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Abstract

The asymptotic limit of the Navier-Stokes-Korteweg system for barotropic capillary
fluids with density dependent viscosities in the low Mach number and vanishing
viscosity regime is established in Rd, with d = 2, 3. In the relative energy framework,
we prove the convergence of weak solutions of the Navier-Stokes-Korteweg system to
the strong solution of the incompressible Euler system. The convergence is obtained
through the use of suitable dispersive estimates for an acoustic system altered by the
presence of the Korteweg tensor.
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1 Introduction

The aim of this paper is to characterize the asymptotic limit in the low Mach and
vanishing viscosity limit regime of the following (re-scaled) compressible Navier-Stokes-
Korteweg system in (0, T )× R3:{

∂tϱ+ div(ϱu) = 0,

∂t(ϱu) + div(ϱu⊗ u) + ∇p(ϱ)
ε2

− 2νdiv(ϱD(u))− 2κ2ϱ∇∆ϱ = 0,
(NSK)

complemented with far-field behavior

ϱ → 1,
√
ρu → 0, as |x| → ∞, (1.1)

and the initial conditions

ϱ(0, ·) = ϱ0, ϱu(0, ·) = ϱ0u0. (1.2)

The unknown variables ϱ = ϱ (t, x), u = u (t, x) and p = p(ϱ) represent the mass density,
the velocity vector and the pressure of the fluid, respectively. This last is given by a
standard power law type

p(ϱ) = ϱγ , γ > 1, (1.3)

while

D(u) =
1

2
(∇u+∇⊤u)

is the symmetric part of ∇u. The Korteweg tensor 2κ2ϱ∇∆ϱ can be recast in the form
ϱ∇∆ϱ = divK where

K =

(
ϱdiv(∇ϱ) +

1

2
|∇ϱ|2

)
I− (∇ϱ⊗∇ϱ). (1.4)
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Fluids for which the Korteweg tensor has the form as in (1.4) are usually termed capillary
fluids (see e.g. [4] and references therein). The parameter ε represents the Mach number
while ν and κ are the viscosity and capillary coefficients, respectively. The associated
energy is given by

E(ϱ,u)(τ) =

∫
R3

[
ϱ|u|2

2
+H(ϱ) + κ2|∇ϱ|2

]
(τ)dx, (1.5)

H(ϱ) =
1

γ − 1
(ϱγ − 1− γ(ϱ− 1)), (1.6)

where H(ϱ) takes the far-field behavior into account.

1.1 Singular limit, scope of the present analysis

Formally, in the limit of ε → 0 and ν → 0, we obtain the incompressible Euler system
in the whole space

{
divxu

E = 0,

∂tu
E + uE · ∇uE +∇Π = 0,

(E)

with initial conditions
uE(0, ·) = uE

0 . (1.7)

More precisely, in the present analysis we are interested to prove the convergence of
the weak solution of (NSK) to the strong solution of (E) in the limit of ε → 0 and
ν → 0, namely in the low-Mach (incompressible) and vanishing viscosity limit. The key
difficulty of our analysis consists in tackling the singular limit in the presence of a highly
non-linear capillarity tensor, a density-dependent viscosity and disturbing effects caused
by fast oscillating acoustic waves. The occurrence of the latter is due to the choice of the
so-called ill-prepared initial data (see Section 2.3).

The convergence will be obtained within the relative energy inequality framework,
we refer for instance to [15] and references therein for a comprehensive overview of the
method. To the best of our knowledge, the present is the first result addressing the
inviscid incompressible limit for capillary fluids and could be seen as a continuation of a
previous analysis in which a weak-strong uniqueness result (for a fixed viscosity coefficient
ν > 0), together with the high-Mach number limit, has been recently obtained; see [13].

To achieve our result, we thus need the following:

• A suitable form of the relative energy inequality that captures structural properties
of compressible flow including the capillarity and density-dependent viscosity tensors,
in particular, in the vanishing viscosity limit.

• Appropriate dispersive estimates for the decay of the acoustic waves in the low-
Mach number limit that take the capillarity effects into account.
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Regarding the first point, in [13] the authors derived a relative energy inequality
based on an “augmented” version of the system (NSK) in the same spirit of e.g. [9], [10],
[11], where an equation for a velocity of the type 2ν∇ log(ϱ) is properly introduced. The
use of the “augmented” system is required due to the fact that an H1 bound for the
velocity is no longer available because of the density dependent viscosity. Consequently,
standard application of the Korn’s inequality to handle, in particular, the viscous terms
in the usual weak-strong uniqueness framework is not possible. The authors in [6] used
this “augmented” version to study, for the first time, the vanishing viscosity limit for
a barotropic fluid with density dependent viscosity. The result has been obtained for
a fluid in smooth bounded domain and without the presence of the Korteweg term.
However, a recent analysis (see [7]) shows that it is possible to completely avoid the
“augmented” version of the system NSK using a suitable form of the relative energy
inequality. Consequently, being the proper framework to perform the vanishing viscosity
limit, our relative energy inequality will be consistent with the one considered in [7].

On the other hand, the analysis of the incompressible limit requires a suitable control
of the acoustic waves which presence is due to (potential) density fluctuations at finite
Mach number. Being the problem (NSK) posed on R3, suitable dispersive estimates
yield the decay of the acoustic waves in the low-Mach number limit. Here, we take the
presence of the nonlinear capillarity tensor 2κ2ρ∇∆ρ depending on third order derivatives
of the density into account. Upon linearizing system (NSK) around the constant state
(ρ = 1, u = 0), it is possible to obtain a fourth-order acoustic wave equation for the
density fluctuations σε = ε−1(ϱε − 1), namely

∂2
ttσε −

1

ε2
∆(1− 2ε2κ2∆)σε = 0. (1.8)

The presence of the Korteweg tensor modifies the dispersion relation governing the
propagation of the acoustic waves with respect to the usual dispersive estimates obtained
for the classical wave equation, namely in the absence of the capillarity tensor (κ = 0) and
is reminiscent to the accoustic oscillations occuring in quantum fluids [1, 2]. Consequently,
the adaptation of the techniques developed in [1, 2] allows us to derive suitable estimates
for the present analysis (see Section 4 below).

1.2 Overview of previous results

Other results in the context of Korteweg fluids concern the low-Mach number limit
for quantum fluids (see [1], [2], [18]) in which the authors study a weak-weak convergence
towards the weak solution of the quantum incompressible Navier-Stokes system.

A similar singular limit analysis for the Korteweg type fluids has also been performed
in the case of the quasi neutral limit; see [8],[14]. In the framework of strong solutions
we can refer to [16], [17], [20], [21], [27], [24].

1.3 Organization of the paper

The manuscript is organized as follows: in Section 2 we discuss the existence of weak
solutions for the Navier-Stokes-Korteweg system (NSK) together with the existence of
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the strong solution of the Euler system (E). Then, we present our main result. Section 3
is devoted to the uniform bounds. In Section 4 we introduce the acoustic system related
to the Navier-Stokes-Korteweg system (NSK) and the dispersive estimates. In Section
5 we derive the relative energy inequality suitable for our analysis. In Section 6, we
study the incompressible and vanishing viscosity limit in the whole space R3. Section
7 is devoted to some comments and observation that concern the incompressible and
vanishing viscosity limit in the 2D-case.

1.4 Notation

We denote by C∞
c ([0, T )×R3;Rd) the space of periodic smooth functions with values

in Rd with compact support in [0, T )×R3 and by Lp(R3) the standard Lebesgue spaces.
The Sobolev spaces of functions with s distributional derivative in Lp(R3) are W s,p(R3).
In the case p = 2, W s,p(R3) = Hs(R3). The Bochner spaces for time-dependent functions
with values in Banach spaces X are denoted by Lp(0, T ;X) and W k,p(0, T ;X). The space
C(0, T ;Xw) is the space of continuous functions endowed with the weak topology. By
Q and P we denote the Helmholtz-Leray projectors on irrotational and divergence-free
vector fields, respectively:

Q = ∇∆−1div, P = I−Q.

2 Background and Main Result

We introduce the concepts of weak solutions for the Navier Stokes Korteweg system
(NSK) and of strong solutions for the target Euler system (E). For both systems solutions
are considered in R3 with given farfield condition (1.1).

2.1 Existence of weak solutions for capillary fluids

Definition 2.1. A triple (ϱ,u, T ), with ϱ ≥ 0, is said to be a weak solution to (NSK)
with initial data (1.2) if the following conditions are satisfied:

(i) Integrability conditions:

ϱ ∈ L∞(0, T ;H1
loc(R3)) ∩ L2(0, T ;H2

loc(R3)),
√
ϱu ∈ L∞(0, T ;L2

loc(R3)),

ϱ
γ
2 ∈ L∞(0, T ;L2

loc(R3)) ∩ L2(0, T ;H1
loc(R3)), ∇√

ϱ ∈ L∞(0, T ;L2
loc(R3)),

T ∈ L2(0, T ;L2
loc(R3)), ϱu ∈ C([0, T );L

3
2
loc,w(R

3)).

