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A LIMITING ABSORPTION PRINCIPLE FOR THE SCATTERING BY
A PERIODIC LAYER IN THE CASE OF A CUT-OFF VALUE

ANDREAS KIRSCH

Abstract. In this paper we consider the propagation of waves in an open waveguide

in the half space R2
+ = {x 2 R2

: x2 > 0} under Dirichlet- or Neumann boundary

condition for x2 = 0. The index of refraction n = n(x) is periodic along the axis of

the waveguide (which we choose to be the x1�axis) and equal to one for x2 > h0 for

some h0 > 0. We show first existence and uniqueness of a solution for the absorbing

case, i.e. where the index of refraction is given by n(x) + i"q(x) with " > 0 and some

function q which is periodic with respect to x1, vanishes for x2 > h0, and satisfies the

angular spectral representation radiation condition. Then we prove convergence of the

solution as " tends to zero. We show that the limit solves the source problem for n(x)
and satisfies a radiation condition which depends, first, on the choice of the absorption

function q and, second, whether or not a cut-o↵ value is critical with a non-evanescent

mode.

MSC: 35J05

Key words: Helmholtz equation, open waveguide, limiting absorption principle, radia-

tion condition

1. Introduction

In this paper we study the boundary value problem

(1) �u+ k
2
nu = �f in R2

+ , u = 0 or @x2u = 0 for x2 = 0 ,

where R2
+ = {x 2 R2 : x2 > 0}. We assume that the (real valued) index of refraction

n 2 L
1(R2

+) is 2⇡�periodic with respect to x1 and equals to 1 for x2 > h0 for some
h0 > 0 and n(x) � n0 in R2

+ for some n0 > 0. Furthermore, k > 0 denotes the (real) wave
number which is fixed throughout the paper and f 2 L

2(R2
+) with compact support in

W
h0 where W h := R⇥ (0, h) ⇢ R2

+ denotes the layer of height h > 0. The boundary value
problem (1) has to be complemented by a suitable radiating condition. Its derivation is
the main subject of this paper.

In this paper we continue earlier contributions as in [13, 11] and investigate the scattering
of sources by a periodic inhomogeneous layer. It is the aim to derive ”natural” radiation
conditions arizing from limiting absorption principles. For the scattering of electromag-
netic waves by bounded objects the Sommerfeld radiation condition (for scalar problems)
or the Silver-Müller radiation condition (for Maxwell’s equations) are certainly the nat-
ural conditions. The situation is more complicated for scattering problems by periodic
structures due to the presense of guided waves. The investigation of radiation problems
for periodic structures has a long history, and it is impossible to list all of the relevant
literature. Instead, we refer to [1, 17] for a comprehensive introduction of electromagnetic
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scattering theory for di↵raction gratings. Radiation conditions play an important role in
the modeling of these problems because they assure uniqueness (from the mathematical
point of view) and that energy is transported away from the structure (from the phys-
ical point of view). Prominent examples of radiation conditions for periodic structures
are the Rayleigh expansion (for the scattering by plane waves), the upwards propagating
radiation condition suggested by Chandler-Wilde in several papers (for rough surfaces
which include locally perturbed periodic structures, see, e.g. [4]) or the angular spectrum
representation condition. This notion is popular in the physics literature, see e.g. [8],
but has been used also (without using this name) in, e.g., [3, 2, 9]. All of the mentioned
radiation conditions, however, are appropreate only if no guided waves exist as, e.g., in
the case of the scattering by a conductor described as the graph of a periodic function.
There is much less literature for cases where guided waves exist. The above concepts have
to be modified to include guided waves. For layered media, in [18, 5, 6] a splitting of the
field into a sum of guided waves and a part which satisfied a kind of Sommerfeld radia-
tion condition is suggested. A completely di↵erent approach, based on a modal radiation
condition, is suggested in [7], using earlier concepts from, e.g., [16].

As in, e.g. [13, 10] and [14] (for closed waveguides) we consider first the case when the
refractive index n is absorbing, i.e. n = n(x) is replaced by n"(x) := n(x) + i"q(x) with
" > 0 and some fixed q 2 L

1(R2) which is 2⇡�periodic with respect to x1, q(x) � q0 on
W

h0 for some q0 > 0 and q(x) = 0 for x2 > h0. For this absorbing case we expect the
solution u" to be in H

1(W h) for all h > 0. Therefore, the Fourier transform with respect
to x1 is well defined, and the angular spectral representation (see (4) below) is the natural
radiation condition because no guided waves exist for absorbing layers.

As a main result in this paper we prove convergence of u" as " ! 0. It will turn out
that the limiting field u0 satisfies a radiation condition which will in general depend on
the absorption function q – although this function does not appear in the boundary value
problem (1). As a consequence we emphasize that for these kind of problems there does
not exist a unique radiation condition but rather a class of radiation conditions which
depends on the limiting procedure. We illustrate this in Example 4.4 below. This rather
strange situation has been observed already in [14, 12].

We recall that the solution of (1) (for n replaced by n" := n + i"q) is understood in
the variational sense. Set H

1
loc
(R2

+) = {u|R2
+
: u 2 H

1
loc
(R2)} for the case of a Neumann

boundary condition and H
1
loc
(R2

+) = {u|R2
+
: u 2 H

1
loc
(R2) , u = 0 for x2 = 0} for the case

of a Dirichlet boundary condition.

Definition 1.1. A function u 2 H
1
loc
(R2

+) is called a variational solution of (1) (for

n = n") if

(2)

Z

R2
+

⇥
ru ·r � k

2
n" u 

⇤
dx =

Z

Wh0

f  dx

for all  2 H
1
loc
(R2

+) with compact support in {x 2 R2 : x2 � 0}.

By choosing  2 H
1(R2

+) in (2) with compact support in R2
+ \W h0 we note that u is a

classical solution of the Helmholtz equation �u+ k
2
u = 0 for x2 > h0 and thus analytic.
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As mentioned above, if " > 0 we expect the solution to decay as x1 ! ±1. More
precisely, we search for a solution in

(3) H
1
⇤ (R2

+) := {u 2 H
1
loc
(R2

+) : u|Wh 2 H
1(W h) for all h > 0} .

A common radiation condition (see, e.g. [3, 2, 9]) is the angular spectrum representation,
i.e. the Fourier transform (Fu)(⇠, x2) of u(·, x2) with respect to x1 (which exists because
u(·, x2) 2 H

1/2(R)) has the representation

(4) (Fu)(⇠, x2) = (Fu)(⇠, h0) e
i

p
k2�⇠2(x2�h0) , x2 > h0 ,

for almost all ⇠ 2 R. The Floquet-Bloch transform (see Subsection 2.2) reduces the
equation �u + k

2
n"u = �f to a family of quasi-periodic problems. Therefore, we study

quasi-periodic problems in the following section.

2. The Quasi-periodic Problems and the Case of Absorption

2.1. The Quasi-periodic Problems. A function v 2 L
1(R2

+) is called quasi-periodic
with respect to x1 with parameter ↵ 2 R if v(x1 + 2⇡, x2) = e

2⇡↵i
v(x1, x2) for all x =

(x1, x2) 2 R2
+.

We set Q1 := (0, 2⇡)⇥ (0,1) and Q
h := (0, 2⇡)⇥ (0, h) for h > 0 and define

H
1
↵,loc

(Q1) :=
�
u|Q1 : u 2 H

1
loc
(R2

+), u(·, x2) is ↵�quasi-periodic
 
.

Recall that H1
↵,loc

(Q1) contains the boundary conditions in the Dirchlet case. The quasi-
periodic analog to (1), (4) is the problem to determine, for any given ↵ 2 R and g↵ 2

L
2(Qh0), a ↵�quasi-periodic solution u↵ 2 H

1
↵,loc

(Q1) of

(5) �u↵ + k
2
n"u↵ = �g↵ in Q

1
u↵ = 0 or @x2u↵ = 0 for x2 = 0 ,

which satisfies the Rayleigh expansion

(6) u↵(x) =
X

`2Z

u` e
i

p
k2�(`+↵)2(x2�h0)+i(`+↵)x1 , x2 > h0 ,

for some u` 2 C where the convergence is uniform for x2 � h for all h > h0. We note
that this problem is well defined for all " � 0, i.e. in particular for the case n" = n

of no absorption. The coe�cients u` are actually the Fourier coe�cients u`(↵, h0) :=
1
2⇡

R 2⇡

0 u↵(x1, h0)e�i(`+↵)x1dx1 of u↵(·, h0).

It is well known that this problem can be reduced to a problem on the bounded domain
Q

h (for any h � h0) with the Dirichlet-to-Neumann operator. We set H
1
↵
(Qh) := {u 2

H
1(Qh) : u(·, x2) is ↵�quasi-periodic} and include the boundary conditions u = 0 for

x2 = 0 in the case of Dirichlet boundary conditions.

Lemma 2.1. Let ↵ 2 R and g↵ 2 L
2(Qh0) be fixed. Let h � h0 be arbitrary.

(a) Let u↵ 2 H
1
↵,loc

(Q1) be a solution of (5), (6). Then u↵|Qh 2 H
1
↵
(Qh) solves

(7)

Z

Qh

⇥
ru↵ ·r ̄�k

2
n" u↵  ̄

⇤
dx� 2⇡i

X

`2Z

u`(↵, h) `(↵, h)
p
k2 � (`+ ↵)2 =

Z

Qh0

g↵  ̄ dx

for all  2 H
1
↵
(Qh) where u`(↵, h) =

1
2⇡

R 2⇡

0 u↵(x1, h)e�i(`+↵)x1dx1 are the Fourier coe�-

cients of u↵(·, h).
3



(b) Let u↵ 2 H
1
↵
(Qh) solve (7). Extend u↵ into Q

1
by defining

(8) u↵(x) =
X

`2Z

u`(↵, h) e
i

p
k2�(`+↵)2(x2�h)+i(`+↵)x1 , x2 > h .

Then u↵ 2 H
1
↵,loc

(Q1) solves (5), (6).

We omit the proof because it is standard. As mentioned above, the connection between
the quasi-periodic problems (5), (6) and the original problem (1), (4) is given by the
Floquet-Bloch transform which we recall next.

2.2. The Floquet-Bloch Transform. Recall that the Floquet-Bloch transform F :
L
2(R) ! L

2
�
(0, 2⇡)⇥ (�1/2, 1/2)

�
is defined by (for f 2 S(R))

(Ff)(t,↵) =
X

m2Z

f(t+ 2⇡m) e�i↵2⇡m
, t,↵ 2 R .

This formula directly shows that for smooth functions f and fixed ↵ the transformed
function t 7! (Ff)(t,↵) is ↵�quasi-periodic while for fixed t the function ↵ 7! (Ff)(t,↵)
is periodic with period 1. It is hence su�cient to consider L

2
�
(0, 2⇡) ⇥ (�1/2, 1/2)

�
as

image space of F . The inverse transform is given by

(F�1
g)(t+ 2⇡`) =

1/2Z

�1/2

g(t,↵) e2⇡`↵id↵ , t 2 (0, 2⇡) , ` 2 Z .

There is a simple relationship to the Fourier transform F : L2(R) ! L
2(R) given by (for

f 2 S(R))

(9) (Ff)(⇠) =
1

2⇡

1Z

�1

f(x) e�i⇠x
dx , ⇠ 2 R .

