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A HYBRID HIGH-ORDER METHOD FOR THE

GROSS–PITAEVSKII EIGENVALUE PROBLEM

MORITZ HAUCK∗, YIZHOU LIANG†

Abstract. We introduce a hybrid high-order method for approximating the
ground state of the nonlinear Gross–Pitaevskii eigenvalue problem. Optimal

convergence rates are proved for the ground state approximation, as well as

for the associated eigenvalue and energy approximations. Unlike classical con-
forming methods, which inherently provide upper bounds on the ground state

energy, the proposed approach gives rise to guaranteed and asymptotically

exact lower energy bounds. Importantly, and in contrast to previous works,
they are obtained directly without the need of post-processing, leading to more

accurate guaranteed lower energy bounds in practice.

1. Introduction

The Gross–Pitaevskii eigenvalue problem (GP-EVP) arises in quantum physics,
where it describes stationary quantum states of bosonic particles at ultracold tem-
peratures, known as Bose–Einstein condensates; see, e.g., [DGPS99, ASRVK01,
Fet09]. The problem involves a non-negative trapping potential V ∈ L∞(Ω) and a
parameter κ > 0 describing the strength of the repulsive particle interactions. As
computational domain we consider a bounded convex Lipschitz domain Ω ⊂ Rd,
d ∈ {2, 3}, where we note that the restriction to a sufficiently large domain, along
with homogeneous Dirichlet boundary conditions, is a standard and physically rea-
sonable assumption for modeling low-energy quantum states, cf. [BC13]. Mathe-
matically, the GP-EVP seeks L2-normalised eigenfunctions {uj : j = 1, 2, . . . } ⊂
H1

0 (Ω) and corresponding eigenvalues {λj : j = 1, 2, . . . } such that

(1.1) −∆uj + V uj + κ|uj |2uj = λjuj

holds in the weak sense. The function |uj |2 represents the density of the stationary
quantum state uj , and the eigenvalue λj is typically called the chemical potential. It
is a classical result that all eigenvalues of (1.1) are real and positive, and the smallest
eigenvalue is simple; see, e.g., [CCM10]. Without loss of generality, we assume that
the eigenvalues are ordered nondecreasingly, i.e., 0 < λ1 < λ2 ≤ λ3 ≤ . . . .

The GP-EVP arises as the Euler–Lagrange equations for critical points of the
Gross–Pitaevskii energy, defined for all v ∈ H1

0 (Ω) as,

(1.2) E(v) := 1
2 (∇v,∇v)L2 + 1

2 (V v, v)L2 + κ
4 (|v|2v, v)L2 ,

subject to the L2-normalisation constraint. The ground state, which represents the
stationary quantum state of lowest energy, is characterised as the minimiser of the
Gross–Pitaevskii energy, i.e.,

(1.3) u ∈ argmin
v∈H1

0 (Ω) : ∥v∥L2=1

E(v).

We emphasise that, under the above assumptions on Ω and V , the constrained min-
imisation problem (1.3) admits a unique global minimiser (up to sign). Moreover,
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this ground state u coincides, up to sign, with the eigenfunction u1 associated with
the smallest eigenvalue λ1 of (1.1). The minimal energy E := E(u) is related to
the smallest eigenvalue by the identity λ1 = 2E + κ

2 ∥u∥4L4 . For further theoretical
results on the Gross–Pitaevskii problem, see, for example, [CCM10].

A wide range of discretisation methods has been proposed in the literature to
approximate the Gross–Pitaevskii ground state. Most existing approaches are
based on H1

0 -conforming discretisations, including standard continuous finite el-
ements [Zho04, CCM10, CHZ11], spectral and pseudospectral methods [CCM10,
BC13], multiscale methods [HMP14, HW22, HP23, PWZ24], and mesh-adaptive
methods [DH10, HSW21]. Recently, also non-standard conforming finite element
methods using mass lumping techniques to preserve certain positivity properties
of the ground state have been introduced; see [CLLZ24, HLP24]. A character-
istic property of conforming discretisations is that they approximate the ground
state energy from above, as the energy functional is minimised over a subset. In
the context of linear eigenvalue problems, where the terms energy and eigenvalue
can be used interchangeably, several strategies have been developed to compute
lower eigenvalue bounds. Among these, mixed finite element methods have proven
effective [Gal23], and this approach has recently been extended to the present non-
linear GP-EVP in [GHLP25]. However, this method typically requires an additional
postprocessing step to obtain asymptotically exact lower bounds. An alternative
approach that gives guaranteed lower eigenvalue bounds without the need for post-
processing is provided by hybrid high-order (HHO) methods; see [DPT18] for an
overview. In the linear setting, such bounds have been established, for example
in [CEP21, CGT24, Tra24]; see also [CZZ20] for a similar result based on the re-
lated hybridisable discontinuous Galerkin method.

In this work, we extend the HHO methodology to the GP-EVP, aiming to ob-
tain guaranteed lower bounds on the ground state energy without the need for
post-processing. To this end, we introduce a modified version of the HHO method
that employs a lowest-order quadrature rule for the nonlinearity. This modification
is crucial for estimating the nonlinear term in the proof of the guaranteed lower
energy bound via Jensen’s inequality. Note that the lack of higher-order generalisa-
tions of Jensen’s inequality prevents us from deriving high-order guaranteed lower
energy bounds for the Gross–Pitaevskii problem. Although the guaranteed lower
energy bounds we obtain are only of lowest order, they can still be significantly
more accurate than those from the post-processed lowest-order mixed discretiza-
tion in [GHLP25]. The improved accuracy is due to the absence of post-processing,
which can degrade the quality of the bounds, particularly for smooth problems
where discretization errors are comparatively small. Numerical experiments clearly
demonstrate this improvement, showing that the guaranteed lower energy bounds
of the proposed modified HHO method are more accurate by up to two orders of
magnitude than the post-processed mixed discretisation from [GHLP25].

In addition to providing guaranteed lower energy bounds, HHO methods offer
improved convergence rates for the reconstructed unknowns compared to classical
finite element methods. Specifically, when using k-th order polynomials on the
mesh faces and assuming sufficient smoothness, the reconstructed ground state ap-
proximation exhibits optimal convergence rates of order k+ 1 in the H1-seminorm
and k+2 in the L2-norm. We provide a rigorous convergence analysis establishing
these rates, along with optimal convergence of order 2k+2 for the energy and eigen-
value approximations. Furthermore, we analyse the convergence of the proposed
modified HHO method and prove first-order H1-convergence of the ground state
approximation, second-order L2-convergence, and second-order convergence for the
energy and eigenvalue approximations. Notably, the presented error analysis differs
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substantially from standard techniques in the linear setting. Instead, it is inspired
by the analysis conducted in [CCM10, GHLP25] for classical conforming and mixed
discretisations of the Gross–Pitaevskii problem, respectively.

The remainder of the paper is organised as follows. Section 2 introduces the
HHO method for the Gross–Pitaevskii problem. Guaranteed lower energy bounds
for a modified HHO method are established in Section 3. Section 4 presents an a
priori convergence analysis of the HHO method and its modified version. Numerical
experiments supporting our theoretical results are presented in Section 5.

2. Hybrid high-order method

Consider a hierarchy of simplicial meshes {Th}h>0 of the domain Ω, which we
assume to be geometrically conforming and shape regular. We denote by T the
elements of Th, and define the maximal mesh size of Th as h := maxT∈Th

hT , where
hT := diam(T ). The set of mesh faces of Th, denoted by Fh, is partitioned into
the set of interior faces F i

h and boundary faces Fb
h. For any T ∈ Th, we denote by

F∂T the set of faces lying on the boundary of T . The space of polynomials of total
degree at most l ∈ N0 on an element T ∈ Th is denoted by P l(T ). Similarly, Pk(F )
denotes the space of polynomials of total degree at most k ∈ N0 on a face F ∈ Fh.
Moreover, for any T ∈ Th, the space of broken polynomials on ∂T is defined as

Pk(F∂T ) :=
{
v ∈ L2(∂T ) : v|F ∈ Pk(F ), ∀F ∈ F∂T

}
.

We further introduce for all T ∈ Th and all F ∈ Fh the projections Πl
T : L2(T ) →

P l(T ) and Πk
F : L2(F ) → Pk(F ), which are defined as orthogonal projections with

respect to the L2-inner products (·, ·)T and (·, ·)F , respectively.
Global discrete polynomial spaces can be obtained by concatenating the local

spaces P l(T ) and Pk(F ) in a discontinuous manner, which gives

P l(Th) := {v ∈ L2(Ω) : v|T ∈ P l(T ), ∀T ∈ Th},
Pk(Fh) := {v ∈ L2(Σ) : v|F ∈ Pk(F ), ∀F ∈ Fh},

where Σ := ∪F∈Fh
F denotes the mesh skeleton. Corresponding L2-projections can

be defined piecewise as follows: Πl
Th

: L2(Ω) → P l(Th) by (Πl
Th
·)|T := Πl

T · for all

T ∈ Th, and Πk
Fh

: L2(Σ) → Pk(Fh) by (Πk
Fh

·)|F := Πk
F · for all F ∈ Fh.

The global approximation space of the HHO method is given by

(2.1) V̂h := Pk+1(Th)× Pk(Fh),

where we choose l = k+1, which is a classical choice for HHOmethods in the context
of guaranteed lower eigenvalue bounds. Note that the hat notation emphasises the
presence of both element and face components. For a function v̂h ∈ V̂h, these com-
ponents are denoted by v̂h = (vTh

, vFh
), with vTh

= (vT )T∈Th
and vFh

= (vF )F∈Fh
.

