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Abstract. Full waveform inversion (FWI) is the cutting-edge seismic imaging tech-
nique used to reconstruct subsurface material properties such as wave velocities, mass
density, and attenuation from measurements of reflected wavefields. In this paper, we
present the first implementation of FWI in the visco-acoustic regime, based on a new
time-domain all-at-once (AAO) formulation of the seismic inverse problem [Math. Meth.
Appl. Sci. 2021; 44: 6376-6388]. The AAO approach solves for the material properties
and the wavefield simultaneously. This offers advantages over classical methods, par-
ticularly in mitigating cycle-skipping by reducing dependency on initial models. Our
algorithm combines an inexact Newton-type method, a problem-specific line search, and
preconditioning to address the ill-posed nature of seismic imaging. Numerical experi-
ments demonstrate the algorithm’s robustness against noise and its increased domain
of convergence compared to classical methods. Our study suggests combining the AAO
algorithm with classical FWI algorithms to leverage the former’s larger domain of conver-
gence and the latter’s higher accuracy when it converges. In conclusion, our AAO-FWI
algorithm is a viable tool for seismic imaging, offering flexibility and robustness, with
potential for further advancements and extensions to practical field data applications.

1. Introduction

Full waveform inversion (FWI) is a technique for obtaining information about the
Earth’s interior material, such as shear or compressional wave velocity, mass density,
and attenuation, from surface or ocean seismic wave measurements. The objective is to
identify material values that, when plugged into the underlying wave propagation model,
yield a simulated wavefield that can account for the full information content of the seismic
measurements (called data or seismograms).

FWI has become the state of the art in seismic imaging due to its increased resolution
compared to techniques that rely only on amplitude or phase information [40]. The
classical formulation, based on ideas of Tarantola [36], can be expressed as a constrained
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optimization problem for the searched material v:

(1.1) find (u, v) such that J(u, v) = C(u) +R(v)→ min subject to L(v)u = f,

where the objective functional J consists of two terms C and R. The former quantifies
the discrepancy between the recorded and simulated data, whereas the latter is a regular-
ization term to stabilize the minimization process. Furthermore, the constraint ensures
that the simulated wavefield u is a solution to the underlying partial differential equation
that models wave propagation based on v, that is, L(v) is the differential operator and
the source f initiates the wavefield.

While C often represents an appropriate L2 distance (as proposed by Tarantola and
which we will call the classical formulation), numerous other options have been consid-
ered in the literature, such as the L1 distance [11], total variation regularization [15], or
distances based on optimal transport [28, 14]. Tarantola’s ansatz (1.1) has been widely
used in the past and continues to be improved to more efficiently reconstruct multiple
correlated parameters at once [30] or to take advantage of modern GPU architectures to
speed up simulations [44].

A common challenge with the classical formulation, especially for the inversion of
pressure wave velocity, is the phenomenon called cycle-skipping [40]: If the initial and
recorded data are viewed as sums over a finite set of frequencies (due to bandwidth lim-
itations), and the phase differences for these individual frequencies exceed half a period,
the optimization procedure will not converge to the global minimum. This is because
gradient-based optimization schemes converge to a local minimum that belongs to a seis-
mogram phase-shifted by one period, that is, one cycle is skipped. Therefore, the classical
formulation requires a good initial model.

In recent years, new methods have emerged that relax the equality constraint in (1.1),
allowing the wavefield not to be an exact solution of the underlying wave equation. In
contrast to (1.1), we extend the search space and consider, for a λ > 0,

(1.2) find (u, v) such that J̃(u, v) = C(u) + λ∥L(v)u− f∥22 +R(u, v)→ min .

As the penalty factor λ increases, the above formulation places more emphasis on the
adhesion of the wavefield to the wave propagation model. In the limit λ → ∞ we even
regain the classical formulation (1.1). The advantage of (1.2) over (1.1), as reported in

the literature, see, e.g., [38, 33], is that the objective functional J̃ of (1.2) is less nonlinear
and is expected to exhibit fewer local minima than J of the classical formulation.

FWI in the form of (1.2) can be interpreted as an all-at-once (AAO) approach [20],
since we solve for both the material and the wavefield simultaneously. Some mathematical
results for abstract AAO formulations regarding regularization methods, such as Landwe-
ber or Tikhonov, have been shown in [22]. The AAO formulation for visco-elastic FWI in
the time domain and some analytical properties of the associated operator (ill-posedness,
Fréchet differentiability) were established in [33]. We follow the framework of this pa-
per and adopt the name all-at-once when talking about the FWI formulation proposed
therein.

The first publications [1, 38, 39] that combined the AAO idea with FWI considered
the acoustic wave equation in the frequency domain. The resulting methods are known as
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Wavefield Reconstruction Inversion (WRI), for which problem-adapted Newton methods
that require the Hessian matrix or gradient-based optimization schemes are employed to

minimize J̃ . It has been reported that the domain of convergence of these methods when
applied to (1.2) is larger than when applied to (1.1).

More recently, still in the frequency domain, the alternating-direction method of multi-
pliers (ADMM) [10] was utilized and the resulting algorithm was called Iteratively-Refined
Wavefield Reconstruction Inversion (IR-WRI) [2, 4]. This algorithm uses the augmented
Lagrangian function to solve the optimization problem (1.2) by splitting it into subprob-
lems and updating the primal variable, v, and the dual variable, u, individually and
sequentially. Unlike penalty methods, IR-WRI does not require manual tuning of penalty
parameters. This ansatz was then extended to time domain [17, 18], which substantially
increases the size of the wavefield variable. Therefore the algorithm was adapted accord-
ingly: First, the subproblem involving the augmented wave equation cannot be solved
exactly for u as it can in the frequency domain. Thus, strategies were developed to itera-
tively approximate the solution to the augmented wave equation. Second, to avoid storing
full wavefields, related optimization tasks in seismogram space were established, and al-
gorithms adapted to this concept were developed. In [5], a proximal Newton method is
used in conjunction with the ADMM method.

Thus far, we have only discussed publications that consider the acoustic wave equation.
However, IR-WRI has been extended to the elastic wave equation in [6]. Another ansatz
related to the AAO formulation is the Extended Source Inversion (ESI) [21, 35], which
was recently transferred to the time domain [19]. This approach adds the right-hand side
f of the forward equation to the minimization (1.2), replacing u. The resulting objective
function incorporates a regularization term ∥Bf∥2, where B is a pseudo-differential op-
erator called annihilator. See [45] for a comprehensive comparison of WRI and ESI. For
an extensive list of publications, developed methods, and related techniques for the AAO
concept in geophysics we refer to [29].