Indeed, for ↵ 2 [�1/2, 1/2] and ` 2 Z we have

(Ff)(↵ + `) =
1

2⇡

1Z

�1

f(x) e�ix(↵+`)
dx =

1

2⇡

X

m2Z

2⇡Z

0

f(x+ 2⇡m) e�i(x+2⇡m)(↵+`)
dx

=
1

2⇡

2⇡Z

0

X

m2Z

f(x+ 2⇡m) e�i↵2⇡m
e
�ix(`+↵)

dx

=
1

2⇡

2⇡Z

0

(Ff)(x,↵) e�ix(`+↵)
dx = f̂`(↵)

(10)

where f̂`(↵) are the Fourier coe�cients of the ↵�quasi-periodic function (Ff)(·,↵). In
particular,

(11) (Ff)(x,↵) =
X

`2Z

f̂`(↵) e
ix(`+↵) =

X

`2Z

(Ff)(↵ + `) eix(`+↵)
.

In view of our scattering problem, we apply the Floquet-Bloch transform to the variable
x1 and consider x2 as a parameter. Recalling that W h := R⇥ (0, h) and Q

h := (0, 2⇡)⇥
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(0, h) and I = (�1/2, 1/2) one can then show that F is an isometry from L
2(W h) onto

L
2(Qh

⇥ I),

kFfk
2
L2(Qh⇥I) =

1/2Z

�1/2

Z

Qh

|(Ff)(x,↵)|2 dx d↵ =

Z

Wh

|f(x)|2 dx = kfk
2
L2(Wh) .

It has been shown (see, e.g. [15, Section 6]) that F is also an isomorphism from H
1(W h)

onto

L
2
�
I,H

1
↵
(Qh)

�
:=

⇢
u 2 L

2
�
I,H

1(Qh)
�
:
x1 7! u(x,↵) is
↵�quasi-periodic

�
.

2.3. Equivalence and Existence in the Case of Absorption. The following connec-
tion between (5), (6) and (1), (4) is well known (see, e.g., [14] for closed waveguides)

Lemma 2.2. Let " � 0 be fixed and f 2 L
2(W h0) with compact support and g↵ :=

(Ff)(·,↵) 2 L
2(Qh0) its Floquet-Bloch transform.

(a) Let u 2 H
1
⇤ (R2

+) be a solution of (1), (4) and u↵(x) := (Fu)(x,↵) be its Floquet-Bloch

transform. Then u↵ 2 H
1
↵
(Q1) solves (5), (6) with right hand side g↵ for almost all

↵ 2 I. Furthermore, ↵ 7! u↵ belongs to L
2
�
I,H

1(Qh)
�
for every h > 0.

(b) Let u↵ 2 H
1
↵
(Q1) solve (5), (6) with right hand side g↵ for almost all ↵ 2 I, and

let the mapping ↵ 7! u↵ belong to L
2
�
I,H

1(Qh)
�
for every h > 0. Then the inverse

transform u =
R
I
u↵d↵ belongs to H

1
⇤ (R2

+) and is a solution of (1), (4).

We did not indicate the dependence on " because " is kept fixed. We note that the
relationship between (4) and the Rayleigh expansion (6) is given by (10). Also we observe
that ↵ 7! g↵ is infinitely often di↵erentiable (even analytic) because the Floquet-Bloch
transform reduces to a finite sum.

This lemma holds for " > 0 but also for " = 0. In the latter case, however, existence
of a solution u 2 H

1
⇤ (R2

+) or, equivalently, L
2
�boundedness of ↵ 7! u↵ is not assured in

general, but only for special right hand sides (which are orthogonal to the modes, see, e.g.,
[13] or, for closed waveguides, [14]). It is convenient to introduce the space of periodic
functions as

(12) H
1
per(Q

h) :=
�
u 2 H

1(Qh) : u(·, x2) is 2⇡�periodic
 
.

In the case of a Dirichlet boundary condition the condition u = 0 for x2 = 0 is added to
the definition of H1

per(Q
h). In the absorbing case " > 0 we have existence.

Theorem 2.3. Let " > 0, i.e. Imn" > 0 on W
h0. Then there exists a unique solution

u" 2 H
1
⇤ (R2

+) of (1), (4).

Proof. For every ↵ 2 I we consider the quasi-periodic problem (7) for h = h0 where
g↵ = (Ff)(·,↵) is the Floquet-Bloch transform of f . The mapping ↵ 7! g↵ is smooth
because f has compact support. By Lemma 2.1 this problem is equivalent to the quasi-
periodic problem (5), (6) in Q

1. We replace u↵ 2 H
1
↵
(Qh0) and  2 H

1
↵
(Qh0) by

v↵(x) = e
�i↵x1u↵(x) and �(x) = e

�i↵x1 (x), respectively. Then v↵,� 2 H
1
per(Q

h0), and
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(7) transforms into

a↵(v↵,�) :=

Z

Qh0

⇥
r(ei↵x1v↵) ·r(ei↵x1�)� k

2
n" v↵ �̄

⇤
dx

� 2⇡i
X

`2Z

v`(↵, h0)�`(↵, h0)
p

k2 � (`+ ↵)2 =

Z

Q

g↵ (ei↵x1�) dx

(13)

for all � 2 H
1
per(Q

h0). Here, v`(↵, h0) = 1
2⇡

R 2⇡

0 v↵(x1, h0)e�i`x1dx1 are the Fourier co-
e�cients of v↵(·, h0) with respect to {e

i`x1 : ` 2 Z} (which coincide with the Fourier
coe�cients of u↵(·, h0) with respect to {e

i(`+↵)x1 : ` 2 Z}). Let q0 > 0 with q(x) � q0 for
all x 2 W

h0 . Then

Re a↵(u, u) =

Z

Qh0

⇥
|r(ei↵x1u)|2 � k

2
n |u|

2
⇤
dx+ 2⇡

X

|`+↵|>k

|u`(↵, h0)|
2
p

(`+ ↵)2 � k2

� kr(ei↵x1u)k2
L2 � k

2
knk1kuk

2
L2 = ki↵u+ruk

2
L2 � k

2
knk1kuk

2
L2

�
1

2
kruk

2
L2 �

✓
k
2
knk1 +

1

4

◆
kuk

2
L2 ,

� Im a↵(u, u) = k
2
"

Z

Qh0

q |u|
2
dx+ 2⇡

X

|`+↵|<k

|u`(↵, h0)|
2
p
k2 � (`+ ↵)2

� k
2
" q0 kuk

2
L2 ,

where we used the elementary estimate ki↵u + ruk
2
� kruk

2 + 1
4kuk

2
� krukkuk =

1
2kruk

2+ 1
2(kruk�kuk)2� 1

4kuk
2
�

1
2kruk

2
�

1
4kuk

2. Let now t > 0 such that t(k2
knk1+

1/4) < k
2
" q0. Then

Re
⇥
(t+ i) a↵(u, u)

⇤
= tRe a↵(u, u)� Im a↵(u, u)

�
t

2
kruk

2
L2 � t

✓
k
2
knk1 +

1

4

◆
kuk

2
L2 + k

2
" q0 kuk

2
L2

=
t

2
kruk

2
L2 +

✓
k
2
" q0 � tk

2
knk1 �

t

4

◆
kuk

2
L2 � c kuk

2
H1 .

Therefore, (t + i)a↵ is coercive, uniformly with respect to ↵ 2 [�1/2, 1/2], and depends
continuously on ↵. Therefore, the theorem of Lax-Milgram yields the existence and
uniqueness of a solution v↵ 2 H

1
per(Q

h0) of a↵(v↵,�) =
R
Qh0

g↵ (ei↵x1�) dx for all � 2

H
1
per(Q

h0), and thus of (7), which depends continuously on ↵. In particular, ↵ 7! u↵ is in
L
2
�
I,H

1(Qh0)
�
. Application of part (b) of Lemma 2.2 ends the proof. ⇤

Remark 2.4. The assumption that q is uniformly bounded below on W
h0 by some positive

constant q0 can be relaxed. If q is only bounded below on some open subset U ⇢ Q
h0 then we

still have uniqueness. Indeed, if a↵(v↵,�) = 0 for all � 2 H
1
per(Q

h0) then a↵(v↵, v↵) = 0,
i.e. v↵ and thus u↵ vanishes on U . The unique continuation principle implies that u↵

vanishes everywhere. Since a↵ has the Fredholm property (see Subsection 3.2) we have

again also existence for all ↵ and continuous dependence, and can take the inverse Floquet-

Bloch transform.
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3. Modes

3.1. Critical Values, Cut-o↵ Values, and Mode Spaces. The arguments in the proof
of Theorem 2.3 do not work if " = 0. Indeed, in this case of no absorption there exist (in
general) parameters ↵ for which the homogeneous equation (5) (i.e. for g↵ = 0) admits
non-trivial quasi-periodic solutions � satisfying also the Rayleigh expansion (6).

Definition 3.1. (a) ↵ 2 [�1/2, 1/2] is called cut-o↵ value if there exists ` 2 Z with

|↵ + `| = k.

(b) ↵ 2 [�1/2, 1/2] is called critical value if there exists a non-trivial solution � 2

H
1
↵,loc

(Q1) of �� + k
2
n� = 0 in Q

1
satisfying the Rayleigh expansion (6). The set of

critical values ↵ 2 [�1/2, 1/2] is denoted by A. For ↵ 2 A we define the space M(↵) of
modes by

(14) M(↵) :=
�
� 2 H

1
↵,loc

(Q1) : � satisfies ��+ k
2
n� = 0 in Q

1
and (6)

 
.

If we decompose k into the form k = ˜̀+  with ˜̀2 Z�0 and  2 (�1/2, 1/2] then ± are
the cut-o↵ values. It is obvious that ↵ is a critical value with mode � if, and only if, �↵
is a critical value with mode �̄.

Lemma 3.2. Let ↵ 2 A and � 2 M(↵).

(a) Then the coe�cients �` in the Rayleigh expansion (6) vanish for all ` 2 Z with

|`+ ↵| < k.

(b) Let �` = 0 for all ` 2 Z with |` + ↵|  k. Then � is evanescent, i.e. for every

h > h0 there exist c, � > 0 with |�(x)|  c e
��x2 for x2 � h.

Proof. (a) From Lemma 2.1 (for " = 0 and g↵ = 0 and some h � h0) we conclude that

(15)

Z

Qh

[r� ·r ̄ � k
2
n�  ̄] dx � 2⇡i

X

`2Z

�`(↵, h) `(↵, h)
p

k2 � (`+ ↵)2 = 0

for all  2 H
1
↵
(Qh). Taking  = � and the imaginary part yields the assertion.

(b) From part (a) we have for h = h0

�(x) =
X

|`+↵|>k

�` e
i(`+↵)x1 e

�
p

(`+↵)2�k2(x2�h0) for x2 > h0 .

Since
p

(`+ ↵)2 � k2 � 2� for some � > 0 and all ` with |` + ↵| > k we obtain

|�(x)|  e
��(x2�h0)

P
|`+↵|>k

|�`| e
� 1

2

p
(`+↵)2�k2(h�h0) which yields the assertion with c =

e
�h0

P
|`+↵|>k

|�`| e
� 1

2

p
(`+↵)2�k2(h�h0). ⇤

From this result we conclude that every � 2 M(↵) is evanescent if ↵ 2 A is not a cut-o↵
value. However, if ↵ 2 A is a cut-o↵ value, i.e. |`0+↵| = k for some `0 2 Z, and � 2 M(↵)
then � is evanescent if, and only if, �`0 = 0. We illustrate this with two examples.