(ii) Continuity equation: for any φ ∈ C∞
c ([0, T ]× R3;R) and for all τ ∈ [0, T ],

−
∫ τ

0

∫
R3

(ϱ∂tφ+
√
ϱ
√
ϱu · ∇φ) dxdt =

∫
R3

ϱ(0, ·)φ(0, ·)dx−
∫
R3

ϱ(τ, ·)φ(τ, ·)dx.

(2.1)
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(iii) Momentum equation: for any fixed l = 1, 2, 3, ϕ ∈ C∞
c ([0, T ] × R3;R3) and for all

τ ∈ [0, T ],

−
∫ τ

0

∫
R3

√
ϱ
√
ϱu · ∂tϕ dxdt−

∫ τ

0

∫
R3

(
√
ϱu⊗√

ϱu) : ∇ϕ dxdt

+2ν

∫ τ

0

∫
R3

√
ϱS(u) : ∇ϕ dxdt− 1

ε2

∫ τ

0

∫
R3

p(ϱ)divϕ dxdt

−2κ2
∫ τ

0

∫
R3

(
∇ϱ · ∇(ϱdivϕ)− 1

2
|∇ϱ|2divϕ+∇ϱ⊗∇ϱ : ∇ϕ

)
dxdt

=

∫
R3

(ϱu · ϕ)(0, ·)dx−
∫
R3

(ϱu · ϕ)(τ, ·)dx. (2.2)

(iv) Dissipation: for any ξ ∈ C∞
c ([0, T ]× R3;R) and for all τ ∈ [0, T ],

∫ τ

0

∫
R3

(
√
ϱT )ξ dxdt = −

∫ τ

0

∫
R3

ϱu·∇ξ dxdt−
∫ τ

0

∫
R3

2(
√
ϱu⊗∇√

ϱ)ξ dxdt. (2.3)

(v) Energy inequality: for almost all τ ∈ [0, T ], the energy as defined in (1.5) satisfies
the inequality

E(ϱ,u)(τ) + 2ν

∫ τ

0

∫
R3

|S(u)(τ, x)|2dxdt ≤ E(ϱ0,u0), (2.4)

where S denotes the symmetric part of the tensor T .

(vi) BD-entropy inequality: there exists C > 0 such that for almost all τ ∈ [0, T ] the
Bresch-Desjardins entropy inequality holds

B(ϱ,u)(τ) + 2ν

∫ τ

0

∫
R3

|A(u)(τ, x)|2dxdt

+
8ν

γ2

∫ τ

0

∫
R3

∣∣∣∇ϱ
γ
2 (τ, x)

∣∣∣2 dxdt+ 4νκ2
∫ τ

0

∫
R3

|∆ϱ(τ, x)|2dxdt ≤ CB(ϱ0,u0), (2.5)

with

B(ϱ,u)(τ) =
∫
R3

[
1

2
|√ϱu+ 2ν∇√

ϱ|2 + κ2|∇ϱ|2 +H(ϱ)

]
(τ)dx. (2.6)

and A denoting the anti-symmetric part of T .

Here, S(u) and A(u) are the symmetric and anti-symmetric part of the tensor T (u),
respectively, defined by

√
ϱT (u) = ∇(ϱu)− 2(

√
ϱu)⊗∇√

ϱ in D′ ([0, T ]× R3
)
. (2.7)
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Remark 2.1. For smooth solutions, the energy inequality (in fact an equality) for the
system (NSK) reads

E(ϱ,u)(τ) + 2ν

∫ τ

0

∫
R3

ϱ|D(u)|2dxdt ≤ E(ϱ0,u0). (2.8)

For weak solutions, we only require the energy inequality (2.4) to hold where the dissipation
(2.3) is formulated in distributional sense. Weak solutions are commonly constructed
through approximation procedures and at present it appears to be unclear whether
arbitrary finite energy weak solutions satisfy the inequality (2.8). Indeed, a lack of
compactness rules out to conclude that the weak-limit in L2

t,x of
√
ϱnD(un) is given by√

ϱD(u), see [4, Remark 2.2]. In general, the approximation procedure only yields the
information √

ϱnD(un) ⇀ S in L2
t,x.

The viscous term ϱD(u) has hence to be understood as
√
ϱS. Similar arguments hold for

the BD-entropy inequality.

We postulate the following existence result of global finite energy weak solutions.
While to the best of the authors’ knowledge this result is not available in the literature
for (NSK) considered on R3 with far-field (1.1), the respective result for the problem
posed on T3 is proven in [4]. It is conceivable that global existence of weak solutions to
(NSK) on R3 with far-field (1.1) can be achieved by combining the periodic result [4] and
the invading domains approach developed in [3] in the case of quantum fluids in order to
prove the following:

Theorem 2.1. Given initial data (ϱ0,u0) of finite energy and BD-entropy, then, there
exists at least a global weak solution (ϱ,u, T ) of (NSK) in the sense of Definition 2.1.

2.2 Local well-posedness for the incompressible Euler equations

We recall here the following classical result (see [22], [23] for example) for the target
Euler system (E):

Theorem 2.2. Given uE
0 ∈ W 3,2(R3) with divuE

0 = 0, there exists T ∗ > 0 and a unique
solution to the initial value problem (E) - (1.7) such that for all 0 < T < T ∗ it holds,

uE ∈ Ck([0, T ),W 3−k,2(R3;R3)), Π ∈ Ck([0, T ),W 3−k,2(R3)), k = 0, 1, 2, 3

∥uE∥Wk,∞(0,T ;W 3−k,2(R3;R3)) + ∥Π∥Wk,∞(0,T ;W 3−k,2(R3)) ≤ c(T, ∥uE
0 ∥W 3,2(R3)). (2.9)

2.3 Main result

Our main result rigorously characterises the aforementioned asymptotic regime of
(NSK) in the case of the following set of ill-prepared initial data. Specifically,
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ϱ(0, ·) = ϱ0ε = 1+εσ0
ε , σ0

ε ∈ L∞(R3)∩H1(R3) uniformly bounded, σ0
ε → s0 in H1(R3),

(2.10)

u(0, ·) = u0
ε,

√
ϱ0εu

0
ε ∈ L2(R3),

√
ϱ0ε(u

0
ε − u0) → 0 in L2(R3). (2.11)

as ε → 0.

Having recalled and collected all the preliminary notions we need in the sequel we are
ready to state our main result.

Theorem 2.3. Suppose ν → 0 as ε → 0. Assume the initial data (ϱ0ε,u
0
ε) to be of

uniformly bounded finite energy and BD-entropy, i.e. there exists C > 0 independent of
ε, ν > 0 such that

E(ϱ0ε,u
0
ε) ≤ C, B(ϱ0ε,u

0
ε) ≤ C. (2.12)

and satisfy (2.10), (2.11). Let (ϱε,uε, Tε) be a weak solution of (NSK) and uE the unique
solution to the initial value problem (E) - (1.7) on [0, T )× R3, 0 < T < T ∗, with initial
datum uE

0 = P(u0) ∈ W 3,2(R3). Then, as ε → 0,

ϱε − 1 → 0 in L∞(0, T ;L2(R3) + Lγ(R3)) ∩ L∞(0, T ;Hs(R3)) (2.13)

for all 0 < s < 1 and √
ϱεuε → uE in L2(0, T ;L2

loc(R3), (2.14)

for any 0 < T < T ∗.

Remark 2.2. Note that in (2.10), we do not require that the initial data for the density
is well-prepared but allow for the presence of fast oscillating acoustic waves. The quantity
s0 will serve as initial data for the linear acoustic system in Section 4 and subsequently
in the relative entropy scheme in Section 5.

Remark 2.3. We also provide the analogue of Theorem 2.3 in the case d = 2, the main
difference being the weaker dispersive decay of the acoustic waves and the well-posedness
properties of the 2D-Euler equations (E). Posed on R2, singularity formation in finite
time is ruled out and we obtain global solutions. We refer to Section 7 for details.

3 Uniform bounds

Owing to (2.4) and (2.6), the weak solutions under consideration satisfy the following
uniform bounds. To take the non-trivial farfield (1.1) into account, we will repeatedly
rely on the following fact: let f ∈ L1

loc(R3) with ∇f ∈ L2(R3), then there exists c ∈ R
such that f − c ∈ L6(R3) (see [19, Theorem 4.5.9] for the proof).