Note that, although it is often argued that these all-at-once-like algorithms can mit-
igate the phenomenon of cycle-skipping, it has been shown in [45] that WRI and ESI
can be interpreted as weighted L2 minimization of the reduced problem, meaning that
both methods will exhibit local minima. For publications demonstrating the occurrence
of cycle-skipping in WRI see [37, 34]. Therefore, it is not expected that any algorithm will
solve the cycle-skipping challenge. However, mitigating the problem to a certain degree
can enable inversions that previously yielded no results due to an initial model that was
outside the domain of convergence.

In this work we propose an algorithm of inexact Newton-type for the time-domain
AAO formulation of [33] combined with a problem-specific line search method and a
problem-adapted preconditioner. As our implementation relies on a similar minimization
formulation as the aforementioned publications, we encounter similar issues, such as high
dimensionality. Nevertheless, we consider our operator-based approach to be a strong
competitor to the purely optimization-based methods.

The paper is organized as follows: We start the next section by introducing the visco-
acoustic wave equation, where we will model attenuation using the theory of General
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Standard Linear Solids. Then, we first recall and discuss the corresponding classical
(reduced) approach to seismic imaging before deriving and explaining our time-domain
AAO formulation. Section 3 is devoted to discretization and implementation issues: We
solve the visco-acoustic wave equation using discontinuous finite elements in the spatial
domain and the implicit trapezoidal rule for time integration. Based on this discretiza-
tion, we solve the AAO inverse problem using our inexact Newton-type regularization
PMSD-REGINN in which a preconditioned multistep deepest descent method serves as the
inner iteration. We provide a detailed framework for implementing the AAO solver, em-
phasizing on computational efficiency and robustness against the challenges of seismic
inversion. In Section 4, we present results of numerical experiments to evaluate the per-
formance of PMSD-REGINN in two test scenarios for visco-acoustic FWI. One scenario uses
the well-known Camembert model, which features a circular inclusion with varying pres-
sure wave velocity embedded in a homogeneous background. It is designed to test the
algorithm’s ability to handle highly nonlinear problems that are prone to cycle-skipping.
The results show that PMSD-REGINN can reconstruct a higher velocity contrast than the
classical reduced method can, thus demonstrating a larger domain of convergence. While
the classical method yields lower errors when it converges, combining PMSD-REGINN with
the classical method improves the results even more. Starting the classical method with
the output of PMSD-REGINN significantly reduces the final error. The Marmousi bench-
mark model, which has a complex, layered geometry, serves as the second scenario. Three
initial velocity models are tested, and Gaussian noise is added to the simulated seismo-
grams to mimic realistic conditions. While shallow layers are reconstructed well across
all initial models, the reconstruction quality of deeper layers is positively correlated with
the quality of the initial model. Notably, the classical formulation does not converge for
any of the three initial models. In the concluding Section 5, we discuss the advantages
and disadvantages of PMSD-REGINN, pointing out areas for improvement.

2. All-at-Once Approach in Time Domain

2.1. Visco-acoustic wave equation. Wave propagation in isotropic materials can be
modeled by the visco-elastic wave equation. It contains both pressure (longitudinal)
and shear (transversal) waves and further takes dissipation into account which results in
attenuation of amplitudes and other dispersive effects. A simplification which is sufficient
for our study only containing the pressure waves is the visco-acoustic wave equation. We
consider the formulation introduced in [46] which uses the General Standard Linear Solid
(GSLS) ansatz to model the attenuation. Let Ω ⊂ Rd, d ∈ {2, 3}, be a Lipschitz domain
and ℓ be the number of GSLS damping mechanisms [26]. Then, the evolution of the
particle velocity field w : [0, T ]×Ω→ Rd, the elastic part of the pressure p0 : [0, T ]×Ω→
R, and the viscous parts of the pressure pl : [0, T ]× Ω→ R, l = 1, . . . , ℓ, is described by

(2.1)

ϱ ∂tw = ∇(p0 + · · ·+ pℓ) + f in (0, T )× Ω ,

1 + ατ

ϱv2
∂tp0 = divw + g0 in (0, T )× Ω ,

1 + ατ

ϱv2τ
∂tpl = divw − ωl

1 + ατ

ϱv2τ
pl + gl l = 1, . . . , ℓ in (0, T )× Ω .
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Further, we assume zero initial conditions w(0) = 0, pl(0) = 0, l = 0, . . . , ℓ. The wave is
often excited by a pressure source g0 : [0, T ]× Ω→ R. Furthermore, we assume that the
sources have a product structure, for example, g0(t, x) = ψ(t)ϕ(x) with ψ : [0, T ]→ R and
ϕ : Rd → R. When we refer to the source frequency ωc, we are referring to the frequency
at which the modulus of the Fourier transform of ψ attains its maximum value.

However, it is also possible to consider source terms in f : [0, T ] × Ω → Rd and
gl : [0, T ] × Ω → R. Equation (2.1) contains three material parameters, pressure wave
velocity v : Ω → R, mass density ϱ : Ω → R, and a scaling parameter related to atten-
uation τ : Ω → R. In this work we only try to reconstruct v ∈ Padm ⊂ L∞(Ω), where
Padm contains functions that are bounded from above and below by physically reasonable
values. We assume ϱ and τ to be known and also bounded from above and below.

In order to model the attenuation, certain model parameters have to be determined
a priori. First, the number of GSLS parameters ℓ must be chosen. While higher values
can more accurately model the effects, they also increase the numerical effort. Since
the dispersive effects are inherently frequency-dependent, it is necessary to select values
ω1, . . . , ωℓ in the vicinity of the source frequency ωc to achieve a satisfying result in the
frequency band surrounding the source. Finally, the dissipation coefficient τ must be
selected to reflect the level of attenuation. The selection of these values is discussed in
detail in [7, 8]. With these values chosen, we can calculate the last remaining quantity
of (2.1):

(2.2) α =
ℓ∑

l=1

ω2
cω

−2
l

1 + ω2
cω

−2
l

.

Set

H = L2(Ω,Rd+1+ℓ) and Y = L2([0, T ], H).