Example 3.3. In the case of the Neumann boundary condition @x2u = 0 for x2 = 0 the

simplest example is just �(x) = e
ikx1, x 2 R2

+. We observe that � is quasi-periodic with

parameter  where again k = ˜̀+ . Furthermore,  is obviously a cut-o↵ value and

also critical because � satisfies the Helmholtz equation, the boundary condition @x2� = 0
for x2 = 0, and the Rayleigh expansion. In this case M() = span{�}, and � is not

evanescent.
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The following example, again for the Neumann boundary condition, constructs a critical
value ↵ which is also a cut-o↵ value with a two-dimensional mode space M(↵). The mode
space is spanned by an evanescent mode and a non-evanescent mode.

Example 3.4. This example deals again with the Neumann boundary condition. Let first

k > 0 be arbitrary, h0 = 1 and n = 1+ ⇡
2
/k

2
for 0 < x2 < 1 and n = 1 for x2 > 1. Then

�1(x1, x2) = e
ikx1 ·

⇢
1 , x2 > 1 ,

� cos(⇡x2) , 0 < x2 < 1 ,

solves ��+ k
2
n� = 0 in R2

+ and @x2�(x1, 0) = 0. The function is �quasiperiodic if k is

decomposed into k = ˜̀+ with ˜̀2 Z�0 and  2 (�1/2, 1/2]. In particular,  is a critical

value, i.e.  2 A, and also a cut-o↵ value. The mode �1 2 M() is non-evanescent.

Note that k > 0 is arbitrary and n depends explicitely on k through n = 1 + ⇡
2
/k

2
.

We show now the existence of k > 0 such that for the same n = 1+⇡2
/k

2
there is another

mode in M() which is evanescent. Indeed, the function

�2(x1, x2) = e
i(k+1)x1 ·

(
cos

p
⇡2 + k2 � (k + 1)2 e�

p
(k+1)2�k2(x2�1)

, x2 > 1 ,

cos
�p

⇡2 + k2 � (k + 1)2x2) , 0 < x2 < 1 ,

is �quasi-periodic and a mode if k solves

(16)
p

(k + 1)2 � k2 cos tk � tk sin tk = 0 .

where tk =
p
⇡2 + k2 � (k + 1)2. Using

p
(k + 1)2 � k2 =

p
⇡2 � t

2
k
we have to find

t 2
�
0,
p
⇡2 � 1

�
such that

f(t) :=
p
⇡2 � t2 cos t� t sin t = 0 .

From f(0) = ⇡ > 0 and f(⇡/2) = �⇡/2 < 0 we conclude that such a zero tk exists.

Then k = 1
2(⇡

2
� t

2
k
� 1) satisfies (16), i.e. also �2 is a mode corresponding to  which is

evanescent.

We define the subspace Mevan(↵) of M(↵) for ↵ 2 A by

Mevan(↵) :=
�
� 2 M(↵) : � is evanescent

 
=

�
� 2 M(↵) : �` = 0 for |`+ ↵|  k

 
.

Lemma 3.5. Let k /2
1
2N and ↵ 2 A. Then the codimension of Mevan(↵) in M(↵) is

zero or one.

Proof. Assume that Mevan(↵) 6= M(↵). Let �̃ 2 M(↵) \ Mevan(↵). From the remark
following Lemma 3.2 ↵ must be a cut-o↵ value, i.e. there exists `0 2 Z with |↵+ `0| = k.
From k /2

1
2N it is easily seen that `0 is unique. Therefore, � has the form

�̃(x) = �̃`0(↵, h0) e
i(`0+↵)x1 +

X

|`+↵|>k

�̃`(↵, h0) e
i(`+↵)x1 e

�
p

(`+)2�k2 (x2�h0) , x2 � h0 ,

and �̃`0(↵, h0) 6= 0. Without loss of generality we can assume that �̃`0(↵, h0) = 1. Then
every � 2 M(↵) has the decomposition � = �`0(↵, h0)�̃ + [� � �`0(↵, h0)�̃] and [� �

�`0(↵, h0)�̃] 2 Mevan(↵). Therefore, M(↵) ⇢ span{�̃}+Mevan(↵). ⇤
8



We note that �̃ 2 M(↵) constructed in the proof has the form

�̃(x) = e
i(`0+↵)x1 +

X

|`+↵|>k

�̃`(↵, h) e
i(`+↵)x1 e

�
p

(`+)2�k2 (x2�h)
, x2 � h ,

for any h � h0. In particular, �̃`0(↵, h) = 1 for all h � h0.

We will see that the existence of critical cut-o↵ values with Mevan(↵) 6= M(↵) lead to a
slower decay of the radiating part of the solution of (1).

3.2. The Mode Spaces are Finite Dimensional. We fix h � h0. From Lemma 2.1
(for " = 0 and g↵ = 0) we obtain for the transformed modes �̃ 2 H

1
per(Q

h), defined by

�̃(x) = e
�i↵x1�(x), the equivalent characterization

Z

Qh

[r(ei↵x1�̃) ·r(ei↵x1 )� k
2
n �̃  ̄] dx � 2⇡i

X

`2Z

�̃`  `

p
k2 � (`+ ↵)2 = 0 ,

i.e.

(17)

Z

Qh

[r�̃ ·r ̄� 2i↵ @x1�̃  ̄+ (↵2
� k

2
n) �̃  ̄] dx � 2⇡i

X

`2Z

�̃`  `

p
k2 � (`+ ↵)2 = 0

for all  2 H
1
per(Q) where we dropped the argument (↵, h) in the Fourier coe�cients. We

equip H
1
per(Q

h) with the inner product

(18) hu, vi⇤ :=

Z

Qh

ru ·rv̄ dx + 2⇡
X

`2Z

u` v` (1 + |`|) , u, v 2 H
1
per(Q) .

Then this inner product generates a norm which is equivalent to the usual norm inH
1(Qh).

This well known result can be easily shown by, e.g., an indirect proof. By the Theorem
of Riesz there exists a bounded operator K(↵) from H

1
per(Q

h) into itself with

hK(↵)u, vi⇤ =

Z

Qh

[2i↵ @x1u v̄ � (↵2
� k

2
n) u v̄] dx

+ 2⇡
X

`2Z

u` v`

⇥
i

p
k2 � (`+ ↵)2 + |`|+ 1

⇤(19)

for u, v 2 H
1
per(Q

h). With this operatorK(↵) equation (17) is written as h�̃�K(↵)�̃, i⇤ =
0 for all  2 H

1
per(Q

h), i.e.

(20) �̃�K(↵)�̃ = 0 for �̃ 2 H
1
per(Q

h) .

Therefore, ↵ is critical if, and only if, I � K(↵) is not invertible. Further properties of
K(↵) are collected in the following lemma.

Lemma 3.6. (a) K(↵) is compact for every ↵ and depends continuously on ↵.

(b) Let ↵ be a critical value (could also be a cut-o↵ value), i.e. ↵ 2 A. Then 1 is

a semi-simple eigenvalue of K(↵), i.e. N
�
[I � K(↵)]2

�
= N

�
I � K(↵)

�
. The

decomposition of H
1
per,0�(Q) in the form

H
1
per(Q

h) = N
�
I �K(↵)

�
� R

�
I �K(↵)

�

9



is orthogonal.

(c) The operator K(↵) is infinitely often di↵erentiable at all ↵ which are not cut-o↵

values.

Proof. (a) Compactness follows from the compact embedding of H1
per(Q

h) into L2(Qh) and

the boundedness of �
p
(`+ ↵)2 � k2 + |`| + 1 for large values of |`|. Continuity follows

from the continuity of every term and the convergence ofP
`
|u`v`| 

⇥P
`
|u`|

2
⇤1/2⇥P

`
|v`|

2
⇤1/2

 cku|�kH1/2(�)kv�kH1/2(�) where � = (0, 2⇡)⇥ {h}.

(b) First we show N
�
I � K(↵)

�
= N

�
I � K(↵)⇤

�
. Indeed, Let � 2 N

�
I � K(↵)

�
and

 2 H
1
per,0�(Q

h) arbitrary. Then

⌦
(I �K(↵)) ,�

↵
⇤ =

Z

Qh

⇥
r ·r�̄� 2i↵

@ 

@x1
�̄� (k2

n� ↵
2) �̄

⇤
dx

+
X

|`+↵|�k

p
(`+ ↵)2 � k2  ` �`

=
⌦
(I �K(↵)�, 

↵
⇤ = 0 .

Therefore, (I �K(↵)⇤)� = 0. This shows N
�
I �K(↵)

�
= N

�
I �K(↵)⇤

�
.

Let now u 2 N
�
(I � K(↵))2

�
and set v =

�
I � K(↵)

�
u. Then v 2 N

�
I � K(↵)

�
=

N
�
I�K(↵)⇤

�
by the previous argument. Therefore, kvk2⇤ =

⌦
(I�K(↵))u, v

↵
⇤ =

⌦
u, (I�

K(↵)⇤)v
↵
⇤ = 0. Therefore, v = 0; that is, u 2 N

�
I�K(↵)

�
. The orthogonality follows by

the same arguments. Indeed, if u 2 N
�
I�K(↵)

�
= N

�
I�K(↵)⇤

�
and v =

�
I�K(↵)

�
 2

R
�
I �K(↵)

�
then hv, ui⇤ =

⌦
(I �K(↵)) , u

↵
⇤ =

⌦
 , (I �K(↵)⇤)u

↵
⇤ = 0.

(c) The integral is certainly smooth at all ↵. Furthermore, d

d↵

p
k2 � |`+ ↵|2 = �(` +

↵)/
p

k2 � |`+ ↵|2 which is also bounded for large values of ` because |` + ↵| 6= k for all
`. The same holds for all derivatives. Then we can argue as in Part (a). ⇤
By a theorem of Riesz the null space N (I �K(↵)) is finite dimensional. This implies the
following corollary.

Corollary 3.7. Every space M(↵) of modes for ↵ 2 A is finite dimensional.

3.3. Construction of a Basis. As the next step we construct a convenient basis of
M(↵). As in [14] the following sesqui-linear form will play an important role.

(21) E(u, v) := i

Z

Q1

⇥
u @x1 v̄ � v̄ @x1u

⇤
dx for u, v 2 H

1(Q1) .

We collect some properties.

Lemma 3.8. Let u 2 M(↵) and v 2 M(�) for ↵, � 2 A and at least one of them is

evanescent.

(a) Then E(u, v) exists and

(22) E(u, v) = 2⇡ i

Z

x1=b

⇥
u @x1 v̄ � v̄ @x1u

⇤
ds for any b 2 R

where we write
R
x1=b

for the line integral
R
C
with C = {b}⇥ (0,1).
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(b) E(u, v) = 0 if ↵, � 2 A \ {�1/2} and ↵ 6= �.