Furthermore, for any element T ∈ Th, we denote the corresponding restriction of
a function v̂h ∈ V̂h by v̂T = (vT , v∂T ) ∈ V̂T := Pk+1(T ) × Pk(F∂T ), where v∂T
is given, for any F ∈ F∂T , as v∂T |F = vF . The subspace of V̂h incorporating
homogeneous Dirichlet boundary conditions is defined as

(2.2) Ûh := {v̂h ∈ V̂h : vF = 0, ∀F ∈ Fb
h}.

A central component of the HHO methodology is the reconstruction operator
Rh : V̂h → Pk+1(Th). Given v̂h ∈ V̂h, its reconstruction Rhv̂h ∈ Pk+1(Th) is
defined as the unique function satisfying, for all T ∈ Th and φ ∈ Pk+1(T ),

(∇(Rhv̂h)|T ,∇φ)L2(T ) = −(vT ,∆φ)L2(T ) + (v∂T , ∂nφ)L2(∂T ),(2.3a)

((Rhv̂h)|T , 1)L2(T ) = (vT , 1)L2(T ),(2.3b)

where ∂n denotes the outward normal derivative on ∂T .
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Having introduced the reconstruction operator, we now introduce the discrete
bilinear form of the HHO method. For a given stabilisation parameter σ > 0, it is
defined for all v̂h, φ̂h ∈ V̂h by

ah(v̂h, φ̂h) := (∇hRhv̂h,∇hRhφ̂h)L2 + sh(v̂h, φ̂h),

where ∇h denotes the Th-piecewise gradient. The stabilisation bilinear form sh is
given by sh(v̂h, φ̂h) :=

∑
T∈Th

sT (v̂T , φ̂T ) with sT for all v̂T , φ̂T ∈ V̂T defined as

sT (v̂T , φ̂T ) := σ
∑

F∈F∂T

{
ℓ−1
T,F

(
Πk

F (v∂T − (Rhv̂h)T ) , Π
k
F (φ∂T − (Rhφ̂h)T )

)
L2(F )

}
+ σh−2

T (vT − (Rhv̂h)T , φT − (Rhφ̂h)T )L2(T ) .

Here, the weights ℓT,F > 0 are for any T ∈ Th and F ∈ F∂T defined as

ℓT,F :=
|F |d−1 h

2
T

|TF |d
,

where TF := conv{xT , F} ⊂ T is the convex hull of xT , denoting the barycenter
of the element T , and the face F . Further, |S|n for n ∈ {1, . . . , d} denotes the
n-dimensional volume of the set S. Due to shape regularity of Th, we have the
scaling ℓT,F ≈ hT . The bilinear form sh serves to penalise the non-conformity of
the discrete solution ûh = (uTh

, uFh
), in particular the discrepancy between uTh

and uFh
across the mesh skeleton Σ. Note that the above choice of stabilisation

was introduced in the context of guaranteed lower eigenvalue bounds in [Tra24,
Eq. (3.6)], and a related stabilisation for the case l = k was proposed in [DPD20,
Ex. 2.8]. The latter stabilisation, however, is unstable for our choice l = k + 1,
cf. [Tra24]. The discrete bilinear forms ah and sh induce corresponding discrete
(semi-)norms, defined by ∥ · ∥2ah

:= ah(·, ·) and | · |2sh := sh(·, ·), respectively.
A discrete counterpart of the energy (1.2) can be defined, for any v̂h ∈ Ûh, as

Eh(v̂h) := 1
2ah(v̂h, v̂h) +

1
2 (V vTh

, vTh
)L2 + κ

4 (|vTh
|2vTh

, vTh
)L2 ,

and the resulting HHO approximation ûh ∈ Ûh to the ground state u is characterised
as the solution to the following discrete constrained minimisation problem:

(2.4) ûh ∈ argmin
v̂h∈Ûh : ∥vTh

∥L2=1

Eh(v̂h),

where Eh := Eh(ûh) denotes the corresponding discrete ground state energy. Un-
like the continuous case, where the ground state is unique up to sign, uniqueness
properties in the discrete setting remain an open question, with results only known
for the first-order lumped continuous finite element method, cf. [CLLZ24, HLP24].
Nevertheless, this non-uniqueness is typically not problematic in practice, and we
proceed under the assumption that a discrete minimiser has been found. Such
a discrete minimiser always exists by finite-dimensional compactness arguments
(Bolzano-Weierstrass theorem). To align the sign of the discrete solution with that
of the continuous ground state u, we choose the sign of ûh such that (u, uTh

)L2 ≥ 0.

3. Guaranteed lower energy bound

Due to the nonlinearity, classical techniques for obtaining guaranteed lower
eigenvalue bounds with HHO methods are not directly applicable. The approach
in [GHLP25], which establishes such bounds for the Gross–Pitaevskii problem us-
ing lowest-order mixed finite elements and a post-processing step, relies on Jensen’s
inequality to handle the nonlinearity. This is feasible because the ground state is
approximated by Th-piecewise constants and Jensen’s inequality is applicable in
this setting. However, for the HHO method defined in (2.4), it is unclear how
to apply Jensen’s inequality, since the bulk approximation space consists at least
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of Th-piecewise first-order polynomials. Corresponding generalizations of Jensen’s
inequality are not known (and also not expected to hold).

To still obtain a guaranteed lower energy bound using the HHO methodology,
we introduce a modified discrete energy functional, defined for all v̂h ∈ Ûh as

(3.1) E0
h(v̂h) :=

1
2ah(v̂h, v̂h) +

1
2 (V vTh

, vTh
)L2 + κ

4 (|Π0
Th
vTh

|2vTh
, vTh

)L2 .

The special treatment of the nonlinearity can be interpreted as applying a low-order
quadrature rule to (parts of) the nonlinear term. The corresponding modified HHO

approximation û0h ∈ Ûh is then defined as the solution to:

(3.2) û0h ∈ argmin
v̂h∈Ûh : ∥vTh

∥L2=1

E0
h(v̂h).

Note that the modified HHO approximation is considered only for k = 0, as the
low-order quadrature in (3.2) prevents any gain in convergence rates for k > 0.

To derive guaranteed lower energy bounds, one typically exploits the minimising
property of (3.2) by bounding the discrete energy from above through evaluating
the discrete energy functional at a suitable interpolation of the exact solution. For
this purpose, we introduce an interpolation operator as

Ih : H1
0 (Ω) → Ûh, Ihv :=

(
Πk+1

Th
v, Πk

Fh
v
)
.

The following important operator identity holds:

(3.3) Rh ◦ Ih = Gh,

where Gh : H
1
0 (Ω) → Pk+1(Th) denotes the elliptic projection. Given a function

v ∈ H1
0 (Ω), its elliptic projection Ghv ∈ Pk+1(Th) is defined as the unique function

satisfying, for all T ∈ Th and w ∈ Pk+1(T ), the two conditions

(∇(Ghv)|T ,∇w)L2(T ) = (∇v,∇w)L2(T ),(3.4a)

((Ghv)|T , 1)L2(T ) = (v, 1)L2(T ).(3.4b)

The desired guaranteed lower energy bound for the modified HHO approximation
is stated in the following theorem.

Theorem 3.1 (Guaranteed lower energy bound). Assume that V ∈ P0(Th) and
let the stabilisation parameter σ and the mesh size h be chosen such that

(3.5) 1− σ( 1
π2 + Ctr)− 4h2E0

h

π2 ≥ 0

with the constant Ctr := 1/π2 + 2/(dπ) > 0. Then, there holds the following guar-
anteed lower energy bound:

E0
h ≤ E.

Proof. The discrete energy of the ground state approximation û0h from (3.2) is
characterised by the pseudo-Rayleigh quotient

E0
h = min

v̂h∈Ûh : ∥vTh
∥L2>0

1

∥vTh
∥4L2

{
1
2 (∇hRhv̂h,∇hRhv̂h)L2∥vTh

∥2L2

+ 1
2sh(v̂h, v̂h)∥vTh

∥2L2+ 1
2 (V vTh

, vTh
)L2∥vTh

∥2L2+κ
4 (|Π0

Th
vTh

|2vTh
, vTh

)L2

}
.

Next, we majorize E0
h by choosing v̂h = Ihu ∈ Ûh and use (3.3), which results in

E0
h∥Πk+1

Th
u∥4L2 ≤ 1

2 (∇hGhu,∇hGhu)L2∥Πk+1
Th

u∥2L2 + 1
2sh(Ihu, Ihu)∥Πk+1

Th
u∥2L2

+ 1
2 (VΠk+1

Th
u,Πk+1

Th
u)L2∥Πk+1

Th
u∥2L2 + (|Π0

Th
u|2Πk+1

Th
u,Πk+1

Th
u)L2 ..
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In the following, we bound all the terms on the right-hand side of the latter
inequality individually, where we note that ∥Πk+1

Th
u∥2L2 ≤ ∥u∥2L2 = 1. For the first

term, we obtain using Pythagoras theorem, that

(∇hGhu,∇hGhu)L2 = ∥∇u∥2L2 − ∥∇h(u− Ghu)∥2L2 .

The second term can be estimated using (3.3), Lemmas A.1 and A.2, and the

stability properties of the L2-projections Πk+1
Th

and Πk
Fh

, as

sh(Ihu, Ihu) ≤ σ( 1
π2 + Ctr)∥∇h(u− Ghu)∥2L2 .

For estimating the third term, let us recall that V ∈ P0(Th). This allows to split
up the L2-inner product into local element contributions. Using the local stability
properties of Πk+1

T , this yields that

(VΠk+1
Th

u,Πk+1
Th

u)L2 =
∑
T∈Th

V |T ∥Πk+1
T u∥2L2(T ) ≤ (V u, u)L2 .

To estimate the fourth term, we again split up the inner product in local element
contributions. Noting that Π0

TΠ
k+1
T v = Π0

T v for all v ∈ L2(T ), we obtain with
Jensen’s inequality for all T ∈ Th that

(|Π0
Tu|2Πk+1

T u,Πk+1
T u)T ≤

( 
T

udx
)2

(u, u)T ≤ |T |d
(  

T

u2 dx
)2

≤ (|u|2u, u)T .

