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MULTILEVEL STOCHASTIC GRADIENT DESCENT
FOR OPTIMAL CONTROL UNDER UNCERTAINTY

NIKLAS BAUMGARTEN AND DAVID SCHNEIDERHAN

Abstract. We present a multilevel stochastic gradient descent method for the optimal

control of systems governed by partial differential equations under uncertain input data.
The gradient descent method used to find the optimal control leverages a parallel multi-

level Monte Carlo method as stochastic gradient estimator. As a result, we achieve precise

control over the stochastic gradient’s bias, introduced by numerical approximation, and its
sampling error, arising from the use of incomplete gradients, while optimally managing com-

putational resources. We show that the method exhibits linear convergence in the number

of optimization steps while avoiding the cost of computing the full gradient at the highest
fidelity. Numerical experiments demonstrate that the method significantly outperforms the

standard (mini-) batched stochastic gradient descent method in terms of convergence speed
and accuracy. The method is particularly well-suited for high-dimensional control problems,

taking advantage of parallel computing resources and a distributed multilevel data structure.

Additionally, we evaluate and implement different step size strategies, optimizer schemes,
and budgeting techniques. The method’s performance is studied using a two-dimensional

elliptic subsurface diffusion problem with log-normal coefficients and Matérn covariance.

1 Introduction

The state of a physical, technological, or economical process, as a function of space and
time, is often described by partial differential equations (PDEs). Controlling the state of such
processes, for example, by imposing boundary conditions or external forces, is of significant
interest in all the aforementioned applications. However, determining the optimal control of
a PDE-governed system is a computationally demanding task, particularly when the PDE
involves high-dimensional, uncertain input data and the control has to be found with high
precision.

Known methods to uncertain optimal control problems (OCPs) focus on minimizing the
expected distance between the state and a desired target. Finding solutions to such problems
often requires three key functionalities: solving the minimization problem, e.g. by using stochas-
tic gradient descent (SGD) methods; addressing the uncertainty through sufficient sampling
of the input data; and discretizing the PDEs with finite element (FE) methods. Approaches
which fall under this description can be found in [1, 2, 3, 4, 5].

Motivated by this work, we take an integrated approach, combining all three functionali-
ties in a single algorithm which leverages multilevel variance reduction, as in multilevel Monte
Carlo (MLMC) methods [6, 7], and parallel computing resources. Even though other sam-
pling methods to discretize the input space involve sparse grids [8, 9] and quasi-Monte Carlo
methods [10, 11], we based our approach on the budgeted multilevel Monte Carlo (BMLMC)
method [12, 13, 14], which provides high-performance and broad applicability. As baseline,
we consider a step size controlled parallel (mini-) batched stochastic gradient descent (BSGD)
method, e.g. used in [15, 16], and show that our method improves it significantly in terms of
convergence speed, achievable accuracy, scalability and robustness (cf. Figure 5 for a direct
comparison).
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2 NIKLAS BAUMGARTEN AND DAVID SCHNEIDERHAN

As a model problem, we consider a two-dimensional elliptic subsurface diffusion problem
with log-normal coefficients (illustrations in Figure 1), generated using the memory efficient
stochastic PDE sampling technique of [17]. We intentionally choose a high-dimensional elliptic
problem to not lay the focus on the PDE, but rather on the algorithm and its properties. To
get the gradients for the SGD, BSGD or the here introduced multilevel stochastic gradient
descent (MLSGD) method, we solve the adjoint system corresponding to the PDE constraint
as outlined in [1], also related to the adjoint Monte Carlo method described in [18].

Previous multilevel ideas for OCPs can be found in [19] for pathwise control, or in [20] for
sample average approximation (SAA) assembled into a large linear system — similar to [12] —
then solved using a multigrid algorithm. The results in [21, 22] provide a foundation for mul-
tilevel gradient estimation of OCPs, e.g., then used in a nonlinear conjugate gradient method.
The approaches in [3, 4] address the optimization problem using stochastic approximation
(SA), tracing back to [23], in the form of a SGD method. Our method embeds the mentioned
multilevel gradient estimation in this SGD approach. In [24], the SA is also extended to a mul-
tilevel setting, considering [25], from which we draw further motivation to develop the MLSGD
proposed with this paper. Related ideas can also be found in the context of Bayesian inverse
problems, where the Stein variation gradient descent has also been extended by multilevel
ideas [26, 27].

Machine learning has been the main driver for the development of novel SGD methods to
enable large-scale training of neural networks, often striking the balance between per-iteration
cost and expected improvements [28]. Features such as variance (noise) reduction and paral-
lelism through BSGD [29], adaptive moment estimation (ADAM) [30], adaptive step sizes [31],
or averaging and aggregation schemes [32, 33], have been successfully applied to various prob-
lems. We take inspiration in these approaches, incorporating them into the proposed MLSGD
method for OCPs and conjecture that the algorithm is applicable in machine learning as well.

Concluded, recent developments, theory and existing algorithms motivate the combination
of multilevel variance reduction and SGD methods, however, we have not found a highly-
performant, adaptive, and parallel method for high-dimensional control problems yet. With
this paper, we propose new ways to realize such a method which in particular features:

Algorithmic description and convergence analysis. Building on the assumptions and nota-
tions in Section 2, we present a detailed description of the MLSGD method for OCPs in Algo-
rithm 1 and Algorithm 2, incorporating the standard BSGD method recalled in Section 3 and
the MLMC estimation from Section 4. In Section 5, we establish the linear convergence of the
proposed method in terms of optimization steps through Theorem 5.2 and Corollary 5.4. This
result follows from bounding the error of the gradient estimation through an appropriate choice
of the multilevel batch size (see Lemma 5.1). The method achieves this convergence rate (like
an SAA approach) with a complexity similar to the standard MLMC method, as it circumvents
full gradient evaluations (as done for SA) at the highest level. As a result, MLSGD improves
convergence rates, speed, and accuracy by adaptive the multilevel batches.

Adaptivity, budgeting and error control by resources. In extension to the new MLSGD
method presented in Section 5, we incorporate the adaptive step size rule from [31], adaptive
multilevel batches similar to [22], the optimal distribution of the computational load as in [14],
and a posteriori error control with dynamic programming [13] into Algorithm 3. We impose the
given computational resources, such as the total available memory and the reserved CPU-time
budget, as additional constraints to the optimization problem resulting in 6.1. The final Bud-
geted Multilevel Stochastic Gradient Descent (BMLSGD) method allows for total error control
by the given computational resources through Corollary 6.2 and is presented in Algorithm 3.
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Numerical experiments with HPC resources. Lastly, we note that the method is designed
for HPC resources implemented on a domain- and sample-distributed multi-index data struc-
ture [14], enabling efficient use of resources as in [13]. While our study focuses on an el-
liptic model problem, the algorithm and implementation are designed for broader applicabil-
ity, demonstrating parallel scalability through the usage of the FE software M++ [34], here
used in version [35]. In our numerical experiments, presented across several sections (see Sec-
tions 3.2, 5.2 and 6.2), we compare all introduced algorithms (see Sections 3.1, 5.1, 6.1) to
support the theoretical findings mentioned in the previous paragraphs. We particularly high-
light again Figure 5 illustrating the superior performance of BMLSGD over BSGD, and Figure 7
which demonstrates that this method also scales well with increased computational resources.

2 Assumptions and Notations

Goal of the proposed methodology is to find the optimal control to a PDE governed system
with uncertain input data. Similar problems are considered for example in [3, 21, 4], presenting
theoretical foundation for our approach; however, the algorithm and the notation are closely
related to [12, 13, 14]. The PDE system of interest is defined on a bounded polygonal spatial
domain D ⊂ Rd with d ∈ {1, 2, 3}, while the uncertainty of the input data is captured by a
complete probability space (Ω,F ,P). Let further (V, ⟨·, ·⟩V ), (W, ⟨·, ·⟩W ) denote Hilbert spaces
with V ⊆ W ⊆ L2(D), where V is an appropriate space for an PDE sample solution. Lastly,
let L2(Ω, V ) and L2(Ω,W ) denote Bochner spaces containing all L2-integrable maps from the
probability space (Ω,F ,P) to V and W , respectively.

2.1 Optimization Problem

We search for an admissible control z ∈ Z to an optimal control problem (OCP), where Z
is a non-empty, closed and convex set

Z :=
{
z ∈W : zlowad (x) ≤ z(x) ≤ zupad(x), a.e. x ∈ D

}
with zlowad , zupad ∈W . The control is found, if the distance of some prescribed target d ∈ W to
the state solution u ∈ L2(Ω, V ) of the PDE is minimal in expectation.

Problem 2.1 (Optimal Control under Uncertainty). Given the desired target state d ∈W and
a cost factor λ ≥ 0, find the optimal, admissible and deterministic control z ∈ Z, such that

(2.1) min
z∈Z

J(z) := E [j(·, z)] with j(ω, z) := 1
2 ∥u[ω]− d∥2W + λ

2 ∥z∥
2
W

under the constraint that the state u ∈ L2(Ω, V ) is the solution of

(2.2) G[ω]u(ω,x) = z(x)

with G[ω] representing the uncertain PDE system.

To ensure a unique solution to Problem 2.1 and to show convergence of the used SGD
methods, we suppose the following conditions on the optimization problem.

Assumption 2.2.