Proof. Existence of the integrals follows because the product uv̄ is evanescent.
(a) First we note that the line integrals

R
x1=b

⇥
u @x1 v̄�v̄ @x1u

⇤
ds are independent of b which

follows from Green’s second theorem, applied in the region (b1, b2)⇥ (0, R) and letting R

tend to infinity.
We apply Green’s first theorem in Q

1 to the functions x1u(x) and v̄(x). With (� +
k
2
n)(x1u) = 2@x1u we obtain

Z

Q1

⇥
r(x1u) ·rv̄ � k

2
nx1u v̄ + 2v̄ @x1u

⇤
dx =

Z

x1=2⇡

@x1(x1u) v̄ ds ,

i.e. Z

Q1

x1

⇥
ru ·rv̄ � k

2
nu v̄

⇤
+
⇥
u @x1 v̄ + 2v̄ @x1u

⇤
dx =

Z

x1=2⇡

⇥
2⇡@x1u v̄ + u v̄

⇤
ds .

Now we interchang the roles of u and v̄ and take the di↵erence. This yields
Z

Q1

⇥
v̄ @x1u� u @x1 v̄

⇤
dx = 2⇡

Z

x1=2⇡

⇥
v̄ @x1u� u @x1 v̄

⇤
ds

which proves part (a).

(b) By (22) and the quasi-periodicity of u and v we obtain
Z

x1=0

⇥
v̄ @x1u� u @x1 v̄

⇤
ds =

Z

x1=2⇡

⇥
v̄ @x1u� u @x1 v̄

⇤
ds = e

i(↵��)2⇡

Z

x1=0

⇥
v̄ @x1u� u @x1 v̄

⇤
ds

which shows that the integrals vanish because e
i(↵��)2⇡

6= 1. ⇤
With this form E we contruct a basis of M(↵) for any ↵ 2 A. We will see below that the
following basis will follow naturally from the Limiting Absorption Principle as in, e.g.,
[13] or [14].

We make the following assumptions.

Assumption 3.9. Let k /2
1
2N and decompose k into k = ˜̀+  for some ˜̀ 2 Z�0 and

 2 (�1/2, 1/2) \ {0}. Then ± are the cut-o↵ values. We assume that  (and thus also

�) are critical values, i.e. ± 2 A.

The assumption that the cut-o↵ values are critical (as in Examples 3.3 and 3.4) decribes
the new situation in this paper. If the set of cut-o↵ values is disjoint from the set of critical
values we refer to [11] for a complete discussion. If k 2

1
2N then  = 0 or  = 1/2, and the

space Mevan() can have co-dimension 2. This situation requires a di↵erent discussion.

Assumption 3.10. For every ↵ 2 A and every v 2 Mevan(↵) with v 6= 0 let the linear

form E(·, v) be not trivial on Mevan(↵).

Let ↵ 2 A and let Mevan(↵) 6= {0}. With the hermetian sesqui-linear form E from
(21) we consider the self-adjoint eigenvalue problem to determine �` 2 R and non-trivial
�
`
2 Mevan(↵), ` = 1, . . . ,m := dimMevan(↵), with

(23) E(�`
, ) = �` k

2

Z

Q

q �
`
 ̄ dx for all  2 Mevan(↵) .
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The eigenfunctions �` are orthogonal with respect to the inner product hu, viq := k
2
hqu, viL2(Q).

We normalize the eigenfunctions such that h�`
,�

j
iq = �`,j. Note that the eigenfunctions

depend on the function q which appears in the definition of n" = n+ i"q.

In the case M(↵) 6= Mevan(↵) we extend this basis to a basis of M(↵).

Lemma 3.11. Let Assumptions 3.9 and 3.10 hold.

(a) Then E(�`
,�

`) = �` 6= 0 for all ` = 1, . . . ,m.

(b) Let ↵ 2 A and Mevan(↵) 6= {0} and �
`
, ` = 1, . . . ,m, be the eigenfunctions of

the eigenvalue problem (23). Then {�
` : ` = 1, . . . ,m} is an orthonormal (with

respect to hu, viq) basis of Mevan(↵).
(c) Let ↵ 2 A be a cut-o↵ value, i.e. ↵ = ±, such that M(±) 6= Mevan(±). Then

there exist a unique �̂
±
2 M(±) with E(�̂±

, ) = 0 for all  2 Mevan(±) and
�̂
±
has the form

(24) �̂
±(x) = e

±ikx1 + �̂
±
evan

(x) , x2 > h0 ,

and �̂
±
evan

is evanescent. We set �̂
±
evan

:= �̂
±

for x2 < h0. Therefore, if
�
�
`,± :

` = 1, . . . ,m
 
is a basis of Mevan(±) determined by part (b) then

�
�
`,± : ` =

1, . . . ,m
 
[ {�̂

±
} is a basis of M(±).

We note that �̂±
evan

is a ±k�quasi-periodic solution of the Helmholtz equation in Q
1
\{x :

x2 = h0} satisfying the transmission conditions [�̂±
evan

] = e
±ikx1 and [@x2�̂

±
evan

] = 0 for
x2 = h0.

Proof. (a) We assume that �` = 0 for some `. Then E(�`
, ) = �`k

2
R
Q
q �

`
 ̄ dx = 0 for

all  2 Mevan(↵), i.e. E(�`
, ·) is trivial on Mevan(↵), a contradiction to Assumption 3.10.

(b) This is obvious.

(c) Let ↵ =  and �̃ 2 M() be the function constructed in the proof of Lemma 3.5
normalized such that �̃˜̀(, h0) = 1. 1 We set

�̂
+ = �̃ �

mX

⌫=1

E(�̃,�⌫,+)

�⌫,+
�
⌫,+

,

where again {�
⌫,+ : ⌫ = 1, . . . ,m} is the basis of Mevan() constructed by the eigenvalue

problem (23). Then �̂
+ has the desired properties. Indeed, for any j = 1, . . . ,m we

compute

E(�̂+
,�

j,+) = E(�̃,�j,+) �

mX

⌫=1

E(�̃,�⌫,+)

�⌫,+
E(�⌫,+

,�
j,+) = 0 .

Furthermore, �̂+
˜̀ (, h0) = �̃˜̀(, h0) = 1 because �⌫,+

˜̀ (, h0) = 0 for all ⌫ = 1, . . . ,m.

Therefore, �̂+ has the form (24) ⇤

1
Recall that k = ˜̀+ . Note that �̃˜̀(, h0) = 1 implies �̃˜̀(, h) = 1 for all h � h0 by the remark

following Lemma 3.5.
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4. Finiteness of the Set of Critical Values And The Limiting Absorption

Principle

4.1. Statement of the Main Results. A first goal is to show that the set A of critical
values is finite.

Theorem 4.1. Let Assumptions 3.9 and 3.10 hold. Then there exist only finitely many

critical values in the interval [�1/2, 1/2]. They are symmetric with respect to 0, i.e. ↵ is

critical if, and only if, �↵ is critial. We number them by ↵̂j, j 2 J , where J ⇢ Z \ {0}
is a finite set which is symmetric with respect to 0. By Assumption 3.9 the cut-o↵ values

± are included in the set of critical values. Therefore, |J | � 2, and we denote these

particular critical values by ↵̂1 =  and ↵̂�1 = �.

The corresponding mode spaces M(↵̂j) are finite dimensional for every j 2 J . We set

mj := dimMevan(↵̂j).

We will prove this theorem in Subsection 4.5. For every j 2 J we determine the basis
{�

`,j : ` = 1, . . . ,mj} of Mevan(↵̂j) by the eigenvalue problem (23) and extend this basis
to a basis of M(↵̂j) if j = ±1 and Mevan(±) 6= M(±) by contructing �̂±

2 M(±) as
in Lemma 3.11.

We consider now the equation (7) for n" = n + i"q and " > 0. The second goal of this
paper is the proof of the following convergence property.

Theorem 4.2. Let Assumptions 3.9 and 3.10 hold. For any R0 > 2⇡+1 let ⇠
±
2 C

1(R)
be a pair of functions with ⇠

±(x1) = 1 for ±x1 � R0 and ⇠
±(x1) = 0 for ±x1  R0 � 1.

The solutions u" 2 H
1
⇤ (R2

+) of (1), (4) (which exist and are unique by Theorem 2.3)

converge to some function u0 which has the form u0 = u
prop

0 + u
rad

0 where

u
prop

0 (x) =
X

�2{+,�}

X

j2J

⇠
�(x1)

X

`:��`,j>0

2⇡i

|�`,j|
hf,�

`,j
iL2(Wh0 ) �

`,j(x) , x 2 R2
+ ,(25)

u
rad

0 (x) = ũ
rad(x) +

X

�2{+,�}

⇠
�(x1)

e
i⇡/4

p
2⇡k|x1|

hf, �̂
�
iL2(Wh0 )�̂

�(x) , x 2 R2
+ ,(26)

respectively, for some ũ
rad

2 H
1
⇤ (R2

+). If Mevan(±) = M(±) then u
rad

0 = ũ
rad

. Here,

�
`,j

are the evanescent modes corresponding to the critical values ↵̂j 2 (�1/2, 1/2], j 2 J ,

and �̂
±

are the non-evanescent modes of ↵̂±1 = ± if Mevan(±) 6= M(±). The

convergence is understood in H
1
�
(�R,R)⇥ (0, h)

�
for all R > 0 and h � h0.

Finally, the part ũ
rad(x) decays as O(1/|x1|) as x1 ! ±1 for every x2 > 0.

Before we prove these theorems we want to illustrate the previous result with two exam-
ples.

Example 4.3. We consider the simplest case of a homogeneous half space with Neumann

boundary conditions as in Example 3.3. Let f 2 L
2(W h0) have compact support. Then

the unique solution of the problem �u+ k
2
u = �f in R2

+, @x2u = 0 for x2 = 0, satisfying
the Sommerfeld radiation condition is given by

u(x) =
i

4

Z

Wh0

⇥
H

(1)
0 (k|x� y|) +H

(1)
0 (k|x� y

⇤
|)
⇤
f(y) dy , x 2 R2

+ ,
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where y
⇤ = (y1,�y2)>. From the asymptotics

i

4
H

(1)
0 (k|x� y|) =

e
i⇡/4

2
p
2⇡k

e
ik|x|
p

|x|
e
�ikx̂·y + O(|x|�3/2) as |x| ! 1

(where x̂ = x/|x|) we obtain

u(x) =
e
i⇡/4

2
p
2⇡k

e
ik|x|
p

|x|

Z

Wh0

⇥
e
�ikx̂·y + e

�ikx̂·y⇤⇤
f(y) dy + O(|x|�3/2) as |x| ! 1 .

Therefore, for fixed x2 and x1 ! +1 we obtain (since x̂ ⇡ (1, 0))

u(x) =
e
i⇡/4

p
2⇡k

e
ikx1

p
x1

Z

Wh0

e
�iky1 f(y) dy + O(|x1|

�3/2
.

This coincides with (26) because in this case no evanescent modes exist and �̂
±(x) =

e
±ikx1.

With respect to radiation conditions the following example illustrates a fundamental dif-
ference to source problems for inhomogeneous media with refractive indices n = n(x)
where n(x)� 1 has bounded support. While for these problems the limits as "! 0 of the
solutions corresponding to n + i"q (for some q = q(x) > 0 on the support of n � 1) are
independent of q in the case considered here the limit does depend on the choice of q.