Summing up over all T ∈ Th then results in

(|Π0
Th
u|2Πk+1

Th
u,Πk+1

Th
u)L2 ≤ (|u|2u, u)L2 .

Combining the previous estimates gives

E0
h∥Πk+1

Th
u∥4L2 ≤ E − 1

2

(
1− σ( 1

π2 + Ctr)
)
∥∇h(u− Ghu)∥2L2 .(3.6)

For rewriting the left-hand side of (3.6), we use the Pythagorean identity and the

best-approximation property of the L2-projection Πk+1
Th

and Lemma A.1 to get that

∥Πk+1
Th

u∥4L2 =
(
∥u∥2L2 − ∥u−Πk+1

Th
u∥2L2

)2 ≥
(
1− ∥u− Ghu∥2L2

)2
≥ 1− 2h2

π2 ∥∇h(u− Ghu)∥2L2 .

Finally, the combination of the previous estimates leads to the inequality

E0
h ≤ E − 1

2

(
1− σ( 1

π2 + Ctr)− 4h2E0
h

π2

)
∥∇h(u− Ghu)∥2L2 ,

which completes the proof. □

Remark 3.2 (Assumption of Th-piecewise constant potentials). The assumption
V ∈ P0(Th) in Theorem 3.1 is essential for proving the guaranteed lower energy
bound. For simple potentials, where the minimum value on each element can be
easily computed (e.g., the harmonic potential V (x) = 1

2 |x|2), one can approximate
V by a piecewise constant function that assigns this minimum value to each element.
Applying the modified HHO method (3.2) to this piecewise constant potential ap-
proximation then yields a guaranteed lower energy bound for the original problem.

4. A priori error analysis

In this section, we present an a priori error analysis of the HHO approximation
introduced in (2.4) and its modified version from (3.2). The analysis is inspired by
the works [Zho04, CCM10] on classical conforming finite element methods. Results
from the conforming setting are used at several points in the analysis, along with
technical tools that enable their application in the present non-conforming setting.
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The Euler–Lagrange equations associated with the constrained minimisation
problem (1.3) give rise to the following eigenvalue problem: seek (u, λ) ∈ H1

0 (Ω)×R
with ∥u∥L2(Ω) = 1 such that, for any φ ∈ H1

0 (Ω), it holds that

(4.1) (∇u,∇φ)L2 + (V u, φ)L2 + κ(u3, φ)L2 = λ(u, φ)L2 .

Recall that the eigenvalue associated with the ground state, referred to as the
ground state eigenvalue, is the smallest among all eigenvalues of the problem.

Similarly, also any discrete ground state defined as the solution to the discrete
constrained minimisation problem (2.4) satisfies the discrete eigenvalue problem:

seek (uh, λh) ∈ Ûh × R with ∥uTh
∥L2 = 1 such that, for all φ̂h ∈ Ûh, it holds that

(4.2) ah(ûh, φ̂h) + (V uTh
, φTh

)L2 + κ(u3Th
, φTh

)L2 = λh(uTh
, φTh

)L2 ,

where we recall the notation ûh = (uTh
, uFh

) and analogously for the test func-
tion φ̂h. The discrete ground state eigenvalue λh is not necessarily the smallest
among all discrete eigenvalues. As in the continuous setting, the discrete ground
state energy and corresponding eigenvalue are related by λh = 2Eh + κ

2 ∥uTh
∥4L4 .

Remark 4.1 (Tilde notation). In the following, we will write a ≲ b or b ≳ a if it
holds that a ≤ Cb or a ≥ Cb, respectively, where C > 0 is a constant that may
depend on the domain, the mesh regularity, the coefficients V and κ, the ground
state u, and the polynomial degree k, but is independent of the mesh size h.

Our first objective is to prove the plain convergence of the HHO method; precise
convergence rates will be derived later.

Theorem 4.2 (Plain convergence of HHO method). As h→ 0, it holds that

∥∇h(Rhûh − u)∥L2 → 0, ∥u− uTh
∥L2 → 0, Eh → E, λh → λ.

Proof. We begin by establishing the uniform boundedness of the discrete ground
state energies Eh. Using definition (2.4), we directly obtain the estimate Eh ≤
Eh(Ihu/∥Πk+1

Th
u∥L2). Its right-hand side can be bounded independently of h by an

argument similar to that used in the proof of Theorem 3.1. Specifically, we apply
Lemma A.2, (3.3), along with the uniform boundedness of Gh in the H1-seminorm

and of Πk+1
Th

in the L4-norm. Importantly, this bound is obtained without requiring
any restriction on the stabilization parameter σ. As a direct consequence, we obtain
the uniform boundedness of λh and ∥ûh∥ah

, which in turn implies the uniform L6-
boundedness of uTh

using Lemma A.3.
Consider the auxiliary Poisson problem, which seeks uch ∈ H1

0 (Ω) such that

(4.3) −∆uch = −V uTh
− κu3Th

+ λhuTh
=: fh

holds in the weak sense. Since the L2-norm of the right-hand side fh is uniformly
bounded, classical elliptic regularity results imply that uch ∈ H2(Ω) ∩H1

0 (Ω), with
H2-norm uniformly bounded. Noting that ûh is the HHO approximation of the so-
lution uch to Poisson problem (4.3) with right-hand side fh, classical approximation
results for the HHO method (see, e.g., [DPD20, Thm. 2.27 & 2.28]) show that

∥ûh − Ihuch∥ah
+ ∥∇h(Rhûh − uch)∥L2 + |ûh|sh ≲ h.(4.4)

From the latter estimate we can also derive the L2-error estimate

∥uTh
− uch∥L2 ≤ ∥uTh

−Πk+1
Th

uch∥L2 + ∥uch −Πk+1
Th

uch∥L2 ≲ h,(4.5)

where we used Lemma A.3 and the approximation properties of Πk+1
Th

.

Next, we define an L2-normalised version of uch as ũch := uch/∥uch∥L2 . Using the
normalisation condition ∥uTh

∥L2 = 1 and (4.5), one can show that |∥uch∥L2 − 1| ≲ h,
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so that the normalisation introduces only a perturbation of order h. Therefore, we
can derive from (4.4) and (4.5) the estimate

(4.6) ∥∇h(Rhûh − ũch)∥L2 + ∥uTh
− ũch∥L2 ≲ h.

For the difference between Eh and Ec
h := E(ũch) we obtain that

|Eh − Ec
h| ≤ 1

2 |(∇hRhûh,∇hRhûh)L2 − (∇ũch,∇ũch)L2 |+ 1
2 |sh(ûh, ûh)|

+ 1
2 |(V uTh

, uTh
)L2 − (V ũch, ũ

c
h)L2 |+ κ

4

∣∣(u3Th
, uTh

)L2 − ((ũch)
3, ũch)L2

∣∣ ≲ h,
(4.7)

where the last estimate follows from (4.4) and (4.6), the uniform L6-boundedness
of uTh

, and the uniform L∞-boundedness of ũch. The latter is a consequence of the

Sobolev embedding H2(Ω) ↪→ C0(Ω) and the uniform H2-boundedness of ũch.
Noting that Eh − E ≤ Eh (Ihu/∥uTh

∥L2) − E, and proceeding similar as in the
first part of this proof where we establish the uniform boundedness of Eh, we obtain
that Eh − E ≲ h2. Together with E ≤ Ec

h and (4.7), this leads to

−h ≲ Eh − Ec
h ≤ Eh − E ≲ h2,

which directly implies that Eh → E as h → 0. Using an argument similar to that
in [CCM10, Thm. 1], one can further show that ∥u − ũch∥H1 → 0. In combination
with estimate (4.6), this implies the plain convergence results

(4.8) ∥u− uTh
∥L2 → 0, ∥∇h(Rhûh − u)∥L2 → 0.

From the first estimate in (4.8), we additionally obtain that

|λ− λh| ≤ 2|E − Eh|+ κ
2

∣∣∥uTh
∥4L4 − ∥u∥4L4

∣∣→ 0,

using the uniform L6-boundedness of uTh
, along with an L∞-estimate for u. □

An important step in proving convergence rates is to write the ground state
u ∈ H1

0 (Ω) as the weak solution to the auxiliary Poisson problem

(4.9) −∆u = λu− V u− κu3 =: f,

with homogeneous Dirichlet boundary conditions on ∂Ω. This allows us to construct
a discrete ground state approximation by considering the HHO discretisation of
problem (4.9). The latter seeks v̂h = (vTh

, vFh
) ∈ Ûh such that, for all φ̂h ∈ Ûh,

(4.10) ah(v̂h, φ̂h) = (f, φTh
)L2 ,

and classical HHO theory shows optimal convergence rates for this approximation;
see, e.g., [DPD20, Thm. 2.27 & 2.28]. We emphasise that this approximation is
introduced solely for theoretical analysis and is not computed in practice. Since v̂h
is generally not L2-normalised, we define its L2-normalised counterpart by

ŵh := v̂h
/
∥vTh

∥L2 .

In the following convergence proof, we apply the triangle inequality to split the
error into two components: the error between u and ŵh, and the error between ŵh

and ûh. The first of these two errors is estimated in the lemma below. In what
follows, we denote for any s ∈ N by Hs(Th) the broken Sobolev space consisting of
functions whose restriction to each element T ∈ Th belongs to Hs(T ).