For v ∈ Padm and u = (w, p0, . . . , pℓ) ∈ Y we define the operators

M(v)u = (ϱw, (1 + ατ)/(ϱv2) p0, (1 + ατ)/(ϱv2τ) p1, . . . , (1 + ατ)/(ϱv2τ) pℓ) ,

Du = (0, . . . , 0, 0, ω1 p1, . . . , ωℓ pℓ) ,

Au = −(∇(p0 + · · ·+ pℓ), divw, . . . , divw) , u ∈ D(A),
where M(v) : H → H is a symmetric positive definite operator, D: H → H is a symmetric
semi-positive definite operator and A : D(A) ⊂ H → H is a skew-symmetric differential
operator (boundary values are incorporated into the domain of definition D(A)). With
this notation in place we can formulate the initial value problem corresponding to equa-
tion (2.1) as

(2.3) L(v)u := M(v)∂tu(t) + (A+M(v)D)u(t) = f(t), t ∈ [0, T ], u(0) = 0 .

This evolution equation is uniquely solvable for reasonable requirements on the right-hand
side and yields a classical solution u ∈ C1([0, T ], H), see, e.g., [9] for all details.

2.2. Classical formulation of FWI. Although an overview of the various formulations
for FWI was provided in the introduction, this section will offer a more detailed explana-
tion in the context of our case study. While the end goal of seismic imaging is to recover a
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good fit to the material distribution, the additional objective of FWI is to find a wavefield
that not only complies with the underlying physics but also aligns with the data at the
receiver locations. Thus, for a given right-hand side f ∈ Y and observed seismograms
sobs ∈ S, the goal is to find u and v such that the model error ∥L(v)u− f∥2[0,T ]×Ω is small
for a given norm. Moreover, the same wavefield should yield a good data fit, that is, the
data error ∥Ψu − sobs∥2S should be small. Here Ψ: Y → S ∼= RN is the linear operator
that models the measurement procedure, where N is the dimension of the measurements,
that is, number of receivers multiplied by the number of data points in each time series.
The classical formulation of FWI only reduces the problem to the minimization of the
data error by forcing L(v)u = f . Consequently, the data error provides the sole crite-
rion for reconstructing the material in the classical formulation. Typically, the functional
JR(v) = ∥ΨL(v)−1f − sobs∥S is riddled with local minima, which can cause gradient-like
methods to become trapped at a local minima. Furthermore, although less critical, the
differential operator L will never include all physical effects influencing wave propagation
in the real world, so not forcing JR to become zero acknowledges this limitation. Then,
we can define the forward map as

ΦR : Padm ⊂ L∞(Ω) 7→ S, v 7→ ΨL(v)−1f.

The inverse problem is then given by

(RED) find v ∈ Padm such that ΦR(v) = sobs.

The map ΦR is Fréchet differentiable at any interior point v of Padm with derivative

(2.4) Φ′
R(v) : L

∞(Ω)→ S , h 7→ −ΨL(v)−1(L′(v)[h]ΦR(v)),

where
L′(v)[·]u : L∞(Ω)→ Y, h 7→ M′(v)[h](∂t +D)u,

and

(2.5) M′(v)[·]u : L∞(Ω) 7→ Y, M′(v)[h]u = −2h 1 + ατ

ϱv3
(
0, p0, τ

−1p1, . . . , τ
−1pℓ

)
are the Fréchet derivatives of L(·)u : Padm ⊂ L∞(Ω)→ Y and M: Padm ⊂ L∞(Ω)→ L(H),
respectively. The adjoint of Φ′

R(v) is given by

Φ′∗
R(v) : S → L∞(Ω)′, y 7→ L′(v)[L⋆(v)−1Ψ∗y]∗ΦR(v)

with
L⋆(v) = −M(v)∂tu(t) + (−A+M(v)D)u(t), t ∈ [0, T ], u(T ) = 0,

and with the adjoint of L′(v)[·]u, which is

(2.6) L′(v)[·]∗u : Y → L∞(Ω)′,

(v, q0, . . . , qℓ) 7→
−2(1 + ατ)

ϱv3

(∫ T

0

q0∂tp0 dt+
ℓ∑

l=1

ωl

τ
qlpl dt

)
∈ L1(Ω) ⊂ L∞(Ω)′,

where pi’s are the pressure components of the wavefield ΦR(v). The above formal repre-
sentations of Φ′

R and Φ′∗
R can be rigorously derived in a functional analytic framework,

see [23] and [46].
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The inverse problem (RED) is locally ill-posed at any parameter point in the interior
of Padm in the following sense [23]:

In any neighborhood of v+ ∈ int(Padm) there exists a sequence {vk} with
lim
k→∞
∥ΦR(vk)− ΦR(v

+)∥S = 0 but vk ̸→ v+ in L∞(Ω).
(2.7)

Solving a locally ill-posed problem is challenging since reducing the residual as much as
possible does not necessarily improve the outcome. The reduced formulation (RED) of
the seismic inverse problem is typically solved by gradient, Newton-type methods, and
Quasi-Newton methods.

2.3. All-at-once formulation of FWI. To formulate the time domain AAO version
of the seismic inverse problem we rely on the framework of [33] which requires a weaker
solution concept for the wave equation (2.3). To this end we extend Y to a larger Hilbert

space Ỹ and also extend the differential operator A to Ã with a larger domain of definition

in Ỹ . This extension is necessary for a sound mathematical framework [33, Remark 3.2],
but nothing is lost in terms of understanding the algorithm if one considers the strong
formulation introduced at the beginning of this section. The weaker version of (2.3) reads

(2.8) M(v)u(t) + (Ã+DM(v))Ju(t) = Jf(t), t ∈ [0, T ],

where Jz(t) :=
∫ t

0
z(s) ds (note that u(0) = 0 is implicitly imposed). With the differential

operator

L(v) := M(v) + (Ã+DM(v))J,

we define the AAO forward operator

ΦA : Padm × Ỹ ⊂ L∞(Ω)× Ỹ → S × Ỹ , (v, u) 7→
(
Ψu, λ (L(v)u− Jf)

)
,

where λ > 0 is a factor with which we can force, during inversion, how accurately the
recovered wavefield will solve (2.8), see Remark 3.1 below.

The time domain AAO version of FWI can be formulated as the following inverse
problem

(AAO) find (v, u) ∈ Padm × Ỹ such that ΦA(v, u) = (sobs, 0),

which is locally ill-posed as well, that is, statement (2.7) holds accordingly for ΦA, see
[33, Proposition 4.2].

