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A GENERALIZED FRAMEWORK FOR HIGHER-ORDER

LOCALIZED ORTHOGONAL DECOMPOSITION METHODS

MORITZ HAUCK∗, ALEXEI LOZINSKI†, ROLAND MAIER∗

Abstract. We introduce a generalized framework for studying higher-order
versions of the multiscale method known as Localized Orthogonal Decompo-

sition. Through a suitable reformulation, we are able to accommodate both

conforming and nonconforming constraints in the construction process. In
particular, we offer a new perspective on localization strategies. We fully an-

alyze the strategy for linear elliptic problems and discuss extensions to the

Helmholtz equation and the Gross–Pitaevskii eigenvalue problem. Numerical
examples are presented that particularly provide valuable comparisons between

conforming and nonconforming constraints.

1. Introduction

The numerical solution of partial differential equations (PDEs) with strongly
heterogeneous and highly oscillatory coefficients is challenging. Classical finite el-
ement methods often fail to produce accurate results unless the fine-scale varia-
tions of the coefficients are fully resolved. However, globally resolving such fine-
scale features can be prohibitively expensive. The associated computational cost
and memory requirements often exceed the capabilities of available computing
resources. To address this, numerous multiscale methods have been developed,
particularly in the elliptic setting. These include the Heterogeneous Multiscale
Method [EE03, EE05, AEEV12], (Generalized) Multiscale Finite Element Meth-
ods [BO83, BCO94, HW97, BL11, EGH13], Multiscale Spectral Generalized Finite
Element Methods [BL11, MSD22], rough polyharmonic splines [OZB14], the Lo-
calized Orthogonal Decomposition (LOD) [MP14, HP13], and gamblets [Owh17].
More recently, refined localization strategies within the LOD framework have been
proposed; see, for instance, [HP23a, FHKP24]. Comprehensive overviews of nu-
merical multiscale methods can be found in the textbooks [OS19, MP20] and the
review article [AHP21].

While the techniques discussed above typically yield first-order convergence be-
havior, also higher-order multiscale methods have been developed. In the con-
text of the Heterogeneous Multiscale Method, such extensions have been proposed
in [LMT12, AB12]. For the Multiscale Finite Element Method, higher-order con-
vergence rates are achieved in [AB05, HZZ14]. Hybrid multiscale methods, which
reduce global degrees of freedom to element boundaries, have also become quite
popular to achieve higher-order rates; see, e.g., [HPV13, AHPV13, CEL19]. How-
ever, all these higher-order approaches require certain smoothness assumption on
the domain, the coefficient, and/or the exact solution to obtain convergence rates
beyond first order. For rough coefficients, as they arise in many applications (e.g.,
in the context of composite materials, that do not have a smooth transition between
materials properties), such conditions are typically not fulfilled and coefficients are
only in L∞. Deriving higher-order rates in such a setting is not straightforward and
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requires the tailored design of approximation spaces and the use of suitable orthog-
onality properties. This is achieved in [Mai21] (see also [Mai20]) with a higher-order
multiscale method based on ideas of the LOD and gamblets. The approach uses
higher-order non-conforming spaces as constraints in the construction of an ideal
multiscale space. It can also be reformulated within the framework of the original
LOD method, as demonstrated in [DHM23], resulting in an improved localization
strategy. The use of such constraints (also referred to as quantities of interest) in
the construction of problem-adapted approximation spaces is not new; similar ideas
have been employed in the context of gamblets in [OS19].

The aim of this work is two-fold. First, we reformulate the higher-order method
in [Mai21, DHM23] within a general and unified framework, offering a new per-
spective on localization strategies. A key advantage of this framework is that it
eliminates the need to construct quasi-interpolation operators tailored to a given
set of constraints, as required in [DHM23] to achieve improved localization. This
task can be technically challenging, particularly for higher-order constraints, and
often relies on intricate bubble function constructions. Moreover, the framework
naturally accommodates the use of both conforming and nonconforming higher-
order finite element spaces as constraints. Second, we compare different variants of
higher-order LOD-type methods and illustrate how the underlying principles can
be extended to a wider class of PDEs, including heterogeneous Helmholtz problems
and the Gross–Pitaevskii eigenvalue problem.

The remaining parts of the paper are organized as follows. In Section 2, we
introduce the elliptic model problem for which we define a prototypical multiscale
method in Section 3 that is able to achieve higher-order convergence rates under
minimal structural assumptions. We then establish the exponential decay of the
basis functions in Section 4 and introduce a practical multiscale method using local-
ized versions of the basis functions in Section 5. Finally, we discuss the applicability
of the approach to the heterogeneous Helmholtz equation and the Gross–Pitaevskii
eigenvalue problem in Section 7, and present numerical examples in Section 8.

Notation. Throughout this work, we will write a ≲ b or b ≳ a if it holds that
a ≤ Cb or a ≥ Cb, respectively, where C > 0 is a constant that is independent of the
mesh size H, the oversampling parameter ℓ, and oscillations of the PDE solution u,
but can depend on the dimension d, the bounds α and β on the coefficient, and the
polynomial degree p. In particular, we do not explicitly track dependencies on p,
as we are not considering an asymptotic behavior with respect to p.

2. Model problem

We consider the prototypical second-order elliptic PDE −div(A∇u) = f in
weak form, with homogeneous Dirichlet boundary conditions, posed on a polyg-
onal Lipschitz domain Ω ⊂ Rd, where d ∈ {2, 3}. The matrix-valued coefficient
A ∈ L∞(Ω,Rd×d) is symmetric and positive definite, satisfying for almost all x ∈ Ω:

(2.1) α|η|2 ≤ (A(x)η) · η ≤ β|η|2, ∀η ∈ Rd

with some constants 0 < α ≤ β < ∞, where | · | denotes the Euclidean norm
in Rd. It is important to note that no regularity assumptions are imposed on the
coefficient A. The scenario of particular interest here is when the coefficient A is
rough, with oscillations across multiple length scales.

The solution space of the considered PDE is the Sobolev space V := H1
0 (Ω), and

the associated bilinear form a : V × V → R is given by

a(u, v) :=

ˆ
Ω

(A∇u) · ∇v dx.
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The symmetry of A and the ellipticity condition (2.1) ensure that the bilinear
form a defines an inner product on the space V . The induced norm, referred to as
the energy norm, is defined by ∥ · ∥2a := a(·, ·), and it is equivalent to the standard
H1(Ω)-norm on V . Given a source term f ∈ L2(Ω), the weak formulation of the
problem seeks a solution u ∈ V such that

(2.2) a(u, v) = (f, v)Ω, ∀v ∈ V,

where (·, ·)Ω denotes the L2(Ω)-inner product. Denoting by ∥ · ∥2Ω := (·, ·)Ω the
L2(Ω)-norm, the Riesz representation theorem ensures the existence and uniqueness
of the solution u ∈ V , along with the stability estimate ∥∇u∥Ω ≤ α−1CF∥f∥Ω,
where CF > 0 is the constant in the Friedrichs inequality on the domain Ω.

3. Prototypical multiscale method

As mentioned above, classical finite element methods often perform poorly for
multiscale problems: they require resolving all microscopic details of the coefficient
globally, which can be prohibitively expensive, and they typically suffer from slow
convergence due to the low regularity of the underlying multiscale solution. In this
section, we introduce a prototypical multiscale method that, under minimal struc-
tural assumptions on the coefficient A, yields accurate (optimal-order) approxima-
tions even on very coarse meshes. Following the standard construction of the LOD
(cf. [MP14, MP20]), we begin by introducing a subspace of V consisting of fine-scale
functions with oscillations on length scales smaller than a prescribed parameter H,
characterized by certain vanishing (possibly higher-order) weighted averages. To
formalize this, we introduce a hierarchy of quasi-uniform, shape-regular, and geo-
metrically conforming meshes {TH}H , where each mesh TH is a finite subdivision
of the closure of Ω into closed simplicial1 elements T . The mesh size parameter
H > 0 is defined as the maximum diameter of the elements in the mesh TH , i.e.,
H := maxT∈TH

diam(T ). In what follows, we are primarily interested in the under-
resolved regime where meshes are too coarse to capture the microscopic details of
the coefficient. Given an arbitrary but fixed polynomial degree p ∈ N, we denote
by MH the p-th order finite element space with respect to TH , associated with ei-
ther the standard discontinuous Galerkin (DG) method or its continuous Galerkin
(CG) counterpart. Specifically, in the DG case, MH is given by Pp(TH), the space
of TH -piecewise polynomials of total degree at most p, while in the CG case, the
space is defined as Pp(TH) ∩H1(Ω). We define the fine-scale space of the LOD as

(3.1) W := {w ∈ V : (µ,w)Ω = 0, ∀µ ∈MH}.
The problem-adapted approximation space of the LOD is then given by the orthog-
onal complement of W with respect to the energy inner product a, i.e.,

(3.2) ṼH :=
{
v ∈ V : a(v, w) = 0, ∀w ∈W

}
.