Lemma 4.3 (Bound of first term). Assume that, for some 0 ≤ r ≤ k, it holds that
u ∈ Hr+2(Th). Then, we have the following approximation results:

(4.11) ∥wTh
− u∥L2 + ∥ŵh − Ihu∥ah

+ ∥∇h(Rhŵh − u)∥L2 + |ŵh|sh ≲ hr+1.
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Proof. Applying classical HHO theory (see, e.g., [DPD20, Thm. 2.27 & 2.28]), yields
an error estimate of the form (4.11) for the HHO approximation v̂h. To transfer
this estimate to its L2-normalised counterpart ŵh, we observe that

∥vTh
− u∥L2 ≤ ∥vTh

−Πk+1
Th

u∥L2 + ∥Πk+1
Th

u− u∥L2 ≲ hr+1,

where we used Lemma A.3 along with the approximation properties of Πk+1
Th

. Due

to the L2-normalization condition ∥u∥L2 = 1, it follows that |∥vTh
∥L2 − 1| ≲ hr+1,

which readily implies the assertion. □

It remains to bound the second error, which is done in the following lemma.

Lemma 4.4 (Bound of second term). Assume that, for some 0 ≤ r ≤ k, it holds
that u ∈ Hr+2(Th). Then, we have the following estimate:

∥uTh
− wTh

∥L2 + ∥∇hRh(ûh − ŵh)∥L2 + |ûh|sh + |ûh − ŵh|sh
≲ ∥(uTh

− u)2∥L3 + h∥uTh
− u∥L2 + h|λh − λ|+ hr+1.

Proof. In this proof, we write pairs of functions in L2(Ω) × H1(Th) in Roman
boldface letters, e.g., u, v, and w. Given the ground state u and the corresponding
eigenvalue λ, we define the bilinear form Ju,λ for any v = (v, γ) and w = (w, τ) as

Ju,λ(v,w) := (∇hγ,∇hτ)Ω + (V v,w)Ω + 3κ(|u|2v, w)Ω − λ(v, w)Ω.

Further, denote uh := (uTh
,Rhûh) and wh := (wTh

,Rhŵh), and abbreviate yh :=
uh−wh and ŷh := ûh−ŵh. The function ŷh can be seen as the HHO approximation
to the weak solution of the auxiliary Poisson problem: seek χ ∈ H1

0 (Ω) such that

−∆χ = fh − f/∥vTh
∥L2 =: gh

with f and fh defined in (4.9) and (4.3), respectively. By classical elliptic regularity,
χ ∈ H2(Ω) ∩H1

0 (Ω) with ∥χ∥H2 ≲ ∥gh∥L2 ≲ 1, since gh is uniformly L2-bounded.
Applying classical HHO convergence results for the Poisson problem (see, e.g.,
[DPD20, Thm. 2.27 & 2.28]) along with Lemma A.3, we obtain that

(4.12) ∥yTh
− χ∥L2 + ∥∇h(Rhŷh − χ)∥L2 ≲ h∥χ∥H2 .

To estimate the discrete errors associated with ŷh, we use the identity

∥yTh
∥2L2 = ∥χ∥2L2 + (yTh

− χ, yTh
+ χ)L2 ,

and a similar one for the term ∥∇hRhŷh∥2L2 . Applying (4.12) and the weighted
Young’s inequality with parameter ϵ > 0, this leads to the estimate

∥yTh
∥2L2 + ∥∇hRhŷh∥2L2

≲ ∥χ∥2L2 + ∥∇χ∥2L2 + h∥χ∥H2(h∥χ∥H2 + ∥yTh
∥L2 + ∥∇hRhŷh∥L2)

≤ ∥χ∥2L2 + ∥∇χ∥2L2 + (1 + 1
4ϵ )h

2∥χ∥2H2 + ϵ(∥yTh
∥2L2 + ∥∇hRhŷh∥2L2).

(4.13)

Choosing the parameter ϵ sufficiently small (independently of h) allows the last
term on the right-hand side to be absorbed into the left-hand side, yielding

∥yTh
∥2L2 + ∥∇hRhŷh∥2L2 ≲ ∥χ∥2L2 + ∥∇χ∥2L2 + h2∥χ∥2H2 ≲ Ju,λ(x,x) + h2∥χ∥2H2 ,

where the second estimate follows from [CCM10, Lem. 1] with x := (χ, χ). The
referenced result applies only in the conforming setting, and thus for the pair x,
but not directly for its discrete counterpart yh. To relate back to yh, we invoke
estimate (4.12), the L∞-bound for u, and the weighted Young’s inequality with
parameter δ > 0. Proceeding similarly to estimate (4.13), we obtain

|Ju,λ(yh,yh)− Ju,λ(x,x)| ≲
(
1 + 1

4δ

)
h2∥χ∥2H2 + δ

(
∥yTh

∥2L2 + ∥∇hRhŷh∥2L2

)
.
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Combining this with the previous estimate and choosing δ sufficiently small (inde-
pendent of h) allows to absorb the last term into the left-hand side, yielding

∥yTh
∥2L2 + ∥∇hRhŷh∥2L2 ≲ Ju,λ(yh,yh) + h2∥χ∥2H2

= Ju,λ(uh − u,yh)︸ ︷︷ ︸
=:Ξ1

+ Ju,λ(u−wh,yh)︸ ︷︷ ︸
=:Ξ2

+h2∥χ∥2H2︸ ︷︷ ︸
=:Ξ3

,

(4.14)

where we denote u := (u, u).
To prepare the estimate for Ξ1, we observe the following identity:

Ju,λ(uh,yh) = (λh − λ)(uTh
, yTh

)L2 + κ(3u2uTh
− u3Th

, yTh
)L2 − sh(ûh, ŷh),

where we added and subtracted the terms sh(ûh, ŷh) and κ(u2Th
, yTh

)L2 , and ap-
plied (4.2) with the test function ŷh. Furthermore, we have the identity

Ju,λ(u,yh) = (∇u,∇h(Rhŷh − Jhŷh))L2 + (∆u, yTh
− Jhŷh)L2 + κ(2u3, yTh

)L2 ,

where we added and subtracted terms involving the moment-preserving smoother
Jh : Ûh → H1

0 (Ω) from Lemma A.4, allowing us to apply (4.1) with Jhŷh as test
function, and we used the identity V u + κu3 − λu = ∆u. Combining the two
identities above and noting that

(uTh
, yTh

)L2 = 1
2∥uTh

− wTh
∥2L2 , sh(ûh, ŷh) =

1
2

(
|ûh|2sh + |ûh − ŵh|2sh − |ŵh|2sh

)
,

where the first relation follows from the fact that ∥uTh
∥L2 = ∥wTh

∥L2 , yields that

Ξ1 = −κ((u− uTh
)2(2u+ uTh

), yTh
)L2 − 1

2 (|ûh|2sh + |ŷh|2sh − |ŵh|2sh)
+ 1

2 (λh − λ)∥yTh
∥2L2 − (∇u,∇h(Rhŷh − Jhŷh))L2 − (∆u, yTh

− Jhŷh)L2 .

Next, we reformulate inequality (4.14) with the help of the latter identity, where
we move the terms |ûh|2sh and |ŷh|2sh to the left-hand side. This gives that

∥yTh
∥2L2 + ∥∇hRhŷh∥2L2 + |ûh|2sh + |ŷh|2sh

≲ |((u− uTh
)2(2u+ uTh

), yTh
)L2 |+ |ŵh|2sh + |λh − λ|∥yTh

∥2L2(4.15)

+ |(∇u,∇h(Rhŷh − Jhŷh))L2 |+ |(∆u, yTh
− Jhŷh)L2 |+ |Ξ2|+ |Ξ3|.

In the following, we estimate the terms on the right-hand side individually. For the
first term, the uniform L6-boundedness of both u and uTh

implies that

|((u− uTh
)2(2u+ uTh

), yTh
)L2 | ≲ ∥(u− uTh

)2∥L3∥yTh
∥L2 .

The second term on the right-hand side of (4.15) is estimated using Lemma 4.3,
while the third term can be absorbed into the left-hand side for h sufficiently small.

Using the properties of Jh from Lemma A.4, we estimate the next two terms as

|(∇u,∇h(Rhŷh − Jhŷh))L2 | = |(∇h(u− Ghu),∇hJhŷh)L2 | ≲ hr+1∥ŷh∥ah
,

|(∆u, yTh
− Jhŷh)L2 | = |(h(id−Πk+1

Th
)∆u, h−1(yTh

− Jhŷh))L1 | ≲ hr+1∥ŷh∥ah
,

where, for the latter estimate, we used that u ∈ Hr+2(Th), which implies that
∆u ∈ Hr(Th), in combination with the estimate

∥h−1(yTh
− Jhŷh)∥L2 = ∥h−1(id−Πk+1

Th
)Jhŷh∥L2 ≲ ∥ŷh∥ah

,

by the approximation properties of Πk+1
Th

.
Therefore, it only remains to estimate Ξ2 and Ξ3. From the continuity of the

bilinear form Ju,λ and Lemma 4.3, we obtain for Ξ2 that

|Ξ2| ≲ hr+1(∥yTh
∥L2 + ∥∇hRhŷh∥L2).

Finally, the term Ξ3 can be estimated as

|Ξ3| ≲ h2∥fh − f
/
∥vTh

∥L2∥2L2 ≲ h2∥uTh
− u∥2L2 + h2|λh − λ|2 + h2r+4,
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where f and fh are defined in (4.9) and (4.3), respectively. Here, we used that
|1−∥vTh

∥L2 | ≲ hr+1, as shown in the proof of Lemma 4.3, and that both u and uTh

are uniformly L4-bounded.
Combining the above estimates, we obtain

∥yTh
∥2L2 + ∥∇hRhŷh∥2L2 + |ûh|2sh + |ŷh|2sh
≲ hr+1(∥ŷh∥ah

+ ∥yTh
∥L2) + ∥(u− uTh

)2∥L3∥yTh
∥L2

+ h2∥uTh
− u∥2L2 + h2|λh − λ|2 + h2r+2 + h2r+4,

and the assertion can be concluded using the weighted Young’s inequality. □

The following theorem gives a convergence result for the ground state, energy,
and eigenvalue approximations of the proposed HHO method.