Example 4.4. Let k > 0 and m 2 Z with m+ 1/2 > k. Set ! := m+ 1/2 and define �±
by

�±(x) = e
±i!x1 ·

⇢
cos

p
k2n� !2 e

�
p
!2�k2(x2�1)

, x2 > 1 ,
cos

�p
k2n� !2x2

�
, 0 < x2 < 1 ,

where the constant n > 0 is chosen such @x2�± is continuous at x2 = 1, i.e. n satisfies

(27)
p
!2 � k2 cos

p
k2n� !2 �

p
k2n� !2 sin

p
k2n� !2 = 0 .

Such a value of n exists. Indeed, set  (t) :=
p
!2 � k2 cos t� t sin t. Then  (0) > 0 and

 (⇡/2) < 0, i.e. there exists t̂ 2 (0, ⇡/2) with  (t̂) = 0. Then n = t̂
2+!

2

k2
solves (27).

We note further that �± are evanescent and ↵�quasi-periodic with ↵ = 1/2. Therefore,

M(1/2) = Mevan(1/2) = span{�+,��}. Furthermore, E(�+,�+) > 0 and E(��,��) < 0
and E(�+,��) = 0 because

R 2⇡

0 e
i2!x1dx1 = 0.

If q > 0 is a constant then also h�+,��iq = k
2
q
R
Q1 �+��dx = 0. Therefore, in this case

�
1 = �+/k�+kq and �

2 = ��/k��kq are the eigenfunctions of (23) with �` = E(�`
,�

`).
The solution u0 of the source problem (1) arizing from the limit "! 0 for n+ i"q has the

asymptotic form u0(x) ⇡ c�
1(x) as x1 ! 1 for some c 2 C.

If, however, q = q̃(x1) > 0 is not constant but 2⇡ periodic (and constant with respect to

x2) such that
R 2⇡

0 q̃(x1)ei2!x1dx1 6= 0 then �+,�� are not orthogonal anymore with respect

to h·, ·iq̃, and the eigenfunctions {�̃
1
, �̃

2
} and eigenvalues {�̃1, �̃2} of (23) are di↵erent

from {�
1
,�

2
} and {�1,�2}, respectively. A simple argument shows that �̃1 and �̃2 are of

di↵erent sign. Let, e.g., �̃1 > 0. Then �̃
1
has the form �̃

1 = a�
1 + b�

2
with a, b 6= 0.

Therefore, the solution ũ0 of the source problem (1) arizing from the limit " ! 0 for

n + i"q̃ has the asymptotic form ũ0(x) ⇡ c̃ �̃
1(x) = c̃[a�1 + b�

2] as x1 ! 1 for some

c̃ 2 C.
14



We conclude that u0 and ũ0 are both solutions of (1), and they are linearly independent.

Both arize from limiting absorption principles, and there is no preferable solution. In this

way there is no unique radiation condition but only a class of radiation conditions which

depend on the inner products h·, ·iq in (23).

We return to the proof of Theorems 4.1 and 4.2, fix any h � h0 and write equation (7) in
the form

(28) v(↵, ")�K(↵, ")v(↵, ") = r(↵)

for the transformed field v(↵, ") = e
�i↵x1u↵," 2 H

1
per(Q

h) where the operator K(↵, ") from
H

1
per

(Qh) into itself is now defined in the same way as K(↵) from (19), but depends now
on the two parameters ↵ and ". The right hand side r(↵) is given by

(29) hr(↵), i⇤ =

Z

Qh0

e
�i↵x1g↵(x) (x) dx ,  2 H

1
per(Q

h) ,

where g↵ is the Floquet-Bloch transform of the right hand side f of (1), i.e. g↵ =
(Ff)(·,↵). We note that K(↵, ") and r(↵) depend on h.

For the behavior of the solution as " ! 0 the smoothness of (↵, ") 7! K(↵, ") and
↵ 7! r(↵) is important. Since f has compact support we conclude that g↵ and thus also
r(↵) depends smoothly on ↵.

4.2. Smoothness of (↵, ") 7! K(↵, "). The operator K(↵, ") is certainly infinitely
often di↵erentiable with respect to " (it is even linear with respect to "). From Lemma 3.6
we know that K(↵, ") is also infinitely often di↵erentiable with respect to ↵ at ↵̂ if ↵̂ is
not a cut-o↵ value, i.e. |`+ ↵̂| 6= k for all `. Let now ↵̂ be a cut-o↵ value and `0 2 Z with
|`0 + ↵̂| = k. Recall that `0 = ±˜̀ if ↵̂ = ±. For ↵ in a neighborhood of ↵̂ we decompose
K(↵, ") into K(↵, ") = K̃(↵, ") + ⇢(↵)B with

hK̃(↵, ")u, vi⇤ :=

Z

Qh

[2i↵ @x1u v̄ � (↵2
� k

2
n") u v̄] dx

+ 2⇡
X

` 6=`0

u` v`

⇥
i

p
k2 � (`+ ↵)2 + |`|+ 1

⇤
+ 2⇡ u`0 v`0 (1 + |`0|) ,(30)

⇢(↵) := 2⇡i
p

k2 � (`0 + ↵)2 ,(31)

hBu, vi⇤ := u`0 v`0(32)

for u, v 2 H
1
per(Q

h) where we dropped the argument (↵, h) in the coe�cients. We note that

Bu = hu, bi⇤b where b 2 H
1
per(Q

h) is defined by hu, bi⇤ = u`0 = 1
2⇡

R 2⇡

0 u(x1, h)e�i`0x1dx1

for u 2 H
1
per(Q

h). Then K̃(↵, ") is infinitely often di↵erentiable in a neighborhood of
(↵̂, 0).

4.3. An Abstract Representation Theorem. In this section we consider (28) in an
abstract setting. Without loss of generality we assume that the critical value is ↵̂ = 0.

Setting and Assumptions: In the following theorem let H be a (complex) Hilbert
space, K(↵, ") : H ! H and r(↵) 2 H for (↵, ") 2 (��0, �0)⇥ [0, �0) ⇢ R⇥ R be families
of compact operators and elements, respectively. Set L(↵, ") = I �K(↵, ") and assume
that 1 is a semi-simple eigenvalue of K(0, 0); that is, N

�
L(0, 0)2

�
= N

�
L(0, 0)

�
where

15



N (L) = {x 2 H : Lx = 0} denotes the nullspace of an operator L. Furthermore, let
P : H ! N ⇢ H be the projection onto the finite dimensional space N := N

�
L(0, 0)

�

with respect to the direct decomposition H = N �R where R := R
�
L(0, 0)

�
. We assume

that this decomposition is orthogonal with orthogonal projection operator P : H ! N .
Let Q := I � P the projection onto R.
Furthermore, we assume that K(↵, ") : H ! H has the form K(↵, ") = K̃(↵, ") + ⇢(↵)B
where K̃(↵, ") depends smoothly, i.e. infinitely often di↵erentiably, on (↵, ") 2 (��0, �0)⇥
[0, �0) and ⇢ : (��0, �0) ! C is continuous with ⇢(0) = 0 such that ⇢(↵) 6= 0 for ↵ 6= 0 and
↵ 7! ⇢(↵)2 is smooth with d

d↵
[⇢(↵)2]|↵=0 6= 0. (Essentially, ⇢ is the square root function.)

Furthermore, B : H ! H is a one-dimensional operator, given by Bv = hv, bi b for v 2 H

and some b 2 H.
We denote the projections of the partial derivatives of L̃(↵, ") := I � K̃(↵, ") at (0, 0)
by M↵ := P@↵L̃(0, 0) and M" = iP@"L̃(0, 0). We assume that M↵|N and M"|N are
self-adjoint, and M" is positive (i.e. hM"u, ui > 0 for u 2 N , u 6= 0).

Let N0 be the orthogonal complement of Pb in N , i.e. N0 := {� 2 N : h�, P bi = 0} =
{� 2 N : h�, bi = 0}. (If Pb = 0 then N0 = N .) Let P0 : N ! N0 be the orthogonal
projection, given by P0v = v � hv, Pbi

Pb

kPbk2 = �hv, bi
Pb

kPbk2 , v 2 N . (The operator P0 is

the identity if Pb = 0.) Then P0P is the orthogonal projection from H onto N0.

Since also the operators P0M↵|N0 and P0M"|N0 are self-adjoint and P0M"|N0 is positive we
can consider the following self-adjoint eigenvalue problem in the finite dimensional space
N0: Determine �` 2 R and non-trivial �` 2 N0, ` = 1, . . . ,m, (where m = dimN0) with

(33) P0M↵�` = �`P0M"�` .

The eigenfunctions corresponding to di↵erent eigenvalues are orthogonal with respect to
hu, viM" := hu,M"vi. We normalize the eigenfunctions by h�j,�`iM" = �j,`.

If N 6= N0 we extend this basis to a basis in N by defining �̂ 2 N by

(34) �̂ :=
1

kPbk2


Pb �

mX

`=1

hM↵Pb,�`i

�`
�`

�
.

We note that �̂ 2 N is uniquely determined by h�̂, P bi = 1 and hP0M↵�̂,�`i = 0 for all
` = 1, . . . ,m.

We assume in addition that P0M↵|N0 : N0 ! N0 is one-to-one, i.e. �` = hM↵�`,�`i 6= 0
for all ` = 1, . . . ,m.

Under these assumptions the following auxiliary result holds.

Lemma 4.5. Let Aj(↵, ") be smooth and uniformly bounded for j = 1, 2. Set U
� :=

{(↵, ") 2 (��, �)⇥ [0, �) : (↵, ") 6= (0, 0)} and define D(↵, ") : N0 ! N0 by

D(↵, ") =
⇥
P0PL̃(↵, ")� P0PL̃(↵, ")

�
A1(↵, ") + ⇢(↵)A2(↵, ")

�
QL̃(↵, ")

⇤
N0

.

(a) Then D(↵, ") is invertible for (↵, ") 2 U
�
for su�ciently small � > 0 and

kD(↵, ")�1
k  c/

p
↵2 + "2.
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(b) For r 2 N0 the solution w = w(↵, ") 2 N0 of D(↵, ")w(↵, ") = r has a decomposi-

tion into w(↵, ") = w0(↵, ") + w1(↵, ") + ⇢(↵)w2(↵, ") where w0 is given by

w0(↵, ") =
mX

`=1

hr,�`i

�`↵� i"
�` ,

and wj(↵, ") are smooth in U
�
and wj(↵, ") = O(krk) for j = 1, 2 uniformly with

respect to (↵, ").
(c) If r = r(↵, ") 2 N0 is of the form r(↵, ") = r1(↵, ") + ⇢(↵) r2(↵, ") with smooth

rj(↵, ") = O(
p
↵2 + "2) then the solution w(↵, ") of D(↵, ")w(↵, ") = r(↵, ") has

a decomposition into w(↵, ") = w1(↵, ") + ⇢(↵)w2(↵, ") where wj(↵, ") are smooth

in U
�
and uniformly bounded.

Proof. (a), (b) Using the linearization of PL̃(↵, ") and PL̃(↵, ") = P [L̃(↵, ")� L̃(0, 0)] =
O(

p
↵2 + "2) and L̃(↵, ")|N0 = [L̃(↵, ")� L̃(0, 0)]|N0 = O(

p
↵2 + "2) we have

D(↵, ") = [↵P0M↵ � i"P0M"] � B1(↵, ") � ⇢(↵)B2(↵, ")

where Bj(↵, ") are smooth with Bj(↵, ") = O(↵2+"2). Set S(↵, ") = [↵P0M↵�i"P0M"]�1

which is given by

S(↵, ")r =
mX

`=1

hr,�`i

�`↵� i"
�` .