Lemma 3.1. Assume that the initial data (ϱ0ε,u
0
ε) satisfies (2.12). Then, the following

hold:
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(i) ϱ0ε − 1 ∈ H1(R3) uniformly bounded and

∥ϱ0ε − 1∥L2(R3) ≤ C

{
ε

4
6−γ 1 < γ < 2

ε γ ≥ 2,

(ii)
√
ϱ0ε − 1 ∈ L2(R3) uniformly bounded with

∥
√

ϱ0ε − 1∥L2(R3) ≤ C

{
ε

4
6−γ 1 < γ < 2

ε γ ≥ 2,

(iii)
√
ϱ0εu

0
ε ∈ L2(R3) uniformly bounded.

(iv) the initial momentum satisfies ϱ0εu
0
ε ∈ L2(R3) + L

3
2 (R3) uniformly bounded,

(v) the initial density fluctuations σ0
ε satisfy εσ0

ε ∈ H1(R3) uniformly bounded and

∥σ0
ε∥L2(R3) ≤

{
Cε

γ−2
6−γ 1 < γ < 2,

C γ ≥ 2.

Remark 3.1. Note that the above uniform bounds are only based on the finite energy
assumption and do not use additional information from the viscous dissipation and the
BD-entropy inequality.

Proof. The assumptions (2.12) yield that

∇ϱ0ε ∈ L2(R3), H(ϱ0ε) ∈ L1(R3),

uniformly bounded and with H defined as in (1.5) and thus non-negative. To prove (i),
we note that by convexity of the function s → sγ − 1− γ(s− 1) for γ > 1 is possible to
conclude that ∫

R3

∣∣ϱ0ε − 1
∣∣2 1{|ϱ0ε−1|≤ 1

2
} +

∣∣ϱ0ε − 1
∣∣γ 1|ϱ0ε−1|> 1

2
dx ≤ Cε2, (3.1)

see [25] for details. If γ ≥ 2, this yields

∥ϱ0ε − 1∥L2(R3) ≤ Cε

and in particular ϱ0ε−1 ∈ H1(R3) uniformly bounded provided that γ ≥ 2. Moreover, for
any γ > 1 it follows from ∇ϱ0ε ∈ L2(R3) that there exists c ∈ R such that ϱ0ε− c ∈ L6(R3)
uniformly bounded. The bound (3.1) then entails that ϱ0ε − 1 ∈ L6(R3). For 1 < γ < 2
it follows by interpolation that

∥(ϱ0ε − 1)1|ϱ0ε−1|> 1
2
∥L2 ≤ ∥(ϱ0ε − 1)1|ϱ0ε−1|> 1

2
∥θLγ∥(ϱ0ε − 1)1|ϱ0ε−1|> 1

2
∥1−θ
L6 ≤ Cε

2
γ
θ
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with θ = 2γ
6−γ . Upon observing that∣∣∣√ϱ0ε − 1

∣∣∣ = ∣∣∣(1 +√
ϱ0ε)

−1(ϱ0ε − 1)
∣∣∣ ≤ ∣∣(ϱ0ε − 1)

∣∣ ,
the desired bound (ii) is implied by (i). While (iii) is a direct consequence of (2.12), the
statement (iv) follows from

√
ϱ0ε − 1 ∈ H1(R3) ↪→ L6(R3) and

√
ϱ0εu

0
ε ∈ L2(R3) as

ϱ0εu
0
ε =

√
ϱ0εu

0
ε + (

√
ϱ0ε − 1)

√
ϱ0εu

0
ε ∈ L2(R3) + L

3
2 (R3).

For the statement (v) it suffices to note that ϱ0ε − 1 ∈ H1(R3) uniformly bounded yields
εσ0

ε ∈ L2(R3) uniformly bounded. Moreover the L2-decay rate for ϱ0ε − 1 yields σ0
ε ∈

L2(R3) uniformly bounded provided that γ ≥ 2 and

∥σ0
ε∥L2(R3) ≤ Cε

γ−2
6−γ

for 1 < γ < 2.

Along the same lines of Lemma 3.1, one infers the following uniform bounds for weak
solutions to (NSK) provided that (2.12) holds:

∥ϱε − 1∥L∞
t H1

x
≤ C, ∥ϱε − 1∥L∞

t L2
x
≤ C

{
ε

4
6−γ 1 < γ < 2,

ε γ ≥ 2;
(3.2)

∥√ϱεuε∥L∞
t L2

x
≤ C, ∥ϱεuε∥

L∞
t L2

x+L
3
2
x

≤ C. (3.3)

By interpolation, one has that ρε − 1 converges strongly to 0 in L∞(0, T ;Hs(R3)) for all
0 ≤ s < 1. In particular, for all 2 ≤ q < 6 there exists C > 0 such that

∥√ϱε − 1∥L∞
t Lq

x
≤ ∥ϱε − 1∥L∞

t Lq
x
≤ Cεβ (3.4)

where β = β(q) = 4
5

(
1− 3

(
1
2 − 1

q

))
by interpolation. The viscous dissipation and the

BD-entropy inequality further allow for the following bounds.

Lemma 3.2. Assume that (ϱε, uε) is a finite energy weak solution to (NSK) with initial
data (ϱ0ε, u

0
ε) satisfying (2.12). Then there exits C > 0 independent of ε such that

ν∥√ϱε − 1∥L∞
t H1

x
≤ C, ∥

√
ν∇ϱ

γ
2
ε ∥L2

tL
2
x
≤ C,

∥
√
ν∆ϱε∥L2

tL
2
x
≤ C, ∥

√
νS(u)∥L2

tL
2
x
≤ C, ∥

√
νA(u)∥L2

tL
2
x
≤ C. (3.5)

Proof. The bounds are immediate consequences of the energy and BD-entropy inequalities
stated in Definition 2.1.

10



4 Acoustic waves

The analysis of the incompressible limit requires a suitable control of the acoustic
waves. Indeed, their presence is due to density fluctuations at finite Mach number and
may create highly oscillating phenomena. Being the problem (NSK) posed on Rd, suitable
dispersive estimates yield the decay of the acoustic waves in the low-Mach number limit.
As will be detailed below, it is possible to obtain a fourth-order acoustic wave equation
for the density fluctuations

σε = ε−1(ϱε − 1)

by a suitable linearization of the system (NSK) around the constant (incompressible)
state, namely

∂2
ttσε −

1

ε2
∆(1− 2ε2κ2∆)σε = 0. (4.1)

We notice that in the absence of the capillarity tensor (κ = 0), we have the usual
dispersion relation for the classical wave equation. Here and due to the Korteweg tensor,
this dispersion corresponds, at the leading order, to the one already observed in quantum
fluids such as e.g. the QHD or quantum Navier-Stokes equations, see [1, 2]. Denoting
the sequence of momenta by mε = ϱεuε and linearizing (NSK) around the constant state
(ρε = 1,mε = 0), one obtains the acoustic system

∂tσε +
1

ε
divQ(mε) = 0,

∂tQ(mε) +
γ

ε
∇
(
σε − 2κ2ε2∆σε

)
= Q(Fε),

(4.2)

with

Fε := −div (ϱεuε ⊗ uε) + 2νdiv (ϱεDuε)−
(γ − 1)

ε2
∇H(ϱε) + ε2Gε

and where

ε−2∇p(ϱε) =
γ

ε
∇σε +

(γ − 1)

ε2
∇H(ϱε).

In particular, for the dispersive stress tensor divK, as defined in (1.4), we obtain the
identity

divK = div

(
(1 + εσε)div (ε∇σε)I+

1

2

∣∣ε∇σε|2
)
I
)
− div (ε∇σε ⊗ ε∇σε)

= ε∇∆σε + ε2Gε

with
Gε := σε∇∆σε.

While we discarded all terms in divK being multiplied by ε2 into Fε, we keep the
leading order linear term 2εκ2∇∆σε which, as already mentioned, alters the classical
dispersion relation. Consequently, the decay of σε in space-time norms can be shown to
be stronger compared to the classical wave equations, see Proposition 4.1 below and [18,

11



Remark 4.10]. The method of exploiting altered dispersion relations through accurate
Strichartz estimates has also been employed e.g. in the analysis of the quasi-neutral limit
for Navier-Stokes-Korteweg system [14].

We sketch the derivation of the respective Strichartz estimates and refer [1, Section
4] to for further details. We symmetrize (4.2) by applying

σ̃ε = (1− 2ε2κ2∆)
1
2σε, m̃ε = (−∆)−

1
2divmε (4.3)

to obtain

∂tσ̃ε +
1

ε
(−∆)

1
2 (1− 2ε2κ2∆)

1
2 m̃ε = 0,

∂tm̃ε −
1

ε
(−∆)

1
2 (1− 2ε2κ2∆)

1
2 σ̃ε = F̃ε,

(4.4)

where
F̃ε = (−∆)−

1
2divQ (Fε) .