Since W has finite codimension in V , the space ṼH is finite-dimensional. The use
of tildes in the notation highlights that these spaces are specifically tailored to
the problem at hand. The prototypical LOD method is defined as the Galerkin
projection onto ṼH , i.e., it seeks ũH ∈ ṼH such that

a(ũH , ṽH) = (f, ṽH)Ω, ∀ṽH ∈ ṼH .(3.3)

Recall that MH can be either a CG or a DG space, which leads to two distinct def-
initions of ṼH and, consequently, two different (prototypical) LOD methods. We

1This restriction to simplicial elements is not essential and is made for simplicity of presen-
tation. In fact, quadrilateral/hexahedral elements may also be considered. The corresponding

globally continuous finite element spaces can be constructed using polynomials on a reference el-
ement, which are then mapped to the mesh elements via multi-linear coordinate transformations.
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refer to these as the prototypical CG-LOD and DG-LOD methods, respectively. Be-
fore stating a convergence result for these methods, we introduce some notation for
broken Sobolev spaces. For s ∈ N, we denote by Hs(TH) the space of TH -piecewise
Hs-functions, with the corresponding broken seminorm |f |2s,TH

:=
∑

T∈TH
|f |2s,T ,

where | · |s,T denotes the seminorm of order s of a function in Hs(T ).

Theorem 3.1 (Errors of the prototypical method). The prototypical method (3.3)

is well-posed and its solution is given by ũH = Ru, where R : V → ṼH denotes the
a-orthogonal projection onto ṼH . Moreover, for any f ∈ Hs(Ω) for the CG-LOD,
and f ∈ Hs(TH) for the DG-LOD, with s ∈ {0, 1, . . . , p+ 1}, we have

(3.4) ∥u− ũH∥Ω ≲ Hs+2|f |s,TH
, ∥∇(u− ũH)∥Ω ≲ Hs+1|f |s,TH

.

Proof. First, note that the space ṼH is a closed subspace of V , and hence, prob-
lem (3.2) is well-posed by the Riesz representation theorem. Comparing (3.2) with

the weak formulation (2.2), we observe that a(u − ũH , ṽH) = 0 for all ṽH ∈ ṼH ,

which implies that ũH = Ru, where R : V → ṼH is the a-orthogonal projection.
Since the prototypical DG-LOD is equivalent to the prototypical method pre-

sented in [Mai21], the error estimates in (3.4) can be directly concluded from [Mai21,
Thm. 3.1]. The corresponding proof for the prototypical CG-LOD follows anal-
ogously, replacing the L2-projection onto TH -piecewise polynomials in the proof
of [Mai21, Thm. 3.1] with the L2-projection onto globally continuous TH -piecewise
polynomials, noting that both share the same approximation properties. □

Remark 3.2 (Boundary conditions of MH). In the CG-LOD variant, not enforcing
boundary conditions for MH is crucial to achieve higher-order convergence rates
as stated in Theorem 3.1. For example, using the polynomial degree p = 1, The-
orem 3.1 gives an H1-error of order O(H3). In contrast, the more traditional
approaches in [MP14, HP13, MP20], where the homogeneous Dirichlet boundary
conditions are imposed on the analogue of MH , yield an error which is only of or-
der O(H). If f ∈ H1

0 (Ω), convergence rates beyond first order can also be achieved
using H1

0 (Ω)-conforming spaces MH ; see, e.g., [MP20, Lem. 8.1]. This has been
exploited, for instance, for the Gross–Pitaevskii problem in [HP23b].

To better understand the structure of the space ṼH , we characterize the a-
orthogonal projection R : V → ṼH via a saddle point formulation using Lagrange
multipliers in MH . Specifically, for any v ∈ V , the projection Rv ∈ V and the
associated Lagrange multiplier λ ∈MH are defined as the unique solution pair to

a(Rv, w) + b(w, λ) = 0, ∀w ∈ V,(3.5a)

b(Rv, µ) = b(v, µ), ∀µ ∈MH ,(3.5b)

where the bilinear form b is given by b(v, µ) := (v, µ)Ω. Indeed, equation (3.5a)

ensures that Rv ∈ ṼH , while equation (3.5b) implies that Rv − v ∈ W . The
well-posedness of (3.5) then follows from classical saddle point theory (cf. [BBF13,
Cor. 4.2.1]) and, in particular, relies on the inf–sup condition

(3.6) inf
µ∈MH

sup
v∈V

b(v, µ)

∥∇v∥Ω∥µ∥Ω
≳ H > 0 ,

which is a direct consequence of [Mai21, Lem. 3.4].
The operator R and its representation given in (3.5), enables the construction

of a basis for the space ṼH = RV . Before formalizing this idea, we briefly review
two existing LOD constructions from the literature:

(1) In [MP14, MP20], the fine-scale spaceW is defined as the kernel of a quasi-
interpolation operator IH : V → VH , where VH is an underlying H1

0 (Ω)-

conforming finite element space. A basis for ṼH is obtained by correcting
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the basis functions of VH with corrections in W . Specifically, the prototyp-
ical LOD space ṼH is redefined as ṼH = VH − CVH with the a-orthogonal
projection C : V → W serving as a correction operator. This strategy is
beneficial for localizing the space ṼH by expressing C as the sum of con-
tributions from every element of the mesh. However, it is not applicable
in the present work, as our underlying finite element spaces MH are not
H1

0 (Ω)-conforming, which is essential to obtain higher-order convergence,
as discussed in Remark 3.2.

(2) In [AHP21], a more general framework is introduced in which the basis func-
tions of the prototypical LOD space are associated with so-called quantities
of interest (QOI), a concept that also plays an important role in the theory
of gamblets; see, e.g., [OS19]. Such QOI are continuous functionals on V
encoding information about the exact solution u to problem (2.2) that the
method aims to preserve exactly. The fine-scale space W is then defined as
the intersection of the kernels of all QOI. We adopt this general approach
in the present work, choosing the QOI as the L2(Ω)-inner products with
basis functions of MH ; see (3.7) below. Our DG-LOD corresponds to the
choice of QOI in [AHP21, Ex. 3.1 (a) & (b)]. The CG-LOD with p = 1 is
closely related to [AHP21, Ex. 3.1 (d)] except for the treatment of boundary
conditions of the space MH , cf. Remark 3.2. Further note that the variant
from [AHP21, Ex. 3.1 (c)] is equivalent to the classical LOD as discussed
in [MP20]. Modifying the boundary treatment, as in Remark 3.2 for the
CG-LOD, yields a version of this method with an error estimate improved
by one order in H compared to [MP20]. It fits into the framework of this
article by choosing MH as a suitable subspace of P1(TH).

In our setting, the basis functions of ṼH are associated with QOI defined as

(3.7) qj(v) :=

ˆ
ωj

vΛj dx, j = 1, . . . , J,

where Λj are the basis functions ofMH , J := dim(MH), and ωj = supp(Λj). In case
of the CG-LOD, we choose {Λj}Jj=1 as the p-th order Lagrange nodal basis2 ofMH .

For the DG-LOD, the basis functions are taken as the L2(T )-orthonormal Legendre
bases of Pp(T ) on each element T ∈ TH . Henceforth, we denote by {µj}Jj=1 the

coefficients of a function µ ∈MH with respect to the basis {Λj}Jj=1, i.e.,

(3.8) µ =

J∑
j=1

µjΛj .

The following lemma characterizes the basis functions of ṼH as solutions to saddle
point problems with a Kronecker-delta constraint on the QOI.

Lemma 3.3 (Prototypical basis). A basis of the space ṼH is given by
{
φ̃j : j =

1, . . . , J
}
with φ̃j defined for each j ∈ {1, . . . , J} as the unique solution to the saddle

point problem that seeks (φ̃j , λj) ∈ V ×MH such that

a(φ̃j , v) + b(v, λ) = 0, ∀v ∈ V,(3.9a)

b(φ̃j , µ) = µj , ∀µ ∈MH ,(3.9b)

2For practical reasons, we replace vertex-based functions with piecewise affine nodal func-
tions. This modification is not essential to the construction but facilitates a simplified practical
computation of the resulting basis functions in Section 6.
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where µj is the coordinate of Λj in the basis representation of µ, cf. (3.8). Further-
more, the projection operator R can be represented as

(3.10) Rv =

J∑
j=1

qj(v)φ̃j .