(1) The functional j : Ω ×W → R is L2-Fréchet differentiable on W , i.e. for every open
Z ⊂W containing z, there exists a linear operator A : Ω×Z → L(W,R), such that

lim
W∋h→0

∥j(·, z+ h)− j(·, z) +A(·, z)h∥L2(Ω)

∥h∥W
= 0.
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(2) The mapping z 7→ j(ω, z) is strongly µ-convex on the admissible set Z for almost every
ω ∈ Ω, implying z 7→ J(z) being strongly µ-convex, too, i.e., there exists a constant
µ > 0, such that for all z(1), z(2) ∈ Z,〈

∇J [z(1)]−∇J [z(2)], z(1) − z(2)
〉
W
≥ µ

∥∥z(1) − z(2)
∥∥2
W

and(2.3)

J(z(2)) ≥ J(z(1)) +
〈
∇J [z(1)], z(2) − z(1)

〉
W

+ µ
2

∥∥z(2) − z(1)
∥∥2
W
.(2.4)

(3) ∇J is Lipschitz continuous, i.e., there exists a constant cLip ≥ 0, such that

(2.5)
∥∥∇J [z(1)]−∇J [z(2)]∥∥

W
≤ cLip

∥∥z(1) − z(2)
∥∥
W
, ∀ z(1), z(2) ∈ Z.

Under Assumption 2.2, the solution z∗ ∈ Z to Problem 2.1 satisfies besides (2.2) also the
optimality condition (cf. [36])

(2.6) ∇J [z∗](x) = 0 with ∇J [z](x) = λz(x)− E[q](x)

everywhere in D, where q ∈ L2(Ω, V ) is the solution of the adjoint PDE system

(2.7) G∗[ω]q(ω,x) = d(x)− u(ω,x)

and G∗[ω] is the uncertain adjoint system of G[ω].

2.2 Approximation

We want to find approximate solutions to Problem 2.1, which involves three main compo-
nents: (i) computing finite element (FE) solutions uℓ ∈ Vℓ for system (2.2) and qℓ ∈ Vℓ for
system (2.7), Vℓ denoting a suitable finite element space associated with V at discretization
level ℓ; (ii) sampling finite-dimensional representations of stochastic events Ω ∋ ω 7→ yℓ ∈ Vℓ

to generate the input data for the PDE systems; (out of simplicity, we take Vℓ for all functions
with a discrete representation, but remark that different spaces can be chosen as well) and (iii)
finding the root in (2.6) using an iterative stochastic approximation indexed by k ∈ N0. The
iteration scheme of a standard SGD method is given with step sizes tk > 0 by

(2.8) z
(k+1)
ℓ ←πZ

(
z
(k)
ℓ − tk(λz

(k)
ℓ − q

(k)
ℓ )
)
, where πZ(zℓ) = argmin

wℓ∈Zℓ

∥zℓ −wℓ∥W

ensures that the control z
(k+1)
ℓ remains in the admissible discretized space Zℓ ⊂ Vℓ. This ap-

proach, using g
(k)
ℓ = λz

(k)
ℓ − q

(k)
ℓ as stochastic gradient, is motivated by [1], with the method-

ology further developed in [3], where the step size tk is assumed to satisfy

(2.9) tk > 0,

∞∑
k=1

tk =∞,

∞∑
k=1

t2k <∞,

to ensure convergence (cf. [28, 31] for further reading on step size control). This is combined
with an adaptive mesh refinement and a step size decay to control the sampling error and the
bias introduced by the FE method. Here, we approach this by introducing a MLMC estimator
for the gradients, controlling both errors while drastically speeding up the computations and
reducing the variance to make the choice of the step sizes less critical.

To outline all necessary assumptions for this approach, we consider an increasing sequence

of sub-σ-algebras {Fk}k∈N0 of F (a Filtration), such that z
(k)
ℓ and z(k) are Fk-measurable.

Since all quantities updated in the optimization depend upon the previous steps, we introduce
with the conditional expectation Ek[ · ] := E[ · |Fk] (cf. [37, 38]) the norm ∥v(k)∥2

L2
k(Ω,W )

:=

Ek

[
∥v(k)∥2W

]
and the space

L2
k(Ω,W ) :=

{
v(k) ∈ L2(Ω,W ) : ∥v(k)∥2L2

k(Ω,W ) <∞
}
.
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We remark that the computed control in (2.8) is a discretized random-field z
(k)
ℓ ∈ L2

k(Ω, Zℓ)
unlike the true solution z∗ ∈ Z to Problem 2.1, which is deterministic.

As gradient estimator, the MLMC method gives its computational advantage through the
variance reduction of the state and adjoint level differences

v
(k)
ℓ := u

(k)
ℓ − Pℓ

ℓ−1u
(k)
ℓ−1, v

(k)
0 := u

(k)
0 and p

(k)
ℓ := q

(k)
ℓ − Pℓ

ℓ−1q
(k)
ℓ−1, p

(k)
0 := q

(k)
0 ,(2.10)

where we made use of the linear isometric projection operator Pℓ
ℓ−1 : Vℓ−1 → Vℓ as in [14]. The

assumptions required for the MLMC estimation are summarized below.

Assumption 2.3. The FE approximations of (2.2) and (2.7) with mesh diameter hℓ = h0 2
−ℓ

satisfy in every optimization step k∥∥Ek[u
(k)
ℓ − u(k)]

∥∥
W

≤ ukh
αu

ℓ(2.11a) ∥∥v(k)
ℓ − Ek[v

(k)
ℓ ]
∥∥2
L2
k(Ω,W )

≤ vkh
βv

ℓ(2.11b)

∥∥Ek

[
q
(k)
ℓ − q(k)

]∥∥
W

≤ qkh
αq

ℓ(2.12a) ∥∥p(k)
ℓ − Ek[p

(k)
ℓ ]
∥∥2
L2
k(Ω,W )

≤ pkh
βp

ℓ(2.12b)

with exponents αu, αq, βv, βp > 0 and uk, qk, vk, pk > 0 being independent of the discretiza-

tion level ℓ. The state u(k) and the adjoint q(k) represent the true solutions to the continuous
problems (2.2) and (2.7) within the optimization algorithm. We further assume that the com-

putation of the state-adjoint pair (v
(k)
ℓ ,p

(k)
ℓ ) is bounded with γCT, γMem > 0 and ck,mk > 0 in

its computing-time and memory footprint

(2.13) CCT
(
(v

(k)
ℓ ,p

(k)
ℓ )
)
≤ ckh

−γCT

ℓ . (2.14) CMem
(
(v

(k)
ℓ ,p

(k)
ℓ )
)
≤ mkh

−γMem

ℓ

Lastly, with cG , zk > 0 and αz > 0 being also independent of ℓ, we suppose

(2.15)
∥∥z(k)ℓ − z(k)

∥∥2
L2
k(Ω,W )

≤ cGEk

[∥∥q(k)
ℓ − q(k)

∥∥2
W

]
≤ zkh

2αz

ℓ .

Remark 2.4. (1) Assumption 2.3 is based on [14] and adapted to fit to the MLSGD method
by extending it to every optimization step.

(2) The constants uk, qk, vk, pk, ck,mk and zk possess k-dependence due to changing right-
hand-sides of (2.2) and (2.7) as the optimization runs (cf. arguments of [39, 40, 41]
for an elliptic PDE).

(3) The exponents αu, αq, βv, βp, γCT, γMem and αz are assumed to be independent of k as
the regularity of the PDE solutions is not expected to change during the optimization.

(4) In the setting of this paper we denote α := αq, β := βp and γ ∈ {γCT, γMem}.
(5) Though assumptions (2.11a) and (2.11b) are not used in theory, we present numerical

estimates on them in Section 6.2
(6) The cost bounds (2.13) and (2.14), while in [14] imposed for full field MLMC estimation,

also might find justification in machine learning through a formulation with respect to
the problem size. Commonly, computing time budgets and memory constraints are
among the limiting factors in the training of neural networks.

(7) The inequality on the control error (2.15) is used in Lemma 5.1 to avoid specific assump-
tions on the operators G[ω] and G∗[ω] as well as the applied discretization schemes. This
is motivated by inserting (2.2) and (2.7) into the left-hand side of (2.15) and thereof,
cG encodes information about the operators, whilst assumed of being independent of the
optimization step k.

(8) By the work in [7, 42, 13, 14] the asymptotic behaviour of all inequalities in Assump-
tion 2.3 can be estimated during runtime of the algorithm, enabling adaptivity and
verification of the assumptions as done in Section 6.2.
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2.3 Example PDE

As an example of the system G[ω], we consider the elliptic diffusion equation on W = L2(D)
and V = H1

0(D) with log-normal coefficients and homogeneous Dirichlet boundary conditions

(2.16)

{
−div

(
exp(y(ω,x))∇u(ω,x)

)
= z(x) on Ω×D

u(ω,x) = 0 on Ω× ∂D

The adjoint operator G∗[ω] of this system is the same as G[ω] due to the problem’s symmetry.
This problem will serve as an example for the numerical experiments in this paper (cf. [3, 21]
for more analysis); however, we emphasize that the methodology is not limited to this specific
PDE as we do not rely on any properties other than already stated in the Sections 2.1 and 2.2.
The majority of the used functionality within the presented algorithms has already been used
for hyperbolic PDE systems [34, 13, 14]. Further analysis on other PDEs is also given, for
example, in [5, 11, 16].

For our numerical experiments, we consider the unit square D = (0, 1)2 as domain, impose
the target state d(x) = sin(2πx1) sin(2πx2), consider the cost factor λ = 10−8 and set the
admissible bounds to zlowad ≡ −1000, z

up
ad ≡ 1000. This leads to πZ having no impact on the

presented experiments, but can be adapted to the setting of [3]. To define the log-normal
diffusion coefficient in (2.16), we consider a Gaussian random field (GRF), denoted y(ω,x),
with mean-zero and the Matérn covariance function

Cov(x1,x2) =
σ2

2ν−1Γ(ν)
(κr)νKν(κr), r = ∥x1 − x2∥2 , κ =

√
2ν

λκ
,

where Γ is the gamma function and Kν the modified Bessel function of the second kind. Re-
alizations of the GRFs are computed with SPDE sampling [43], particularly with the method
introduced in [17]. Throughout the experiments, we set the parameters σ2 = 1.5, ν = 1 and

λκ = 0.1. For two independent realizations y
(m)
ℓ of the GRF with different mesh diameters,

we refer to the four plots on the left of Figure 1. The plots on the right show the computed

control z
(k)
ℓ after k = 10 and k = 100 iterations of (3.1).