The next assertions follow from more general results in the visco-acoustic and visco-
elastic regimes presented in [31, 33]: The forward operator ΦA is Fréchet differentiable at

any interior point (v, u) of Padm × Ỹ with derivative

Φ′
A(v, u) : L

∞(Ω)× Ỹ → S × Ỹ ,
(
hv
hu

)
7→
(

Ψhu

λ
(
L′(v)[hv]u+ L(v)hu

)) ,
where

L′(v)[·]u : L∞(Ω)→ Ỹ , h 7→ M′(v)[h](I +DJ)u,
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see (2.5) for the derivative of M. Its adjoint is given by

Φ′∗
A(v, u) : S × Ỹ → L∞(Ω)′,

(
s
y

)
7→
(

λL′(v)[y]∗u

Ψ∗s+ λL⋆(v)y

)
,

where

L⋆(v) = M(v) + (−Ã+DM(v))J∗, J∗z(t) =

∫ T

t

z(s) ds,

and where L′(v)[·]∗u can be calculated analogously to (2.6) when ΦR(v) is replaced by u.

3. Discretization and Implementation

Before discussing the inversion algorithm, we briefly address some numerical imple-
mentation issues. We focus primarily on the performance of the algorithm for FWI tasks,
and do not provide a mathematical analysis. Therefore, for all purposes, we will consider
objects to be discrete without always labeling them with h, which subsequently denotes
the spatial discretization step size.

3.1. Discrete spaces and time stepping. For the space discretization of (2.8) we use
the discontinuous Galerkin method as detailed in [9]. We decompose Ω into K disjoint
open convex polyhedral sets Kj, j = 1, . . . , K, which we call cells. They fulfill Ω = ∪K

j=1Kj

and the have maximal diameter h. Further we define the discrete space

Hh = {xh ∈ L2(Ω,Rd+1+ℓ) : xh ∈ P d+1+ℓ
p piecewise on each cell}

where Pp denotes space of d-variate polynomials with total degree p ∈ N0. The corre-
sponding discrete operators Ah : Hh → Hh, Mh : Hh → Hh, and Dh : Hh → Hh are defined
in [9, Section 3.1]. Finally, we introduce the discrete material space Ph which consists of
functions being constant on each cell. Then, Padm,h := Ph ∩ Padm.

For the discretization of the time interval [0, T ] we choose NT time points tn = ndt

for n = 0, . . . ,NT with dt := T/NT, so that the finite dimensional version of Ỹ is
Yh = HNT

h = Hh × · · · ×Hh.
Now, the discrete version of the wave equation (2.8) at the N -th time instance reads

MhuN + (Ah +MhDh)dt

(
0.5(u0 + uN) +

N−1∑
n=1

un

)

= dt

(
0.5(f0 + fN) +

N−1∑
n=1

fn

)
, N = 0, . . . ,NT,

where the integration operator J is approximated by the trapezoidal rule with respect to
the time steps. Setting

Th := dt(Ah +MhDh)
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we get the square matrix representation of the wave operator L:

L =



Mh 0 · · · · · · · · · 0

0.5Th Mh + 0.5Th
. . . . . . . . .

...

0.5Th Th
. . . . . . . . .

...
...

...
. . . . . . . . .

...
...

...
. . . . . . . . . 0

0.5Th Th · · · · · · Th Mh + 0.5Th


which has the order dim(Hh)(NT + 1). This lower triangular matrix can be inverted by
forward substitution. It involves solving one linear system with the non-diagonal operator
Mh + 0.5Th. However, we modified the linear space-time system by Gaussian elimination
such that we are able to solve the wave equation with the implicit trapezoidal Runge-
Kutta time stepping scheme and subsequently integrate the solution; see [31, Section 5.2]
for details.

The adjoint L⋆ is then approximated by

L⋆ =



Mh 0.5T ⋆
h · · · · · · · · · 0.5T ⋆

h

0 Mh + 0.5T ⋆
h T ⋆

h

. . . . . .
...

...
...

. . . . . . . . .
...

...
...

. . . . . . . . .
...

...
...

. . . . . . . . . T ⋆
h

0 · · · · · · · · · 0 Mh + 0.5T ⋆
h


where T ⋆

h = dt(−Ah +MhDh).

3.2. PmSD-REGINN. The ill-posedness of (AAO) demands a regularization to ensure a sta-
ble approximation of its solution. Inexact Newton-type methods such as REGINN [32] are
an efficient tool for regularizing this kind of nonlinear problem, as demonstrated in [9].
REGINN1 methods comprise two components: an outer iteration and an inner iteration,
whose iteration indices we denote by k and l, respectively. The outer iteration is basi-
cally a Newton scheme terminated by the discrepancy principle, while the inner iteration
approximately solves the locally linearized problem

Φ′
A(v

k, uk)ν = (sobs, 0)− ΦA(v
k, uk)

at the actual outer iterate (vk, uk) to generate the Newton update νl. For ease of notation,
we use the abbreviations below

Bk = Φ′
A(v

k, uk) and rk = (sobs, 0)− ΦA(v
k, uk).

In order to clarify the dependence of the operators L,L⋆,L′,L⋆ on the material vk in the
following, we will denote the dependence with the superindex k. We avoid solving the
linearized equation in a Banach space setting (which would theoretically be necessary

1REGularization by INexact Newton method
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due to the parameters being in L∞) and instead iteratively decrease the corresponding
least-squares functional J : Ph × Yh → [0,∞),

(3.1) J(ν) =
1

2
∥Bkν − rk∥2S×Yh

,

which is possible since we are in a finite-dimensional setting. So we benefit from the
simpler Hilbert space structure.

Remark 3.1. When written out, the functional J is of the form (1.2). In fact, we just
included the penalty factor λ in the operator ΦA.

For this approach to work, we need to choose an efficient method for reducing J.
Typical minimization schemes, such as conjugate gradient or standard gradient descent,
rely on one-dimensional optimization problems to determine an appropriate step size.
Based on our experience with the AAO formulation, these algorithms fail because useful
updates require a careful balance between the material and the wavefield components.
Consequently, we propose a method that is able to do this.

3.3. Line search. Let νl ∈ Ph × Yh be the current iterate in the process of decreasing
the value of J from (3.1). Furthermore, let d ∈ Ph × Yh be a descent direction of J at νl.
Then, the standard optimal (one-dimensional) step size ς is

ς = argmin
ς̄∈R+

J(νl + ς̄d) =
−(Bk,∗rk, d)Ph×Yh

∥Bkd∥2S×Yh

.

We switch to a multidimensional version of this ansatz. To this end, split Ph×Yh into M
orthogonal subspaces Vm, m = 1, . . . ,M ,

Ph × Yh =
M⊕

m=1

Vm,

and denote the orthogonal projection of d onto the m-th subspace by dm, so that d =∑M
m=1 dm. The objective is to find a vector a ∈ RM such that

a = argmin
(ã1,...,ãM )∈RM

J
(
νl +

M∑
m=1

ãmdm

)
.