Proof. The well-posedness of problem (3.9) follows from classical saddle point the-
ory, using the inf–sup condition (3.6); see, for instance, [BBF13, Cor. 4.2.1]. Tak-

ing v ∈ W as test function in (3.9a) proves that φ̃j ∈ ṼH . To show (3.10),

we define e := Rv − ∑J
j=1 qj(v)φ̃j and observe that e ∈ W . Indeed, using

(3.5b) and (3.9b) and the identity b(v, µ) =
∑J

j=1 µjqj(v), cf. (3.8), we find that

qi(e) = qi(Rv)− qi(v) = 0 for all i ∈ {1, . . . , J}. Moreover, since e ∈ ṼH , it follows

that e = 0, proving (3.10) and that the functions in (3.9) form a basis of ṼH . □

4. Exponential decay

We emphasize that the prototypical LOD basis functions defined in (3.9) are
globally supported. Therefore, their computation would require the solution to
global problems, which is infeasible for practical purposes. In this section, we show
that the prototypical LOD basis functions decay exponentially, which motivates
their approximation by locally computable counterparts in Section 5. A practical
multiscale method based on such local approximations is presented in Section 6.
To quantify the decay of the basis functions, and more generally of the solutions to
saddle points problem of type (3.9), we introduce the notion of patches with respect
to the mesh TH . Given an oversampling parameter ℓ ∈ N, we define the ℓ-th order
patch of a union of elements S ⊂ TH recursively for ℓ ≥ 2 by Nℓ(S) := N1(Nℓ−1(S)),
where N1(S) := N(S) is the set of mesh elements sharing at least a node with the
elements in S. Before proving the exponential decay result, we state a technical
lemma used in the proof, which is a reformulation of [Mai21, Cor. 3.6].

Lemma 4.1 (Non-standard inverse inequality). There exists a constant Ci > 0,
independent of H, such that for all T ∈ TH and all µ ∈MH

∥µ∥T ≲ H−1∥µ∥−1,T ,

where the H−1-norm is defined by ∥µ∥−1,T := supw∈H1
0 (T ),w ̸=0 (µ,w)T

/
∥∇w∥T .

The exponential decay will be proven in the following theorem in a rather general
setting. Note that the exponential decay of the prototypical LOD basis functions
can be recovered by setting fS(v) = 0 for all v ∈ V and gS(µ) = µj for all µ ∈MH ,
where µj is the coordinate of Λj in the basis expansion of µ, cf. (3.8).

Theorem 4.2 (Exponential decay). Let S be a union of mesh elements S ⊂ TH
and ψ ∈ V be the solution to the problem: find (ψ, λ) ∈ V ×MH such that

a(ψ, v) + b(v, λ) = fS(v), ∀v ∈ V,(4.1a)

b(ψ, µ) = gS(µ), ∀µ ∈MH ,(4.1b)

where fS and gS are bounded linear functionals on V and MH , respectively, such
that fS(v) = 0 for all v ∈ V withsupp(v) ⊂ Ω \ S and analogously for gS. Then
there exists Cdec > 0, independent of H, ℓ, and S, such that for all ℓ ∈ N

(4.2) ∥∇ψ∥Ω\Nℓ(S) ≤ exp(−Cdecℓ)∥∇ψ∥Ω.

Proof. The proof is based on ideas from [MP14, HP13, MP20]. For the DG-LOD,
it follows directly from the arguments in [Mai21, Thm. 4.1]. In the CG-LOD case,
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some modifications are necessary, as outlined below. Fix an integer ℓ ≥ 1, and let
η ∈W 1,∞(Ω) be the first-order finite element cut-off function characterized by

(4.3) η = 0 in Nℓ−1(S), η = 1 in Ω \ Nℓ(S),

with the transition region R := Nℓ(S) \ Nℓ−1(S), satisfying

(4.4) ∥η∥L∞(Ω) ≤ 1, ∥∇η∥L∞(Ω) ≲ H−1.

Furthermore, let

(4.5) aω(v, w) :=

ˆ
ω

(A∇v) · ∇w dx

denote the restriction of the bilinear form a to a subdomain ω ⊂ Ω. Testing (4.1a)
with ηψ and decomposing the suport of η into Ω \ Nℓ(S) and R, we obtain that

aΩ\Nℓ(S)(ψ, ηψ) = fS(ηψ)− aR(ψ, ηψ)− b(ηψ, λ).

Using the lower bound from (2.1), we estimate this by

α∥∇ψ∥2Ω\Nℓ(S) ≤ |fS(ηψ)|+ |aR(ψ, ηψ)|+ |b(ηψ, λ)| =: Ξ1 + Ξ2 + Ξ3.(4.6)

We now consider terms Ξ1–Ξ3 individually. We have Ξ1 = 0 since (ηψ)|S = 0.
To estimate Ξ2, we apply (2.1) and (4.4), which yields

(4.7) Ξ2 ≤ β∥∇ψ∥R∥∇(ηψ)∥R ≲ ∥∇ψ∥2R +H−1∥∇ψ∥R∥ψ∥R.
To estimate the right-hand side of the previous inequality, let Λ1

z denote the P1-
finite element hat function associated with the node z, and define ωz := supp(Λ1

z).
Then, we have the Poincaré-type inequality

(4.8) ∥v∥ωz
≤ CPH∥∇v∥ωz

∀v ∈
{
H1(ωz) :

´
ωz

Λ1
zv dx = 0

}
,

which can be shown with the Peetre–Tartar lemma (see, e.g., [EG04, Lem. A.38]),
a scaling argument, and the maximization of CP over all the patch configurations
that are admissible by the mesh regularity. To be able to apply (4.8) for estimating
the right-hand side of (4.7), we cover R by a collection of patches ωz such that the
union of the ωz equals R2 := int

(
Nℓ+1(S) \ Nℓ−1(S)

)
. Testing (4.1b) with Λ1

z and

noting that ωz ∩ S = ∅ gives
´
ωz

Λ1
zψ dx = 0. Thus, applying (4.8) to ψ locally on

each patch in the collection and summing up, we obtain that ∥ψ∥R ≲ H∥∇ψ∥R2 ,
using the finite overlap of the ωz. Substituting this into (4.7), we get

(4.9) Ξ2 ≲ ∥∇ψ∥2R2 .

To estimate Ξ3, we localize it to the ring R2. To this end, we decompose λ
as λ = λin + λout, where λin is the linear combination of basis functions of MH

supported only in Nℓ+1(S), and λout is the combination of the remaining basis
functions, associated with Lagrange points not in the interior of Nℓ+1(S). This
decomposition is well-defined and unique. Since ηψ = ψ in Ω \Nℓ(S) and λout = 0
in Nℓ(S), it follows from (4.1b) that b(ηψ, λout) = b(ψ, λout) = 0. Thus,

(4.10) Ξ3 = b(ηψ, λin) =

ˆ
R2

ηψλin dx ≤ ∥ηψ∥R2∥λin∥R2 ≲ ∥ψ∥R2∥λ∥R2 ,

noting that the integral above could be restricted to R2 since η = 0 on Nℓ−1(S) and
λin = 0 outside Nℓ+1(S). The last estimate in (4.10) follows from ∥λin∥R2 ≲ ∥λ∥R2 ,
which can be proved by a scaling argument on each element, noting that λin is
uniquely determined by λ. To further estimate (4.10), we consider an arbitrary

element T ⊂ R2 and observe ∥λ∥T ≲ H−1∥λ∥−1,T by Lemma 4.1. Testing (4.1a)
with any v ∈ H1

0 (T ) satisfying ∥∇v∥T = 1 and noting that fS(v) = 0, yields

(λ, v)T = b(v, λ) = −a(ψ, v) ≤ β∥∇ψ∥T ∥∇v∥T ,
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which implies that ∥λ∥−1,T ≤ β∥∇ψ∥T . Applying (4.8) as above, combining the

previous estimates, and summing over all T ⊂ R, we obtain that

(4.11) Ξ3 ≲ H∥∇ψ∥R2

( ∑
T⊂R2

H−2∥∇ψ∥2T
)1/2

≲ ∥∇ψ∥2R2 .

Substituting (4.9) and (4.11) into (4.6), and noting that the ring R2 can be
written as R2 = int

(
(Ω \ Nℓ−1(S)) \ (Ω \ Nℓ+1(S))

)
, we conclude, for a constant

C > 0 independent of H and ℓ that

∥∇ψ∥2Ω\Nℓ(S) ≤ C∥∇ψ∥2R2 = C∥∇ψ∥2Ω\Nℓ−1(S) − C∥∇ψ∥2Ω\Nℓ+1(S),

which, after rearranging the terms, leads to

(4.12) ∥∇ψ∥2Ω\Nℓ+1(S) ≤
C

1 + C
∥∇ψ∥2Ω\Nℓ−1(S).