As described in [1], the system (4.4) can be characterized by means of the linear semi-
group operator eitHε where Hε is defined via the Fourier multiplier

ϕε(|ξ|) =
|ξ|
ε

√
1 + 2ε2κ2|ξ|2. (4.5)

The dispersion given by (4.5) mimics wave-like behavior for low frequencies |ξ| < ε−1

while it is Schrödinger like for high-frequencies |ξ| > ε−1. A stationary phase argument
then leads to the desired Strichartz (dispersive) estimates [1, Section 4].

In order to recall the dispersive estimates suitable for our analysis, we start saying
that a pair of Lebesgue exponents (p, q) is called “Schrödinger admissible” if

2 ≤ p, q ≤ ∞ and
2

p
+

3

q
=

3

2
.

The following proposition holds.

Proposition 4.1 ([1, Proposition 4.2]). Fix ε > 0 and s ∈ R. There exists a constant
C > 0 independent from T and ε such that for any (p, q) admissible pair and any
α0 ∈ [0, 12(

1
2 − 1

q )], the following hold true,

∥eitHεf∥Lp(0,T ;W s−α0,q(R3)) ≤ Cεα0∥f∥Hs(R3). (4.6)

For the purpose of the inviscid incompressible limit (see Section 6) it turns out to be
sufficient to consider the acoustic system system (4.2) in its homogeneous form

∂tsε +
1

ε
div∇Φε = 0,

∂t∇Φε +
γ

ε
∇
(
sε − 2κ2ε2∆sε

)
= 0,

(4.7)

with initial data (s0,∇Φ0), where we denoted by Φε the acoustic potential, i.e. ∇Φε =
Q(mε). For the sake of clarity, we choose a distinct notation for the solution sε of the
linear homogeneous equation (4.7) and the solution σε to (4.2). In particular, we will
see in Section 6 that the initial data (s0,∇Φ0) considered will be given by the data
(s0,Q(u0)) in (2.11), (2.10). properly regularized.
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Remark 4.1. Note that the fourth-order equation (4.1) formally follows from (4.7) by
applying the differential operators ∂t and div to the first and second equation respectively.

From Proposition 4.1 and combing the transformation (4.3) with the Strichartz estimates
of Proposition 4.1, one derives the following bounds for solutions to (4.7). we refer the
reader to [1, Proposition 4.5] for details.

Proposition 4.2. Let s ∈ R, (s0,m0) be such that s0 ∈ Hs(R3), ε∇s0 ∈ Hs(R3) and
Q(m0) ∈ Hs(R3) and denote by (sε,mε) the unique solution to the homogeneous system
(4.7) with initial data (s0,Q(m0)). Then, for all T > 0, all Schrödinger admissible pair
(p, q) and any α ∈ [0, 12(

1
2 − 1

q )] the following holds true

∥(sε,Q(mε))∥Lp(0,T ;W s,q)R3)

≤ Cεα
(
∥s0∥Hs+α(R3) + ∥ε∇s0∥Hs+α(R3) + ∥Q(m0)∥Hs+α(R3)

)
.

Note that (sε,Q(mε)) can be bounded in terms of (σ̃ε, m̃ε) in Lp(0, T ;W s,q(R3)) in
view of (4.3), while one has∥∥(s̃0ε, m̃0)

∥∥
Hs(R3)

≤ ∥s0∥Hs+α(R3) + ∥ε∇s0∥Hs+α(R3) + ∥Q(m0)∥Hs(R3)

which leads to the above estimate.

5 Relative energy inequality

In the same spirit of [7], we derive the relative energy inequality related to the Navier-
Stokes-Korteweg system (NSK). For τ ∈ [0, T ], we introduce the following relative energy
functional

E(ϱ,u | r,U)(τ) =

∫
R3

1

2
|√ϱu−√

ϱU|2(τ, ·)dx+ κ2
∫
R3

|∇ϱ−∇r|2(τ, ·)dx

+
1

ε2

∫
R3

[
H(ϱ)−H(r)−H ′(r)(ϱ− r)

]
(τ, ·)dx,

where (ϱ,u) is a weak solution to (NSK) and (r,U) is a pair of smooth (arbitrary) test
functions. In the following, we simply write E(τ) in place of E(ϱ,u | r,U)(τ). First,
thanks to the energy inequality (2.4), we infer that

E(s)
∣∣s=τ

s=0
≤

∫
R3

(
1

2
ϱ|U|2 − ϱu ·U

)
(s, ·)dx

∣∣s=τ

s=0
+ κ2

∫
R3

(
|∇r|2 − 2∇ϱ · ∇r

)
(s, ·)dx

∣∣s=τ

s=0

− 1

ε2

∫
R3

(
H(r) +H ′(r)(ϱ− r)

)
(s, ·)dx

∣∣s=τ

s=0

− ν

∫ τ

0

∫
R3

|S(u)|2 dxdt.

(5.1)
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Next, we test the continuity equation by 1
2 |U|2 and 2κ2∆r, and the momentum equation

by U, to get∫ τ

0

∫
R3

1

2
ϱ∂t|U|2 dxdt+

∫ τ

0

∫
R3

1

2
ϱu · ∇|U|2 dxdt =

∫
R3

1

2
ϱ|U|2(s, ·)dx

∣∣s=τ

s=0
,

−2κ2
∫ τ

0

∫
R3

ϱ∂t∆r dxdt− 2κ2
∫ τ

0

∫
R3

ϱu · ∇∆r dxdt = 2κ2
∫
R3

∇ϱ · ∇r(s, ·)dx
∣∣s=τ

s=0

and

−
∫ τ

0

∫
R3

ϱu · ∂tU dxdt−
∫ τ

0

∫
R3

(
√
ϱu⊗√

ϱu) : ∇U dxdt− 1

ε2

∫ τ

0

∫
R3

p(ϱ)divU dxdt

−2κ2
∫ τ

0

∫
R3

(
∇ϱ · ∇(ϱdivU)− 1

2
|∇ϱ|2divU+∇ϱ⊗∇ϱ : ∇U

)
dxdt

+2ν

∫ τ

0

∫
R3

√
ϱS(u) : ∇Udxdt = −

∫
R3

(ϱu ·U)(s, ·)dx
∣∣s=τ

s=0
.

Moreover, we have

κ2
∫
R3

|∇r(s, ·)|2dx
∣∣s=τ

s=0
= −2κ2

∫ τ

0

∫
R3

∂tr∆rdxdt.

Then, using the continuity equation, we have∫ T

0

∫
R3

[
∂t

(
H(r) +H ′(r)(ϱ− r)

)]
dxdt

=

∫ T

0

∫
R3

[
H ′(r)∂tr + ∂t(H

′(r))(ϱ− r) +H ′(r)∂tϱ−H ′(r)∂tr
]
dxdt

=

∫ T

0

∫
R3

[
∂t(H

′(r))(ϱ− r)−H ′(r)div x(ϱu)
]
dxdt

=

∫ T

0

∫
R3

[
∂t(H

′(r))(ϱ− r) + ϱu · ∇x(H
′(r))

]
dxdt.

(5.2)

Therefore, from (5.1), we obtain

E(s)
∣∣s=τ

s=0
≤

∫ τ

0

∫
R3

1

2
ϱ∂t|U|2 dxdt+

∫ τ

0

∫
R3

1

2
ϱu · ∇|U|2 dxdt

−
∫ τ

0

∫
R3

ϱu · ∂tU dxdt−
∫ τ

0

∫
R3

(
√
ϱu⊗√

ϱu) : ∇U dxdt

+ 2κ2
∫ τ

0

∫
R3

(ϱ∂t∆r + ϱu · ∇∆r − ∂tr∆r)dxdt

− 2κ2
∫ τ

0

∫
R3

(
∇ϱ · ∇(ϱdivU)− 1

2
|∇ϱ|2divU+∇ϱ⊗∇ϱ : ∇U

)
dxdt

+ 2ν

∫ τ

0

∫
R3

√
ϱS(u) : ∇Udxdt

− 1

ε2

∫ τ

0

∫
R3

[
∂t(H

′(r))(ϱ− r) + ϱu · ∇(H ′(r)) + p(ϱ)divU
]
dxdt

− ν

∫ τ

0

∫
R3

|S(u)|2 dxdt.

(5.3)
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Rearranging the relative energy inequality above, we obtain

E(s)
∣∣s=τ

s=0
+ν

∫ τ

0

∫
R3

|S(u)|2 dxdt

≤
∫ τ

0

∫
R3

[∂tU · (ϱU− ϱu) + (
√
ϱu · ∇)U · (√ϱU−√

ϱu)] dxdt

+ 2κ2
∫ τ

0

∫
R3

(ϱ∂t∆r + ϱu · ∇∆r − ∂tr∆r)dxdt

− 2κ2
∫ τ

0

∫
R3

(
∇ϱ · ∇(ϱdivU)− 1

2
|∇ϱ|2divU+∇ϱ⊗∇ϱ : ∇U

)
dxdt

+ 2ν

∫ τ

0

∫
R3

√
ϱS(u) : ∇Udxdt

− 1

ε2

∫ τ

0

∫
R3

[
∂t(H

′(r))(ϱ− r) + ϱu · ∇(H ′(r)) + p(ϱ)divU
]
dxdt

= I1 + ...+ I5.