Since a = (a1, . . . , aM) satisfies (∂ãn)J(ν
l +
∑M

m=1 amdm) = 0, n = 1, . . . ,M , we find that

0 = J′
(
νl +

M∑
m=1

amdm

)
[dn] =

(
Bk,∗(Bkνl − rk), dn

)
Ph×Yh

+
M∑

m=1

am
(
Bk,∗Bkdm, dn

)
Ph×Yh

.

Define the matrix E ∈ RM×M and the vector c ∈ RM , according to

Em,n =
(
Bk,∗Bkdm, dn

)
Ph×Yh

=
(
Bkdm, B

kdn
)
S×Yh

, m, n = 1, . . . ,M,

cn =
(
Bk,∗(Bkνl − rk), dn

)
Ph×Yh

, n = 1, . . . ,M,

then a ∈ RM is the solution of

(3.2) Ea = c.
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Assuming injectivity of Bk and dm ̸= 0, m = 1, . . . ,M , E is a symmetric positive definite
matrix and thus invertible

For our implementation of this line search, we decompose the parameter space Ph by
splitting it geometrically according to the decomposition of Ω into individual cells, that
is, we define the subspaces Vm as

Vm = span{φm} × {0}, m = 1, . . . , K,

where φm is the indicator function of the cell Km. We do not split Yh and define

VK+1 = {0} × Yh.
Hence, the Vm’s, m = 1, . . . , K + 1, decompose Ph × Yh into M = K + 1 orthogonal
subspaces. Accordingly, the matrix E of (3.2) of order K + 1 has block form:

E =

(
D R
R⊤ e

)
, D ∈ RK×K , R ∈ RK×1, e ∈ R .

With d = (dv, du) ∈ Ph × Yh, the entries of the diagonal matrix D can be calculated by

Dmn =
(
Bk[dv,n, 0], B

k[dv,m, 0]
)
Ph×Yh

= δmnλ
2∥L′,kdv,m∥2Km×[0,T ], m, n = 1, . . . K ,

where the last equality holds due to these arguments: The cells {Km}m are pairwise
disjoint, so that the supports of the dv,m’s are pairwise disjoint as well. Additionally,
L′,kdv,m and dv,m share the same support, since M′,k is a multiplication operator, see (2.5).

Further, R ∈ RK×1, which is the (K+1)-th column of E without the (K+1)-th entry,
has the following components

Rm =
(
Bk[0, du], B

k[dv,m, 0]
)
S×Yh

= λ2
(
Lkdu,L

′,kdv,m
)
Km×[0,T ]

, m = 1, . . . , K .

Finally, the bottom diagonal entry of E can be calculated via

e = EK+1,K+1 = ∥Bk[0, du]∥2S×Yh
= λ2

∥∥Lkdu
∥∥2
Yh

+ ∥Ψdu∥2S.
To simplify the components of the left-hand side c of (3.2), we denote the residual of the
current iterate νl of the inner iteration by

r̃l = Bkνl − rk = (r̃lS, r̃
l
u) ∈ S × Yh.

We obtain

cm =
(
(r̃lS, r̃

l
u), B

k[dv,m, 0]
)
S×Yh

= λ2
(
r̃lu,L

′,kdv,m
)
Km×[0,T ]

, m = 1, . . . , K,

and

cK+1 =
(
(r̃lS, r̃

l
u), B

k[0, du]
)
S×Yh

=
(
r̃lS,Ψdu)S + λ2

(
r̃lu,L

kdu
)
Yh
.

Introducing the Schur complement s = e− e−1R⊤R ∈ R\{0} yields first
(3.3a) aK+1 = s−1

(
cK −R⊤D−1(c1, . . . , cK)

⊤)
and then

(3.3b) (a1, . . . , aK)
⊤ = D−1

(
(c1, . . . , cK)

⊤ − aK+1R
)
.

The main computational cost of setting up the system (3.2) lies in applying the linear
operators Lk and L′,k, as well as in computing the norm of the full waveform required
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for the matrix entry e. From the above expressions it is clear that an evaluation of Lk

and L′,k is required. Due to the locality and linearity of both operators, it makes no
computational difference whether we perform the total evaluation once or for each cell
individually. Each total operator evaluation consists of a matrix-vector multiplication per
time step, which is relatively inexpensive compared to solving the full wave system. We
stress that the locality and linearity of the operators allow an efficient computation of the
inner products for all Rm, m = 1, . . . , K, and the matrix entry e, as well as the norms
needed to build the diagonal matrix D. In addition, solving the linear system (3.2) is
computationally efficient due to its structurally simple and well-conditioned form.

Remark 3.2. The framework presented above easily extends to multiple parameters and
other decompositions of Ω; see [31].

3.4. Preconditioning. The line search introduced in the previous subsection represents
only one aspect of our algorithm as it does not yield convergence in general. So we
add a preconditioner to ensure an update of the reconstructed wavefield and hence of the
material in each outer iteration. To this end our preconditioner is inspired by the diagonal
entry of the operator corresponding to the normal equation. This is the part that maps
wavefields to wavefields:

(Bk,∗Bk)u,u = λ2L′∗,kLk +Ψ∗Ψ.

The efficient inversion of this block, known as the augmented wave equation, remains an
unsolved problem in time domain. Various approaches to master this challenge can be
found, e.g., in [3, 17, 41]. On the other hand, we invert only the block L′∗,kLk, which we
realize by forward substitution as described above, at the additional cost of solving two
wave equations. The preconditioned wavefield component is then given by

(3.4) △ulPC = (λ2L′∗,kLk)
−1
△ul .

A similar preconditioning ansatz was used in [3], called backward-forward recursion, how-
ever, for solving the augmented wave equation.

As all operators in this section are restricted to finite dimensional spaces, that is, they
can be represented by matrices, we can apply the Woodbury formula to get

(λ2L′∗,kLk +Ψ∗Ψ)−1 = (λ2L′∗,kLk)
−1

− (λ2L′∗,kLk)
−1
Ψ∗(I +Ψ(λ2L′∗,kLk)

−1
Ψ∗)−1Ψ(λ2L′∗,kLk)

−1
.

So, our preconditioner neglects the second term. Our experiments have shown that the
algorithm is generally not very sensitive to the choice of λ. However, in [31] it is argued
that

λ̃ =
∥Ψ(Lk,⋆Lk)−1Ψ∗∆s∥S
∥(Lk,⋆)−1Ψ∗∆s∥S

is a critical value to stay below. Here ∆s is the second component of the current residual

r̃l = (∆u,∆s). The threshold λ̃ can be calculated on the fly while running the inversion.