Theorem 4.5 (A priori error estimate). Assume that u ∈ Hr+2(Th) for some
0 ≤ r ≤ k. Then, the following approximation results hold for the ground state:

(4.16) ∥uTh
− u∥L2 + ∥∇h(Rhûh − u)∥L2 + |ûh|sh + |ûh − Ihu|sh ≲ hr+1.

The eigenvalue and energy approximations further satisfy

(4.17) |λ− λh| ≲ hr+1, |E − Eh| ≲ h2r+2.

Proof. Using the triangle inequality and Lemmas 4.3 and 4.4, we obtain

∥uTh
− u∥L2 + ∥∇h(Rhûh − u)∥L2 + |ûh|sh + |ûh − Ihu|sh
≲ hr+1 + ∥(u− uTh

)2∥L3 + h∥uTh
− u∥L2 + h|λh − λ|.(4.18)

In the following, we consider the terms on the right-hand side of the latter inequality
individually. For the second term, we obtain with the triangle inequality that

∥(u− uTh
)2∥L3 ≲∥u−Πk+1

Th
u∥2L6 + ∥Πk+1

Th
u− uTh

∥2L6 ,(4.19)

where the first term can estimated using classical approximation results for the
L2-projection Πk+1

Th
in the L6-norm, as well as the (broken) Sobolev embedding

W r+1,6(Th) ↪→ Hr+2(Th) to obtain that

∥u−Πk+1
Th

u∥L6 ≲ hr+1|u|W r+1,6(Th) ≲ hr+1∥u∥Hr+2(Th)

For the second term on the right-hand side of (4.19), we use the discrete Sobolev
embedding from Lemma A.3, the triangle inequality, (3.3), and the approximation
properties of the Galerkin projection to get that

∥Πk+1
Th

u− uTh
∥2L6 ≲ ∥ûh − Ihu∥2ah

≲ ∥∇h(Rhûh − u)∥2L2 + ∥∇h(u− Ghu)∥2L2 + |ûh − Ihu|2sh
≲ h2r+2 + ∥∇h(Rhûh − u)∥2L2 + |ûh − Ihu|2sh .

Using the latter two estimates we can continue (4.19) as

(4.20) ∥(u− uTh
)2∥L3 ≲ h2r+2 + ∥∇h(Rhûh − u)∥2L2 + |ûh − Ihu|2sh .

Thanks to the plain convergence result of Theorem 4.2, ∥(u− uTh
)2∥L3 is a higher-

order term, and can thus be absorbed in the left-hand side for sufficiently small
h > 0. Note that, similarly, also the third term on the right-hand side of (4.18) can
be absorbed into the left-hand side, for h > 0 sufficiently small.

To estimate the fourth term on the right-hand side of (4.18), we note that

|λ− λh| ≲ ∥uTh
− u∥L2 + ∥∇h(Rhûh − u)∥L2 + |ûh|2sh ,(4.21)

where we have used that ∥ûh∥ah
and ∥uTh

∥L6 are uniformly bounded. Therefore,
this term is also of higher order and can be absorbed into the left-hand term for suf-
ficiently small h > 0. Convergence result (4.16) follows from combining the above
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estimates. The first estimate in (4.17), which is the desired eigenvalue approxima-
tion result, follows by combining (4.16) and (4.21).

Finally, for proving the desired energy approximation result, we note that

E − Eh = 1
2∥∇h(u−Rhûh)∥2L2 + 1

2∥V 1/2(u− uTh
)∥2L2 − 1

2 |ûh|2sh +R,

where the first and second terms on the right-hand side are of order 2r + 2, us-
ing (4.16). In what follows, we will also show that the remainder R, defined as

R := (∇h(u−Rhûh),∇hRhûh)L2 + (V (u− uTh
), uTh

)L2 + 1
4κ(∥u∥4L4 − ∥uTh

∥4L4)

is of order 2r + 2. To this end, we first rewrite the remainder R, using (4.2) with

the test function Ihu − ûh, the identity (Πk+1
Th

u − uTh
, uTh

)L2 = − 1
2∥u − uTh

∥2L2 ,
and some further algebraic manipulations, to obtain that

R = λh(Π
k+1
Th

u− uTh
, uTh

)L2 − κ(u3Th
,Πk+1

Th
u− uTh

)L2 + 1
4κ(∥u∥4L4 − ∥uTh

∥4L4)

− sh(ûh, Ihu− ûh) + (V (u−Πk+1
Th

u), uTh
)L2

= − 1
2λh∥u− uTh

∥2L2 + κ
4 ((uTh

− u)2, 3u2Th
+ 2uTh

u+ u2)L2

− sh(ûh, Ihu− ûh) + (u−Πk+1
Th

u, V uTh
+ κu3Th

)L2 .

Using Lemma 4.4 and (4.16), it directly follows that all terms except the last one
are of order 2r+2. To show that also the last term is of this order, we observe that

(κu3Th
+ V uTh

, u−Πk+1
Th

u)L2

= (∆u+ λu, u−Πk+1
Th

u)L2 + (κu3Th
+ V uTh

− κu3 − V u, u−Πk+1
Th

u)L2 ,(4.22)

where we have used (4.9). Since, by assumption, u ∈ Hr+2(Th), it follows that
∆u ∈ Hr(Th), allowing us to apply the orthogonality and approximation properties

of Πk+1
Th

to show that the first term is of order 2r + 2. A similar bound for the

second term is obtained directly from (4.16). Consequently, all terms in (4.22) are
of order 2r + 2, and the energy approximation estimate in (4.17) follows. □

The L2- and eigenvalue approximation estimates stated in (4.16) and (4.17) can
be improved as outlined in the following theorem.

Theorem 4.6 (Improved error estimate). Assume that u ∈ Hr+2(Th) for some
0 ≤ r ≤ k. Then, the following L2-approximation results hold for the ground state:

(4.23) ∥uTh
− u∥L2 + ∥Rhûh − u∥L2 ≲ hr+2.

Furthermore, we can improve the eigenvalue approximation estimate to

(4.24) |λ− λh| ≲ hr+2.

Proof. We begin by introducing an auxiliary problem. For any given w ∈ L2(Ω), it
seeks ψw ∈ H1

0 (Ω) such that the following equation holds in the weak sense:

−∆ψw + (V + 3κu2 − λ)ψw = 2κ(u3, ψw)Ω u+ w − (w, u)Ω u.

It can be verified that this problem is solved by the unique solution ψw ∈ u⊥ :=
{v ∈ H1

0 (Ω) : (u, v)Ω = 0} satisfying, for all v ∈ u⊥, the variational problem

(4.25) (∇ψw,∇v)L2 + ((V + 3κu2 − λ)ψw, v)L2 = (w, v)L2 .

The well-posedness of the latter problem follows from the Lax–Milgram theorem
using the coercivity of the bilinear form on the left-hand side (cf. [CCM10, Lem. 1])
and the fact that u⊥ is a closed subspace of H1

0 (Ω). Classical elliptic regularity then
gives that ψw ∈ H2(Ω) ∩H1

0 (Ω) with the estimate ∥ψw∥H2 ≲ ∥w∥L2 .
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Next, we define the error êh = (eT h, eFh
) := ûh −Ihu, test equation (4.25) with

the function Jhêh − (Jhêh, u)L2u ∈ u⊥, where Jh denotes the moment preserving
operator from Lemma A.4, and set w := eTh

. This yields that

∥eTh
∥2L2 = (eTh

,Jhêh − (Jhêh, u)L2 u)L2 + (Jhêh, u)L2 (eTh
, u)L2

= (∇ψeTh
,∇Jhêh)L2 + ((V + 3κu2 − λ)ψeTh

,Jhêh)L2︸ ︷︷ ︸
=:Ξ1

− (Jhêh, u)L2

(
(∇ψeTh

,∇u)L2 + ((V + 3κu2 − λ)ψeTh
, u)L2

)︸ ︷︷ ︸
=:Ξ2

+ (Jhêh, u)L2 (eTh
, u)L2︸ ︷︷ ︸

=:Ξ3

.

Before estimating terms Ξ1–Ξ3, we first derive a bound for |(Jhêh, u)L2 |. To this
end, we use the properties of Jh as stated in Lemma A.4, which yields that

(Jhêh, u)L2 = (eTh
, uTh

)L2 + (Jhêh, u− uTh
)L2 .(4.26)

The two terms on the right-hand side can be individually estimated as

|(eTh
, uTh

)L2 | = |(uTh
− u, uTh

)L2 | = 1
2∥u− uTh

∥2L2 ≲ h2r+2,

|(Jhêh, u− uTh
)L2 | ≤ ∥Jhêh∥L2∥u− uTh

∥L2 ≲ ∥êh∥ah
∥u− uTh

∥L2 ≲ h2r+2,

where we used the H1-continuity of Jh and the error estimates provided in Theo-
rem 4.5. By inserting the latter two bounds into (4.26), we obtain that

|(Jhêh, u)L2 | ≲ h2r+2.

Combining this estimate with the L∞-bound for u and recalling the H2-regularity
estimate ∥ψeTh

∥H2 ≲ ∥eTh
∥L2 , we obtain the following bounds for Ξ2 and Ξ3:

|Ξ2| ≲ h2r+2∥ψeTh
∥H1 ≲ h2r+2∥eTh

∥L2 , |Ξ3| ≲ h2r+2∥eTh
∥L2 .

For estimating term Ξ1, we introduce the function

ϕ̂h = (ϕTh
, ϕFh

) := Ih
(
ψeTh

−
(ψeTh

,Πk+1
Th

u)L2

(u,Πk+1
Th

u)L2

u

)
∈ Ûh,

for which, by construction, it holds that (ϕTh
, u)L2 = 0. To estimate terms involv-

ing ϕ̂h, the following bounds will play an important role:

|(ψeTh
,Πk+1

Th
u)L2 | = |(ψeTh

−Π1
Th
ψeTh

,Πk+1
Th

u− u)L2 | ≲ hr+4∥ψeTh
∥H2 ,(4.27)

|(u,Πk+1
Th

u)L2 | = |(Πk+1
Th

u,Πk+1
Th

u)L2 | = |1− ∥u−Πk+1
Th

u∥2L2 | ≳ 1− h4

π4 .(4.28)

The proof of these bounds relies on the fact that ψeTh
∈ u⊥, together with the

approximation and orthogonality properties of Πk+1
Th

and the Pythagorean identity.