(5.4)

Apart from the presence of the Korteweg terms, relation (5.4) is reminiscent of the one
derived in [7] (see relation (4.7)).

6 Inviscid incompressible limit

For a fixed δ > 0, we consider the following ansatz

r = 1 + εsε,δ, U = uE +∇Φε,δ (6.1)

in the relative energy inequality (5.4). Precisely, uE is the solution of the target system
(E) with initial datum uE

0 = P(u0) and sε,δ, ∇Φε,δ are the solution of the acoustic system
(4.7) with the regularized initial data

s0δ = s0 ∗ ηδ, ∇Φ0
δ = ∇Φ0 ∗ ηδ, Q(u0) = ∇Φ0, (6.2)

for ηδ ∈ C∞
c (R3) a standard mollifier and (s0,u0) as in (2.10) and (2.11). The above

choice is motivated by the fact that we consider the (arbitrary) smooth pair (r,U) as
the sum of the incompressible Euler equations and the contribution from acoustic waves.
The latter disappear in the low-Mach number limit as the next Corollary shows. By
means of the dispersive estimates of Proposition 4.2, we infer the following decay in ε in
Strichartz norms.

Corollary 6.1. Let s ∈ R, and (s0δ ,∇Φ0
δ) be as in (6.2). For any Schrödinger-admissible

pair (p, q) with q > 2 and α, δ > 0 sufficiently small and T > 0 there exists C > 0 only
depending on the constant in (2.12) and δ > 0 such that the unique solution (sε,δ,∇Φε,δ)
to the (4.7) satisfies

∥(sε,δ,∇Φε,δ)∥Lp(0,T ;W s,q)R3) ≤ Cεα. (6.3)
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Note, that the solution (sε,δ,∇Φε,δ) satisfies the energy conservation

∥(sε,δ,∇Φε,δ)∥L∞(R,L2(R3)) = ∥(s0δ ,∇Φ0
δ)∥L2(R3), (6.4)

and similarly for all s ∈ R it holds

∥(sε,δ,∇Φε,δ)∥L∞(R,Hs(R3)) = ∥(s0δ ,∇Φ0
δ)∥Hs(R3) (6.5)

due to the fact that eitHε constitutes a unitary semigroup operator.
In the following, we will consider the ansatz (6.1) and we will handle the terms

I1, ..., I5 in (5.4) in order to bound the relative entropy functional. We start with the
relative energy functional for the initial data, whose required convergence (see (2.11),
(2.10)) is crucial in order to prove Theorem 2.3 in terms of Gronwall’s type arguments
(see Section 6.6 below).

6.1 Initial data

From the assumptions on the initial data (ϱ0ε,u
0
ε) in (2.10)-(2.11) and (r,U) in (6.2)

respectively, we infer that
E(ϱε,uε | r,U)(0)

=

∫
R3

1

2

∣∣∣√ϱ0ε(u
0
ε − u0)

∣∣∣2 dx+ κ2ε2
∫
R3

∣∣∇σ0
ε −∇s0δ

∣∣2 dx
+

∫
R3

1

ε2
[
H

(
1 + εσ0

ε

)
− εH ′ (1 + εs0δ

) (
σ0
ε − s0δ

)
−H

(
1 + εs0δ

)]
dx. (6.6)

Now, setting a = 1+εσ0
ε and b = 1+εsε,δ, we observe that there exists ε0 > 0 and C > 0

independent of ε such that for all ε ∈ (0, ε0) it holds

H(a) = H(b) +H ′(b)(a− b) +
1

2
H ′′(ξ)(a− b)2, ξ ∈ (a, b) ,∣∣H(a)−H ′(b)(a− b)−H(b)

∣∣ ≤ C |a− b|2 .

Consequently, we have∫
R3

1

ε2
[
H

(
1 + εσ0

ε

)
− εH ′ (1 + εs0δ

) (
σ0
ε − s0δ

)
−H

(
1 + εs0δ

)]
dx

≤ C

∫
R3

1

ε2
∣∣ε (σ0

ε − s0δ
)∣∣2 dx = C

∥∥σ0
ε − s0δ

∥∥2
L2(R3)

. (6.7)

It follows
E(ϱε,uε | r,U)

≤ C
∥∥∥√ϱ0ε(u

0
ε − u0)

∥∥∥2
L2(R3;R3)

+ C(κ2)ε2
∥∥∇σ0

ε −∇s0δ
∥∥2
L2(R3;R3)

+ C
∥∥σ0

ε − s0δ
∥∥2
L2(R3)

.

(6.8)
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6.2 Convective terms

Next, we provide bounds for the convective terms corresponding to I1 in (5.4). In the
following we drop the subscript ε in (ρε, uε) for the sake of a concise notation. Specifically,
we have

I1 =

∫ τ

0

∫
R3

[∂tU · (ϱU− ϱu) + (
√
ϱu · ∇)U · (√ϱU−√

ϱu)] dxdt

=

∫ τ

0

∫
R3

(∂tU+U · ∇U) · (ϱU− ϱu)dxdt

+

∫ τ

0

∫
R3

∇U · (√ϱU−√
ϱu)(

√
ϱU−√

ϱu) dxdt = I
(1)
1 + I

(2)
1 .

As ∇U ∈ L∞
t,x, the term I

(2)
1 is controlled by

|I(2)1 | ≤ C

∫ τ

0
E(·, t)dt

while I
(1)
1 can be written as follows

I
(1)
1 =

∫ τ

0

∫
R3

(ϱU− ϱu) · (∂tuE + uE · ∇uE) dxdt

+

∫ τ

0

∫
R3

(ϱU− ϱu) · ∂t∇Φε,δ dxdt+

∫ τ

0

∫
R3

(ϱU− ϱu)⊗∇Φε,δ : ∇uE dxdt

+

∫ τ

0

∫
R3

(ϱU− ϱu)⊗ uE : ∇2Φε,δ dxdt+
1

2

∫ τ

0

∫
R3

(ϱU− ϱu) · ∇|∇Φε,δ|2 dxdt. (6.9)

Now, we analyze the first term in (6.9). We have∫ τ

0

∫
R3

(ϱU−ϱu) ·(∂tuE+uE ·∇uE) dxdt =

∫ τ

0

∫
R3

ϱu ·∇Π dxdt−
∫ τ

0

∫
R3

ϱU ·∇Π dxdt.

In view of (3.3), there exists u ∈ L∞(0, T ;L2(R3)) such that
√
ϱu ⇀∗ u in L∞

t L2
x.

Together with (3.4), it follows that

ϱu = (
√
ρ− 1)

√
ρu+

√
ρu → u weakly-(*) in L∞

t L2
x + L

3
2
−

x .

In particular, one has we deduce that∫ τ

0

∫
R3

ϱu · ∇Π dxdt →
∫ τ

0

∫
R3

u · ∇Π dxdt.

We consider the weak formulation of the continuity equation∫ τ

0

∫
R3

(ϱ∂tφ+ ϱu · ∇φ) dxdt =

∫
R3

ϱ(τ, ·)φ(τ, ·)dx−
∫
R3

ϱ(0, ·)φ(0, ·)dx
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and for Π as test-function to obtain∫ τ

0

∫
R3

ϱu · ∇Π dxdt →
∫ τ

0

∫
R3

u · ∇Π dxdt

and [∫
R3

ϱΠ dx|τ0 −
∫ τ

0

∫
R3

ϱ∂tΠ dxdt

]
→ 0 as ε → 0

thanks to Lemma 3.1 and (3.2). Consequently,∫ τ

0

∫
R3

ϱu · ∇Π dxdt → 0 as ε → 0.

Next, ∫ τ

0

∫
R3

ϱU · ∇Π dxdt =

∫ τ

0

∫
R3

(ϱ− 1)U · ∇Π dxdt+

∫ τ

0

∫
R3

U · ∇Π dxdt.

With similar arguments as above∫ τ

0

∫
R3

(ϱ− 1)U · ∇Π dxdt → 0 as ε → 0,

while ∫ τ

0

∫
R3

U · ∇Π dxdt =

∫ τ

0

∫
R3

uE · ∇Π dxdt+

∫ τ

0

∫
R3

∇Φε,δ · ∇Π dxdt.

Performing integration by parts,∫ τ

0

∫
R3

divuE ·Π dxdt = 0

thanks to the incompressibility condition divxu
E = 0. For the other term, using again

integration by parts and the acoustic equation (4.7), we have∫ τ

0

∫
R3

∇Φε,δ · ∇Π dxdt = −
∫ τ

0

∫
R3

∆Φε,δΠ dxdt = ε

∫ τ

0

∫
R3

∂tsε,δ Π dxdt

=

[
ε

∫
R3

sε,δ Π dx|τ0 − ε

∫ τ

0

∫
R3

sε,δ ∂tΠ dxdt

]
→ 0 as ε → 0.