We solve all PDE systems (needed for the Dirichlet-Neumann averaging of [17] as well as the
state and adjoint equations) with standard Lagrange linear FE, multigrid preconditioning and
CG methods. We note that a large selection of other solvers and FE spaces, as explored in [12],
are available and applicable in the used software [34] and within the proposed algorithms.

We remark that most numerical experiments are performed on a single node on the HoreKa
supercomputer utilizing 64 CPUs. In Section 6.2, we present scaling experiments of moderate
size up to sixteen nodes with a total of 1024 CPUs. Though the presented numerical results
are for two-dimensional domains D, the method is designed with three-dimensional domains in
mind (cf. outlook of Figure 8). First numerical results for this were already achieved, however,
omitted as this also requires an indepth discussion of the HPC techniques and challenges which
is, such as the PDE system, not the main focus of this paper.

3 Batched Stochastic Gradient Descent

As a foundation and baseline for MLSGD, we first introduce the BSGD method. We be-
gin with an algorithmic description in Section 3.1, followed by the first numerical insights
and experiments in Section 3.2, and conclude with a discussion of its convergence rate and
computational complexity in Section 3.3.
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h
ℓ
=

2−
7 k

=
10

h
ℓ
=

2−
8 k

=
100

Figure 1. Left to right: Two GRF samples y
(m)
ℓ on different mesh diameters;

Computed control z
(k)
ℓ after k = 10 and k = 100 iterations of Algorithm 1.

3.1 Algorithm

At its core, BSGD generates, such as (2.8), a minimizing sequence {z(k)ℓ }Kk=0 ⊂ Zℓ of approx-
imations to find the optima of Problem 2.1. We refer to Algorithm 1 for a high-level functional
pseudocode generating this sequence.

BSGD function. The algorithm starts in the BSGD function taking an initial guess z
(0)
ℓ ∈ Zℓ,

an appropriate step size rule {tk}K−1
k=0 (here directly given as a sequence of length K, which

may be replaced by a function) and the batch size M as inputs. The sequence {z(k)ℓ }Kk=0 ⊂ Zℓ

is generated by iteratively solving the root problem (2.6) with estimates to Ek[q
(k)] ∈ L2

k(Ω, V )

(3.1) z
(k+1)
ℓ ←πZ

(
z
(k)
ℓ − tk(λz

(k)
ℓ − EMC

M [q
(k)
ℓ ])

)
with EMC

M [q
(k)
ℓ ] :=

1

M

M∑
m=1

q
(m,k)
ℓ .

Here, we represent the batch estimation as a MC method using M independent and identically

distributed samples of the approximated adjoint solutions q
(m,k)
ℓ . These samples are generated

within the BatchEstimation function called in each optimization step.

Batch estimation function. Every call to BatchEstimation takes the current control z
(k)
ℓ

and the batch size M as input. Then, M independent realizations of y
(m)
ℓ are drawn and

used as input, together with the fixed z
(k)
ℓ , to approximate the solution of the systems (2.2)

and (2.7). This computation can be fully parallelized for all samples, provided sufficient memory
and processing resources are available. The function returns the Monte Carlo estimate of the

adjoint solution, EMC
M [q

(k)
ℓ ], to be used in (3.1), as well as an estimate of the objective (2.1)

(3.2) JMC
M (z

(k)
ℓ ) :=

1

M

M∑
m=1

1
2

∥∥u(m,k)
ℓ − d

∥∥2
W

+ λ
2

∥∥z(k)ℓ

∥∥2
W
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Algorithm 1 Batched Stochastic Gradient Descent (BSGD)

function BSGD(z
(0)
ℓ , {tk}K−1

k=0 ,M) :
for k = 0, . . . ,K − 1:{

EMC
M [q

(k)
ℓ ], JMC

M (z
(k)
ℓ ) ← BatchEstimation(z

(k)
ℓ ,M)

z
(k+1)
ℓ ← πZ

(
z
(k)
ℓ − tk(λz

(k)
ℓ − EMC

M [q
(k)
ℓ ])

)
return z

(K)
ℓ

function BatchEstimation(z
(k)
ℓ ,M) :

for m = 1, 2, . . . ,M :

// Sampling method for ω 7→ y
(m)
ℓ

y
(m)
ℓ ← [ ]

{
...

// Find state u
(m,k)
ℓ to control z

(k)
ℓ and realization y

(m)
ℓ

u
(m,k)
ℓ ← [y

(m)
ℓ , z

(k)
ℓ ]

{
Find u

(m,k)
ℓ ∈ Vℓ such that:

Gℓ[y(m)
ℓ ] u

(m,k)
ℓ = z

(k)
ℓ

// Find adjoint q
(m,k)
ℓ to state u

(m,k)
ℓ and realization y

(m)
ℓ

q
(m,k)
ℓ ← [y

(m)
ℓ ,d− u

(m,k)
ℓ ]

{
Find q

(m,k)
ℓ ∈ Vℓ such that:

G∗ℓ [y
(m)
ℓ ] q

(m,k)
ℓ = d− u

(m,k)
ℓ

// Return result of estimators defined in (3.1) and (3.2)

return EMC
M [q

(k)
ℓ ], JMC

M (z
(k)
ℓ )

using the state approximations u
(m,k)
ℓ . In machine learning, this is often referred to as empirical

risk [28], which we use here to experimentally monitor convergence (see Subsections 3.2, 5.2,

and 6.2). However, in the convergence analysis, we prefer using J(z
(k)
ℓ ) to avoid introducing

an additional estimation error. Note that we also use J(z(k)), for instance in Lemma 5.1, to
express the objective (2.1) for the continuous control z(k) ∈ L2

k(Ω,W ) of (2.2), which is not
spatially discretized but still subject to stochastic approximation.

3.2 Experiments

To convey the functionality of the BSGD method and its implementation in M++ [34],
we present the first numerical experiments to evaluate the method and to motivate potential
improvements.

Investigation of the batch size. We examine the influence of a variable batch size M on a
grid with mesh diameter hℓ = 2−7 combined with the constant step size tk ≡ 100 and the initial

control z(0) ≡ 0. Figure 2 illustrates two plots: the left one presents estimates of JMC
M (z

(k)
ℓ )

according to (3.2) over the iteration k, while the right plot shows evaluations of the gradient

used in (3.1) in the L2-norm ∥EMC
M [g

(k)
ℓ ]∥W := ∥λz(k)ℓ − EMC

M [q
(k)
ℓ ]∥L2(D) plotted against the

total computing time. A higher noise level in JMC
M (z

(k)
ℓ ) is observed for smaller batch sizes M ,

yet all methods oscillate around the same value. The impact of the batch size on the gradient
norm is even more pronounced: the optimality condition (2.6) is visibly better satisfied with
larger batches, but this comes at the cost of an increased computational effort. Beyond this, a
smoothed descent and arguably better convergence rates are observed for larger batches. Thus,
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Figure 2. Comparison of different batch sizes M .

if high accuracy is desired, larger batches are more reliable in achieving the result. However,
as soon as we impose a tight limit on the computational cost, the choice for the smaller batch
might be preferable.

Further experiments. Running Algorithm 1 requires the choice of several hyperparameters
and adaptions to the given computational environment. This includes besides the batch size M ,
the appropriate choice of the discretization level ℓ, the step size tk, the number of optimization
stepsK, the parallelization strategy, and further configurations of the involved numerical solvers
and discretization schemes. We omit a detailed presentation of our numerical experiments
conducted on this, and refer to Section 6 where we develop an adaptive algorithm determining
several of the hyperparameters automatically. Before we turn to this, we recall the convergence
and complexity theory of BSGD methods.

3.3 Properties and Discussion

As just experimentally observed in Section 3.2, the batch size M is crucial, M being too
small leads to a high variance in the gradient estimate, while M being too large increases
the computational cost. This leads to a trade-off between the per-iteration cost and expected
per-iteration improvements. To navigate this trade-off, we recall the convergence properties of
SAA and SA methods, here distinguished through the batch size MSAA ≫MSA.

Convergence and complexity. Assuming strong µ-convexity (2.3) and an appropriate choice
of step sizes tk (e.g. satisfying (2.9)), an SGD method (including mini-batches of size MSA)
converges at a sub-linear rate, in particular (cf. [28, 1, 31, 4])

(3.3) E
[
J(z

(K)
ℓ )− J(z∗)

]
≤ O(K−1) at cost CSA

ϵ ≲ MSAh−γ
ℓ ϵ−1.

Here, hℓ is assumed to be sufficiently small, and CSA
ϵ represents the cost required to reach an

accuracy of at least ϵ > 0, whereMSAh−γ
ℓ denotes the cost of one batch, and h−γ

ℓ is proportional
to the cost per sample, as assumed in (2.13) and (2.14).