Iterating the argument gives the assertion with Cdec :=
1
4 log

1+C
C . □

Remark 4.3 (Better decay rate for DG-LOD). As mentioned above, the proof of
exponential decay for the DG-LOD is very similar. Inequality (4.8) can be replaced
by the standard Poincaré inequality for mean-zero functions on each mesh element.
Thus, estimate (4.9) can be localized to ring R of width one instead of R2, noting
that piecewise constants lie in MH . Likewise, in (4.10) the form b localizes to R,
since contributions outside Nℓ(S) vanish. Therefore, (4.12) can be replaced by

(4.13) ∥∇ψ∥2Ω\Nℓ(S) ≤
C

1 + C
∥∇ψ∥2Ω\Nℓ−1(S)

with a constant C > 0, and the resulting decay rate is 1
2 log

1+C
C . Although C

might not be the same as in (4.12), the more local nature of estimate (4.13) gives
some theoretical underpinning of the better localization properties of the DG-LOD
compared to the CG-LOD. This is confirmed by numerical experiments in Section 8.

5. Localization

The exponential decay properties established in the previous section motivate
the localized computation of the prototypical LOD basis functions. However, the
naive strategy of localizing these basis functions by restricting problem (3.9) to
ℓ-th order patches has the drawback that the localization error increases when
decreasing the mesh size if the parameter ℓ is kept fixed, cf. [MP14, Mai21]. One
strategy to address this, described in Item 1 on Page 4, expresses the prototypical
LOD space ṼH as ṼH = VH − CVH , where C : V → W denotes the a-orthogonal
projection onto the fine-scale space W . The operator C is then decomposed into
a sum of element-wise contributions, which are subsequently localized. Note that
the projection operator R can then be written as R = IH − CIH if IH : V → VH
is a projection. However, this strategy requires the fine-scale space to be defined
as the kernel of a quasi-interpolation operator IH : V → VH , where VH is some
H1

0 (Ω)-conforming finite element space. In the present setting, this construction is
not directly applicable, as the space MH is not H1

0 (Ω)-conforming.
Our localization approach mimics the above construction by expressing R as

(5.1) R = IH −K,
where the operator K : V → V will be characterized below, and IH : V → VH is a
quasi-interpolation operator onto the first-order H1

0 (Ω)-conforming finite element
space VH associated with the mesh TH . Note that VH is fixed as the first-order
finite element space regardless of the polynomial degree p. The quasi-interpolation
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operator IH (which is not necessarily a projection) is assumed to satisfy classical
local approximation and stability estimates, i.e.,

(5.2) H−1∥v − IHv∥T + ∥∇IHv∥T ≲ ∥∇v∥N(T ), ∀T ∈ TH , ∀v ∈ V.

Moreover, the operator IH should depend on its argument only through its QOI
defined in (3.7), i.e., IHw = 0 for all w ∈ W . Such operators can be readily
constructed for the two classes of methods considered. Indeed, for the CG-LOD,
a weighted Clément-type interpolation can be used. This interpolation is uniquely
defined by assigning values at interior nodes z ∈ N in

H as

(5.3) (IHv)(z) :=
(ˆ

ωz

Λ1
z dx

)−1 ˆ
ωz

vΛ1
z dx, ∀v ∈ V,

where ωz is the support of the first-order finite element hat function Λ1
z associated

with node z. Nodal values at boundary vertices are set to zero. Such operators
were, e.g., introduced in [Car99]. For the DG-LOD method, a quasi-interpolation
can be uniquely defined by specifying its nodal values at interior nodes z ∈ N in

H as

(5.4) (IHv)(z) :=
∑
T∈ωz

|T |
|ωz|

ˆ
T

v dx, ∀v ∈ V,

where |·| denotes the d-dimensional volume of a subdomain, and values at boundary
nodes are again set to zero; see, e.g., [EG17] for an analysis in a more general setting.

The operator K : V → V , as introduced in (5.1), is characterized for each v ∈ V
as the unique solution (Kv, λ) ∈ V ×MH to the saddle point problem

a(Kv, w) + b(w, λ) = a(IHv, w), ∀w ∈ V,(5.5a)

b(Kv, µ) = − c(v, µ), ∀µ ∈MH ,(5.5b)

where we use the abbreviation c(v, µ) := b(v − IHv, µ). The operator K can now
be expressed as the following sum of local element contributions, i.e.,

K =
∑

T∈TH

KT ,

where, for all T ∈ TH , the operators KT : V → V are defined for v ∈ V as the
unique solution (KT v, λT ) ∈ V ×MH to the modified saddle point problem

a(KT v, w) + b(w, λT ) = aT (IHv, w), ∀w ∈ V,(5.6a)

b(KT v, µ) = − cT (v, µ), ∀µ ∈MH .(5.6b)

Here, in contrast to (5.5), we use localized versions of the bilinear forms a and c on
the right-hand side of the problem, denoted by aT and cT , respectively. The local
form aT is defined by restricting a to T , as in (4.5). To define the local form cT ,
there are generally several meaningful options. We formulate the following three
properties that the bilinear form cT should satisfy:

(1) Summation property:
∑

T∈TH
cT (v, µ) = c(v, µ) for all v ∈ V and µ ∈MH ;

(2) Vanishing on constants: cT (v, µ) = 0 for all µ ∈ MH if v = 1 on N(T ) for
elements T that do not contain any boundary nodes;

(3) Vanishing on fine scales: cT (w, µ) = 0 for all w ∈W and µ ∈MH ;
(4) Locality: |cT (v, µ)| ≲ ∥v∥N(T )∥µ∥N(T ) for all v ∈ V and µ ∈MH .

For the CG-LOD, the form cT can be constructed as

(5.7) cT (v, µ) :=

J∑
j=1

|T ∩ ωj |
|ωj |

µjqj(v)−
ˆ
T

µIHv dx,

where µj is the coordinates of Λj in the basis expansion of µ, cf. (3.8). The proper-
ties in Items 1 and 3 can be verified directly, and Item 4 follows from the equivalence
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of norms on the finite dimensional space MH restricted to N(T ). The property in
Item 2 follows from the fact that the operator IH preserves constants on an ele-

ment T that does not contain any boundary nodes, and
´
T
Λj dx = |T |

|ωj |
´
ωj

Λj dx

provided that T ⊂ ωj , using the change of variables formula to relate the element
integrals. For the DG-LOD method, (5.7) can be used as well and simplifies to

cT (v, µ) =

ˆ
T

(v − IHv)µdx,

since the supports ωj of any Λj consists of only one mesh element in this case.

Due to the general setting considered in Theorem 4.2, the result applies to the
function KT v for any v ∈ V , and shows that it decays exponentially away from the
element T . This motivates the localization of the operator KT to ℓ-th order patches
around T . To this end, we introduce the corresponding localized spaces

V ℓ
T := {v ∈ V : supp(v) ⊂ Nℓ(T )},

M ℓ
T := {µ|Nℓ(T ) : µ ∈Mp

H},
where we implicitly extend functions in the space M ℓ

T by zero. The localized op-
erator Kℓ

T : V → V ℓ
T can then be defined, for any v ∈ V , as the unique solution

(Kℓ
T v, λ

ℓ
T ) ∈ V ℓ

T ×M ℓ
T to the local saddle point problem

a(Kℓ
T v, w) + b(w, λℓT ) = aT (IHv, w), ∀w ∈ V ℓ

T ,(5.8a)

b(Kℓ
T v, µ) = − cT (v, µ), ∀µ ∈M ℓ

T .(5.8b)

Finally, a localized version of the operator R can be defined by

(5.9) Rℓv := (IH −Kℓ)v, Kℓv :=
∑

T∈TH

Kℓ
T v.

The following theorem shows that the localized operator Kℓ approximates K expo-
nentially well in the operator norm. Notably, it avoids the H−1 prefactor typically
arising in naive localization strategies; see, e.g., [MP14, Mai21].

Theorem 5.1 (Localization error). For all v ∈ V and ℓ ∈ N, we have

(5.10) ∥∇(R−Rℓ)v∥Ω ≲ ℓ(d−1)/2 exp(−Cdecℓ)∥∇Rv∥Ω,
where Cdec is the constant from Theorem 4.2.

Proof. We suppose without loss of generality that ℓ ≥ 2, observing that the case
ℓ = 1 holds by scaling. We abbreviate the localization error by e := (R − Rℓ)v
and note that e ∈ W . Indeed, by (5.1), (5.9), (5.6b), and (5.8b) we have b(e, µ) =
−∑

T∈TH
cT (KT v −Kℓ

T v, µ) = 0 for all µ ∈MH . Thus,

(5.11) α∥∇(R−Rℓ)v∥2Ω ≤ −a(Rℓv, e) =
∑

T∈TH

(
− aT (IHv, e) + a(Kℓ

T v, e)
)
.