From this we observe that kS(↵, ")k ⇡ 1/
p
↵2 + "2. The equation D(↵, ")w(↵, ") = r is

therefore equivalent to
⇥
I � S(↵, ")B1(↵, ")� ⇢(↵)S(↵, ")B2(↵, ")

⇤
w(↵, ") = S(↵, ")r = w0(↵, ") .

Note that S(↵, ") and Bj(↵, ") are smooth in U
� and S(↵, ")Bj(↵, ") = O(

p
↵2 + "2).

The Neumann series argument yields w(↵, ") = S(↵, ")r + w1(↵, ") + ⇢(↵)w2(↵, ") where
wj(↵, ") are smooth with wj(↵, ") = O(krk).

(c) In this case we have w0(↵, ") =
P

m

`=1
hr1(↵,"),�ji

�`↵�i"
�` + ⇢(↵)

P
m

`=1
hr2(↵,"),�`i

�`↵�i"
�`, and the

sums are smooth in U
� and uniformly bounded. ⇤

Now we can formulate and prove the main functional analytic theorem.

Theorem 4.6. Let the assumptions at the beginning of this subsection hold. Set again

U
� := {(↵, ") 2 (��, �)⇥ [0, �) : (↵, ") 6= (0, 0)} for � > 0.

(a) Then the operators L(↵, ") are invertible for (↵, ") 2 U
�
for su�ciently small

� > 0.
(b) Let the right hand side r(↵) 2 H have the form r(↵) = r̃(↵) + ⌘(↵) ⇢(↵) b

where ⌘(↵) 2 C and r̃(↵) 2 H are smooth. Then the unique solution u(↵, ") =
L(↵, ")�1

r(↵) of u(↵, ")�K(↵, ")u(↵, ") = r(↵) for (↵, ") 2 U
�
has a decomposi-

tion in the form

(35) u(↵, ") =
mX

`=1

hr(0),�`i

�`↵� i"
�` + u1(↵, ") + s(↵, ") u2(↵, ")

17



where s(↵, ") and uj(↵, ") are continuous in U
�
and uj(↵, ") are uniformly bounded

for (↵, ") 2 U
�
, and s(↵, ") 2 C satisfies

(36) |s(↵, ")| 
c

|⇢(↵)|+ "
for all (↵, ") 2 U

�
.

Finally, u1(↵, 0) has the form u1(↵, 0) = u11(↵) + ⇢(↵)u12(↵) with smooth u1j(↵)
and

(37) lim
"!0

[s(↵, ") u2(↵, ")] = �
hr(0), �̂i

⇢(↵)
�̂ + u21(↵) + ⇢(↵) u22(↵) for ↵ 6= 0

where u2j(↵) are smooth in (��, �) and �̂ is given by (34).

If N = N0 then (35) holds with s(↵, ") = 0.

Proof. We use the splitting H = N � R where again N := N
�
L(0, 0)

�
and R :=

R
�
L(0, 0)

�
with corresponding projections P and Q := I � P , respectively. Then the

equation L(↵, ")u(↵, ") = r(↵) is equivalent to the set of equations

[PL̃(↵, ")� ⇢(↵)PB]uN (↵, ") + [PL̃(↵, ")� ⇢(↵)PB]uR(↵, ") = P r̃(↵) + ⌘(↵)⇢(↵)Pb ,

QL(↵, ")uN (↵, ") + QL(↵, ")uR(↵, ") = Qr(↵)

for u(↵, ") = u
N (↵, ") + u

R(↵, ") with
�
u
N (↵, "), uR(↵, ")

�
2 N ⇥R.

We consider first the case Pb 6= 0, i.e. N 6= N0, and remark on the (simpler) case Pb = 0
below.

We observe that P0PBv = hv, biP0Pb = 0 and hPBv, �̂i = hv, bihPb, �̂i = hv, bi because
hPb, �̂i = 1. Applying P0 to the first quation and multiplying the first equation by �̂

results in the equivalent system (note that hPz, �̂i = hz.�̂i for any z 2 H)

P0PL̃(↵, ")uN (↵, ") + P0PL̃(↵, ")uR(↵, ") = P0P r̃(↵) ,(38)

hL̃(uN (↵, ") + u
R(↵, ")), �̂i � ⇢(↵)huN (↵, ") + u

R(↵, "), bi = hr̃(↵), �̂i+ ⌘⇢(↵) ,(39)

QL(↵, ")uN (↵, ") + QL(↵, ")uR(↵, ") = Qr(↵) ,(40)

We make an ansatz for uN (↵, ") in the form u
N (↵, ") = w(↵, ")+u

N
0 (↵, ")+ s(↵, ")�̂ with

w(↵, ") :=
P

m

j=1
hr(0),�ji
�j↵�i"

�j and u
N
0 (↵, ") 2 N0 and s(↵, ") 2 C. Then (38), (40) is written

as

P0PL̃(uN
0 + w) + P0PL̃u

R + s P0PL̃�̂ = P0P r̃ ,(41)

QL(uN
0 + w) + QLu

R + sQL�̂ = Qr .(42)

It is easily seen that QL(0, 0)|R : R ! R is an isomorphism from R onto itself. There-
fore, also QL(↵, ")|R : R ! R are isomorphisms from R onto itself for (↵, ") 2 U � =

[��, �]⇥ [0, �] for su�ciently small � > 0. We set A(↵, ") :=
⇥
QL(↵, ")|R

⇤�1
: R ! R for

abbreviation and recall that QL(↵, ") = QL̃(↵, ") + ⇢(↵)QB. The Neuman series repre-
sentation of the inverse (and combining terms with even and odd powers of ⇢) yields the
form A(↵, ") = A1(↵, ") + ⇢(↵)A2(↵, ") where Aj are smooth and bounded uniformly for
(↵, ") 2 U �. Therefore, we can express uR as

u
R = (A1 + ⇢A2)Qr � s (A1 + ⇢A2)QL�̂� (A1 + ⇢A2)QLu

N
0 � (A1 + ⇢A2)QL̃w .
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Here we have used that Bw = hw, bib = hw, Pbib = 0 because w 2 N0.
The first term is (smooth and) bounded, and we write Qr = Qr̃+⌘⇢Qb. For the last term
we note that L̃(↵, ")w(↵, ") = [L̃(↵, ")�L̃(0, 0)]w(↵, "). Since kw(↵, ")k = O(1/

p
↵2 + "2)

we conclude that also the last term is smooth in U
� and bounded. Therefore, we can write

u
R in the form

(43) u
R = ũ

R
1 + ⇢ ũ

R
2 � s (A1 + ⇢A2)QL�̂� (A1 + ⇢A2)QLu

N
0

where ũ
R
j

are smooth in U
� and uniformly bounded. We substitute this into (41) and

arrive at

[P0PL̃� P0PL̃(A1 + ⇢A2)QL]uN
0(44)

= P0P r̃ � P0PL̃w � P0PL̃(ũR
1 + ⇢ ũ

R
2 ) + s P0PL̃(A1 + ⇢A2)QL�̂� s P0PL̃�̂

= P0P r̃ � P0PL̃w � P0PL̃(ũR
1 + ⇢ ũ

R
2 )� s [P0PL̃� P0PL̃(A1 + ⇢A2)QL]�̂ .

We define u
N
1 , u

N
2 2 N0 as the solutions of

�
P0PL̃� P0PL̃(A1 + ⇢A2)QL

�
u
N
1 = P0P r̃ � P0PL̃w � P0PL̃(ũR

1 + ⇢ ũ
R
2 ) ,(45)

�
P0PL̃� P0PL̃(A1 + ⇢A2)QL

�
u
N
2 = �

�
P0PL̃� P0PL̃(A1 + ⇢A2)QL

�
�̂ .(46)

Then u
N
0 = u

N
1 + su

N
2 . On the left hand sides of (45) and (46) we can replace QL by QL̃

because QBu
N
j

= hu
N
j
, biQb = hu

N
j
, P biQb = 0. The first two terms on the right hand

side of (45) are written as

P0P r̃ � P0PL̃w = [P0P r̃(↵)� P0P r̃(0)] + [↵P0M↵ � i"P0M" � P0PL̃(↵, ")]w(↵, ")

where we used the definition of w as the solution of [↵P0M↵� i"P0M"]w = P0Pr(0). This
expression is smooth in U

� and of order O(
p
↵2 + "2). Since P0PL̃(↵, ") = P0P [L̃(↵, ")�

L̃(0, 0)] also the remaining terms are of order O(
p
↵2 + "2), and we have a representation

of the right hand sides of (45) and (46) as r1(↵, ")+⇢(↵)r2(↵, ") and r3(↵, ")+⇢(↵)r4(↵, "),
respectively, where rj(↵, ") are smooth in U

� and of order O(
p
↵2 + "2).

Application of Lemma 4.5 yields a representation of uN
j
(↵, ") in the form

(47) u
N
j
(↵, ") = u

N
j1(↵, ") + ⇢(↵) uN

j2(↵, ")

for j = 1, 2 where u
N
ij
(↵, ") 2 N0 are smooth in U

� and uniformly bounded. Now we
substitute u

N
0 = u

N
1 + s u

N
2 into (43) and arrive at uR = u

R
1 + s u

R
2 where

(48) u
R
j
(↵, ") = u

R
j1(↵, ") + ⇢(↵) uR

j2(↵, ")

and u
R
j`
(↵, ") 2 R are smooth in U

� and uniformly bounded. Using L�̂ = L̃�̂+ ⇢h�̂, bib =

L̃�̂+ ⇢b and Lu
N
2j = L̃u

N
2j + ⇢hu

N
2j, bib = L̃u

N
2j and sorting terms we note that uR

21(↵, ") has
the form

u
R
21(↵, ") = �

⇥
A1QL̃�̂+ A1QL̃u

N
21 + ⇢

2
A2Qb+ ⇢

2
A2QL̃u

N
22

⇤

= ⇢(↵)2uR
3 (↵, ") + u

R
4 (↵, ")

(49)

where u
R
3 (↵, ") is bounded and u

R
4 (↵, ") = O(

p
↵2 + "2).

The scalar quantity s = s(↵, ") has to be determined from (39). We substitute u
N =

w + u
N
1 + s(uN

2 + �̂) and u
R = u

R
1 + su

R
2 into (39) and collect the terms with the factor
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s. This yields s(↵, ") = snum(↵, ")/sden(↵, ") where

sden = hL̃(uN
2 + �̂), �̂i+ hL̃u

R
2 , �̂i � ⇢� ⇢hu

R
2 , bi ,(50)

snum = hr̃, �̂i+ ⌘⇢� hL̃(uN
1 + w), �̂i � hL̃u

R
1 , �̂i+ ⇢hu

R
1 , bi .(51)

Here we used hu
N
j
, bi = hw, bi = 0 and h�̂, bi = 1. Multiplication of (46) by u

N
2 2 N0

yields (with hP0Pz, u
N
2 i = hz, u

N
2 i for all z 2 H)

⌦
L̃(uN

2 + �̂), uN
2

↵
=

⌦
L̃(A1 + ⇢A2)QL(uN

2 + �̂), uN
2

↵

=
⌦
L̃(A1 + ⇢A2)QL̃(uN

2 + �̂), uN
2

↵
+ ⇢

⌦
L̃(A1 + ⇢A2)Qb, u

N
2

↵
.