On the other hand, if the batch size is large enough to fall within the SAA regime, classical
optimization methods (e.g., conjugate gradient descent, BFGS, . . . ) achieve at least linear
convergence rates. That is, for some ρ ∈ (0, 1), we have (cf. [28, 22])

(3.4) E
[
J(z

(K)
ℓ )− J(z∗)

]
≤ O(ρK) at cost CSAA

ϵ ≲ −MSAAh−γ
ℓ log(ϵ)

to reach accuracy 0 < ϵ < 1. Thus, SAA methods offer superior convergence rates compared
to SA methods. However, since MSAA ≫MSA, each optimization step in SAA is significantly
more expensive. In cases where the input data exhibits high approximate similarity, SA meth-
ods are in practice more efficient [28]. But, once the optimization error falls within the same
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order as the approximate similarity, SAA methods become preferable, as SA methods can no
longer guarantee an improvement in expectation. We refer again to Figure 2 where aspects of
this discussion can be observed, too.

Adaptivity and step sizes. To combat the increased variance of SA methods, but also to
reduce the total computational cost of SAA methods, adaptive batch sizes (cf. [15, 16, 22] for
optimal control), adaptive step sizes [31] and the ADAM optimizer [30] have been proposed,

giving more robust paths of iterates z
(k)
ℓ , objectives JMC

M (z
(k)
ℓ ) and gradient evaluations. This

also enables a stopping criterion other than a maximum number of optimization steps K. We
also note that convergence can still be shown for the convex case, by considering the averaging
scheme of [32], for details see [3]. This also requires a decreasing or sufficiently small sequence
of tk, which also has to be chosen carefully to ensure convergence.

4 Multilevel Monte Carlo

As a remedy to the observed challenges in the previous section, we propose the use of an
MLMC estimator to determine the expected discretized adjoint solution in each optimization

step k. Expanding Ek[q
(k)
L ] in a telescoping sum over discretization levels ℓ = 0, . . . , L of the

FE mesh, inserting equation (2.10) and using the isometric transfer operators PL
ℓ : Vℓ → VL

gives

Ek[q
(k)
L ] = PL

0Ek[q
(k)
0 ] +

L∑
ℓ=1

PL
ℓ Ek[q

(k)
ℓ − Pℓ

ℓ−1q
(k)
ℓ−1] =

L∑
ℓ=0

Ek[p
(k)
ℓ ] ≈ Ek[q

(k)].

This motivates the MLMC estimator (cf. [14] for details in similar notation)

(4.1) EML[q
(k)
L ] :=

L∑
ℓ=0

PL
ℓ E

MC
Mℓ

[p
(k)
ℓ ] with EMC

Mℓ
[p

(k)
ℓ ] :=

1

Mℓ

Mℓ∑
m=1

p
(m,k)
ℓ ,

where {Mℓ}Lℓ=0 denotes the number of samples on each level. Note that for ℓ ̸= 0 the difference

in (2.10) is the same sample computed on two different levels, i.e., p
(m,k)
ℓ = q

(m,k)
ℓ −Pℓ

ℓ−1q
(m,k)
ℓ−1

(cf. Figure 1 for an illustration of the same input data on two different levels). The mean squared
error in the above approximation is expressed by (cf. e.g. [44, Theorem 3.1] for a similar setting)

(4.2) errMSE
k

(
EML[q

(k)
L ]
)
=

L∑
ℓ=0

M−1
ℓ

∥∥p(k)
ℓ − Ek[p

(k)
ℓ ]
∥∥2
L2
k(Ω,W )︸ ︷︷ ︸

:=errsamk

+
∥∥Ek[q

(k)
L − q(k)]

∥∥2
W︸ ︷︷ ︸

:=errnumk

.

If (2.12a) and (2.12b) are satisfied, we can control both; the sampling error errsamk and the
numerical error errnumk , either by increasing the level-dependent number of samples Mℓ or by
refining the mesh. Naturally, both measures come at an increased computational cost captured
by (2.13) and (2.14). However, the multilevel structure allows for the construction of a sample

sequence {Mℓ}Lℓ=0, such that the computational cost Cϵ (measured in memory or computing-
time) to reach a desired accuracy of 0 < ϵ < e−1 is bounded by (cf. [6, 25])

(4.3)

√
errMSE

(
EML[q

(k)
L ]
) !
< ϵ ⇒ Cϵ

(
EML[q

(k)
L ]
)
≲


ϵ−2 β > γ,

ϵ−2(log(ϵ))2 β = γ,

ϵ−2−(γ−β)/α β < γ.

This stands in contrast to the combination of FE with standard MC methods which has the
cost of Cϵ

(
EMC

M [q
(k)
L ]
)
≲ ϵ−2−γ/α, giving at least an improvement of β/α in the rate for the

same accuracy [6]. The central idea of this paper is to leverage this improvement for the
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batch estimation within an SGD method. Before we outline this approach in further detail
in Section 5, we briefly state how to estimate errsam and errnum. This is done by (cf. [42, 7, 14])

(4.4) êrr
num
k := max

ℓ=1,...,L

(
∥EMC

Mℓ
[p

(k)
ℓ ]∥W

(2α̂ − 1)2α̂(L−ℓ)

)2

with min
(α̂,ĉ)

L∑
ℓ=1

(
log2 ∥EMC

Mℓ
[p

(k)
ℓ ]∥W + α̂ℓ− ĉ

)2
thus α̂ is determined by regression and êrr

num
k follows from extrapolation arguments. The

estimation of the sampling error is similar to computing a sample variance, i.e.,

(4.5) êrr
sam
k :=

L∑
ℓ=0

s2ℓ [p
(k)
ℓ ]

Mℓ(Mℓ − 1)
with s2ℓ [p

(k)
ℓ ] :=

Mℓ∑
m=1

∥∥p(m,k)
ℓ − EMC

Mℓ
[p

(k)
ℓ ]
∥∥2
W
.

5 Multilevel Stochastic Gradient Descent

With the previous recall of MLMC and BSGD, we now introduce one main contribution
of this work, the Multilevel Stochastic Gradient Descent (MLSGD) method. We outline the
algorithm in Section 5.1, present the first experimental results in Section 5.2 and analyze its
convergence and complexity in Section 5.3.

5.1 Algorithm

To explain Algorithm 2, we first note its similarity to the previously discussed BSGD method
outlined in Algorithm 1 and draw on knowledge from Section 4 to explain the differences and
advantages. Again, we follow a function-wise explanation of the algorithm.

The MLSGD function. The MLSGD function serves as the entry point to Algorithm 2 and

accepts an initial guess for z
(0)
L , an appropriate sequence of step sizes {tk}K−1

k=0 , and a multilevel
batch {Mℓ}Lℓ=0 as input arguments. Similar to Algorithm 1, the MLSGD method iteratively

optimizes the control z
(k)
L . However, instead of using (3.1), we employ the iteration scheme

(5.1) z
(k+1)
L ← πZ

(
z
(k)
L − tkE

ML[g
(k)
L ]
)

with EML[g
(k)
L ] := λz

(k)
L − EML[q

(k)
L ]

to approximate the solution to Problem 2.1. We note that the gradient estimation EML[g
(k)
L ]

is now computed using EML[q
(k)
L ], as given through (4.1).

Multilevel batch estimation. To compute the adjoint EML[q
(k)
L ], the function MultiLevelEstimation

is called in each optimization step, taking the current control z
(k)
L and a multilevel batch

{Mℓ}Lℓ=0 as input arguments. By (2.10), the adjoint and the state are computed with the
BatchEstimation function, as in Algorithm 1, on the lowest level ℓ = 0. For the higher lev-
els ℓ = 1, . . . , L, the estimation is performed for the level pair (ℓ, ℓ − 1) using the function

LevelPairEstimation. This also motivates the definitions of y
(m,k)
ℓ,ℓ−1 , u

(m,k)
ℓ,ℓ−1 and q

(m,k)
ℓ,ℓ−1 in the

top row of Algorithm 2.
Level pair batch estimation. Similar to the BatchEstimation function in Algorithm 1, the

LevelPairEstimation function approximates the state (2.2) and adjoint (2.7) systems, taking

the current control z
(k)
L , the level-specific batch size Mℓ, and the level ℓ as input arguments.

Since the control z
(k)
L is always stored at the highest level L, the first step is to restrict it to levels

ℓ and ℓ − 1 with the restriction operators Rℓ
L : VL → Vℓ and Rℓ−1

L : VL → Vℓ−1, respectively.
Additionally, the control must be distributed across the multiple processes executing the batch
loop in parallel. We omit the details on the parallelization and refer to [13, 14] as well as to a

short discussion in Section 5.2. Having the distributed and restricted controls z
(k)
ℓ,ℓ−1, we can

approximate the state and adjoint on both levels ℓ and ℓ − 1, taking the realizations y
(m,k)
ℓ,ℓ−1

as input. Finally, the function returns with p
(m,k)
ℓ = q

(m,k)
ℓ − Pℓ

ℓ−1q
(m,k)
ℓ−1 the MC estimate
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Figure 3. Comparison of MC and MLMC gradient estimation.

of the adjoint level difference as in (4.1), and with Q
(m,k)
ℓ := 1

2

∥∥u(m,k)
ℓ − d

∥∥2
W
, Y

(m,k)
ℓ :=

Q
(m,k)
ℓ −Q

(m,k)
ℓ−1 for ℓ ≥ 1 and Y

(m,k)
0 := Q

(m,k)
0 for ℓ = 0 the estimate

(5.2) JMC
Mℓ

(z
(k)
ℓ,ℓ−1) :=

1

Mℓ

Mℓ∑
m=1

Y
(m,k)
ℓ .

This enables the estimation for (2.1), then returned by the MultiLevelEstimation function

(5.3) JML(z
(k)
L ) :=

L∑
ℓ=0

JMC
Mℓ

(z
(k)
ℓ,ℓ−1) +

λ
2

∥∥z(k)L

∥∥2
W
.

In conclusion, Algorithm 2 utilizes a MLMC method as replacement for the batch estimator.
Care has to be taken to ensure that the control is distributed and restricted to the correct data
structures; and that the level pairs are solved with the same input realizations. The overall
algorithm, however, is still strongly related to the BSGD method.