In the following, we consider each summand on the right-hand side separately. We
use the cut-off function from (4.3) with S = T , now denoted by ηT . Note that
ηT = 0 on T , so that aT (IHv, e) = aT (IHv, (1−ηT )e). Together with (5.8a) for the
test function w = (1− ηT )e ∈ V ℓ

T , this yields

−aT (IHv, e) + a(Kℓ
T v, e) = −aT (IHv, (1− ηT )e) + a(Kℓ

T v, (1− ηT )e+ ηT e)

= −b((1− ηT )e, λ
ℓ
T ) + a(Kℓ

T v, ηT e) =: Ξ1 + Ξ2.

To estimate the term Ξ1, we decompose λℓT = λinT + λoutT , where λinT is the linear
combination of basis functions of MH fully supported in Nℓ−1(T ), and λoutT is the
combination of the remaining basis functions. Specifically, for the CG-LOD, the
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basis functions forming λoutT are associated with Lagrange points that do not lie in
int(Nℓ−1(T )). For DG-LOD, we simply choose λoutT = λℓT |Ω\Nℓ−1(T ). Since η = 0

in Nℓ−1(S), it follows from (5.8b) that b((1 − ηT )e, λ
in) = b(e, λin) = 0. Thus,

introducing R2
T := int

(
Nℓ(T ) \ Nℓ−2(T )

)
, we obtain that

Ξ1 = −b((1− ηT )e, λ
out
T ) ≤

ˆ
R2

T

|eλoutT |dx ≲ ∥e∥R2
T
∥λℓT ∥R2

T
.

To estimate the norm of λℓT , we employ Lemma 4.1 on each mesh element K ⊂ R2
T ,

resulting in a negative power of H and the H−1(K)-norms of λℓT . We now take
any w ∈ H1

0 (K) with ∥∇w∥K = 1 as a test function in (5.8a) and note that
aT (IHv, w) = 0 since T ∩R2

T = ∅ for ℓ ≥ 2. Thus,

|(λℓT , w)K | = |a(Kℓ
T v, w)| ≤ β∥∇Kℓ

T v∥K ,
yielding ∥λℓT ∥K ≲ ∥λℓT ∥−1,K ≤ βH−1∥∇Kℓ

T v∥K . Recalling that ∥e∥R2
T
≲ H∥∇e∥R2

T

by the Poincaré-type inequality (4.8) (or the usual Poincaré inequality for the DG-
LOD), and substituting this into the estimate for Ξ1, we obtain that

(5.12) Ξ1 ≲ ∥∇Kℓ
T v∥R2

T
∥∇e∥R2

T
.

Turning to Ξ2, we remark that the contributions to this term also vanish on all the
mesh elements outside R2

T since ℓ ≥ 2. As above, we arrive at

Ξ2 ≲ ∥∇Kℓ
T v∥R2

T
(∥∇e∥R2

T
+ ∥e∥R2

T
) ≲ ∥∇Kℓ

T v∥R2
T
∥∇e∥R2

T
.

Putting the above estimates together, we obtain that
(5.13)

∥∇e∥2Ω ≲
∑

T∈TH

∥∇Kℓ
T v∥R2

T
∥∇e∥R2

T
≲ exp(−Cdecℓ)

∑
T∈TH

∥∇Kℓ
T v∥Nℓ(T )∥∇e∥R2

T
,

where we applied Theorem 4.2 to (5.8), treating the patch Nℓ(T ) as the whole
domain. In order to pass from the norm of Kℓ

T to that of v, we again use classi-
cal saddle point theory (see, e.g. [BBF13, Cor. 4.2.1]), recalling that the inf–sup
constant of b is of order H as outlined in (3.6). This results in

(5.14)
∥∇Kℓ

T v∥Nℓ(T ) ≲ sup
w∈V ℓ

T

aT (IHv, w)
∥∇w∥Ω

+H−1 sup
µ∈Mℓ

T

cT (v, µ)

∥µ∥Ω
≲ ∥∇v∥N(T ) +H−1∥v − v̄T ∥N(T ) ≲ ∥∇v∥N(T )

where v̄T is the average of v over N(T ) if T contains a boundary node, and v̄T = 0
otherwise. The justification of the last inequality in (5.14) requires to consider the
cases where T is completely inside Ω and T is adjacent to the boundary separately.
In the first case, we can subtract the average v̄T inside the bilinear form cT due to
Item 2 on page 9, and then proceed by using Item 4 and the Poincaré inequality
on N(T ). Note that the constant in the Poincaré inequality is of order H, as seen
from scaling and maximizing over all possible configurations of N(T ) allowed by the
mesh regularity. In the other case where T lies at the boundary ∂Ω, at least one of
the boundary faces of N(T ) lies on ∂Ω and we can conclude by the Friedrichs-type
inequality ∥v∥N(T ) ≲ H∥∇v∥N(T ), which holds since v vanishes on ∂Ω.

Returning to (5.13), we conclude that

∥∇e∥2Ω ≲ exp(−Cdecℓ)

√ ∑
T∈TH

∥∇v∥2N(T )

√ ∑
T∈TH

∥∇e∥R2
T

≲ ℓ(d−1)/2 exp(−Cdecℓ)∥∇v∥Ω∥∇e∥Ω,
where we have used the fact that each element K ∈ TH belongs to at most O(ℓd−1)
rings R2

T for different T ∈ TH . Dividing by ∥∇e∥Ω gives the assertion. □
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6. Localized multiscale method

In this section, we introduce a practical multiscale method with locally com-
putable basis functions. This is reasonable due to the exponential decay behav-
ior of the globally defined functions. We define the localized multiscale space as
Ṽ ℓ
H = RℓV . Using that the operator Rℓ depends on its argument only through

the QOI introduced in (3.7), allows us to write

(6.1) Ṽ ℓ
H := span{φ̃ℓ

j : j = 1, . . . , J},

with appropriate basis functions associated with the QOI by the property that
qi(φ̃

ℓ
j) = δij . Formally, these basis functions can be written as φ̃ℓ

j = Rℓφ̃j . This

property allows us to practically compute φ̃ℓ
j as a linear combination of the solution

to a few local problems as explained in the following. To this end, we compute the
coefficients κzj for z ∈ N in

H and j = 1, . . . , J such that IH φ̃j =
∑

z∈N in
H
κzjΛ

1
z,

where N in
H denotes the set of interior nodes. These coefficients are easily deduced

from the definitions in (5.3) and (5.4) for the CG-LOD and DG-LOD, respectively,
and the known QOI of φ̃j . We can then write the localized basis function φ̃ℓ

j as

(6.2) φ̃ℓ
j =

∑
z∈N in

H

κzjΛ
1
z −

∑
T∈TH

ψℓ
j,T ,

where the pair (ψℓ
j,T , λ

ℓ
j,T ) ∈ V ℓ

T ×M ℓ
T solves the local saddle point problem

a(ψℓ
j,T , w) + b(w, λℓj,T ) =

∑
z∈N in

H
κzjaT (Λ

1
z, w), ∀w ∈ V ℓ

T ,(6.3a)

b(ψℓ
j,T , µ) = − |T∩ωj |

|ωj | µj +
∑

z∈N in
H
κzj(µ,Λ

1
z)T , ∀µ ∈M ℓ

T .(6.3b)

Note that only a small number of these problems have to be solved for each j. In the
case of CG-LOD, the functions ψℓ

j,T are non-zero only for mesh elements T ⊂ ωj .
For the DG-LOD, if the index j is associated with the characteristic function on
an element K, then the functions ψℓ

j,T are non-zero for elements T ⊂ N(K); for all
other indices j corresponding to basis functions of MH supported on K, we have
that φ̃ℓ

j = −ψℓ
j,K . We emphasize that, compared to naive localization strategies as

in [MP14, Mai21], the computational cost of the proposed stabilized localization
strategy differs only for the basis functions associated with the lowest-order QOI.
Specifically, these are the hat functions for the CG-LOD and the characteristic
functions of elements for the DG-LOD.

The LOD method seeks the unique function ũH ∈ Ṽ ℓ
H such that

a(ũℓH , ṽ
ℓ
H) = (f, ṽℓH)Ω, ∀ṽℓH ∈ Ṽ ℓ

H .(6.4)

The following theorem provides convergence results for the LOD approximation.