Direct calculations based on (4.27) and (4.28), which are omitted here for the sake
of brevity, then yield the following approximation results:

∥∇h(ψeTh
−Rhϕ̂h)∥L2 + ∥∇(Jhϕ̂h − ψeTh

)∥L2 + |ϕh|sh ≲ h∥ψeTh
∥H2 ,(4.29)

∥ψeTh
− ϕTh

∥L2 + ∥Jhϕ̂h − ψeTh
∥L2 ≲ h2∥ψeTh

∥H2 .(4.30)

To estimate the term Ξ1, we start by rewriting it as
(4.31)

Ξ1 = (∇Jhêh,∇hRhϕ̂h)L2 + ((V + 3κu2 − λ)Jhêh, ϕTh
)L2

+ (∇Jhêh,∇ψeTh
−∇hRhϕ̂h)L2 + ((V + 3κu2 − λ)Jhêh, ψeTh

− ϕTh
)L2 .



14 M. HAUCK, Y. LIANG

Using the properties of Jh from Lemma A.4, together with (4.1) and (4.2) and
some algebraic manipulations, we arrive at the identity

(∇Jhêh,∇hRhϕ̂h)L2 + ((V + 3κu2 − λ)Jhêh, ϕTh
)L2

= ((3κu2 − κu2Th
+ λh − λ)uTh

, ϕTh
)L2 − (2κu3, ϕTh

)L2︸ ︷︷ ︸
=:ξ1

− sh(ϕh, ûh)︸ ︷︷ ︸
=:ξ2

+ (∇h(u− Ghu),∇Jhϕ̂h)L2︸ ︷︷ ︸
=:ξ3

+((V + κu2 − λ)u,Jhϕ̂h − ϕTh
)L2︸ ︷︷ ︸

=:ξ4

+ ((V + 3κu2 − λ)(Jhêh − eTh
), ϕTh

)L2︸ ︷︷ ︸
=:ξ5

+ ((V + 3κu2 − λ)(u−Πk+1
Th

u), ϕTh
)L2︸ ︷︷ ︸

=:ξ6

,

where terms ξ1–ξ6 are estimated individually in the following.
Using Theorem 4.5, (4.29) and (4.30), the approximation properties of the Galerkin-

and L2-projections, and the properties of Jh from Lemma A.4, we obtain that

|ξ1| ≤ |κ((u− uTh
)2(2u+ uTh

), ϕTh
)L2 |

+ |λh − λ||(u− uTh
, ϕTh

)L2 | ≲ h2r+2∥ψeTh
∥H2 ,

|ξ2| ≤ |ϕh|sh |ûh|sh ≲ hr+2∥ψeTh
∥H2 ,

|ξ3| ≤ |(∇h(u− Ghu),∇h(ψeTh
− GhψeTh

))L2 |
+ |(∇h(u− Ghu),∇(ψeTh

− Jhϕ̂h))L2 | ≲ hr+2∥ψeTh
∥H2 ,

|ξ4| ≤ |(∆u−Πk+1
Th

∆u,Jhϕ̂h − ψeTh
)L2 |

+ |(∆u−Πk+1
Th

∆u, ψeTh
− ϕTh

)L2 | ≲ hr+2∥ψeTh
∥H2 ,

|ξ5| ≲ ∥Jhêh − eTh
∥L2∥ϕTh

∥L2 ≲ h∥∇Jhêh∥L2∥ϕTh
∥L2 ≲ hr+2∥ψeTh

∥H2 ,

|ξ6| ≲ ∥u−Πk+1
Th

u∥L2∥ϕTh
∥L2 ≲ hr+2∥ψeTh

∥H2 .

Note that the estimate for ξ1 uses arguments similar to those in (4.20) together with
(ϕTh

, u)L2 = 0, while the estimate for ξ4 relies on the identity (V +κu2−λ)u = ∆u.
Combining these estimates with the H2-regularity bound ∥ψeTh

∥H2 ≲ ∥eTh
∥L2 , we

obtain for the first term on the right-hand side of (4.31) that

|(∇Jhêh,∇hRhϕ̂h)L2 + ((V + 3κu2 − λ)Jhêh, ϕTh
)L2 | ≲ hr+2∥eTh

∥L2 .

For the second term on the right-hand side of (4.31), we obtain

|(∇Jhêh,∇ψeTh
−∇hRhϕ̂h)L2 + ((V + 3κu2 − λ)Jhêh, ψeTh

− ϕTh
)L2 |

≲ ∥∇Jhêh∥L2∥∇ψeTh
−∇hRhϕ̂h∥L2 + ∥Jhêh∥L2∥ψeTh

− ϕTh
∥L2 ≲ hr+2∥eTh

∥L2 ,

where we applied Lemma A.4 and (4.29) to estimate the first term, and (4.30)
together with the H1-continuity of Jh for the second term.

We have now estimated both terms in the expression for Ξ1 from (4.31). Com-
bining these estimates yields the bound

|Ξ1| ≲ hr+2∥eTh
∥L2 ,

and the desired improved L2-estimate, which is the first inequality in (4.23), follows

directly by combining the estimates for Ξ1–Ξ3 and ∥u− Πk+1
Th

u∥L2 ≲ hr+2. Given

the improved L2-estimate, the refined eigenvalue approximation from (4.24) follows
as

|λ− λh| ≤ 2|E − Eh|+ κ
2 |∥u∥4L4 − ∥uTh

∥4L4 | ≲ hr+2.
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To establish the refined L2-estimate for the reconstructed approximation, we
begin with the triangle inequality, which gives

∥Rhûh − u∥L2 ≤ ∥Rhûh −RhIhu∥L2 + ∥Ghu− u∥L2 .(4.32)

For estimating the first term on the right-hand side, we add and subtract the
L2-projection onto piecewise constants and apply the Poincaré inequality from
Lemma A.1, along with Theorem 4.5 and the approximation properties of the
Galerkin projection. This yields the estimate

∥Rhûh −RhIhu∥L2 ≲ ∥h∇h(Rhûh −RhIhu)∥L2 + ∥Π0
Th
(Rhûh −RhIhu)∥L2

= ∥h∇h(Rhûh − Ghu)∥L2 + ∥Π0
Th
(uTh

−Πk+1
Th

u)∥L2 ≲ hr+2.

The second term on the right-hand side of (4.32) can be estimated in the same way,
noting that the Galerkin projection preserves element averages by definition, and
again using the Poincaré inequality from Lemma A.1. The refined L2-estimate for
the reconstruction, which is the second bound in (4.23), follows directly. □

The eigenvalue estimate in (4.24) appears suboptimal compared to the energy
estimate in (4.17), noting that eigenvalue and energy approximations typically con-
verge at the same rate. The following remark shows that, under suitable regularity
assumptions, optimal convergence for the eigenvalue can be recovered.

Remark 4.7 (Optimal eigenvalue approximation). Assume that u3 ∈ Hm(Ω) for
some 0 ≤ m ≤ r, and that the solution ψu3 to the dual problem (4.25) with right-
hand side w = u3 satisfies ψu3 ∈ Hm+2(Ω) with the estimate ∥ψu3∥Hm+2 ≲ ∥u3∥Hm .
Then there holds the improved eigenvalue approximation result

|λ− λh| ≲ hr+m+2.

The proof of this result proceeds similarly to that of the improved L2-error estimate
in Theorem 4.6, now using dual problem (4.25) with the right-hand side w = u3.
This explains the regularity assumptions above. For brevity, the details are omitted
here; we refer, for example, to [HY24], where the corresponding proof is carried out
for a classical high-order conforming finite element method.

Thus far, we have conducted an error analysis of HHO approximation (2.4) to
the Gross–Pitaevskii ground state. We now turn our attention to the analysis of
its modified variant, defined in (3.2), which achieves guaranteed lower bounds for
the ground state energy. Recall that only the lowest-order case k = 0 is of interest
for the modified approximation, as the low-order quadrature in (3.2) prevents im-
proved convergence rates for k > 0. Similar as for the classical HHO ground state
approximation (2.4), also any discrete ground state of its modified variant (3.2)

satisfies a discrete eigenvalue problem. It seeks an eigenpair (û0h, λ
0
h) ∈ Ûh×R with

∥u0Th
∥L2 = 1 such that, for all v̂h ∈ Ûh, it holds that

(4.33) ah(û
0
h, v̂h) + (V u0Th

, vTh
)L2 + κnh(û

0
h, v̂h) = λ0h(u

0
Th
, vTh

)L2 ,

where the nonlinearity is encoded in the form nh, defined for any v̂h, φ̂h ∈ Ûh, as

nh(v̂h, φ̂h) :=
1
2

(
(Π0

Th
vTh

)2vTh
, φTh

)
L2 +

1
2

(
(vTh

)2Π0
Th
vTh

,Π0
Th
φTh

)
L2 .

The following theorem summarises the convergence results for the modified HHO
approximation. As the proof follows that of the standard HHO method, we keep
the presentation short and directly state the final result.

Theorem 4.8 (A priori error estimate). Assume that V ∈ H1(Th). Then, the
approximation of the modified HHO method satisfies the following estimates:

∥∇h(Rhû
0
h − u)∥L2 + |û0h|sh + |û0h − Ihu|sh ≲ h.
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Moreover, the ground state approximation satisfies the L2-error bounds

∥u0Th
− u∥L2 + ∥Rhû

0
h − u∥L2 ≲ h2,

and the energy and eigenvalue approximations satisfy

|E − E0
h| ≲ h2, |λ− λ0h| ≲ h2.