5.2 Experiments

Having introduced Algorithm 2, we present first experiments to evaluate the method. Par-
ticularly, we compare the MLSGD with the BSGD method and further investigate the influence

of the multilevel batch {Mℓ}Lℓ=0 at hand of the PDE example introduced in Section 2.3.
Comparing multilevel estimation and batch estimation. The layout of Figure 3 follows the

figures in Section 3.2, illustrating a comparison between MLMC and MC gradient estimation.
Both methods use the constant step size tk ≡ 100, the same initial control z(0) ≡ 0, the
same number of iterations K = 100, and the same number of CPUs |P| = 64. The mesh
resolution starts with h0 = 2−4 and ends with hL = 2−7 for the MLMC case, where as
MC estimation operates as in Section 3.2 on hℓ = 2−7. Neither of the estimated objectives,

JML(z
(k)
L ) and JMC

M (z
(k)
L ) in Figure 3, shows a clear advantage over the iterations k, as both

oscillate around the same value with a similar noise level. However, the plot of the gradient
norms reveals a significant speedup—greater than factor 10 in this example—for the MLMC
gradient estimation. The MLSGD method achieves a similar convergence rate and gradient
quality by offloading variance reduction through batching on the lower discretization levels at
significantly reduced computational cost. This serves as an initial indication that MLMC is a
promising alternative to batch estimation.

Investigation of the multilevel batch size. Next, we examine the influence of the multilevel

batch size {Mℓ}Lℓ=0 illustrated in Figure 4. The blue lines in Figure 3 and Figure 4 correspond
to the same batch with h0 = 2−4 and hL = 2−7, where as the orange and green lines in Figure 4
extend on hL = 2−8 and hL = 2−9, respectively. We note that larger multilevel batches yield
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Algorithm 2 Multilevel Stochastic Gradient Descent (MLSGD)

def y
(m)
ℓ,ℓ−1 := (y

(m)
ℓ ,y

(m)
ℓ−1), u

(m,k)
ℓ,ℓ−1 := (u

(m,k)
ℓ ,u

(m,k)
ℓ−1 ), q

(m,k)
ℓ,ℓ−1 := (q

(m,k)
ℓ ,q

(m,k)
ℓ−1 )

function MLSGD(z
(0)
L , {Mℓ}Lℓ=0, {tk}K−1

k=0 ) :
for k = 0, . . . ,K − 1:{

EML[q
(k)
L ], JML(z

(k)
L ) ← MultiLevelEstimation(z

(k)
L , {Mℓ}Lℓ=0)

z
(k+1)
L , EML[g

(k)
L ] ← GradientDescent(z

(k)
L , EML[q

(k)
L ], tk)

return z
(K)
L

function GradientDescent(z
(k)
L , EML[q

(k)
L ], tk) :

EML[g
(k)
L ] ← λz

(k)
L − EML[q

(k)
L ]

z
(k+1)
L ← πZ

(
z
(k)
L − tkE

ML[g
(k)
L ]
)

return z(k+1), EML[g
(k)
L ]

function MultiLevelEstimation(z
(k)
L , {Mℓ}Lℓ=0) :

// Solve state and adjont system on lowest level ℓ = 0 (cf. Algorithm 1)

EMC
M0

[p
(k)
0 ], JMC

M0
(z

(k)
0 )← BatchEstimation(z

(k)
L ,Mℓ)

for ℓ = 1, . . . , L :// Solve state and adjont system for level pair (ℓ, ℓ− 1)

EMC
Mℓ

[p
(k)
ℓ ], JMC

Mℓ
(z

(k)
ℓ,ℓ−1)← LevelPairEstimation(z

(k)
L ,Mℓ, ℓ)

// Return result of multilevel sums as in (4.1) and (5.3)

return
∑L

ℓ=0 P
L
ℓ E

MC
Mℓ

[p
(k)
ℓ ],

∑L
ℓ=0 J

MC
Mℓ

(z
(k)
ℓ,ℓ−1) +

λ
2

∥∥z(k)L

∥∥2
W

function LevelPairEstimation(z
(k)
L ,Mℓ, ℓ) :

z
(k)
ℓ,ℓ−1 ← (Rℓ

Lz
(k)
L , Rℓ−1

L z
(k)
L ) // Restrict and distribute control

for m = 1, 2, . . . ,Mℓ : // Run in parallel with optimal distr.

// Sampling method for ω 7→ y
(m)
ℓ,ℓ−1

y
(m)
ℓ,ℓ−1 ← [ ]

{
...

// Find states u
(m,k)
ℓ,ℓ−1 to controls z

(k)
ℓ,ℓ−1 and realizations y

(m)
ℓ,ℓ−1

u
(m,k)
ℓ,ℓ−1 ← [y

(m)
ℓ,ℓ−1, z

(k)
ℓ,ℓ−1]

{
Find u

(m,k)
ℓ,ℓ−1 ∈ Vℓ,ℓ−1 such that:

Gℓ,ℓ−1[y
(m)
ℓ,ℓ−1] u

(m,k)
ℓ,ℓ−1 = z

(k)
ℓ,ℓ−1

// Find adjoints q
(m,k)
ℓ,ℓ−1 to states u

(m,k)
ℓ,ℓ−1 and realizations y

(m)
ℓ,ℓ−1

q
(m,k)
ℓ,ℓ−1 ← [y

(m)
ℓ,ℓ−1,d− u

(m,k)
ℓ,ℓ−1 ]

{
Find q

(m,k)
ℓ,ℓ−1 ∈ Vℓ,ℓ−1 such that:

G∗ℓ,ℓ−1[y
(m)
ℓ,ℓ−1] q

(m,k)
ℓ,ℓ−1 = d− u

(m,k)
ℓ,ℓ−1

// Return result of estimators defined in (4.1) and (5.2)

return EMC
Mℓ

[p
(k)
ℓ ], JMC

Mℓ
(z

(k)
ℓ,ℓ−1)
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Figure 4. Comparison of different multilevel batch sizes {Mℓ}Lℓ=0.

smoother and more robust estimates of the objective JML(z
(k)
L ). The gradient norm plotted over

computing time motivates a similar discussion as in Section 3.2, i.e., the larger the multilevel
batch, the better is (2.6) satisfied due to the reduced variance, but this time also due to the
reduced bias. Yet, the higher quality of the computational results naturally comes at increased
cost.

Discussion and remaining challenges. Though the MLSGD method shows promising re-
sults in the numerical experiments, several questions remain as well as new challenges arise: (i)
We note that picking the optimal multilevel batch size still depends upon the available com-
putational resources. Smaller batches are still to be favored for small compute time budgets.
In Section 6, we develop a hardware-aware method that automatically finds the optimal batch
size for a given computational budget in CPU-time and memory. (ii) To incorporate the com-
putational budgets, an adaptive strategy for the step size tk, the multilevel batch {Mℓ}Lℓ=0, the
total number of iterations K and the largest level L has to be developed. Before we propose
ways to approach (i) and (ii) algorithmically in Section 6, we examine the method’s convergence
and complexity behavior analytically in Section 5.3. (iii) Lastly, leveraging parallel computing
resources within a multilevel setting is a non-trivial task. The reason is that the MC estimates
on the lower levels are much more efficient with a sample parallelization, whereas the MC es-
timates on the higher levels often require a parallelization over the spatial domain D. Yet, all
estimates must be synchronized to compute the adjoint estimate in (4.1). To leverage the full
potential of MLMC estimation without sacrificing parallel efficiency, careful algorithmic design
is required which is solved with a multiindex approach for full field estimates as introduced
in [14].

5.3 Analysis

Finally, within this section, we present comprehensive convergence and complexity analysis
of the MLSGD method. The main result is given in Theorem 5.2, leveraging Lemma 5.1 as a
key idea. Corollary 5.4 generalizes the convergence result on the objective and on the gradient.

Lemma 5.1. There exists a multilevel batch {Mℓ}Lℓ=0, such that the error r
(k)
L between the

gradient ∇J(z(k)) in step k and its estimation EML[g
(k)
L ] in (5.1)

(5.4) r
(k)
L := EML[g

(k)
L ]−∇J(z(k))

as well as
∥∥z(k)L − z(k)

∥∥
L2
k(Ω,W )

can be bounded through ϵk > 0, particularly

(5.5)
∥∥r(k)L

∥∥2
L2
k(Ω,W )

≤ 2 ϵ2k and
∥∥z(k)L − z(k)

∥∥2
L2
k(Ω,W )

≤ cG (1− θ) ϵ2k,
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with θ ∈ (0, 1) and cG from (2.15) at computational complexity

(5.6) Ck

(
EML[gL]

)
≲


ϵ−2
k β > γ,

ϵ−2
k (log(ϵk))

2 β = γ,

ϵ
−2−(γ−β)/α
k β < γ.