Theorem 6.1 (Localized method). The localized multiscale method (6.4) is well-
posed. Moreover, for any right-hand side f ∈ Hs(Ω) in the case of the CG-LOD,
and f ∈ Hs(TH) for the DG-LOD, with s ∈ {0, 1, . . . , p+1}, we have the following
error estimates:

∥∇(u− ũℓH)∥Ω ≲ H1+s|f |s,TH
+ ℓ(d−1)/2 exp(−Cdecℓ)∥f∥Ω,(6.5)

∥u− ũℓH∥Ω ≲
(
H + ℓ(d−1)/2 exp(−Cdecℓ)

)
∥∇(u− ũℓH)∥Ω.(6.6)

Proof. The proof of the above error estimates closely follows the arguments in
[DHM23, Thm. 6.2] and is therefore omitted for the sake of brevity. □
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7. More general problems

This section demonstrates that the general higher-order LOD framework devel-
oped in the previous sections for the elliptic model problem can be readily extended
to more complex problems. This is illustrated with the examples of the heteroge-
neous Helmholtz problem and the Gross–Pitaevskii eigenvalue problem.

7.1. Heterogeneous Helmholtz problem. In comparison with the second-order
diffusion-type problems introduced in Section 2, the Helmholtz problem addition-
ally features a zeroth-order term with a sign opposite to that of the second-order
operator. The strength of this term is determined by the wavenumber κ > 0. For
large κ, the problem becomes strongly indefinite and its solution is oscillatory, which
typically results in significant numerical challenges, cf. [BS97]. The Helmholtz-type
problem considered here seeks a complex-valued solution u : Ω → C satisfying

(7.1)

{
−div(A∇u)− κ2V2u = f in Ω,

A∇u · ν − iκσu = 0 on ∂Ω,

where A is a matrix-valued coefficient as in Section 2, V ∈ L∞(Ω;R) satisfies
the uniform bounds 0 < Vmin ≤ V(x) ≤ Vmax < ∞ almost everywhere in Ω, and
σ ∈ L∞(∂Ω;R) is almost everywhere positive on ∂Ω. The right-hand side f belongs
to L2(Ω;C). This problem describes the acoustic wave propagation in heterogeneous
media and is a generalization of the classical (homogeneous) Helmholtz problem.

The weak formulation of (7.1) seeks a function u ∈ V := H1(Ω;C) such that

(7.2) a(u, v) =

ˆ
Ω

fv̄ dx, ∀v ∈ V,

where v̄ is the complex conjugate of v, and a : V × V → C is defined by

a(u, v) :=

ˆ
Ω

A∇u · ∇v̄ dx− κ2
ˆ
Ω

V2uv̄ dx− iκ

ˆ
∂Ω

σuv̄ ds.

Note that a is sesquilinear. A natural norm for the Helmholtz problem is

(7.3) ∥v∥2κ := ∥A1/2∇v∥2Ω + κ2∥Vv∥2Ω.
Henceforth, we assume that the weak formulation (7.2) of the Helmholtz problem
is well-posed and admits a unique solution that satisfies the stability estimate

(7.4) ∥u∥κ ≲ κn∥f∥Ω,
for some n ≥ 0. For homogeneous coefficients and general Lipschitz domains,
the well-posedness of (7.4) can be proved with n = 5/2; see [EM11]. In the
case of variable coefficients, the analysis becomes substantially more involved; see,
e.g., [GS19, CFS23]. Note that the polynomial-in-κ stability assumption (7.4) is
classical for the numerical analysis of Helmholtz problems.

Several works use and analyze the LOD method for Helmholtz problems, includ-
ing [Pet16, BGP17, PV20, MV22, HP22]; see also [FHP24]. A key ingredient in the
corresponding analysis is the coercivity of the sesquilinear form a when restricted to
the fine-scale space W , defined similarly to (3.1). The following lemma establishes
this property for both the proposed CG-LOD and DG-LOD method.

Lemma 7.1 (Coercivity on fine-scale space). Assume the resolution condition

Hκp−1 ≤ √
α(

√
2VmaxCap)

−1 with a constant Cap > 0 depending solely on the
shape-regularity of TH . Then the sesquilinear form a is coercive on W ×W , i.e.,

Ra(w,w) ≥ α

2
∥∇w∥2Ω, ∀w ∈W.
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Proof. We use the uniform bounds on the coefficients A and V, and the approxi-
mation property of the L2-projection ΠH : L2(Ω) →MH , given by

∥v −ΠHv∥Ω ≤ CapHp
−1∥∇v∥Ω,

for a constant Cap > 0 independent of H and p. Recall that we choose MH =
Pp(TH) for the DG-LOD and MH = Pp(TH) ∩ H1(Ω) for the DG-LOD. Such a
p-explicit approximation result can be found, for instance, in [BS87, Sec. 3]. This
approximation result then yields, for any w ∈W , the following estimate:

Ra(w,w) ≥ α∥∇w∥2Ω − κ2V2
max∥w∥2Ω ≥

(
α− κ2V2

maxC
2
apH

2p−2
)
∥∇w∥2Ω.

The desired coercivity estimate then follows with the resolution condition. □

Note that, unlike in the rest of the paper, we have now explicitly tracked the
p-dependence to examine how the polynomial degree influences the resolution con-
dition and to enable a comparison with other methods; see Remark 7.3.

To construct the basis functions of the LOD trial space, one solves local corrector
problems analogous to (6.3), where the sesquilinear forms a and aT now are those
of the Helmholtz problem. The well-posedness of these problems follows directly
from classical inf–sup theory (see, e.g., [BBF13, Cor. 4.2.1], which extends to the
complex-valued setting), noting that the sesquilinear form a is coercive on the kernel
of b as shown in Lemma 7.1 and the inf–sup condition (3.6). The global trial space
of the LOD is then defined as the span of the resulting basis functions, in the spirit
of (6.1) and (6.2). Since the Helmholtz problem is non-Hermitian, the LOD method
employs different trial and test spaces. However, owing to the specific structure of
the Helmholtz equation, the test space can be obtained as the complex conjugate
of the trial space; see [Pet16, Eq. (4.6)]. Therefore, no additional computations
for the test space basis functions are required, and the LOD approximation to the
Helmholtz problem is given by the solution ũℓh ∈ Ṽ ℓ

H satisfying

a(ũℓH , ṽ
ℓ
H) =

ˆ
Ω

fṽℓH dx, ∀ṽℓH ∈ Ṽ ℓ
H .

The following theorem establishes the convergence of the CG-LOD and DG-LOD
methods for the Helmholtz problem.

Theorem 7.2 (Localized method for Helmholtz). Under the resolution condition
from Lemma 7.1 and the oversampling condition ℓ ≳ log(κ), the LOD method
for (7.2) is well-posed. Moreover, with f ∈ Hs(Ω,C) for the CG-LOD, and f ∈
Hs(TH ;C) for the DG-LOD, and s ∈ {0, 1, . . . , p+ 1}, we have

∥u− ũℓH∥κ ≲ H1+s|f |s,TH
+ κnℓ

d−1
2 exp(−Cdecℓ)∥f∥Ω(7.5)

with n from (7.4) and the decay rate Cdec > 0 is independent of H, ℓ, and κ.

Proof. The proof combines arguments from the LOD analysis for the elliptic model
problem (see, e.g., Theorems 4.2 and 5.1) with techniques specific to the Helmholtz
setting (see, e.g., [Pet16, HP22]). For brevity, the details are omitted. □

Remark 7.3 (Analogies to hp-FEM). The assumptions on the discretization param-
eters required for the stability and quasi-optimality of the hp-FEM for Helmholtz
problems (see, e.g., [MS11]) are notably similar to those in the above theorem. In
the case of homogeneous coefficients (for an extension to piecewise smooth coeffi-
cients, see [BCFM24]), it was shown that a stable and quasi-optimal finite element
approximation can be achieved if the polynomial degree satisfies p ≈ log(κ) and the
resolution condition Hκp−1 ≲ 1 holds, along with a suitable refinement strategy
near geometric singularities. This resolution condition is the same as in Lemma 7.1
(up to a constant), and the role of the polynomial degree in the hp-FEM is similar
to that of the localization parameter in the LOD; see Theorem 7.2.
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7.2. Gross–Pitaevskii problem. As another example, we consider the Gross–
Pitaevskii problem, which arises in quantum physics as a model for quantum states
of so-called Bose–Einstein condensates. The problem is posed on a convex Lipschitz
domain Ω, with homogeneous boundary conditions imposed on its boundary. This
corresponds to the choice V := H1

0 (Ω). Note that due to the rapid decay of low-
energy quantum states, the restriction to a sufficiently large domain, along with
homogeneous Dirichlet boundary conditions, is a physically reasonable modeling
assumption. Stationary quantum states correspond to the critical points of the
Gross–Pitaevskii energy functional, defined as

(7.6) E(v) := 1
2 (∇v,∇v)Ω + 1

2 (Vv, v)Ω + κ
4 (|v|2v, v)Ω, v ∈ V,

subject to the L2-normalization constraint ∥v∥Ω = 1. Here, V ∈ L∞(Ω) is a non-
negative (possibly rough) trapping potential and the parameter κ > 0 characterizes
the strength of repulsive interactions between particles. Of particular physical
interest is the ground state, which corresponds to the stationary quantum state of
lowest energy, i.e., it solves the constrained minimization problem

(7.7) u ∈ argmin
v∈V : ∥v∥Ω=1

E(v),

and the minimal energy is denoted by E := E(u). The corresponding Euler–
Lagrange equations imply that the ground state u, together with an eigenvalue
λ ∈ R, solves the nonlinear eigenvalue problem

(7.8) (∇u,∇v)Ω + (Vu, v)Ω + κ(|u|2u, v)Ω = λ(u, v)Ω, ∀v ∈ V,

where λ is referred to as the ground state eigenvalue. In the above setting, it is a
classical result that the ground state eigenvalue is the smallest eigenvalue among
all eigenpairs of (7.8) and it is simple. Moreover, the ground state is unique up to
sign and can be chosen to be strictly positive in the interior of Ω, cf. [CCM10].