In our experiments, we always choose either λ = 1 or λ = 0.1λ̃.
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Algorithm 1 Preconditioned Multistep Steepest Descent (PMSD) algorithm

Input: ν0 ∈ S × Y % starting guess for the inner loop
rk ∈ Y × Padm % residual of the outer loop
lmax ∈ N, ϑ > 0 % stopping criteria

1: l← 0
2: r̃l ← rk −Bkν0

3: repeat
4: dl ← Bk,∗r̃l

5: dPC ← Precon(dl) % see (3.4)
6: a← CalculateA(Bk, dPC) % see (3.3)

7: νl+1 ← νl +
∑M

m=1 amdm,PC

8: r̃l+1 ← r̃l − ∑M
m=1 amB

kdm,PC % Bkdm,PC can be reused from line 6
9: l← l + 1

10: until (∥r̃l∥[0,T ]×Ω ≤ ϑ∥b∥[0,T ]×Ω or l ≥ lmax) and l ≥ lmin

11: return νl+1 ∈ P × Y

The combination of the line search and the preconditioner yields the PMSD-method
(Preconditioned Multistep Steepest Descent), see Algorithm 1 for a rough algorithmic
outline.

3.5. Full algorithm. We proceed with the description of the outer loop/iteration of
our AAO algorithm. In typical applications we have more than one measurement from
different, say, Ξ ∈ N sources. To adapt to this situation, we realize a Kaczmarz version
of the algorithm, which computes an update of the wavefield and the material for each
shot. So we additionally iterate over the sources. However, we only pass the material
update over to the next shot, since storing the wavefield for each shot is not feasible due
to the large memory footprint. Therefore, we discard the wavefield results from the inner
loop after each shot. For the next iteration, we do not want to start with a wavefield that
equals zero. Instead, we use the solution of equation (2.8), computed with the current
material model, as the initial wavefield for the next shot. To terminate the outer loop we
use a fixed number of kmax instead of a discrepancy principle. As previously mentioned,
REGINN allows an adaptive stopping criteria for the inner loop. We use the proven rule
from [9, 31, 43]: We choose ϑk and lkmax according to

ϑk = min{0.999, ϑ̃k}

with

(3.5) ϑ̃k =


1 for k = 0,

∥r0∥S×Yh
/∥r1∥S×Yh

for k = 1,

1− lk−2

lk−1 (1− ϑk−1) for lk−1 > lk−2 ∧ k ≥ 2,

0.9ϑk−1 otherwise,
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where lk denotes the number of passes through the repeat loop in Algorithm 1 for the
k-th outer iteration. The maximum amount of repeat loop iterations is determined by

(3.6) lkmax =


1 for k = 0,

2 for k = 1,

lk−1 + lk−2 otherwise.

Additionally, a minimal amount lmin of inner loop passes has proven to be necessary for
the convergence and can even positively influence the convergence of the algorithm. The
full algorithm is shown in Algorithm 2 where the dependency of the variables on the
different shots is indicated by the subscript ξ.

The minimal computational cost of a single outer loop for one shot consists of solving
the wave equation once (for line 6 in Algorithm 2) and solving it twice for each inner
iteration, with at least lmin inner iterations required. This results in a minimal number of
1 + 2lmin solutions of the wave equation per outer loop.

Algorithm 2 PMSD-REGINN

Input: v0 ∈ Padm % starting guess
sobs ∈ S % seismograms

1: k ← 1
2: while k < kmax do
3: ξ ← 1
4: vkξ ← vk

5: repeat
6: ukξ ← L−1Jfξ % one solution of the integrated forward wave equation (2.8).

7: rkξ ← (0,Ψukξ − sobs,ξ) % wave residual is zero, since Lukξ − Jfξ = 0.

8: determine lkmax,ξ and ϑk
ξ according to (3.5) and (3.6) to terminate the inner loop

(line 10 of Algorithm 1)
9: △vkξ ,− ← PMSD(0, rkξ , l

k
max,ξ, ϑ

k
ξ )

10: vkξ+1 ← vkξ + △vkξ
11: ξ ← ξ + 1
12: until ξ equals Ξ
13: vk+1 ← vkΞ
14: k ← k + 1
15: v ← vk

16: return v

4. Numerical examples

In this section, we investigate two test scenarios to demonstrate the performance
of PMSD-REGINN in comparison to a REGINN solver for the classical formulation. The
code in the C++ programming language for all experiments and the scripts to generate
the figures are available for download from the repository: https://gitlab.kit.edu/

andreas.rieder/aao-paper.

https://gitlab.kit.edu/andreas.rieder/aao-paper
https://gitlab.kit.edu/andreas.rieder/aao-paper
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4.1. The Camembert model. First, we present a model scenario in which the reduced
method is unsuccessful, whereas the AAO method succeeds. This fact is underpinned
by a modified version of the Camembert model, initially introduced in [16] as a case
study of a highly nonlinear problem resulting in the phenomenon of cycle-skipping which
requires a starting model (initial guess) close to the sought-after ground truth, as detailed
in Section 1.

Here, we consider acoustic wave propagation without attenuation, that is, ℓ = 0 and
α = 0 in (2.1). For the geometry we choose the rectangle Ω = (0, 4800)m × (0, 6000)m
with an absorbing layer around the domain to prevent reflections at the boundary from
propagating back into Ω during the measurement period. The full calculation domain is
Ωcalc = (−900, 6300)m×(−9000, 7500)m with the homogeneous background velocity vbg =
4000m/s. A circular inclusion, the Camembert, with midpoint xmid = (2400, 3000)⊤m and
radius r = 1600m, is embedded into Ω equipped with a velocity that differs from the
background by a constant factor 1+ 0.01p, p > 0, i.e. within the Camembert the velocity
is

(4.1) v∆ = (1 + 0.01p)vbg.

On the right side of the domain, we placed 160 receivers, equally spaced on the line
segment from (4706.25, 18.75)⊤ to (4706.5, 5981.25)⊤. This geometric layout can be seen
in Figure 1. Similar configurations for the Camembert model are used in [14] and [17].
According to [16], the strong nonlinearity arises from the large diameter of the inclusion.
This makes a good initial model more important due to the local nature of gradient-based
inversion schemes such as Newton-type methods.