Now, we analyze the second term in (6.9). We have∫ τ

0

∫
R3

(ϱU− ϱu) · ∂t∇Φε,δ dxdt =

∫ τ

0

∫
R3

ϱuE · ∂t∇Φε,δ dxdt

−
∫ τ

0

∫
R3

ϱu · ∂t∇Φε,δ dxdt+
1

2

∫ τ

0

∫
R3

ϱ∂t|∇Φε,δ|2 dxdt

=

∫ τ

0

∫
R3

ϱuE · ∂t∇Φε,δ dxdt+ II + III ,
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where

II = −
∫ τ

0

∫
R3

ϱu · ∂t∇Φε,δ dxdt, III =
1

2

∫ τ

0

∫
R3

ϱ∂t|∇Φε,δ|2 dxdt, (6.10)

The terms II and III will be handled later in combination with other terms. For the
remaining one, we have∫ τ

0

∫
R3

ϱuE · ∂t∇Φε,δ dxdt =

∫ τ

0

∫
R3

(ϱ− 1)uE · ∂t∇Φε,δ dxdt+

∫ τ

0

∫
R3

uE · ∂t∇Φε,δ dxdt

where, thanks to divxu
E = 0, the second term∫ τ

0

∫
R3

divxu
E · ∂tΦε,δ dxdt = 0.

Using the acoustic equation (4.7), the first term is written as follows∫ τ

0

∫
R3

(ϱ− 1)uE · ∂t∇Φε,δ dxdt

=

[∫ τ

0

∫
R3

γ(ϱ− 1)uE ·
(
−1

ε
∇sε,δ + 2κ2ε∆sε,δ

)
dxdt

]
→ 0 as ε → 0.

We conclude analyzing the last three terms in (6.9). Owing to Corollary 6.1, we have[∫ τ

0

∫
R3

(ϱU− ϱu)⊗∇Φε,δ : ∇uE dxdt

+

∫ τ

0

∫
R3

(ϱU− ϱu)⊗ uE : ∇2Φε,δ dxdt

+
1

2

∫ τ

0

∫
R3

(ϱU− ϱu) · ∇|∇Φε,δ|2 dxdt
]
→ 0 as ε → 0.

In particular, the last term writes

1

2

∫ τ

0

∫
R3

(ϱU− ϱu) · ∇|∇Φε,δ|2 dxdt

=
1

2

∫ τ

0

∫
R3

(
√
ρ− 1) (

√
ϱU−√

ϱu) · ∇|∇Φε,δ|2 + (
√
ϱU−√

ϱu) · ∇|∇Φε,δ|2 dxdt.

The former converges to 0 in view of the uniform bounds (3.4) and the latter by virtue
of Corollary 6.1.
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6.3 Korteweg terms

The Korteweg terms amount to I2 and I3 as defined in (5.4). For a fixed κ > 0 and
from (6.1) we have for I2 that

I2 =2κ2
∫ τ

0

∫
R3

(ϱ∂t∆r + ϱu · ∇∆r − ∂tr∆r)dxdt

=

∫ τ

0

∫
R3

(εϱ∂t∆sε,δ + ε(ϱu) · ∇∆sε,δ − ε2∂tsε,δ∆sε,δ)dxdt → 0 as ε → 0

thanks to the uniform bounds (3.2), (3.3) for ρ − 1 and ρu respectively as well as the
bounds (6.5) and (6.3) for sε,δ,Φε,δ. Upon using (6.1) and divuE = 0, we write I3 as

I3 = −2κ2
∫ τ

0

∫
R3

(
∇ϱ · ∇(ϱdivU)− 1

2
|∇ϱ|2divU+∇ϱ⊗∇ϱ : ∇U

)
dxdt.

= −κ2
∫ τ

0

∫
R3

|∇ϱ|2∆Φε,δdxdt− 2κ2
∫ τ

0

∫
R3

ϱ∇ϱ · ∇∆Φε,δdxdt

− 2κ2
∫ τ

0

∫
R3

∇ϱ⊗∇ϱ : ∇(uE +∇Φε,δ))dxdt

= I
(1)
3 + I

(2)
3 + I

(3)
3 .

The integral I13 is bounded as∣∣∣∣κ2 ∫ τ

0

∫
R3

1

2
|∇ϱ|2∆Φε,δdxdt

∣∣∣∣ ≤ κ2
∫ τ

0

∫
R3

|∇ϱ−∇r|2 |∆Φε,δ|+ |∇r|2 |∆Φε,δ| dxdt

≤ κ2∥∆Φε,δ∥L∞([0,T ]×R3)

∫ τ

0

∫
R3

|∇ϱ−∇r|2dxdt+ ∥∇sε,δ∥2L2L4∥∆Φε,δ∥L2L2

≤ C

∫ τ

0
E(·, t)dt+ Cκ2T βεα

for some α, β > 0 small from (6.3). Further and due to (6.5), for any s > 5
2 it holds

∥∆Φε,δ∥L∞([0,T ]×R3) ≤ ∥∇Φε,δ∥L∞Hs ≤ C. (6.11)

The term I23 obeys the bound∣∣∣∣∫ τ

0

∫
R3

ρ∇ρ∇∆Φε,δdxdt

∣∣∣∣ = ∣∣∣∣∫ τ

0

∫
R3

(ρ− 1)∇ρ∇∆Φε,δ +∇(ρ− 1)∇∆Φε,δdxdt

∣∣∣∣
≤ T β∥ρ− 1∥L∞L4∥∇ρ∥L∞L2∥∇∆Φε,δ∥

L
8
3L4

+

∣∣∣∣∫ τ

0

∫
R3

∇(ρ− 1)∇∆Φε,δdxdt

∣∣∣∣
≤ CT βεα +

∣∣∣∣∫ τ

0

∫
R3

∇(ρ− 1)∇∆Φε,δdxdt

∣∣∣∣ .
Note that as ∇(ρ− 1) ∈ L∞(0, T ;H1(R3)) is uniformly bounded and ρ− 1 → 0 strongly
in L∞(0, T ;Hs(R3)) for all 0 ≤ s < 1 from (3.2). It follows that ∇(ρ − 1) ⇀∗ 0 in
L∞(0, T ;L2(R3)) as ε → 0. Hence,∫ τ

0

∫
R3

∇(ρ− 1)∇∆Φε,δdxdt → 0 as ε → 0.
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Finally, to bound I
(3)
3 , one observes that

|I(3)3 | ≤ κ2
∫ τ

0

∫
R3

|∇ρ|2 |∇U| dxdt

≤ 2κ2 ∥∇U∥L∞([0,T ]×R3)

∫ τ

0

∫
R3

|∇ρ−∇r|2 + 2κ2
∫ τ

0

∫
R3

|∇r|2 |∇U| dxdt.

Using that U = uE +∇Φε,δ is smooth and arguing as for I
(1)
3 + I

(2)
3 we conclude that

|I(3)3 | ≤ C

∫ τ

0
E(·, t)dt+ CκT βεα

for some α, β > 0.

6.4 Viscous terms

We have

I4 = 2ν

∫ τ

0

∫
R3

√
ϱS(u) : ∇uEdxdt+ 2ν

∫ τ

0

∫
R3

√
ϱS(u) : ∇∇Φε,δ dxdt = I

(1)
4 + I

(2)
4 .

Now,

I
(1)
4 = 2ν

∫ τ

0

∫
R3

(
√
ϱ− 1)S(u) : ∇uEdxdt+ 2ν

∫ τ

0

∫
R3

S(u) : ∇uEdxdt.

≤ C
√
ν

[∫ τ

0

∫
R3

|√ϱ− 1|2dxdt
]1/2√

ν

[∫ τ

0

∫
R3

|S(u)|2dxdt
]1/2

+C
√
ν

[∫ τ

0

∫
R3

|S(u)|2dxdt
]1/2√

ν

≤ C

2
ν

∫ τ

0

∫
R3

|√ϱ− 1|2dxdt+ C

2
ν

∫ τ

0

∫
R3

|S(u)|2dxdt

+
C

2
ν

∫ τ

0

∫
R3

|S(u)|2dxdt+ C(ν).