For the construction of the LODmethod (we restrict ourselves to the prototypical
method for simplicity; a localization can be performed analogously to Sections 4
and 5), we consider only the terms on the left-hand side of (7.8) which are linear
in u. The resulting bilinear form a : V × V → R is defined as

(7.9) a(w, v) := (∇w,∇v)Ω + (Vw, v)Ω.

The approximation space ṼH of the prototypical LOD is then defined as in (3.2),
using the modified bilinear form from (7.9). Depending on whether the space MH ,
used in the definition of the fine-scale space W in (3.1), consists of globally contin-
uous or TH -piecewise polynomials, one obtains a CG- or DG-version of the LOD
method, respectively. The prototypical LOD approximation is then defined as the
solution to the finite-dimensional constrained minimization problem.

(7.10) ũH ∈ argmin
ṽH∈ṼH : ∥ṽH∥Ω=1

E(ṽH),

and the corresponding minimal energy is denoted by EH := E(ũH). While the
existence of such a minimizer follows from classical compactness arguments in the
finite-dimensional setting, its uniqueness is generally not guaranteed. An overview
of algorithms to practically solve (7.10) (after a localization of the basis functions)
can be found in [HJ25]. The Euler–Lagrange equations corresponding to (7.10) give

rise to the following finite-dimensional nonlinear eigenvalue problem: seek ũH ∈ ṼH
and an associated eigenvalue λH ∈ R such that

(∇ũH ,∇ṽH)Ω + (VũH , ṽH)Ω + κ(|ũH |2ũH , ṽH)Ω = λH(ũH , ṽH)Ω, ∀ṽH ∈ ṼH .
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As a preliminary step towards proving the convergence of the prototypical LOD
method for the Gross–Pitaevskii problem, we first analyze the approximation prop-
erties of the space ṼH , as done in the following lemma.

Lemma 7.4 (Approximation properties of ṼH). Assume that u ∈ Hs(Ω) as well

as |u|2u ∈ Hs(Ω) with s ∈ {0, 1, . . . , p+ 1}, and let Pu ∈ ṼH be the solution to

(7.11) a(Pu, ṽH) = −κ(|u|2u, ṽH)Ω − λ(u, ṽH)Ω, ∀ṽH ∈ ṼH .

Then, we have

(7.12) ∥∇(u−Pu)∥Ω ≲ H1+s
(
||u|2u|s,Ω + |u|s,Ω

)
.

Proof. By coercivity and symmetry of a, and using (7.8) and (7.11), we obtain that

∥∇(u−Pu)∥2Ω ≤ a(u−Pu, u) = −κ(|u|2u, u−Pu)Ω − λ(u, u−Pu)Ω.

Since u−Pu ∈W by construction, and using the approximation properties of the
L2-projection ΠH : L2(Ω) →MH , it follows that

∥∇(u−Pu)∥2Ω ≤ −κ(|u|2u−ΠH(|u|2u), (u−Pu)−ΠH(u−Pu))Ω

− λ(u−ΠHu, (u−Pu)−ΠH(u−Pu))Ω

≲ H1+s
(
||u|2u|s,Ω + |u|s,Ω

)
∥∇(u−Pu)∥Ω,

where the hidden constant depends on λ. This yields (7.12). □

The following theorem proves the convergence of the prototypical LOD method.

Theorem 7.5 (Prototypical method for the Gross–Pitaevskii problem). Assume
that u ∈ Hs(Ω) and |u|2u ∈ Hs(Ω) with s ∈ {0, 1, . . . , p + 1}. Then the discrete
ground state and the corresponding energy fulfill

∥∇(u− ũH)∥Ω ≲ H1+s
(
||u|2u|s,Ω + |u|s,Ω

)
, |E − EH | ≲ ∥∇(u− ũH)∥2Ω.

Proof. From the general convergence theory developed in [CCM10, Thm. 1], we
derive under the stated assumptions that the solution to (7.2) fulfills a quasi-best
approximation property in the H1(Ω)-norm and the stated energy error holds. The
result then follows directly invoking Lemma 7.4. □

Remark 7.6 (L2- and eigenvalue approximation). Note that L2-error estimates for
the ground state and the eigenvalue can be derived as well. Under suitable regu-
larity assumptions on the dual problem defined in the proof of [CCM10, Thm. 3],
we obtain an additional order of convergence in the L2(Ω)-norm for the ground
state approximation, compared to the H1-estimate in Theorem 7.5. Under similar
assumptions, the eigenvalue approximation exhibits the same convergence rate as
the energy approximation. A proof of these results is beyond the scope of this work;
for details, see [HP23b], which provides the proof for the CG-LOD with p = 1.

Remark 7.7 (Regularity of the solution). Under the assumptions made in this sec-
tion, one can show that u and |u|2u belong to H2(Ω), with corresponding norms
bounded independently of the oscillations of V; see [HP23b, Lem. 2.2]. Using sim-
ilar arguments and assuming more regular V and a smooth boundary, even higher
regularity of the solution can be shown, e.g., u ∈ Hp+1(Ω), |u|2u ∈ Hp+1(Ω) for
some p > 1. These considerations justify the assumptions in Lemma 7.4 and The-
orem 7.5. Note that, however, the seminorms of order greater than two may no
longer be bounded independently of the oscillations of V. The additional boundary
regularity assumptions are not required if u is compactly supported in Ω. While ex-
act compact support may not occur in practice, the ground state typically exhibits
a rapid decay (see, e.g., [BC13, Thm. 2.5]), which allows to relax the boundary
regularity assumptions. Overall, under the same regularity assumptions, the LOD
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Figure 8.1. Coefficients A1 and A2 used in the first and second
numerical experiments, respectively (left and center), and poten-
tial V used in the third numerical experiment (right).

solution is expected to be two orders more accurate than a classical higher-order
finite element method; see also the numerical investigation in [Död25].

8. Numerical experiments

In all numerical experiments, we consider the domain Ω = (0, 1)2, unless stated
otherwise. For implementation purposes, we use uniform Cartesian meshes TH
composed of square elements of side length H, and choose MH := Qp(TH) for the
DG-LOD and MH := Qp(TH) ∩ H1(Ω) for the CG-LOD, where Qp(TH) denotes
the space of TH -piecewise polynomials of coordinate degree at most p; see also
the footnote on Page 3. The local (infinite-dimensional) patch problems (5.8) are
discretized using local submeshes of a fine Cartesian mesh Th, with mesh size h < H,
fine enough to resolve all microscopic features of the coefficients. For this fine-
scale discretization, we use the Qq-finite element method, with the polynomial
degree q ∈ N specified individually in the subsections below. In the fully discrete
convergence analysis, the space V is replaced by the fine-scale finite element space,
and most arguments carry over directly; see, e.g., [MP20, Ch. 4.4]. This yields
an a priori error estimate for the fully discrete LOD approximation with respect
to the fine-scale finite element solution, analogous to Theorem 6.1. An estimate
with respect to the weak solution of the original PDE then follows by applying the
triangle inequality and standard finite element approximation results.

The numerical experiments presented below can be reproduced using the code
available at https://github.com/moimmahauck/HO_LOD.