Addition of this equation to (50) yields

sden = hL̃(uN
2 + �̂), uN

2 + �̂i + hL̃u
R
2 , �̂i � ⇢ � ⇢hu

R
2 , bi

�
⌦
L̃(A1 + ⇢A2)QL̃(uN

2 + �̂), uN
2

↵
� ⇢

⌦
L̃(A1 + ⇢A2)Qb, u

N
2

↵
.

(52)

We determine the behavior at (↵, ") = (0, 0) for the terms appearing in this expression of
sden.
First we note that PL̃(↵, ") = O(

p
↵2 + "2) and L̃(↵, ")|N = O(

p
↵2 + "2). This yields

already
⌦
PL̃(A1 + ⇢A2)QL̃(uN

2 + �̂), uN
2

↵
= O(↵2 + "

2). The first term in (52) behaves as

hPL̃(uN
2 + �̂), uN

2 + �̂i = ↵hM↵(u
N
2 + �̂), uN

2 + �̂i

� i"hM"(u
N
2 + �̂), uN

2 + �̂i + O(↵2 + "
2) .

Then we recall uR
2 = u

R
21 + ⇢u

R
22 = ⇢(⇢uR

3 + u
R
22) + u

R
4 with bounded ⇢u

R
3 + u

R
22 and

u
R
4 = O(

p
↵2 + "2). Therefore, hL̃uR

2 , �̂i = hPL̃u
R
2 , �̂i = O(↵2 + "

2) + ⇢(↵)O(
p
↵2 + "2)

and ⇢hu
R
2 , bi = O(⇢(↵)2) + ⇢(↵)O(

p
↵2 + "2). Finally, the last term in (52) behaves as

hPL̃(A1 + ⇢A2)�̂, uN
2

↵
= O(

p
↵2 + "2). Summarizing, sden has the form

sden(↵, ") = ↵hM↵(u
N
2 + �̂), uN

2 + �̂i � i"hM"(u
N
2 + �̂), uN

2 + �̂i

+ a1(↵, ") � ⇢(↵)
⇥
1 + a2(↵, ") + ⇢(↵)a3(↵, ")

⇤(53)

with a1(↵, ") = O(↵2 + "
2) and a2(↵, ") = O(

p
↵2 + "2) and a3(↵, ") is continuous in Q

�

and bounded. We show the existence of � > 0 and c > 0 such that

(54) |sden(↵, ")| � c
�
|⇢(↵)|+ "

�
for all (↵, ") 2 U

�
.

If this claim does not hold there exist sequences ↵j ! 0 and "j ! 0 and cj ! 0 such that
sden(↵j, "j) = cj (|⇢(↵j)|+ "j), i.e.

↵jhM↵(u
N
2 (j) + �̂), uN

2 (j) + �̂i � "j

⇥
cj + ihM"(u

N
2 (j) + �̂), uN

2 (j) + �̂i
⇤

(55)

+ a1(↵j, "j) � ⇢(↵j)


1 + a2(↵j, "j) + ⇢(↵j)a3(↵j, "j) + cj

|⇢(↵j)|

⇢(↵j)

�
= 0

where uN
2 (j) := u

N
2 (↵j, "j). We set ↵̂j = ↵j/

q
↵
2
j
+ "

2
j
and "̂j = "j/

q
↵
2
j
+ "

2
j
. Then ↵̂2

j
+

"̂
2
j
= 1 and there exist convergent subsequences ↵̂j ! ↵̂ and "̂j ! "̂ and u

N
2 (j) ! û

N
2 in H

for some ûN
2 2 N0. (Note that N0 is finite dimensional.) Then hM↵(uN

2 (j)+ �̂), uN
2 (j)+ �̂i

and hM"(uN
2 (j)+�̂), uN

2 (j)+�̂i converge to hM↵(ûN
2 +�̂), ûN

2 +�̂i and hM"(ûN
2 +�̂), ûN

2 +�̂i,
respectively, which are real.
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Division of (55) by
q
↵
2
j
+ "

2
j
and letting j ! 1 shows convergence ⇢(↵j)/

q
↵
2
j
+ "

2
j
to

some ⇢̂ with Im ⇢̂ � 0 and

↵̂hM↵(û
N
2 + �̂), ûN

2 + �̂i � i"̂hM"(û
N
2 + �̂), ûN

2 + �̂i = ⇢̂ .

SinceM" is positive and û
N
2 +�̂ 6= 0 and Im ⇢̂ � 0 we conclude that "̂ = 0, i.e. "jp

↵
2
j+"

2
j

! 0.

This implies "j

↵j
! 0 and thus also "j/⇢(↵j) ! 0. Division of (55) by ⇢(↵j) and using

↵j/⇢(↵j) ! 0 and "j/⇢(↵j) ! 0 and a1(↵j, "j)/⇢(↵j) ! 0 yields [1 + · · · ] ! 0, a
contradiction. This proves (54).

Therefore, s = s(↵, ") is well defined. Since the numerator snum is uniformly bounded we
have an estimate of s(↵, ") of the form (36).

We recall the representation

u(↵, ") = u
N (↵, ") + u

R(↵, ")

= w(↵, ") + u
N
1 (↵, ") + u

R
1 (↵, ") + s(↵, ")

⇥
u
N
2 (↵, ") + �̂+ u

R
2 (↵, ")

⇤

= w(↵, ") + u
N
11(↵, ") + u

R
11(↵, ") + ⇢(↵)[uN

12(↵, ") + u
R
12(↵, ")]

+ s(↵, ")uR
21(↵, ") + s(↵, ")⇢(↵)

⇥
u
N
22(↵, ") + u

R
22(↵, ")

⇤
(56)

+ s(↵, ")
⇥
�̂+ u

N
21(↵, ")

⇤
.

The term with s(↵, ")⇢(↵) is certainly bounded. Furthermore, we recall that uR
21(↵, ") =

⇢(↵)2uR
3 (↵, ") + u

R
4 (↵, ") with bounded u

R
3 (↵, ") and u

R
4 (↵, ") = O(

p
↵2 + "2). Therefore,

also s(↵, ")uR
21(↵, ") is bounded. Therefore, u(↵, ") has a representation in the form (35)

with u2(↵, ") = �̂+ u
N
21(↵, ").

Finally, we consider the limit " ! 0. We note that w(↵, 0) = 1
↵

P
m

`=1
hr(0),�`i

�`
�`. From

the discussion of the pair (45), (46) we note that the functions rj(↵, 0) appearing on their
right hand sides are now smooth in (��, �) with rj(0, 0) = 0. This implies that all of the
functions uN

ij
(↵, 0) and u

R
ij
(↵, 0) and u

R
3 (↵, 0) and u

R
4 (↵, 0) from (47), (48), and (49) are

smooth in (��, �). We go back to the definitions (50) and (51) of sden and snum, respec-
tively. With u

R
2 = ⇢(⇢uR

3 +u
R
22)+u

R
4 we conclude that sden(↵, 0) has the form sden(↵, 0) =

�⇢(↵) + z2(↵) + ⇢(↵)z3(↵) with smooth functions z2, z3 which satify zj(0) = 0. Analo-
gously, since hL̃(↵, 0)uR

1 (↵, 0), �̂i = hPL̃(↵, 0)uR
11(↵, 0), �̂i+ ⇢(↵)hPL̃(↵, 0)uR

12(↵, 0), �̂i we
conclude that snum(↵, 0) = hr̃(↵), �̂i+⇢(↵)z0(↵)+z1(↵) with smooth functions z0, z1 and
z1(0) = 0. Therefore,

s(↵, 0) =
hr̃(↵), �̂i+ ⇢(↵)z0(↵) + z1(↵)

�⇢(↵) + z2(↵) + ⇢(↵)z3(↵)
= �

hr̃(0), �̂i

⇢(↵)
+ s1(↵) + ⇢(↵) s2(↵)

with smooth sj(↵). Therefore,

s(↵, 0) u2(↵, 0) =


�
hr̃(0), �̂i

⇢(↵)
+ s1(↵) + ⇢(↵) s2(↵)

�⇥
�̂+ u

N
21(↵, 0)

⇤
.

21



Next we recall that uN
2 = u

N
21 + ⇢u

N
22 solves (46). For " = 0 we devide (46) by ↵ and let

↵ tend to zero. This gives the equation P0M↵u
N
2 (0, 0) = �P0M↵�̂ and thus

u
N
21(0, 0) = u

N
2 (0, 0) = �

mX

j=1

hP0M↵�̂,�ji

�j
�j = �

mX

j=1

hM↵�̂,�ji

�j
�j = 0 .

Collecting the terms with ⇢(↵) yields the representation (37). The form of u1(↵, 0) is
obtained from (56) when we use s(↵, 0)⇢(↵) = �hr̃(0), �̂i + s1(↵) ⇢(↵) + ⇢(↵)2 s2(↵).
The proof is finished for the case Pb 6= 0.

Let now Pb = 0. Then all the arguments of this previous proof are valid if one replaces
Pb and s(↵, ") by 0. ⇤

4.4. Checking the Assumptions of Theorem 4.6. Let ↵̂ be a critical value, i.e.
↵̂ 2 A, and h � h0. We check the assumptions of Theorem 4.6 for both cases, i.e. ↵̂ is not
a cut-o↵ value or ↵̂ is a cut-o↵ value, i.e. ↵̂ = ± if we decompose k again as k = ˜̀+ 

with ˜̀2 Z�0 and  2 (�1/2, 1/2]. By Assumption 3.9 we assume  2 (�1/2, 1/2),  6= 0,
and ± 2 A. Of course, the critical value ↵̂ has to be moved to ↵̂ = 0 when we apply
Theorem 4.6.
Case 1: ↵̂ 2 A is not a cut-o↵ value. Then M(↵̂) = Mevan(↵̂), and L(↵, ") is smooth
with respect to both variables. In this case Theorem 4.6 has to be applied with b = 0,
thus also N0 = N = N

�
L(↵̂, 0)

�
. To clarify the connection between M(↵̂) = Mevan(↵̂)

and the null space N of L(↵̂, 0) we define the operator J↵̂ : M(↵̂) ! H
1
per(Q

h) by

(J↵̂�)(x) := e
�i↵̂x1�(x) , x 2 Q

h
, � 2 M(↵̂) .

Then J↵̂ maps M(↵̂) onto N = N (L(↵̂, 0)) as seen above from the construction of
L(↵, "). To connect the basis of M(↵̂), contructed in Lemma 3.11, with the basis of
N := N

�
L(↵̂, 0)

�
, determined by the eigenfunctions �` of (33), we need the following

result. It contains the case of ↵̂ being a cut-o↵ value (needed for Case 2).

Lemma 4.7. (a) Let ↵̂ 2 A not be a cut-o↵ value. For w,� 2 Mevan(↵̂) we have

(57)

⌧
@

@↵
L(↵̂, 0)J↵̂w, J↵̂�

�

⇤
= �2i

Z

Q1

�̄ @x1w dx = E(w,�) .