For the discretization, as explained in Section 3.1, we decompose Ω into squares with
a side length of 37.5m (h =

√
2 · 37.5m) and set the final time T = 2.4. Further, we use

the implicit trapezoid rule as time integrator with step size dt = 0.003. On the left side
of Ω, there are Ξ = 14 equally spaced sources: xsrc,i = (100, 200 + 5600i/(Ξ − 1))⊤, i =
0, . . . ,Ξ− 1. The applied source signal is the integrated Ricker wavelet,

(4.2) Jf(t) =

∫ t

0

(1−2σ2(s)) exp(−σ2(s))ds where σ(s) = π ωc (s−tshift), ωc, tshift ∈ R,

with the central frequency ωc = 10Hz, tshift = 1/(2ωc) = 0.05 s. Due to the AAO version
(2.8) of the wave equation we need the source in integrated from.

In this study, we compare the inversion results obtained through the reduced, classical
algorithm CG-REGINN, as presented in [9], with those obtained by PMSD-REGINN, our AAO
implementation. For a quantitative comparison, we define the relative L2-error as

ep =
∥vtrue,p − vfinal,p∥Ω
∥vtrue,p∥Ω

with vtrue,p as the true value of the material distribution and vfinal,p as the result of the
inversion process. The goal is to find the maximum value of p beyond which the inversion
leads to relative L2-errors that exceed the initial error. To this end, we conducted inver-
sions using the reduced method for p ∈ [4.5, 8.75] and the AAO method for p ∈ [4.5, 10.5].
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Figure 1. Geometry of the Camembert model: sources (marked by ×),
inclusion (colored red), and the receivers on the line at the right.

Figure 2. Relative L2-error ep after 15 iterations as a function of p, see
(4.1), for both inversion algorithms.

In Figure 2, we plot the error of the final iterate of the algorithms versus the value
of p (both algorithms were run for a fixed number of 15 iterations). It is evident that
both algorithms are effective for values below p = 8.5, which is the threshold at which the
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classical formulation algorithm fails. However, the AAO method is capable of reconstruct-
ing values up to p = 10.0, indicating a larger domain of convergence for this particular
problem. Final reconstructions for a ”moderate” value of p = 7.5 for both algorithms, as
well as values just before each of the methods breaks down are shown in Figure 3.

Figure 4 displays a detailed convergence/divergence history of the two algorithms.
There, we show how the relative L2-error evolves relative to the outer iteration index for
different p values. In the plot on the right for PMSD-REGINN, we observe that the error
for p = 10.5 exhibits a strictly monotone decrease after reaching its peak. So it appears
that convergence may still occur, and in fact, the relative L2-error falls below 100% after
40 iterations as additional computations show. We stopped our computations with the
115th iterate having a relative L2-error of 95.1%. Although the error decrease was strictly
monotone, we consider PMSD-REGINN to have failed for p = 10.5, as a significant amount
of numerical effort would be required to reach an acceptable error level, if at all.

In Figure 2 we observe that the classical formulation yields lower errors when success-
ful. It is important to note that each iteration of the classical version is computationally
cheaper. Therefore, if the solution is sufficiently close to the initial value, this formulation
should be preferred. To further improve the reconstruction, we combine both algorithms:
We start the classical algorithm with the final value of the AAO method to further re-
duce the error for values outside of the original domain of convergence for the classical
formulation. The result of this combination for p = 10 and 20 iterations of the classical
method is shown in Figure 5. The final relative error in the AAO reconstruction is 0.78,
after the continuation the error dropped to 0.72, supporting the hypothesis that starting
an additional reduced inversion after the AAO inversion can further improve the results.
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Figure 3. Camembert velocity reconstructions. (a) initial value, (b)
ground truth. Final reconstructions for the classical method in (c) p = 7.5
and (e) p = 8.5; for the AAO method in (d) p = 7.5 and (f) p = 10.0. To
improve visibility of deviations from the background velocity, the velocity
values in all plots are divided by 4000m/s.
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(a) (b)

Figure 4. Relative L2-error for different p plotted versus the outer itera-
tion index. (a) reduced method; (b) AAO method PMSD-REGINN. Note the
different scales at the vertical axes.

0.90 1.00 1.10 1.15

(a)

0.90 1.00 1.10 1.15

(b)

Figure 5. Continued Camembert velocity reconstructions. (a) initial
value (final value of the AAO reconstruction), (b) final reconstruction of
the classical method after 20 iterations. The normalization of the plots is
as in Figure 3.
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Figure 6. The velocity distribution v of the Marmousi model. Source
positions are marked with yellow dots, receiver positions with red dots.

4.2. Marmousi. We evaluate the algorithm using a more complex, layered geometry
derived from the pressure wave velocity distribution known as Marmousi2 (hereafter re-
ferred to as Marmousi) [27], a well-established model for testing inversion algorithms in
geophysics, see Figure 6: At the top, a layer of water extends to a depth of 450m. Below
this layer are sediments with different wave velocities. In the water layer, the wave speed
v is set to 1500m/s, the density ϱ is set to 1000 kg/m3 with the dissipation coefficient τ
set to 0.0001. In the ground, the density ϱ is constant at 2000 kg/m3 with τ = 0.0274.
Moreover we choose the central frequency ωc = 9Hz and the time shift tshift = 0.5 s for
the Ricker wavelet (4.2). We work with ℓ = 3 damping terms in (2.1) and with frequencies
ω−1
1 = 1.0540 s, ω−1

2 = 0.0825 s, and ω−1
3 = 0.0084 s to define α in (2.2). This configuration

yields a mean quality factor of approximately 62 over the relevant frequency band in the
ground region, indicating that 1/62 of the wave energy dissipates per cycle.2 In the water
layer, we have a substantial Q value in the order of 10000, which approximates nearly
dissipation-free propagation.

The true velocity model is scaled such that the wave speed varies between the extrema
vp,min = 1500m/s and vp,max = 4000m/s. Our parameter settings above for the Marmousi
model match the configuration proposed in [24].

The computational domain is Ω = (0, 8000)m×(0, 3000)m. Along its upper boundary,
we impose Dirichlet boundary conditions such that the sum of all pressure components is
zero, a condition commonly known in geophysics as a free surface boundary. An absorbing
layer is added to the remaining three boundaries, where we increase the attenuation
parameter to effectively dampen the wave.

2The frequency dependence of wave propagation in real media is modeled by a constant Q, which is
the ratio of full energy versus dissipated energy, see, e.g., [7, 13].



ALL-AT-ONCE SOLVER FOR VISCO-ACOUSTIC FULL WAVEFORM INVERSION 21

The computational mesh is uniformly Cartesian with a sidelength of 25m, and we use
affine-linear ansatz functions. The wave equations are solved using the implicit trapezoidal
rule with time step dt = 0.0056 s and final time T = 5.88 s.