Proof. By ∇J(z(k)) = λz(k) − Ek[q
(k)], (5.1) and the triangle inequality, we have∥∥r(k)L

∥∥2
L2
k(Ω,W )

= Ek

[∥∥λz(k)L − λz(k) + Ek[q
(k)]− EML[q

(k)
L ]
∥∥2
W

]
≤ 2λ2

∥∥z(k)L − z(k)
∥∥2
L2
k(Ω,W )

+ 2
∥∥Ek[q

(k)]− EML[q
(k)
L ]
∥∥2
L2
k(Ω,W )

Since errMSE
k := Ek

[∥∥Ek[q
(k)]− EML[q

(k)
L ]
∥∥2
W

]
, we have with the decomposition (4.2)

1
2

∥∥r(k)L

∥∥2
L2
k(Ω,W )

≤
L∑

ℓ=0

M−1
ℓ

∥∥p(k)
ℓ − Ek[p

(k)
ℓ ]
∥∥2
L2
k(Ω,W )

+
∥∥Ek[q

(k)
L − q(k)]

∥∥2
W

+ λ2
∥∥z(k)L − z(k)

∥∥2
L2
k(Ω,W )

Considering the left side of assumption (2.15) and applying Jensen’s inequality gives

1
2

∥∥r(k)L

∥∥2
L2
k(Ω,W )

≤
L∑

ℓ=0

M−1
ℓ

∥∥p(k)
ℓ − Ek[p

(k)
ℓ ]
∥∥2
L2
k(Ω,W )

+ (λ2cG + 1)Ek

[∥∥q(k)
L − q(k)

∥∥2
W

]
Thus, with (2.12b) and (2.15) both error contributions are controlled and similar as in [6, 25],
we can achieve with some bias-variance trade-off θ ∈ (0, 1)

L∑
ℓ=0

M−1
ℓ

∥∥p(k)
ℓ − Ek[p

(k)
ℓ ]
∥∥2
L2
k(Ω,W )

≤ θϵ2k and Ek

[∥∥q(k)
L − q(k)

∥∥2
W

]
≤ (1− θ)

(λ2cG + 1)
ϵ2k

through an appropriate choice of {M (k)
ℓ }Lℓ=0 such that (5.6) holds. □

Theorem 5.2 (Convergence and ϵ-Cost of MLSGD). There exists a sequence of multilevel

batches
{
{Mk,ℓ}Lℓ=0

}K−1

k=0
, step sizes {tk}K−1

k=0 ⊂ R≥0, and some ρ ∈ (0, 1), such that

(5.7) eK :=
∥∥z(K)

L − z∗
∥∥
L2(Ω,W )

converges linearly, i.e., eK ≤ O
(
ρK
)
.

Further, reaching an error of eK < ϵ smaller than accuracy ϵ > 0 comes at the cost

Cϵ ≲


ϵ−2 β > γ,

ϵ−2(log(ϵ))2 β = γ,

ϵ−2−(γ−β)/α β < γ.

Proof. The proof is organized in two steps, first we show the linear convergence and then we
estimate the cost of the algorithm. We define for the further proof

ek+1 :=
∥∥z(k+1)

L − z∗
∥∥
L2
k(Ω,W )

, ek :=
∥∥z(k)L − z∗

∥∥
L2
k(Ω,W )

.
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(i). Adapting the arguments of [3] to the iteration scheme (5.1) gives

e2k+1=
∥∥πZ

(
z
(k)
L − tkE

ML[g
(k)
L ]
)
− z∗

∥∥2
L2
k(Ω,W )

≤
∥∥z(k)L − tkE

ML[g
(k)
L ]− z∗

∥∥2
L2
k(Ω,W )

= e2k − 2tk
〈
z
(k)
L − z∗, EML[g

(k)
L ]
〉
L2
k(Ω,W )

+ t2k
∥∥EML[g

(k)
L ]
∥∥2
L2
k(Ω,W )

By (5.4), it is EML[g
(k)
L ] = r

(k)
L +∇J(z(k)) and we can write

e2k+1 ≤ e2k − 2tk
〈
z
(k)
L − z∗, r

(k)
L +∇J(z(k))

〉
L2
k(Ω,W )

+ t2k
∥∥r(k)L +∇J(z(k))

∥∥2
L2
k(Ω,W )

.

Since J is µ-strongly convex (2.3) and ∇J(z∗)−∇J(z(k)L ) +∇J(z(k)L ) = 0, it follows

−
〈
z
(k)
L − z∗,∇J(z(k))

〉
L2
k(Ω,W )

≤ −µe2k + ek
∥∥∇J(z(k))−∇J(z(k)L ))

∥∥
L2
k(Ω,W )

,

−
〈
z
(k)
L − z∗, r

(k)
L

〉
L2
k(Ω,W )

≤ ek
∥∥r(k)L

∥∥
L2
k(Ω,W )

.

Therefore, we can estimate

e2k+1 ≤ e2k + 2tk
(
ek
∥∥r(k)L

∥∥
L2
k(Ω,W )

+ ek
∥∥∇J(z(k))−∇J(z(k)L ))

∥∥
L2
k(Ω,W )

− µe2k
)

+ 2t2k
(∥∥r(k)L

∥∥2
L2
k(Ω,W )

+
∥∥∇J(z(k))∥∥2

L2
k(Ω,W )

)
Further, by (2.5) and (2.6) we see that∥∥∇J(z(k))∥∥2

L2
k(Ω,W )

=
∥∥∇J(z(k))−∇J(z∗)∥∥2

L2
k(Ω,W )

≤ c2Lip
∥∥z(k) − z∗

∥∥2
L2
k(Ω,W )

≤ 2c2Lip
(
e2k +

∥∥z(k) − z
(k)
L

∥∥2
L2
k(Ω,W )

)
and since the true gradient in step k is given by ∇J(z(k)) = λz(k) − Ek[q

(k)], it is∥∥∇J(z(k))−∇J(z(k)L ))
∥∥
L2
k(Ω,W )

≤
∥∥Ek[q

(k) − q
(k)
L ]
∥∥
L2
k(Ω,W )

+ λ
∥∥z(k) − z

(k)
L

∥∥
L2
k(Ω,W )

In conclusion, the estimate for e2k+1 is given by

e2k+1 ≤ e2k + 2tkek
∥∥r(k)L

∥∥
L2
k(Ω,W )

+ 2tkek
∥∥Ek[q

(k) − q
(k)
L ]
∥∥
L2
k(Ω,W )

+ 2tkekλ
∥∥z(k) − z

(k)
L

∥∥
L2
k(Ω,W )

+ 2t2k
∥∥r(k)L

∥∥2
L2
k(Ω,W )

+ 4t2kc
2
Lip

∥∥z(k) − z
(k)
L

∥∥2
L2
k(Ω,W )

+ 4t2kc
2
Lipe

2
k − 2tkµe

2
k

Now, we apply Lemma 5.1 by choosing ϵk in every iteration k as η · ek with a sufficiently small

η > 0. Then, there exists in a sequence of multilevel batches
{
{M (k)

ℓ }Lℓ=0

}
k∈N, such that

(5.8) e2k+1 ≤ e2k
(
(4c2Lip(1 + η2cG) + 2η2)t2k + 2(

√
2η + η +

√
cGλη − µ)tk + 1

)
=: e2kρ

2
k

where we used (1 − θ) ≤ 1. By taking the square root of the above expression, it follows by
induction that the error converges linearly, if ρk < 1 in each step. This can be achieved by
choosing the step size tk and the factor η, such that the quadratic expression of ρk in (5.8) is
minimized and tk > 0 holds. As a result, by taking the expectation and the tower property,
the total error in the final step K is given by O(ρK), with ρ := sup{ρk : k = 1, . . . ,K}.
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(ii). We denote with Ck again the cost of the k-th descent. By Lemma 5.1, the summed
cost Cϵ to achieve an total error of eK < ϵ is given by

Cϵ =

K∑
k=0

Ck ≲
K∑

k=0


ϵ−2
k β > γ,

ϵ−2
k log(ϵk)

2 β = γ,

ϵ
−2−(γ−β)/α
k β < γ.

Since we chose the multilevel batch such that η−1 ϵk equals the error in each step, and since
ek = O(ρk), we get similar to [22] for large K ≫ 1 the asymptotic behavior

Cϵ ≲
K∑

k=0


ρ−2k

ρ−2k(k log(ρ))2

ρ−2k−(γ−β)k/α

∼


ρ−2K−2

K2 ρ−2K−2

ρ−2(K+1)−(γ−β)(K+1)/α

∼


ϵ−2 β > γ,

ϵ−2(log(ϵ))2 β = γ,

ϵ−2−(γ−β)/α β < γ,

using the geometric series and ϵ = O(ρK). □

Remark 5.3. (1) Even though MLSGD improves the rate from O(K−1/2) to linear con-
vergence O(ρK), as discussed in Section 3.3, similar results can be achieved with large
enough batches and gradient aggregation methods. However, as pointed out in [28] and
observed in Section 3.2, this comes with an increased computational cost. Our approach,
leveraging the MLMC method, reduces the cost of the gradient estimation dramatically,
as demonstrated numerically in Section 5.2 and now proven by Theorem 5.2.

(2) The parameter η > 0 has to be chosen small enough, that minimizing (5.8) is achieved
with tk > 0. Since η < µ√

2+1+
√
cGλ

is independent of k, this suggests the usage of an

adaptive algorithm that successively enlarges the multilevel batch. In particular, as the
algorithm runs and ek decreases, this leads with ϵk = η · ek to a decreasing target error
ϵk and thus to an increased computational cost of each iteration.

The following corollary motivates implementing the targeted multilevel error by ϵk = η ·
∥EML[g

(k)
L ]∥W . This idea is similar to [22] and later used in Algorithm 3.

Corollary 5.4. There exists a sequence of multilevel batches
{
{M (k)

ℓ }Lℓ=0

}K−1

k=0
, step sizes

{tk}K−1
k=0 ⊂ R≥0, and some ρ ∈ (0, 1), such that

E
[
J(z

(K)
L )− J(z∗)

]
≤ O(ρK) and

∥∥EML[g
(K)
L ]

∥∥
L2(Ω,W )

≤ O(ρK) .