Proof. As before, one first needs to establish the plain convergence of the modified
HHOmethod. The proof is very similar to that of Theorem 4.2 for the classical HHO
method and is therefore omitted. As a direct consequence, we obtain the uniform
boundedness of the modified discrete energies E0

h, as well as the uniform bounded-
ness of ∥u0Th

∥L6 via the discrete Sobolev embedding from Lemma A.3. Furthermore,

Lemma A.5 ensures the uniform boundedness of ∥u0Th
∥L∞ and ∥Jhû

0
h∥L∞ . Next,

repeating the arguments from Lemmas 4.3 and 4.4, Theorems 4.5 and 4.6, and using
Lemma A.7 to bound the quadrature errors together with Proposition A.6, we also
obtain the desired convergence properties of the modified HHO approximation. □

5. Numerical experiments

This section presents numerical experiments that validate the theory and demon-
strate the method’s practical effectiveness. To solve the finite-dimensional con-
strained minimisation problems (2.4) and (3.2), we employ solvers specifically tai-
lored to their structure. Of the available approaches (see [HJ25] for an overview),
we employ an adaptation of the (fully discrete) energy-adaptive Sobolev gradient
flow from [HP20], together with an adaptive choice of step sizes (see Remark 4.3
of that paper). The initial iterate is constructed by setting all interior degrees of
freedom to one and all boundary degrees of freedom to zero. The resulting function
is normalised with respect to the discrete L2-norm to obtain a suitable initial guess.
The iteration is terminated if the relative L2-residual of the current iterate and the
relative energy difference between two consecutive iterates falls below 10−12. The
maximal number of iterations is 103. Details on the implementation can be found
in the code available at https://github.com/moimmahauck/GPE_HHO_code, which
is based on an implementation of the HHO method used for [Tra24]. The latter, in
turn, is based on the basic finite element implementation detailed in [ACF99].

All of our numerical experiments consider the domain Ω = (−8, 8)2 and a hi-
erarchy of Friedrichs–Keller triangulations constructed by uniform red refinement
of an initial triangulation of the domain consisting of two elements. We exclude
the coarsest meshes from this hierarchy since they do not resolve the considered
potentials and therefore do not yield meaningful approximations. To simplify the
notation, we denote the side length of the squares formed by joining opposing trian-
gles by h. Since analytical solutions are typically not available, errors are computed
with respect to the Qk+1-finite element approximation on the uniform Cartesian
grid obtained by twice uniform red refinement of the finest mesh in the hierar-
chy and joining opposing triangles. With a slight abuse of notation, we denote its
energy, eigenvalue, and ground state approximations by E, λ, and u, respectively.

5.1. Guaranteed lower energy bounds. To investigate the guaranteed lower
energy bounds provided by the modified HHO method from (3.2), we present three
numerical experiments. The first experiment considers the harmonic potential
V1(x) := 1

2 |x|2, with the particle interaction parameter set to κ = 1000. In the
second experiment, we use the so-called lattice potential, defined as

V2(x) :=
1
2 |x|2 + 15

(
1 + sin

(
πx1

2

)
sin
(
πx2

2

))
,

again with κ = 1000. The third experiment involves a disorder potential, denoted
by V3, which is piecewise constant on a Cartesian grid with mesh size h = 20. The

https://github.com/moimmahauck/GPE_HHO_code
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Figure 5.1. First row: Potentials V1, V2, and V3 (from left to
right). Second row: corresponding ground state approximations.

values on each grid element are assigned randomly as independent realisations of
coin-toss variables taking values in {10, 50}. The particle interaction parameter
is set to κ = 1. Illustrations of the potentials and corresponding ground state
approximations are provided in Figure 5.1. Note that for the disorder potential, a
phenomenon known as Anderson localisation occurs (see, e.g., [AHP20, AHP22]),
which leads to an exponential localisation of the ground state.

We consider the mesh hierarchy {Th : h = 2−3, . . . , 2−7}. To satisfy the assump-
tion of a piecewise constant potential required in Theorem 3.1, the potentials V1 and
V2 are projected onto the space of piecewise constant functions defined on a uni-
form Cartesian grid with mesh size h = 2−2. The potentials on all finer meshes are
obtained via prolongation. The computations are carried out using the modified
HHO method introduced in (3.2), where the stabilisation parameter σ is deter-
mined by rearranging (3.5) for σ and estimating E0

h from above using the reference
energy E, which is computed via the conforming Q1-finite element method (as out-
lined above). For the considered mesh sizes, the resulting stabilisation parameter
is of order one, and it satisfies the condition in (3.5) by construction.

The first row of Figure 5.2 confirms that the energy approximation E0
h in-

deed provides guaranteed lower energy bounds, as theoretically predicted by The-
orem 3.1. For comparison, we also show the post-processed energy approximations
obtained using the lowest-order Raviart–Thomas discretisation from [GHLP25],
which also yields guaranteed lower energy bounds. The second row of Figure 5.2
displays the energy approximation errors for the modified HHO method and the
post-processed Raviart–Thomas method. Notably, for the potentials V1 and V2, the
modified HHO method yields significantly more accurate lower bounds (by approxi-
mately two orders of magnitude for V1 and one and a half orders for V2) compared to
the Raviart–Thomas method. The discrepancy arises from the post-processing step
in the Raviart–Thomas method, which dominates the error in case of the smooth
potentials V1 and V2, where the discretisation error is comparatively small. For
the rough potential V3, the lower energy bounds provided by the modified HHO
method are still more accurate than that of the post-processed Raviart–Thomas
method, though the improvement is less pronounced (about a factor of three).
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Figure 5.2. First row: energy approximations E0
h of the modified

HHO method and ERT0

h of the post-processed Raviart–Thomas
method (see [GHLP25]) for the potentials V1, V2, and V3 (from
left to right). Second row: corresponding approximation errors.

5.2. Optimal order convergence. In the following, we investigate the conver-
gence properties of the HHO method introduced in (2.4) and its modified version
from (3.2). For the corresponding numerical experiments, we consider the harmonic
potential V1 and set the particle interaction parameter to κ = 1000. The potential
is integrated exactly using a quadrature rule of sufficiently high order.

To demonstrate the convergence of the HHO method introduced in (2.4), we
employ the mesh hierarchy {Th : h = 20, . . . , 2−4}. In Figure 5.3 one observes
that the HHO method exhibits optimal convergence rates, in agreement with the
theoretical predictions of Theorems 4.5 and 4.6. Note that, both ∥u− uTh

∥L2 and
∥u −Rhûh∥L2 converge at the expected rate of O(hk+2); however, for polynomial
degrees k > 0, the latter error is consistently smaller by approximately one order
of magnitude. In the lower-left plot of Figure 5.3, one observes that the eigenvalue
approximation for the HHO method with polynomial degree k = 2 stagnates at an
error level of approximately 10−8. This behavior is likely due to numerical effects
such as finite machine precision and the stopping criteria of the nonlinear solver.

For the modified HHO method, we consider the mesh hierarchy {Th : h =
20, . . . , 2−6}. After an initial plateau in the error, which is due to the nonlinear
solver for (3.2) not converging within the maximum number of iterations, the ex-
pected convergence rate predicted by Theorem 4.8 is clearly observed.

6. Conclusion

In conclusion, we have demonstrated the effective application of a hybrid high-
order (HHO) discretisation to the Gross–Pitaevskii eigenvalue problem. We have
proved the optimal-order convergence both for the classical HHO ground state ap-
proximation and for a modified lowest-order variant that provides guaranteed lower
bounds on the ground state energy. Notably, these bounds are obtained without
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Figure 5.3. First row: convergence plots of the (reconstructed)
ground state approximations of the HHO method for polynomial
degrees k = 1, 2, 3 (from left to right). Second row: convergence
plots of the corresponding eigenvalue and energy approximations.
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Figure 5.4. Left: convergence plot of the ground state approxi-
mation of the modified HHO method. Right: convergence plot of
the corresponding eigenvalue and energy approximations (right).

any post-processing. Numerical experiments confirm that, particularly for smooth
problems, the proposed method produces significantly more accurate guaranteed
lower energy bounds than the post-processing-based approach [GHLP25].
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Appendix A. Collection of frequently used bounds

The first two results are a Poincaré inequality and a trace inequality, both stated
with explicit constants.

Lemma A.1 (Poincare inequality). For all T ∈ Th and any v ∈ H1(T ) with´
T
v dx = 0, it holds that

∥v∥L2(T ) ≤ π−1hT ∥∇v∥L2(T )

with π > 0 denoting the circle constant.

Proof. The proof can be found, for example, in [Beb03]. □

Lemma A.2 (Trace inequality). For all T ∈ Th and any v ∈ H1(T ) satisfying´
T
v dx = 0, it holds that∑

F∈F∂T

ℓ−1
T,F ∥u∥2L2(F ) ≤ Ctr∥∇u∥2L2(T )

with the constant Ctr = 1/π2 + 2/(dπ) > 0.

Proof. The result and its corresponding proof can be found in [Tra24, Lem. 3.1],
which, in turn, is based on [Gal23, Lem. 7.2]. □

Next, we present several results relevant to the analysis of the HHO method.

Lemma A.3 (Discrete Sobolev embeddings). Let d ∈ {2, 3} and q satisfy 1 ≤ q <

∞ if d = 2, and 1 ≤ q ≤ 6 if d = 3. Then, for all v̂h = (vTh
, vFh

) ∈ Ûh, it holds that

∥vTh
∥Lq ≲ ∥v̂h∥ah

with hidden constant depending only on the domain, mesh regularity, q, k, and σ.