8.1. Heterogeneous elliptic problem. As a first numerical experiment, we con-
sider the elliptic model problem (2.2) with the coefficient A1 shown in Figure 8.1
(left). The coefficient is piecewise constant on a uniform Cartesian grid Tϵ with
mesh size ϵ = 2−7. For all elements whose midpoints lie within a distance of 4ϵ
from a given parabola, the coefficient is set to a value of 2. In all other elements,
the coefficient values are sampled independently from a uniform distribution on the
interval [0.1, 1]. We further consider the two smooth source terms

f1(x, y) = 2π2 sin(πx) sin(πy), f2(x, y) = 1.

We emphasize that for the source term f2, as observed in Theorem 6.1, the first
term on the right-hand side of error estimate (6.5) vanishes. This implies that,
for f2, only the second summand, i.e., the exponentially decaying localization error,
remains. We abbreviate the relative errors with respect to the energy norm as

erra(H, ℓ) :=
∥uh − uℓH,h∥a

∥uh∥a
,

https://github.com/moimmahauck/HO_LOD
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Figure 8.2. Error plots for the CG-LOD and DG-LOD methods
for polynomial degrees p ∈ {1, 2, 3} for the source term f1. For
fixed oversampling parameters ℓ, the relative energy norm error is
plotted as a function of coarse mesh size H.

where uℓH,h denotes the fine-scale LOD approximation, and uh is the fine-scale finite
element solution as reference. The fine-scale discretization is performed using the
Q1-finite element method on the fine mesh Th with mesh size h = 2−9, which is
sufficiently fine to resolve the microscopic details of the coefficient A. Note that,
due to the expected low regularity of the analytical solution, higher-order finite
elements do not offer an advantage in terms of convergence rates at the fine scale.

In Figure 8.2, the first row of plots illustrates the convergence behavior of the
CG-LOD method. One can observe that the expected convergence rates can still
be inferred from the first two data points, where all patches are global and the
localization error is effectively zero. However, for mesh sizes H beyond 2−2, the
localization error completely dominates the convergence behavior. Although this
observation is consistent with the theoretical results in Theorem 6.1, this numerical
experiment clearly shows the unsatisfactory localization properties of the CG-LOD.
The situation is quite different for the DG-LOD. The second row of plots in Fig-
ure 8.2 clearly shows a convergence of order p + 2 for the LOD approximation as
predicted by Theorem 6.1, provided that the oversampling parameter is sufficiently
large. The noticeably larger gaps between the plateaus of the error curves for
different oversampling parameters showcase the significantly improved localization
properties of the DG-LOD compared to the CG-LOD. This improvement can be
attributed to the use of the discontinuous Galerkin ansatz for the QOI.

In Figure 8.3 we compare the exponential decay of the localization error for the
CG-LOD (first row) and the DG-LOD (second row). Recall that for the source
term f2 used in this experiment, the first term in the error estimate (6.5) vanishes,
leaving only the exponentially decaying localization error. The numerical results in
Figure 8.3 confirm the completely different localization behavior of the two methods.
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Figure 8.3. Error plots for the CG-LOD and DG-LOD methods
for polynomial degrees p ∈ {1, 2, 3} for the source term f2. For
fixed coarse mesh sizes H, the relative energy norm error is plotted
as a function of the oversampling parameter ℓ.

Figure 8.4. Real part of the Helmholtz LOD solution (left), and
LOD Gross–Pitaevskii ground state approximation (right)

Note that, in general, increasing the polynomial degree leads to better localization,
i.e., faster decay of the localization error.

8.2. High frequency heterogeneous Helmholtz problem. In the second nu-
merical experiment, we demonstrate the performance of the higher-order DG-LOD
in the context of high-frequency heterogeneous Helmholtz problems. The coeffi-
cient A2 used in this experiment is shown in Figure 8.4 (center), and the wave
number is chosen as κ = 28. Furthermore, the coefficients V and σ are set to one.
As the source term f3, we use an approximate point source located at (1/8, 1/8),
which is supported within a circle of radius 1/20, defined as

f3(x, y) =


104 · exp

(
−1

1− (x−1/8)2+(y−1/8)2

1/202

)
if (x− 1/8)2 + (y − 1/8)2 < 1/202,

0 else.
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Figure 8.5. Error plots for the DG-LOD with p = 2 for the Gross-
Pitaevskii problem. For fixed oversampling parameters ℓ, the L2-
and H1-errors of the ground state approximation (left), as well as
the errors in the energy and eigenvalue approximations (right), are
plotted as functions of the coarse mesh size H.

A high wavenumber, such as κ = 28, leads to a pronounced pollution effect when
classical low-order finite elements are used; see [BS97]. As a result, obtaining a
quasi-optimal approximation demands considerably more restrictive conditions on
the fine-scale mesh size than are required merely to capture the oscillatory nature of
the solution. In this numerical experiment, we use the Q2-finite element method on
the mesh Th with h = 2−10 for the fine-scale discretization. This choice aligns with
the mesh size condition h ∼ κ−5/4 for quadratic finite elements to achieve a quasi-
optimal approximation; see [DW15, Thm. 5.1] for the constant coefficient case.

Figure 8.4 (left) shows the real part of the LOD approximation for p = 3, H =
2−6, and ℓ = 4. The corresponding relative error in the norm ∥·∥κ, defined in (7.3),
against the fine-scale solution is 7.2970×10−4. This result demonstrates that higher
polynomial degrees on the coarse scale can further relax the resolution requirements,
which is consistent with the theoretical result presented in Lemma 7.1.

8.3. Gross–Pitaevskii eigenvalue problem. In the third numerical experiment,
we apply the higher-order DG-LOD method to approximate the Gross–Pitaevskii
ground state. We consider the domain Ω = (−6, 6)2, the particle interaction pa-
rameter κ = 100, and choose the potential defined as

V(x) := 1
2 |x|2 + 40× tent(x)tent(y),

where tent denotes the periodized version of the tent function on the interval [0, 1],
which attains the value one at 0.5 and vanishes at 0 and 1. This potential is
illustrated in Figure 8.1 (right) and a corresponding ground state approximation
is shown n Figure 8.4 (right). Since V ∈ W 1,∞(Ω), the DG-LOD method with
degree p = 2 achieves optimal order convergence. This is because the assumption
in Theorem 7.5, that u and |u|2u belong to H3(Ω), is satisfied.

In the convergence plot shown in Figure 8.5, one observes the expected optimal
rates of convergence, for the ground state approximation in the L2- and H1-norms,
as well as for the energy and eigenvalue approximations, provided the oversampling
parameter is chosen sufficiently large. We emphasize that, initially, for very coarse
mesh sizes H, a reduced convergence order (e.g., around three for the H1-error of
the ground state approximation) is observed. This behavior is based on the fact that
seminorms of order greater than two for u and |u|2u are not bounded independently
of the oscillations in V. As soon as these oscillations are sufficiently resolved, the
theoretically predicted optimal convergence rates are attained. A similar behavior is
observed for the L2-error, as well as for the energy and eigenvalue errors. Note that
machine precision effects can be seen in the eigenvalue errors for small mesh sizes.
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[BS97] I. M. Babuška and S. A. Sauter. Is the pollution effect of the FEM
avoidable for the Helmholtz equation considering high wave numbers?
SIAM J. Numer. Anal., 34(6):2392–2423, 1997.

[Car99] C. Carstensen. Quasi-interpolation and a posteriori error analysis in
finite element methods. M2AN Math. Model. Numer. Anal., 33(6):1187–
1202, 1999.

[CCM10] E. Cancès, R. Chakir, and Y. Maday. Numerical analysis of nonlinear
eigenvalue problems. J. Sci. Comput., 45(1-3):90–117, 2010.



22 M. HAUCK, A. LOZINSKI, R. MAIER

[CEL19] M. Cicuttin, A. Ern, and S. Lemaire. A hybrid high-order method
for highly oscillatory elliptic problems. Comput. Methods Appl. Math.,
19(4):723–748, 2019.

[CFS23] T. Chaumont-Frelet and E. A. Spence. Scattering by finely layered
obstacles: Frequency-explicit bounds and homogenization. SIAM J.
Math. Anal., 55(2):1319–1363, 2023.

[DHM23] Z. Dong, M. Hauck, and R. Maier. An improved high-order method for
elliptic multiscale problems. SIAM J. Numer. Anal., 61(4):1918–1937,
2023.
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France
Email address: alexei.lozinski@univ-fcomte.fr


	1. Introduction
	Notation

	2. Model problem
	3. Prototypical multiscale method
	4. Exponential decay
	5. Localization
	6. Localized multiscale method
	7. More general problems
	7.1. Heterogeneous Helmholtz problem
	7.2. Gross–Pitaevskii problem

	8. Numerical experiments
	8.1. Heterogeneous elliptic problem
	8.2. High frequency heterogeneous Helmholtz problem
	8.3. Gross–Pitaevskii eigenvalue problem

	Acknowledgments
	References