Proof. The first expression follows from the strong µ-convexity (2.4) together with (2.5)

J(z
(K)
L )− J(z∗) ≤

〈
∇J [z(K)

L ], z
(K)
L − z∗

〉
W
− µ

2

∥∥z(K)
L − z∗

∥∥2
W

≤ (cLip − µ
2 )
∥∥z(K)

L − z∗
∥∥2
W

and by taking the expectation on both sides. The second expression follows from bounding∥∥∇J(z(k))∥∥
L2
k(Ω,W )

and
∥∥r(k)L

∥∥
L2
k(Ω,W )

in (5.4) with similar arguments as in Theorem 5.2. Tak-

ing the expectation over all possible optimization trajectories concludes the result. □
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6 Adaptivity and Budgeting

Having established the MLSGD method, particularly its convergence in Theorem 5.2 and
its functionality in Algorithm 2, we now address the question of how to choose the multilevel

batches
{
{Mk,ℓ}Lℓ=0

}K−1

k=0
and step sizes {tk}K−1

k=0 given computational constraints such as mem-

ory limitations Mem0 and CPU-time budgets |P|·T0, T0 being the reserved time budget on the
cluster and |P| being the cardinality of the set of processing units. Building upon [13, 14], we
formulate the following knapsack problem, which is then solved with the budgeted multilevel
stochastic gradient descent (BMLSGD) method, adaptively determining the multilevel batches
and step sizes.

Problem 6.1 (MLSGD Knapsack). Suppose the solution z∗ to the optimal control prob-

lem (2.1) is given, find the optimal sequence of step sizes {tk}K−1
k=0 and multilevel batches{

{Mk,ℓ}Lk

ℓ=0

}K−1

k=0
, such that the total error eK is minimized, while staying within a CPU-time

|P| · T0 and memory Mem0 budget

min{
tk,{Mk,ℓ}

Lk
ℓ=0

}K

k=0

∥∥z(K)
L − z∗

∥∥
L2(Ω,W )

(6.1a)

K−1∑
k=0

Lk∑
ℓ=0

Mk,ℓ∑
m=1

CCT
(
(v

(m,k)
ℓ ,p

(m,k)
ℓ )

)
≤ |P| · T0(6.1b)

CMem
(
(v

(K−1)
L ,p

(K−1)
L )

)
< Mem0.(6.1c)

Problem 6.1 is an NP-hard integer resource allocation problem which we solve with dis-
tributed dynamic programming techniques utilizing an optimal policy to find the multilevel
batches in each iteration of the optimization algorithm. To respect the cost constraints (6.1b)
and (6.1c), we utilize assumptions (2.13) and (2.14). Before we present the BMLSGD method
in Algorithm 3, we can conclude with similar arguments as in [13, 14] that the error of ev-
ery feasible solution is bounded from below by the memory constraint and from above by the
CPU-time budget.

Corollary 6.2 (Lower and Upper bound of MLSGD). The minimum (6.1a) is bounded through
the imposed constraints (6.1b) and (6.1c) as

(6.2) Mem−α
0 <

∥∥z(K)
L − z∗

∥∥
W

≲ (1− λp)T
−δ
0 + λp(|P| · T0)

−δ.

Here, δ = min
{

1
2 ,

α
2α+(γ−β)

}
is the convergence rate with respect to the computational resources

and λp ∈ [0, 1] is the parallelizable percentage of the code.

Proof. Applying the arguments of [13] for the right-hand side, i.e., combining the inverted
complexity of Theorem 5.2 with Gustafson’s law, and considering for the left-hand side that
the smallest possible bias is determined through the maximal memory footprint as in [14], gives
the result. □

6.1 Algorithm

Building upon Algorithm 1 and Algorithm 2, we outline again the method as functional
pseudocode. Since Problem 6.1 is intractable, we use the estimators given in Section 4 in
combination with the theory from Section 5.3. We define the global variables for the leftover
time budget Tk and the total available memory Memk (we store the history of these values along
the optimization steps k) and initialize them with the given T0 and Mem0 from Problem 6.1.
We further set the constants for the error target reduction η ∈ (0, 1] and the bias-variance
tradeoff θ ∈ (0, 1) to start the algorithm.
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The Init function. Starting the call stack in the Init function with an initial guess on z
(0)
L ,

an initial multilevel batch {M0,ℓ}L0

ℓ=0, and the initial step size t0, the MultiLevelEstimation

function and the GradientDescent function from Algorithm 2 are called. This gives the ini-

tial estimates on the adjoint EML[q
(0)
L ], on the initial objective JML(z

(0)
L ) and with that, the

gradient EML[g
(0)
L ] and the first updated control z

(1)
L . The computational cost is dominated

by the MultiLevelEstimation function, thus after its first call, the time budget and the left-
over memory are updated with T1 ← T0 − CCT

0 and Mem1 ← Mem0 − CMem
0 , where the cost

measurements CCT
k and CMem

k are given by

(6.3) CCT
k =

Lk∑
ℓ=0

Mk,ℓ∑
m=1

CCT
(
(v

(m,k)
ℓ ,p

(m,k)
ℓ )

)
and CMem

k ∼ mkh
−γMem

Lk
.

We refer to [14] for a more detailed discussion on the time cost measurement in parallel and why
the memory cost can be bounded through the highest level Lk following the assumption (2.14).

Subsequently, we call the BMLSGD function with the new control z
(1)
L and the first error target

ϵ1 ← η ·
∥∥EML[g

(0)
L ]
∥∥
W

(cf. [13] for a discussion why η is relevant for the parallel efficiency).

The BMLSGD function. The BMLSGD function in Algorithm 3 acts as the main driver
of the algorithm by recursively minimizing (6.1a), while enforcing the computational con-
straints (6.1b) and (6.1c). This involves checking the leftover time budget Tk in a guard clause
of the function, and adapting the largest level Lk if the FE error, estimated with (4.4), is
larger than a predefined fraction of the target error θ ϵk. To find the optimal multilevel batch
{Mopt

k,ℓ }
Lk

ℓ=0 in each iteration k, we apply techniques introduced in [7, 14] utilizing estimates
from the previous optimization step k − 1. Particularly, we use

(6.4) Mopt
k,ℓ =


(√

θϵk

)−2

√√√√ s2ℓ [p
(k−1)
ℓ ]

(Mk−1,ℓ − 1) ĈCT
k−1,ℓ

 Lk∑
ℓ′=0

√√√√s2ℓ′ [p
(k−1)
ℓ′ ] ĈCT

k−1,ℓ′

Mk−1,ℓ′ − 1




to get the optimal number of samples Mopt
k,ℓ on each level ℓ where s2ℓ [p

(k−1)
ℓ ] is the second order

sum from (4.5). The estimate ĈCT
k−1,ℓ is the averaged cost of the previous iteration k − 1 on

level ℓ, thus with the sample size Mk−1,ℓ, it is

ĈCT
k−1,ℓ =

1

Mk−1,ℓ

Mk−1,ℓ∑
m=1

CCT
(
(v

(m,k−1)
ℓ ,p

(m,k−1)
ℓ )

)
.

Once the new multilevel batch {Mopt
k,ℓ }

Lk

ℓ=0 is chosen, the NotFeasible function is called. This
functions stops the computation if the new batch is expected to take longer than the leftover
time budget Tk or, if, by appending a new level, the memory constraint is violated. Else, we

call the MultiLevelEstimation function to compute new estimates on the adjoint EML[q
(k)
L ]

and the objective JML(z
(k)
L ) using the new multilevel batch {Mopt

k,ℓ }
Lk

ℓ=0. We then determine

the new control z
(k+1)
L by calling the AdaptiveGradientDescent function, update the budgets

with (6.3), and start a new optimization step with the BMLSGD function taking the new control

z
(k+1)
L , and the new error target ϵk+1 ← η ·

∥∥EML[g
(k)
L ]
∥∥
W

as input.
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Feasibility check. Within the NotFeasible function, the upcoming computational cost is
estimated and checked against the remaining budgets:

Lk∑
ℓ=0

Mopt
k,ℓ Ĉ

CT
k−1,ℓ > Tk︸ ︷︷ ︸

new batch is too expensive in CPU-time

or mkh
−γMem

Lk
> Memk︸ ︷︷ ︸

new batch is too expensive in memory

We recall that Memk is the leftover memory, i.e. the difference between the initial memory
budget Mem0 and the memory footprint of the last computational result. In either case, if the
new multilevel batch is too expensive in CPU-time or memory, the algorithm stops and returns
the current control as the solution to Problem 6.1.

Adaptive Gradient Descent. By Theorem 5.2, we do have to determine besides the optimal
multilevel batch {Mopt

k,ℓ }
Lk

ℓ=0 also the step size tk in order to minimize (5.8). To this end, we use

the adaptive step size techniques introduced in [31] in combination with the already computed

MLMC estimates and the gradient EML[g
(k)
L ] used in (5.1). Particularly, we compute

(6.5) tk =
∥EML[g

(k)
L ]∥2W − êrr

sam
k

ĉLip∥EML[g
(k)
L ]∥2W

with ĉLip =
∥EML[g

(k)
L ]− EML[g

(k−1)
L ]∥W

∥tk−1EML[g
(k−1)
L ]∥W

,

where êrrsam is determined with (4.5), and ĉLip is an estimate of the Lipschitz constant follow-

ing (2.5) which takes the previous gradient EML[g
(k−1)
L ] from memory. With the new step size

tk, we finally compute the new control z
(k+1)
L following the update rule in (5.1) and return to

the BMLSGD function again.

6.2 Experiments

We now present our final numerical results, evaluating the performance of Algorithm 3 on
the PDE example from Section 2.3. In particular, we focus on estimating the convergence rate δ
as defined in Corollary 6.2. Following the approach of [13], we estimate δ via linear regression
on the logarithmic decay of the gradient norm over time:

min
(δ̂, ĉδ)

∑
k

(
log2

(∥∥EML[g
(k)
L ]
∥∥
W

)
− δ̂ log2(Tk) + ĉδ

)2
All figures in this section display estimates of δ. To clarify the plots, we represent data points
directly (excluding early iterations within the first 60 seconds) along with the corresponding
linear fit.