Proof. The proof of this result can be deduced by combining [DPD17, Prop. 5.4]
and [DPD20, Lem. 2.18]. □

Lemma A.4 (Moment-preserving smoothing operator). There exists a linear op-

erator Jh : Ûh → H1
0 (Ω) satisfying, for all v̂h ∈ Ûh, that

Ih ◦ Jhv̂h = v̂h,

which implies the following orthogonality relations:

vTh
− Jhv̂h ⊥L2 Pk+1(Th), ∇h(Jhv̂h −Rhv̂h) ⊥L2 ∇hPk+1(Th).

Moreover, the operator satisfies, for all v̂h ∈ Ûh, the stability estimate

∥Jhv̂h∥H1 ≲ ∥v̂h∥ah
,

and, for any v ∈ H2(Ω) ∩H1
0 (Ω), the following approximation properties hold:

∥∇(JhIhv − v)∥L2 ≲ h∥v∥H2 , ∥JhIhv − v∥L2 ≲ h2∥v∥H2 ,

where hidden constants depend only on the domain, mesh regularity, k, and σ.

Proof. For the construction of such an operator and the corresponding analysis, we
refer, for example, to [EZ20, Sec. 4.3]. The proof of the stability and approximation
properties uses similar arguments as [LT25, Lem. 3.5]. □

Lemma A.5 (Discrete L∞-bound). Assume that V ∈ H1(Th). Then, for any
discrete ground state ûh = (uTh

, uFh
) of (2.4), both ∥Jhûh∥L∞ and ∥uTh

∥L∞ are
uniformly bounded. The same holds for the modified HHO approximation û0h =
(u0Th

, u0Fh
) of (3.2) and its smoothed version Jhû

0
h.
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Proof. We proceed as in the proof of Theorem 4.2, observing that ûh can be inter-
preted as the HHO approximation of the solution uch ∈ H2(Ω)∩H1

0 (Ω) to the aux-
iliary Poisson problem (4.3). Recall that the H2-norm of uch is uniformly bounded.
The improved L2-error estimate for the HHO method, as established for example
in [DPD20, Thm. 2.32 & 2.33], then implies that

∥Rhûh − uch∥L2 + ∥Πk+1
Th

uch − uTh
∥L2 ≲ h2.

Using a comparison between the discrete L2- and L∞-norms, the stability of the
L2-projection, and the uniform L∞-bound for uch, we obtain for any T ∈ Th that

∥uTh
∥L∞(T ) ≤ ∥Πk+1

Th
uch − uTh

∥L∞(T ) + ∥Πk+1
Th

uch∥L∞(T )

≲ h
−d/2
T ∥Πk+1

Th
uch − uTh

∥L2(T ) + h
−d/2
T ∥uch∥L2(T )

≲ h
(4−d)/2
T + ∥uch∥L∞(T ) ≲ 1.

Similarly arguments also show that Rhûh is uniformly L∞-bounded.
Next, we show that Jhûh is uniformly L∞-bounded. Using again the comparison

result between discrete norms, we obtain for any T ∈ Th that

∥Jhûh∥L∞(T ) ≲ h
−d/2
T ∥Jhûh∥L2(T )

≲ h
−d/2
T

∑
T ′∩T ̸=∅

{
∥Rhûh∥L2(T ′) + ∥Rhûh − uTh

∥L2(T ′)

+
∑

F∈F∂T ′

h
1/2
F ∥Πk

F (Rhûh − uFh
)∥L2(F )

}
≲ ∥Rhûh∥L∞ + ∥Rhûh − uTh

∥L∞ + h−(d−2)/2|ûh|sh ≲ 1,

where the second inequality follows from the specific construction of Jh in [EZ20,
Sec. 4.3], and arguments similar to those in [LT25, Lem. 3.5]. To derive the last
inequality, we use that |ûh|sh ≲ h∥uch∥H2 (see Theorem 4.5 or [DPD20, Thm. 2.28]).
This leads the uniform L∞-bound for Jhûh. The corresponding proof for the mod-
ified HHO approximation û0h is analogous and is therefore omitted for brevity. □

Proposition A.6. For any v ∈ H2(Ω) ∩H1
0 (Ω), it holds that

∥JhIhv∥L∞ ≲ ∥RhIhv∥L∞ + ∥RhIhv −Πk+1
Th

v∥L∞ + h−(d−2)/2|Ihv|sh ≲ ∥v∥H2 .

Lemma A.7 (Quadrature error). For any v̂h = (vTh
, vFh

), ŵh = (wTh
, wFh

) ∈ Ûh,
we have the following two estimates:

|((Π0
Th
vTh

)2 − v2Th
, vTh

wTh
)L2 |

≲ h2∥vTh
∥L∞∥∇Jhv̂h∥L2

(
∥vTh

∥L∞∥∇Jhŵh∥L2 + ∥∇Jhv̂h∥L2∥Jhŵh∥L∞

+ ∥Jhv̂h∥L∞∥∇Jhŵh∥L2 + ∥wTh
∥L∞∥∇Jhv̂h∥L2

)
,

(A.1)

|(v2Th
, vTh

wTh
−Π0

Th
vTh

Π0
Th
wTh

)L2 |
≲ h2

(
∥vTh

∥L∞∥∇Jhv̂h∥L2 + ∥Jhv̂h∥L∞∥∇Jhv̂h∥L2

)
×
(
∥vTh

∥L∞∥∇Jhŵh∥L2 + ∥wTh
∥L∞∥∇Jhv̂h∥L2

)
,

(A.2)

where hidden constants depend only on the domain, mesh regularity, k, and σ.

Proof. We begin the proof by establishing three auxiliary estimates that will be
used later. The first one, which holds for any v̂h = (vTh

, vFh
) ∈ Ûh, reads

∥vTh
−Π0

Th
vTh

∥L2 ≤ ∥vTh
− Jhv̂h∥L2 + ∥Jhv̂h −Π0

Th
vTh

∥L2 ≲ h∥∇Jhv̂h∥L2 .

(A.3)
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This follows from Πk+1
Th

Jhv̂h = vTh
and the approximation properties of the L2-

projection. To derive the second estimate, we apply the triangle inequality along
with the first estimate, which gives, for any v̂h, ŵh ∈ Ûh, that
(A.4)
∥vTh

wTh
− Jhv̂hJhŵh∥L2 ≤ ∥vTh

wTh
− vTh

Jhŵh∥L2 + ∥vTh
Jhŵh − Jhv̂hJhŵh∥L2

≲ h∥vTh
∥L∞∥∇Jhŵh∥L2 + h∥Jhŵh∥L∞∥∇Jhv̂h∥L2 .

To prove the third estimate, we use the triangle inequality, the approximation
properties of the L2-projection, and the product rule, which yields that
(A.5)
∥vTh

wTh
−Π0

Th
(vTh

wTh
)∥L2

≤ ∥vTh
wTh

− Jhv̂hJhŵh∥L2 + ∥Jhv̂hJhŵh −Π0
Th
(Jhv̂hJhŵh)∥L2

+ ∥Π0
Th
(vTh

wTh
)−Π0

Th
(Jhv̂hJhŵh)∥L2

≲ h
(
∥vTh

∥L∞∥∇Jhŵh∥L2 + ∥∇Jhv̂h∥L2∥Jhŵh∥L∞ + ∥Jhv̂h∥L∞∥∇Jhŵh∥L2

)
.

We now have the tools to prove (A.1). Applying the triangle inequality yields

|((Π0
Th
vTh

)2 − v2Th
, vTh

wTh
)L2 | ≤ |((Π0

Th
vTh

)2 − v2Th
,Π0

Th
(vTh

wTh
))L2 |︸ ︷︷ ︸

=:Ξ1

+ |((Π0
Th
vTh

)2 − v2Th
, vTh

wTh
−Π0

Th
(vTh

wTh
))L2 |︸ ︷︷ ︸

=:Ξ2

,

where the term Ξ1 can be estimated as

Ξ1 ≤
∑
T∈Th

|Π0
T (vTwT )|

ˆ
T

(vT −Π0
T vT )

2dx ≲ h2∥vTh
∥L∞∥wTh

∥L∞∥∇Jhv̂h∥2L2 .

(A.6)

Here, the first inequality follows from elementary algebraic manipulations, using
Π0

T v = |T |−1
´
T
v dx, while the second follows from ∥Π0

T v∥L∞(T ) ≤ ∥v∥L∞(T )

and (A.3). The term Ξ2 can be estimated as

Ξ2 ≲ h∥vTh
∥L∞∥∇Jhv̂h∥L2∥vTh

wTh
−Π0

Th
(vTh

wTh
)∥L2 ,

where we again use the L∞-bound of Π0
T and (A.3). Applying (A.5) to estimate

the last term on the right-hand side yields the desired bound for Ξ2. Combining
the previous estimates then establishes (A.1).

Next, we prove estimate (A.2). Applying the triangle inequality, we obtain that

|(v2Th
, vTh

wTh
−Π0

Th
vTh

Π0
Th
wTh

)L2 | ≤ |(Π0
Th
(v2Th

), vTh
wTh

−Π0
Th
vTh

Π0
Th
wTh

)L2 |︸ ︷︷ ︸
=:ξ1

+ |(v2Th
−Π0

Th
(v2Th

), vTh
wTh

−Π0
Th
vTh

Π0
Th
wTh

)L2 |︸ ︷︷ ︸
=:ξ2

.

To estimate the term Ξ1, we apply algebraic manipulations similar to those in the
proof of (A.6), as well as the L∞-bound of Π0

T and (A.3), which gives

ξ1 ≤
∑
T∈Th

|Π0
T (v

2
T )||

ˆ
T

(vT −Π0
T vT )(wT −Π0

TwT )dx|

≲ h2∥vTh
∥2L∞∥∇Jhv̂h∥L2∥∇Jhŵh∥L2 .

The term ξ2 can be estimated by applying (A.5) with v̂h = ŵh, proceeding similarly
to the proof of (A.4). Combining these estimates yields (A.2). □
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