We position 25 equally spaced sources along a line near the water surface, from
(100.5m, 20.0m)⊤ to (7899.5m, 20.0m)⊤. In addition, 350 equally spaced receivers are
placed along a line near the seafloor from (0.5m, 435.0m)⊤ to (7999.5m, 435.0m)⊤.

In the sequel, we illustrate that PMSD-REGINN has an extended domain of convergence,
even for material distributions that are more complex than the Camembert model. To
this end, we consider three initial values that fall outside the domain of convergence of
the classical approach when no additional preconditioning techniques, such as frequency
filtering [12], are implemented3: a ‘blurred’ model, an ‘averaged’ model (constructed
by averaging the blurred model over each row), and a ‘linear’ model (which assumes a
linearly increasing initial model based on depth from 1500m/s to 4000m/s), see Figure 7.
To weaken the committed inverse crime4, we add Gaussian noise: For each trace (that
is, the recorded time series of one receiver) in the simulated seismograms srobs (r is the
number of the receiver), we generate srδ with entries srδ,i ∼ N (0, 1), i = 0, . . . ,NT. Then,
we normalize it and add it to the simulated seismograms:

sr,δobs := srobs +
∥srobs∥S
∥srδ∥S

srδ,

which yields a relative noise level of 100% in each trace.
We ran PMSD-REGINN with a minimum number lmin = 3 of inner iterations and with

kmax = 20 outer iterations. The results presented in Figure 8 indicate that our algorithm
produces reconstructions of competitive quality. However, the quality of the reconstruc-
tions deteriorates as the initial value is further away from the ground truth. Reconstruc-
tion from the blurred model gives the best quality, while the linear model gives the worst.
The shallow sections have a decent quality for all initial values, but the deeper layers are
not accurately reconstructed, especially for the averaged and linear initial values. Nev-
ertheless, Figure 9 shows a consistent and strictly monotone reduction in error across all
initial values.5 The error values are normalized to the initial error of the affine linear
initial guess. This normalization allows for a quantitative comparison: the final error of
the reconstruction that starts with the linear model remains larger than the error of the
averaged initial model, while the final error of the iteration with this starting model is
still larger than the error of the blurred model. This observation suggest that the L2-error
metric alone may be misleading because all the final reconstructions in Figure 8 ostensibly
capture more subsurface information than any of three initial models.

Over the past decade, the structural similarity index (SSIM) has received considerable
attention from the image processing community as a measure for evaluating perceptual

3The code corresponding to the experiments showing divergence for the three initial models can be
found in the Git repository provided at the beginning of this section.

4An inverse crime is committed when synthetic measurements are generated with the same forward
solver that will later be used for inversion.

5The observed, strictly monotone L2-error decrease complies with the theoretical prediction in [25,
Theorem 3.1].
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Figure 7. Initial values for the reconstructions: (a) blurred true model,
(b) row-averaged version of (a), (c) depth linear model (1500m/s to 4000m/s)
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Figure 8. Results of the Marmousi experiment with initial values: (a)
blurred, (b) averaged , (c) depth linear
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Figure 9. Relative L2-errors of the Marmousi experiment with the three
different initial values shown in Figure 7. The error values are normalized
to the initial error of the affine linear initial guess.

Figure 10. Structural similarity index of the Marmousi experiment with
the three different initial values shown in Figure 7.

differences between digital images [42]. The SSIM takes values between −1 and 1, with a
value of 1 only if the compared images are identical. We have computed the SSIM index
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for the Marmousi experiment6, see Figure 10. Although the initial models all exhibit
comparable SSIM quality, we observe a convergence pattern similar to that of the L2-
error: The SSIM index with respect to the blurred initial model increases quickly, clearly
outperforming the other initial models. Starting with the linear model, the quality of the
reconstructions improves only marginally over 20 iterations, and the index evolution with
respect to the averaged initial model behaves only slightly better. Nonetheless, the SSIM
index indeed corresponds to our visual perception: the final iterations, considering both
the averaged and linear initial models, exhibit better quality compared to the blurred
initial model.

It is worth noting that changes to the parameter lmin could potentially enhance recon-
struction outcomes; however, such optimizations are beyond the scope of this study.

5. Conclusion and outlook

We derived the inversion scheme PMSD-REGINN as an implementation of the time-
domain all-at-once formulation of FWI in the visco-acoustic regime. Through numerical
experiments, we demonstrated its effectiveness in inverting the pressure wave speed and
its robustness against noise. Additionally, we demonstrated that PMSD-REGINN mitigates
cycle-skipping to some extent: In cases where the classical formulation failed, we observed
convergence with PMSD-REGINN. This illustrates that the algorithm is less dependent on
the initial value chosen.

We also found that a combination of PMSD-REGINN with the classical formulation can be
advantageous, that is, starting an inversion algorithm based on the classical formulation
with the output of PMSD-REGINN. With this combination we get the benefits of both algo-
rithms: PMSD-REGINN has a larger domain of convergence and the algorithm for classical
formulation yields better reconstructions when it converges.

The ultimate objective of most seismic inversion techniques is to make them practical
and high-performing for real-world applications, particularly for inverting field data in
three dimensions. With additional features, such as source inversion, PMSD-REGINN can,
in principle, cope with actual measured data. However, conducting three-dimensional
inversions presents added challenges since the time-domain all-at-once approach requires
storing at least four wavefields simultaneously: one for the current iterate, one for the
update, one for the residual, and one temporary field while applying the preconditioner.
Given the typical application scale of approximately 109 grid points, such storage demands
significant memory resources, available only on large, modern computer clusters. For a 3D
simulation with three damping terms (i.e., three velocity components and four pressure
components), one time step in double precision consumes around 1 GB of RAM. Thus, a
full wavefield, which typically incorporates at least 1000 time steps, requires over 1 TB of
memory.

Therefore, to adapt the algorithm for three-dimensional problems, it is essential to
reduce memory requirements. In conventional reduced methods, a common approach is
to save snapshots and recalculate segments of the wavefield as needed. However, this

6We first converted our raw data to a gray scale images with range [0, 255] and then we applied the
Python routine structural similarity from the scikit-image package.

https://scikit-image.org/docs/0.25.x/api/skimage.metrics.html
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technique is infeasible here because the wavefields to be stored are not just solutions of
the wave equation. Additionally, we cannot store the right-hand sides that generate the
wavefields because they are outputs of prior computations rather than known inputs. A
first step to reducing memory consumption is exploring alternative preconditioners that
do not depend on storing an extra wavefield.

Our proof of concept justifies further exploration and the REGINN framework is flexible
enough to incorporate the resulting further improvements.
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