Method comparison. Figure 5 presents a direct comparison between the BMLSGD and
BSGD methods. To improve the BSGD performance, we used a decaying step size tk =
t0 ·K−0.5 satisfying (2.9) with t0 = 250 and increased the iteration count to K = 150. With
hℓ = 2−7 and Mℓ = 256, this configuration gave the best BSGD results within one hour of
computation. Despite these optimizations, BMLSGD significantly outperforms BSGD on our
example — achieving comparable results 18× faster and yielding errors 5× smaller for the
same computational cost. As shown in Figure 5, BMLSGD also achieves a markedly better
convergence rate of δ ≈ 0.5, compared to δ ≈ 0.37 for BSGD. This aligns with theoretical
expectations: for BSGD, δ = α

2α+γ (cf. discussion in Sections 3.3 and 4), while for BMLSGD,

Corollary 6.2 gives δ = min{ 12 ,
α

2α+(γ−β)}. Finally, BMLSGD achieves these improvements

with fewer iterations, lower bias, and reduced noise (see left plot of Figure 5).
Unlike in Sections 3.2 and 5.2, as well as the preceding discussion, Figures 6 and 7 addition-

ally present results on multilevel statistics and highlight the decay of the gradient ∥EML[g
(k)
L ]∥W

over time. The aim is to justify Assumption 2.3 by estimating the exponents αu, αq, βv, βp, γCT,
and γMem. The top row in both figures displays the experimentally measured exponents: for
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Algorithm 3 Budgeted Multilevel Stochastic Gradient Descent (BMLSGD)

global const (η, θ)⊤ ← (0.9, 0.5)⊤ // Tested choice for both values

global (Tk, Memk)
⊤ ← (T0, Mem0)

⊤ // Initialize with time and memory budget

function Init(z
(0)
L , {M0,ℓ}Lℓ=0, t0) : // Calls functions from Algorithm 2

EML[q
(0)
L ], JML(z

(0)
L ) ← MultiLevelEstimation(z

(0)
L , {M0,ℓ}Lℓ=0)

z
(1)
L , EML[g

(0)
L ] ← GradientDescent(z

(0)
L , EML[q

(0)
L ], t0)

(T1, Mem1)
⊤ ← (T0 − CCT

0 , Mem0 − CMem
0 )⊤

return BMLSGD(z
(1)
L , η ·

∥∥EML[g
(0)
L ]
∥∥
W
)

function BMLSGD(z
(k)
L , ϵk) :

if Tk < 0.05T0 : return z
(k)
L

if êrr
num
k−1 ≥ (1− θ) ϵ2k : Lk ← Lk−1 + 1

for ℓ = 0, . . . , Lk : Mopt
k,ℓ ← (6.4)

if NotFeasible({Mopt
k,ℓ }

Lk

ℓ=0) : return z
(k)
L

EML[q
(k)
L ], JML(z

(k)
L ) ← MultiLevelEstimation(z

(k)
L , {Mopt

k,ℓ }
Lk

ℓ=0)

z
(k+1)
L , EML[g

(k)
L ] ← AdaptiveGradientDescent(z

(k)
L , EML[q

(k)
L ])

(Tk+1, Memk+1)
⊤ ← (Tk − CCT

k , Memk − CMem
k )⊤

return BMLSGD(z
(k+1)
L , η ·

∥∥EML[g
(k)
L ]
∥∥
W
)

function NotFeasible({Mopt
k,ℓ }

Lk

ℓ=0) :
if

∑Lk

ℓ=0 M
opt
k,ℓ Ĉ

CT
k−1,ℓ > Tk : return true

if mkh
−γMem
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Figure 5. Comparison of Algorithm 1 with Algorithm 3.

the state (dash-dotted line) and the adjoint solutions (dashed line) in the left and center plots,
respectively. The rightmost plot shows the measured computational cost exponents γCT and
γMem in a dual-axis format: the increasing solid line indicates average computational costs per
level, while the bar plot represents memory costs per level. The horizontal lines in this plot
mark the total memory footprint in megabytes (MB). The slight overhead of memory costs at
the lowest level stems from initialization of the algorithm and the solvers.

Step size choice. Following the approach of [13], we assess the multilevel results to identify
the optimal step size rule under a fixed computational budget through direct performance
comparisons. The algorithm is initialized with the multilevel batch configuration: (h0,M0)

⊤ =
(2−4, 64)⊤, (h1,M1)

⊤ = (2−5, 16)⊤, and (h2,M2)
⊤ = (2−6, 4)⊤. Performance is evaluated

using the same settings as in Figure 5. In Figure 6, we compare fixed step sizes tk ≡ 100 and
tk ≡ 150 with the adaptive step size rule (6.5) using t0 = 200. The center plot in the second
row of Figure 6 shows that all three configurations result in a comparable load distribution
across levels and remain within the 1-hour computational budget (indicated by the horizontal
red line). The lower right plot indicates that the adaptive step size yields the best convergence
rate and lowest gradient norm at the end of the optimization. In the context of BMLSGD,
the adaptive rule utilizes each batch optimally, thereby enables larger batches that lead to
improved parallel efficiency.

Node scaling. Finally, we demonstrate that the BMLSGD method scales well with increased
computational resources (cf. Figure 7). To this end, we run the method with adaptive step size
and t0 = 200 on |P| = 64 (1 node), |P| = 256 (4 nodes), and |P| = 1024 (16 nodes). Notably,
the method leverages the additional resources to compute more samples—and, for |P| = 1024,
also includes an additional level (cf. lower left plot of Figure 7 showing the total number of
samples Mℓ over the optimization). As shown in the lower right plot of Figure 7, and similarly
observed in [13], increasing computational resources improves the solution quality. The smaller
gap between the green (|P| = 1024) and orange (|P| = 256) lines, compared to that between
the orange and blue (|P| = 64), suggests diminishing parallel efficiency with more nodes. This
is due to the inherently unparallelizable portion λp of the code (see Corollary 6.2 and [13] for
further details).

7 Outlook and Conclusion

In this paper, we introduced the MLSGD method and its budgeted variant. We showed
that the method solves optimal control problems of the form (2.1) with a linear convergence
rate in the number of optimization steps. The total error is controlled via multilevel Monte
Carlo estimation, as established in Lemma 5.1, Theorem 5.2, and Corollary 5.4. Our numerical
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Figure 6. Comparison of tk ≡ 100 and tk ≡ 150 with the adaptive step size rule (6.5).

Figure 7. CPU-scaling experiment with |P| = 64, |P| = 256 and |P| = 1024.

experiments in Section 5.2 and Section 6.2 clearly demonstrate the superior performance of
MLSGD compared to the baseline BSGD method. In particular, the budgeted variant of Sec-
tion 6 shows significant improvements in convergence speed, accuracy, parallel scalability, and
robustness, while ensuring total error control relative to available CPU-time and memory, as
shown in Corollary 6.2.

Future work may explore other PDEs, such as wave equations [13] or coupled PDEs [12],
applications which are already supported by our software M++ [34]. The method is designed for
high-dimensional problems and large computing clusters, where its inherent parallelism, based
on [14], enables efficient usage of resource. It is thus applicable to three-dimensional problems,
as illustrated by the outlook application in Figure 8. Algorithmically, the method can be
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Figure 8. Outlook on three-dimensional random field sampling and optimal control.

extended in several directions, such as incorporating limited-memory BFGS methods [45] as
an alternative to gradient descent, or combining it with QMC methods as in [10, 11]. Further
improvements may also be achieved by refining the step size strategies and by using new
averaging schemes [46]. We also suspect that the MLSGD method can excel in risk-averse
PDE-constrained optimization using conditional value-at-risk (CVaR) estimation, as described
in [47], potentially leveraging the multilevel techniques introduced in [48] to estimate the CVaR.
Lastly, we want to point out again that the MLSGD method is not limited to PDE-constrained
optimization in application. We note that simultaneously with our work, a related formulation
to the MLSGD method appeared in [49], focusing on operator learning. We believe that the
findings in our paper, e.g. how to realize adaptivity and parallel scalability, will improve future
applications of the MLSGD method in machine learning.

Acknowledgments

We thank Christian Wieners, Sebastian Krumscheid and Robert Scheichl for their feedback
and advice on the presented work. We further acknowledge the technical support by the
National High-Performance Computing Center (NHR) at KIT and the possibility to access
to the HoreKa supercomputer. LLMs were used to correct some spelling and grammar of this
article. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
– Project-ID 258734477 – SFB 1173.

References

[1] C. Geiersbach and G. C. Pflug, “Projected stochastic gradients for convex constrained problems in Hilbert

spaces,” SIAM J. Optim., vol. 29, no. 3, pp. 2079–2099, 2019.

[2] C. Geiersbach and T. Scarinci, “A stochastic gradient method for a class of nonlinear pde-constrained

optimal control problems under uncertainty,” Journal of Differential Equations, vol. 364, pp. 635–666,
2023.

[3] C. Geiersbach and W. Wollner, “A stochastic gradient method with mesh refinement for PDE-constrained

optimization under uncertainty,” SIAM J. Sci. Comput., vol. 42, no. 5, pp. A2750–A2772, 2020.
[4] M. Martin, S. Krumscheid, and F. Nobile, “Complexity analysis of stochastic gradient methods for PDE-

constrained optimal control problems with uncertain parameters,” ESAIM Math. Model. Numer. Anal.,

vol. 55, no. 4, pp. 1599–1633, 2021.
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