The first term goes to zero as ε → 0 thanks to (3.2). The viscous terms containing S(u)
can be absorbed on the left-hand side of (5.4) and C(ν) → 0 as ν → 0. For the second
term, we have

I
(2)
4 = 2ν

∫ τ

0

∫
R3

(
√
ϱ− 1)S(u) : ∇∇Φε,δ dxdt+ 2ν

∫ τ

0

∫
R3

S(u) : ∇∇Φε,δ dxdt

≤ Cν∥√ϱ− 1∥L4
tL

6
x
∥S(u)∥L2

tL
2
x
∥∇∇Φε,δ∥L4

tL
3
x

+C
√
ν

[∫ τ

0

∫
R3

|S(u)|2dxdt
]1/2√

ν

[∫ τ

0

∫
R3

|∇∇Φε,δ|2dxdt
]1/2
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≤ Cεα
√
ν+C

√
ν

[∫ τ

0

∫
R3

|S(u)|2dxdt
]1/2√

ν

[∫ τ

0

∫
R3

|∇∇Φε,δ|2dxdt
]1/2

, (0 ≤ α ≤ 1/12).

Here we used (3.4), (6.3) and the second term on the right-hand side can be handled

similarly as in I
(1)
4 .

6.5 Pressure terms

We recall

I5 = − 1

ε2

∫ τ

0

∫
R3

[
∂t(H

′(r))(ϱ− r) + ϱu · ∇(H ′(r)) + p(ϱ)divU
]
dxdt.

We first consider the second term in I5. Using r = 1 + εsε,δ, we have

− 1

ε2

∫ τ

0

∫
R3

ϱu · ∇(H ′(r))dxdt = −1

ε

∫ τ

0

∫
R3

ϱu ·H ′′(r)∇sε,δdxdt

= −
∫ τ

0

∫
R3

ϱu · ∇sε,δ
H ′′(1 + εsε,δ)−H ′′(1)

ε
dxdt− 1

ε

∫ τ

0

∫
R3

ϱu ·H ′′(1)∇sε,δdxdt,

where H ′′(1) = p′(1) = γ. Realizing that∣∣∣∣H ′′(1 + εsε,δ)−H ′′(1)

ε

∣∣∣∣ ≤ C|sε,δ|,

we have [∫ τ

0

∫
R3

ϱu · ∇sε,δ
H ′′(1 + εsε,δ)−H ′′(1)

ε
dxdt

]
→ 0 as ε → 0,

from Corollary 6.1. For the other term, using the acoustic equation (4.7),

−γ

ε

∫ τ

0

∫
R3

ϱu · ∇sε,δdxdt =

∫ τ

0

∫
R3

ϱu · ∂t∇Φε,δ dxdt− 2γεκ2
∫ τ

0

∫
R3

ϱu · ∇∆sε,δ dxdt

where, without loss of generality, we assumed H ′′(1) = 1. The first term cancels with its
counterpart II in (6.10) while the second converges to 0. Now,

1

ε2

∫ τ

0

∫
R3

∂t(H
′(r))(r − ϱ)− p(ϱ)divUdxdt

=

∫ τ

0

∫
R3

1− ϱ

ε
H ′′(r)∂tsε,δ dxdt+

∫ τ

0

∫
R3

sε,δH
′′(r)∂tsε,δ dxdt−

∫ τ

0

∫
R3

p(ϱ)

ε2
∆Φε,δdxdt

=

∫ τ

0

∫
R3

1− ϱ

ε
H ′′(1)∂tsε,δ +

∫ τ

0

∫
R3

1− ϱ

ε
(H ′′(r)−H ′′(1))∂tsε,δdxdt
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+

∫ τ

0

∫
R3

sε,δH
′′(r)∂tsε,δ dxdt−

∫ τ

0

∫
R3

p(ϱ)

ε2
∆Φε,δ

=

∫ τ

0

∫
R3

sε,δH
′′(r)∂tsε,δ dxdt+

∫ τ

0

∫
R3

1− ϱ

ε
(H ′′(r)−H ′′(1))∆Φε,δdxdt

−
∫ τ

0

∫
R3

p(ϱ)− p′(1)(ϱ− 1)− p(1)

ε2
∆Φε,δdxdt.

Consequently, for these remaining terms we have[
−
∫ τ

0

∫
R3

p(ϱ)− p′(1)(ϱ− 1)− p(1)

ε2
∆Φε,δ dxdt

−
∫ τ

0

∫
R3

1− ϱ

ε

(H ′′(r)−H ′′(1))

ε
∆Φε,δ dxdt

]
→ 0 as ε → 0,

by combining (3.2) for γ ≥ 2 and (3.1) for 1 < γ < 2 and Corollary 6.1. Finally,∫ τ

0

∫
R3

sε,δH
′′(r)∂tsε,δ dxdt

=

∫ τ

0

∫
R3

sε,δH
′′(1)∂tsε,δ dxdt+

∫ τ

0

∫
R3

sε,δ(H
′′(r)−H ′′(1))∂tsε,δ dxdt

where, using similar arguments as above,[∫ τ

0

∫
R3

sε,δ(H
′′(r)−H ′′(1))∂tsε,δ dxdt

]
→ 0 as ε → 0

and ∫ τ

0

∫
R3

sε,δH
′′(1)∂tsε,δ dxdt =

1

2

∫
R3

|sε,δ|2dx|τ0 .

Back to III in (6.10), we have

1

2

∫ τ

0

∫
R3

ϱ∂t|∇Φε,δ|2 dxdt

=
1

2

∫ τ

0

∫
R3

(ϱ− 1)∂t|∇Φε,δ|2 dxdt+
1

2

∫
R3

|∇Φε,δ|2 dx|τ0 .

By acoustic energy conservation, we have

1

2

∫
R3

|sε,δ|2dx|τ0 +
1

2

∫
R3

|∇Φε,δ|2 dx|τ0 = 0

and
1

2

∫ τ

0

∫
R3

(ϱ− 1)∂t|∇Φε,δ|2 dxdt =

1

2

∫ τ

0

∫
R3

(ϱ− 1)∇Φε,δ ·
(
−1

ε
∇sε,δ + 2εκ2∇∆sε,δ

)
dxdt → 0 as ε → 0

from (3.2) for γ ≥ 2 and (3.1) for 1 < γ < 2 as well as Corollary 6.1.
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6.6 Proof of Theorem 2.3

From (5.4) and all the estimates above, we end up with

E(τ) ≤ E(0) + C

∫ τ

0
E(·, t)dt+ χ(ν, ε) (6.12)

where χ(ν, ε) → 0 as (ν, ε) → 0 (for fixed δ > 0). In virtue of the integral form of the
Gronwall’s inequality, we have

E(τ) ≤ C(T )E(0) + χ(ν, ε). (6.13)

Consequently, sending ε → 0 first, and then δ → 0, thanks to (2.10), (2.11) and (6.8), we
have

lim
δ→0

lim
ε→0

E(τ) = 0 (6.14)

uniformly in τ ∈ (0, T ). Now, considering U = uE +∇Φε,δ, for any compact set K ⊂ R3

we have

∥√ϱ(u− uE)∥L2
tL

2
x(K) ≤ ∥√ϱ(u−U)∥L2

tL
2
x(K) + ∥√ϱ∇Φε,δ∥Lp

tL
q
x(K) (6.15)

for p, q > 2. The first quantity on the right-hand side of (6.15) goes to zero thanks to
(6.14), while

lim
δ→0

lim
ε→0

∥√ϱ∇Φε,δ∥Lp
tL

q
x(K) = 0 (6.16)

thanks to (3.4), (6.3) and (6.5) provided that (p, q) is a Schrödinger admissible pair. In
fact, we have

∥√ϱ∇Φε,δ∥Lp
tL

q
x(K) ≤ ∥(√ϱ− 1)∇Φε,δ∥Lp

tL
q
x(K) + ∥∇Φε,δ∥Lp

tL
q
x(K) → 0 as ε → 0

for a fixed δ > 0. Consequently, (6.16) holds. Theorem 2.3 is proved.

7 Comments on the 2D case

In this section, we discuss an extension of our main result to the problem posed on
R2. To that end, we only highlight the key steps and modifications needed for its proof.
The relevant differences compared to d = 3 are given by

• the properties of the target system, namely the 2D Euler equations,

• while ϱϵ−1 enjoys slightly better integrability properties due to Sobolev embedding,
the dispersion of the acoustic waves is weaker in R2 compared to R3.

To start and concerning the 2D incompressible Euler equations, one has global existence
of strong solutions as singularity formation in finite time is ruled out by the Beale-Kato-
Majda criterion and the conservation of the L∞-norm of the vorticity, see e.g. [26].
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Theorem 7.1. Given uE
0 ∈ W 3,2(R2) with divu0 = 0, there exists a unique solution

uE ∈ Ck([0,∞),W 3−k,2(R2;R2)), Π ∈ Ck([0,∞),W 3−k,2(R2)), k = 0, 1, 2, 3

to the initial value problem (E) - (1.7) such that for all 0 < T < ∞ it holds

∥uE∥Wk,∞(0,T ;W 3−k,2(R3;R3)) + ∥Π∥Wk,∞(0,T ;W 3−k,2(R3)) ≤ c(T, ∥uE
0 ∥W 3,2(R3)). (7.1)

For the primitive system (NSK) posed on [0,∞)×R2, we postulate existence of global
finite energy weak solutions according to Definition 2.1 adapted to d = 2. Similarly to
the case d = 3, we expect that global existence can be inferred in the spirit of Theorem
2.1 by relying on [4, 3].