Note that in this case M(↵̂) and Mevan(↵̂) coincide.
(b) If ↵̂ = ± is a cut-o↵ value then (57) holds for L̃(±, 0) replacing L(↵̂, 0). Fur-

thermore, if �̂
±
2 M(±) is the unique element from part (c) of Lemma 3.11 which

is orthogonal to Mevan(±) (with respect to E) then
⌦

@

@↵
L̃(±, 0)J±�̂

±
, J±�

↵
⇤ =

0 for all � 2 Mevan(±).
(c) For v, 2 H

1
per(Q

h). we have

(58)
@

@"

⌦
L̃(↵̂, 0)v, 

↵
⇤ =

@

@"

⌦
L(↵̂, 0)v, 

↵
⇤ = �k

2
i

Z

Qh0

q v  ̄ dx
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Proof. (a) Since � and w are evanescent we have �` = w` = 0 for |` + ↵̂|  k. With
v := J↵̂w and  := J↵̂� we have

hL(↵, ")v, i⇤ =

Z

Qh

⇥
rv ·r � 2i↵

@v

@x1
 + (↵2

� k
2
n") v  

⇤
dx

+ 2⇡
X

|`+↵̂|>k

w` �`

p
(`+ ↵)2 � k2

for ↵ close to ↵̂ (such that also |`+ ↵| > k). Therefore,

@

@↵

⌦
L(↵̂, 0)v, 

↵
⇤ = �2i

Z

Qh

⇥
@x1v + i↵̂v

⇤
 dx+ 2⇡

X

|`+↵̂|>k

w` �`

`+ ↵̂p
(`+ ↵̂)2 � k2

= �2i

Z

Qh

�̄ @x1w dx + 2⇡
X

|`+↵̂|>k

w` �`

`+ ↵̂p
(`+ ↵̂)2 � k2

.

Since w has the representation

w(x) =
X

|`+↵̂|>k

w` e
i(`+↵̂)x1e

�
p

(`+↵̂)2�k2(x2�h)

and analogously for � we compute

�2i

Z

Q1\Qh

�̄ @x1w dx = 4⇡
X

|`+↵̂|>k

w` �` (`+ ↵̂)

Z 1

h

e
�2
p

(`+↵̂)2�k2(x2�h)
dx2

= 2⇡
X

|`+↵̂|>k

w` �`

`+ ↵̂p
(`+ ↵̂)2 � k2

which shows the first identity in (57). The second is shown by partial integration with
respect to x1 (note that x1 7! w(x)�̄(x) is 2⇡�periodic).

(b) The proof follows exactly the same lines because @

@↵

⌦
(I � K̃(↵̂))J↵̂w, J↵̂�

↵
⇤ has the

same form as @

@↵

⌦
(I �K(↵̂))J↵̂w, J↵̂�

↵
⇤ whenever w`0 �`0 vanishes.

(c) This part is obvious. ⇤
We continue with Case 1 and note that (v, ) 7! i

@

@"

⌦
L(↵̂, 0))v, 

↵
⇤ is hermetian and

positive on N := N
�
L(↵̂, 0)

�
. Indeed, i @

@"

⌦
L(↵̂, 0)v, v

↵
⇤ = 0 implies that v vanishes on

the support of q. Since v 2 N
�
L(↵̂, 0)

�
is of the form v(x) = e

�i↵̂x1�(x) with some �
satisfying the equation �� + k

2
n� = 0 the unique continuation principle implies v = 0

everywhere.

Therefore, this lemma implies that the eigenvalue problem (23) is equivalent to

(59)
@

@↵

⌦
L(↵̂, 0)�`, 

↵
⇤ = �` i

@

@"

⌦
L(↵̂, 0)�`, 

↵
⇤ for all  2 N

for �` = J↵̂�
` = e

�i↵̂x1�
`
|Qh 2 N which coincides with (33) in the case b = 0.

Assumption 3.10 and Lemma 3.8 implies that M↵ = P
@

@↵
L(↵̂, 0)|N is onto to one.

Therefore, in this Case 1 all of the assumptions of Theorem 4.6 are satisfied.
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Case 2: ↵̂ 2 A is a cut-o↵ value, i.e. ↵̂ = ±. By (30) the operator L(↵, ") has a decom-
position into L(↵, ") = L̃(↵, ") + ⇢

±(↵) b± in a neighborhood of ± where b
±
2 H

1
per(Q

h)
had been defined by h , b

±
i⇤ =  ±˜̀(±, h), see the definition of B in (32), and ⇢(↵) =

2⇡i
q
k2 � (±˜̀+ ↵)2, see (31). We note that ⇢2 is smooth with d

d↵
[⇢(±)2] = ±8⇡2

k 6= 0.

The subspaces Mevan(±) are either equal to M(±) or are subspaces of co-dimension
one. Therefore, the subspace N0 of N := N (L(±, 0)), defined as in Theorem 4.6 by
N0 := {u 2 N : hu, Pb

±
i = 0}, is exactly the image J±Mevan(±) = {J±u : u 2

Mevan(±)} of Mevan(±), i.e. N0 = J±Mevan(±).
The eigenvalue problem (23) for the construction of a basis of Mevan(±) is again equiv-
alent to the eigenvalue problem (59) in N0, i.e. for �` = J±�

` and  2 N0.
Furthermore, part (b) of Lemma 4.7 implies also that the restrictions J±�̂

±
2 N of

�̂
±

2 M(±) from Lemma 3.11 satisfy hM↵J±�̂
±
, J±�i = 0 for all � 2 Mevan(±).

Since also hJ±�̂
±
, b

±
i⇤ = �̂

±
±˜̀(±, h) = 1 we conclude that J±�̂

±
2 N is exactly the

function �̂ 2 N from the abstract theorem.

Therefore, also in this Case 2 the assumptions of Theorem 4.6 are satisfied.

4.5. Proof of Theorem 4.1. Let ↵̂ 2 [�1/2, 1/2] be fixed. Two cases can occur.

Case 1: ↵̂ /2 A, i.e. ↵̂ is not a critical value. Then L(↵̂, 0) is an isomorphism from
H

1
per(Q

h) onto itself. Since L(↵, ") depends continuously on (↵, ") the operators L(↵, ")
are isomorphisms for all (↵, ") in a neighborhood of (↵̂, 0). Furthermore, since r(↵)
depends continuously on ↵, also (↵, ") 7! L(↵, ")�1

r(↵) is continuous.

Case 2: ↵̂ 2 A, i.e. ↵̂ is a critical value. Application of part (a) of Theorem 4.6 yields
that L(↵, ") = I �K(↵, ") is invertible for (↵, ") 6= (↵̂, 0) in a neighborhood of (↵̂, 0).

Therefore, for every ↵̂ 2 [�1/2.1/2] there exists a neighborhood U of ↵̂ which contains at
most one critical value. Since [�1/2, 1/2] is compact finitely many set U su�ce to cover
[�1/2, 1/2], and the proof of Theorem 4.1 is complete.

As a next step towards the proof of Theorem 4.2 we apply part (b) of Theorem 4.6 to
(28).

4.6. Local Representation of the Solution in Qh. Since r(↵) is smooth the assump-
tions on r(↵) are trivially satisfied.

We define the punctured neighborhood U
�

j
=
�
(↵, ") 2 (↵̂j � �, ↵̂j + �) ⇥ [0, �) : (↵, ") 6=

(↵̂j, 0)
 
of (↵̂j, 0).

We fix j 2 J and consider first the case j = ±1, i.e. ↵̂j = ±. We recall that

⇢
±(↵) = 2⇡i

q
k2 � (±˜̀+ ↵)2 = 2⇡i

p
⌥ ↵

p
2˜̀+ ± ↵

which has a square root singularity at ±. Application of part (b) of Theorem 4.6 provides
a representation of the solution v(↵, ") of (28) as

v(↵, ") =
m±1X

`=1

hr(±), e⌥ix1�
`,±1

i⇤

�`,±1(↵⌥ )� i"
e
⌥ix1�

`,±1 + v
±1
1 (↵, ") + s

±(↵, ") v±2 (↵, ")

=
m±1X

`=1

hg±,�
`,±1

iL2(Qh0 )

�`,±1(↵⌥ )� i"
e
⌥ix1�

`,±1 + v
±1
1 (↵, ") + s

±(↵, ") v±2 (↵, ")

24



for (↵, ") 2 U
�

±1 where we used the definition (29) of r(↵). We wrote �`,±1 for �`,±1
|Qh for

simplicity. The parts v±1
1 (↵, ") and v

±
2 (↵, ") are uniformly bounded for (↵, ") 2 U

�

±1, and
s
±(↵, ") 2 C satisfies

(60) |s
±(↵, ")| 

c

|⇢±(↵)|+ "
for all (↵, ") 2 U

�

±1 .

Finally, v±1
1 (↵, 0) has the form v

±1
1 (↵, 0) = v

±1
11 (↵) + ⇢

±(↵)v±1
12 (↵) and

lim
"!0

[s±(↵, ") v±2 (↵, ")] = �
hr(±), e⌥ix1�̂

±
i⇤

⇢±(↵)
e
⌥ix1�̂

± + v
±1
21 (↵) + ⇢

±(↵)v±1
22 (↵)

= �
hg±(±), �̂±

iL2(Qh0 )

⇢±(↵)
e
⌥ix1�̂

± + v
±1
21 (↵) + ⇢

±(↵)v±1
22 (↵)

for 0 < |↵| < � where v
±1
ij
(↵) 2 H

1
per(Q

h) depend smoothly on ↵. We note that
hg↵̂j ,�

`,j
iL2(Qh0 ) = hf,�

`,j
iL2(Wh0 ) by the definition of the Floquet-Bloch transform g↵

of f . Transformation to the ↵�quasi-periodic solution u↵," 2 H
1
↵
(Qh) of (7) (where we

indicated the dependence on ") yields the representation

(61) u↵," =
m±1X

`=1

hf,�
`,±1

iL2(Wh0 )

�`,±1(↵⌥ )� i"
e
i(↵⌥)x1�

`,±1 + u
±1
1 (↵, ") + s

±(↵, ") u±1
2 (↵, ")

for (↵, ") 2 U
�

±1 where u
±1
j
(↵, ") = e

i↵x1v
±1
j
(↵, ") are uniformly bounded and

(62) lim
"!0

[s±(↵, ") u±
2 (↵, ")] = �

hf, �̂
±
iL2(Wh0 )

⇢±(↵)
e
i(↵⌥)x1�̂

± + u
±1
21 (↵) + ⇢

±(↵)u±1
22 (↵)

for all 0 < |↵| < �. The convergence in understood in H
1(Qh). Since the functions

are quasi-periodic the convergence holds even in H
1(QR,h) for all R > 0 where Q

R,h :=
(�R,R)⇥ (0, h).

For j 2 J with |j| � 2 the same representation as in (61) holds without the last term, i.e.

u↵," =

mjX

`=1

hf,�
`,j
iL2(Wh0 )

�`,j(↵� ↵̂j)� i"
e
i(↵�↵̂j)x1�

`,j + u
j

1(↵, ")

in U
�

j
where u

j

1(↵, ") 2 H
1
↵
(Qh) are uniformly bounded. Furthermore, uj

i
(↵, 0) have the

forms uj

i
(↵, 0) = u

j

i1(↵) + ⇢(↵)uj

i2(↵) with smooth u
j

ik
(↵).

We now set U �

0 := (�1/2 � �, 1/2 + �) \ {↵̂j : j 2 J} and choose functions ⌘j 2 C
1(R),

j 2 J [ {0}, with supp ⌘j ⇢ U
�

j
and

P
j
⌘j(↵) = 1 for all ