the
second line of Eq. (13), which vanishes unlessmf = −mg.
Note that the surface integrals in lines three and four of
Eq. (13) are simply the complex conjugates of the inte-
grals in lines two and one, respectively.

In summary, only pairs of modes satisfying∣∣mf
∣∣ = |mg| can have a nonzero scalar product. In

either case (excluding m = 0), the four terms in Eq. (13)
are reduced to only two, with the two-dimensional
surface integrals ∫

r∈∂D

dS(r) ·
[
. . .

]
replaced by one-dimensional line integrals

2π

∫
C
dsρv̂(r) ·

[
. . .

]
.



9

As explained in the main text, we can build mir-

ror symmetric modes [Eq. (16)] by combining M
(mf )
λ,f (r)

fields with their mirror reflections M
(−mf )
λ,f (r). In a

cylindrically symmetric system that also feature a plane
of mirror symmetry containing the axis of rotation,

M
(−mf )
λ,f (r) can be obtained from M

(mf )
λ,f (r) using one of

the mirror symmetries of the system where the axis of ro-
tational symmetry is contained in the mirror plane. For

example, using My =
[
1 0 0
0 −1 0
0 0 1

]
in Cartesian coordinates,

which maps y 7→ −y, we can write

M
(−mf )
λ,f (r) = MyM

(mf )
−λ,f (Myr) . (B2)

Note that Eq. (B2) relates fields of opposite helicity,
in line with the fact that any mirror transformation
changes an eigenstate of helicity into one of opposite he-
licity, or, colloquially, flips its handedness. This change
of handedness can also be deduced from the transfor-
mations of the modal fields under a mirror transforma-
tion, Ef (r) 7→ MyEf (Myr) and Hf (r) 7→ −MyHf (Myr),
whose difference in sign is due to the polar and axial char-
acter of electric and magnetic fields, respectively.

Above arguments can be used to show the mutual or-
thogonality of the even and odd modal fields introduced
in Eq. (16). For the purpose of brevity, we introduce the
notation

|f,±mf ⟩ ≡
{
M

(±mf )
λ,f (r), ωf

}
(B3)

|f, τfy ⟩ ≡
{
M

(τy)
λ,f (r), ωf

}
, (B4)

where the fields on the right-hand side correspond to the
ones in Eq. (16), and the meaning of the equivalence sign
is the radiation field from the leaky modes as built with
Eq. (9).

Considering the mirror transformation used to obtain

the M
(−mf )
λ,f (r) from M

(mf )
λ,f (r), one can show that

⟨f,mf |H|g,−mg⟩ = ⟨f,−mf |H|g,mg⟩ , and
⟨f,mf |H|g,mg⟩ = ⟨f,−mf |H|g,−mg⟩ ,

(B5)

and with that

⟨f, τfy |H|g, τgy ⟩ =
1 + τfy τ

g
y

2
⟨f,mf |H|g,mg⟩

+
τfy + τgy

2
⟨f,−mf |H|g,mg⟩

=
(
⟨f,mf |H|g,mg⟩

+ τfy ⟨f,−mf |H|g,mg⟩
)
δτf

y ,τg
y
, (B6)

where the Kronecker delta in the last line formalizes the
orthogonality of modes with nonmatching τy.
The remaining τfy in the last line of Eq. (B6) shows that

⟨f, τfy = 1|H|g, τgy = 1⟩ and ⟨f, τfy = −1|H|g, τgy = −1⟩
are in general different. Such difference is on the order

of the inverse Q-factor of the modes. This can be seen
from the pre-factors involving the modal frequencies in
Eq. (13). For mf = mg, the term ⟨f,mf |H|g,mg⟩, in-
volves evaluating the first and fourth lines in Eq. (13),
and the term ⟨f,−mf |H|g,mg⟩, involves lines two and
three in Eq. (13). For degenerate modes, but also for
spectrally-close modes, the absolute value of the ratio
between the pre-factors of such lines is roughly the Q-
factor of the modes. The relative difference between
⟨f, τy|H|g, τy⟩ for different τy is correspondingly small for
the modes of the disk that we study.
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