Theorem 7.2. Given initial data (ϱ0,u0) of finite energy and BD-entropy, then, there
exists at least a global weak solution (ϱ,u, T ) of (NSK) posed on [0, T )×R2 in the sense
of Definition 2.1.

The constructed finite energy weak solutions satisfy the following uniform bounds.

Lemma 7.1. Let (ϱϵ,u
0
ε) be a FEWS to (NSK) posed on [0, T )× R2 with initial data

(ϱ0ε,u
0
ε) satisfying

E(ϱ0ε,u
0
ε) ≤ C, B(ϱ0ε,u

0
ε) ≤ C,

for some C > 0 independent of ϵ > 0. Then, the following hold:

(i) ϱ0ε − 1 ∈ H1(R2) and ϱϵ − 1 ∈ L∞(0, T ;H1(R2)) uniformly bounded and

∥ϱ0ε − 1∥L2(R2) ≤ Cε, ∥ϱε − 1∥L∞(0,T ;L2(R2)) ≤ Cε,

(ii)
√

ϱ0ε − 1 ∈ L2(R2),
√
ϱε − 1 ∈ L∞(0, T ;L2(R2)) uniformly bounded with

∥
√

ϱ0ε − 1∥L2(R2) ≤ Cε, ∥√ϱε − 1∥L∞(0,T ;L2(R2)) ≤ Cε,

(iii)
√
ϱ0εu

0
ε ∈ L2(R2) uniformly bounded,

(iv) the momentum satisfies ϱ0εu
0
ε ∈ L2(R2)+Lp(R2), ϱ0εu

0
ε ∈ L∞(0, T ;L2(R2)+Lp(R2))

uniformly bounded for all 1 ≤ p < 2,

(v) the density fluctuations σ0
ε satisfy σ0

ε ∈ L2(R2), σε ∈ L∞(0, T ;L2(R2)) uniformly
bounded as well as εσ0

ε ∈ H1(R2), εσε ∈ L∞(0, T ;H1(R2)) uniformly bounded.

Proof. The only modification in the proof compared to one of Lemma 3.1 consists in the
fact that the argument yielding ϱε − 1 ∈ L6(R3) from the bound ∇ϱϵ ∈ L2(R3) does not
hold for d = 2. Instead, we rely on the fact that if f is a measurable function such that
∇f ∈ L2(R2) and supp(f) is of finite Lebesgue measure then

∥f∥Lp(R2) ≤ ∥∇f∥L2(R2)L2 (supp(f))
1
p . (7.2)
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For a proof of (7.2) see for instance [12, Inequality (3.10)] and also [18, Proof of Lemma
3.1]. From the analogue of (3.1) for d = 2 and the Chebychev inequality, we infer that

L2({|ρε − 1| > 1

2
}) ≤ 1

2γ

∫
R2

|ρε(t)− 1|γ 1{|ρε−1|>c}dx ≤ Cε2,

where L2 denotes the Lebesgue measure. Consider a smooth cut-off χ ∈ C∞
c (R) such that

1[3/4,5/4](r) ≤ χ(r) ≤ 1[1/2,3/2](r). Applying the inequality (7.2) to (ϱε − 1)(1 − χ(ρε))
yields

∥(ϱε − 1)(1− χ(ρε))∥L∞(0,∞;L2(R2)) ≤ ∥∇ϱε∥L∞(0,∞;L2(R2))L2 (supp(1− χ(ρε)))
1
2

≤ Cε∥∇ϱε∥L∞(0,∞;L2(R2)) ≤ Cε.

We obtain that

∥ϱϵ − 1∥L∞(0,∞;L2(R2)) ≤ Cε, ∥∇(ϱϵ − 1)∥L∞(0,∞;L2(R2)) ≤ C.

The proof for the respective bounds of ϱ0ϵ − 1 follows verbatim.

Note that opposite to Lemma 3.1, none of these bounds depends on whether γ < 2
or γ ≥ 2 for d = 2. In particular, by interpolation it follows that

∥ρε∥L∞(0,T ;Hs(R2)) ≤ Cε1−s

and for all 2 ≤ q < ∞ there exists C > 0 such that

∥
√
ϱ0ε − 1∥Lq ≤ ∥ϱ0ε − 1∥Lq

x
≤ Cε

2
q

∥√ϱε − 1∥L∞
t Lq

x
≤ ∥ϱε − 1∥L∞

t Lq
x
≤ Cε

2
q

(7.3)

In addition, the analogue of Lemma 3.2 remains valid for d = 2.
Next, we provide the suitable decay of acoustic waves in space-time norms. The

dispersion relation (4.5) is non-homogeneous and mimics wave-like behavior for low and
Schrödinger like behavior for high frequencies. While it exhibits a regularizing effect for
low frequencies for d > 2 providing decay of order εδ at the expense of a loss or regularity
of order δ with δ > 0 arbitrarily small, no such regularizing effect occurs for d = 2, see [2,
Section 3]. However, separating frequencies above and below the threshold 1

ε and relying
on the wave-like estimate for low frequencies combined with an interpolation argument,
the following Strichartz estimates are shown to hold in [2, Proposition 3.8].

Definition 7.1. The exponents (q, r) are said to be θ-admissible if 2 ≤ q, r ≤ ∞,
(q, r, θ) ̸= (2,∞, 1) and

1

q
+

θ

r
=

θ

2
.

We say that a pair is Schrödinger or wave admissible if θ = d
2 or θ = d−1

2 respectively.
Further, we denote β = β(r) := 1

2 − 1
r .
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Proposition 7.1 ([2]). Let ε > 0 and θ ∈ [0, 1). Then, for any 2−θ
2 -admissible pair

(q, r) and s0 = 3β(r)θ, it holds

∥eitHεf∥Lq(0,T ;Lr(R2)) ≤ Cε
s
3 ∥f∥Ḣs(R2). (7.4)

The estimate allows one to infer decay in Strichartz-norms at the cost of arbitrarily
small regularity.

Remark 7.1. Being the symbol ϕε non-homogeneous, it does not allow for a separation
of scales. Therefore, the ε-dependent estimates cannot be obtained by a simple scaling
argument. Further, such estimates also appear in the context of the Gross-Pitaevskii
equation. For θ = 0, (7.1) yields Schrödinger like Strichartz estimates that however do
not provide decay in ε. In [5, Corollary B.1], the estimate (7.4) is proven for θ = 1 and
d ≥ 2 and low frequencies in the framework of the (GP)-equation. For high frequencies,
a Schrödinger type estimate is obtained. In this regard, (7.4) can be interpreted as a
refinement of [5, Corollary B.1 ].

With these key ingredients at hand and observing that the proof of the relative
entropy method can then be adapted in a straight-forward way, we have the following
main result for the asymptotic limit for d = 2. Specifically and analogue to the case
d = 3, we consider ill-prepared initial data

ϱ(0, ·) = ϱ0ε = 1+εσ0
ε , σ0

ε ∈ L∞(R2)∩H1(R2) uniformly bounded, σ0
ε → s0 in H1(R2),

(7.5)

u(0, ·) = u0
ε,

√
ϱ0εu

0
ε ∈ L2(R2),

√
ϱ0ε(u

0
ε − u0) → 0 in L2(R2). (7.6)

as ε → 0.

Theorem 7.3. Suppose ν → 0 as ε → 0. Assume the initial data (ϱ0ε,u
0
ε) to be of

uniformly bounded finite energy and BD-entropy, i.e. there exists C > 0 independent of
ε, ν > 0 such that

E(ϱ0ε,u
0
ε) ≤ C, B(ϱ0ε,u

0
ε) ≤ C. (7.7)

and satisfy (7.5), (7.6).
Let (ϱε,uε, Tε) be a weak solution of (NSK) and uE the unique solution to the initial

value problem (E) - (1.7) on [0,∞) × R2 with initial datum uE
0 = P(u0) ∈ W 3,2(R3).

Then, for all T > 0 as ε → 0, it holds

∥ϱε − 1∥L∞(0,T ;Hs(R2)) ≤ Cε1−s (7.8)

for all 0 < s < 1 and √
ϱεuε → uE in L2(0, T ;L2

loc(R2))). (7.9)

We note that different to Theorem 2.3, we may consider arbitrarily large times T > 0
as solutions to the limit system are global. The convergence in Orlicz space is implied
by the convergence in L∞(0, T ;Hs(R2)) due to the Sobolev embeddings for d = 2 and
any γ > 1.
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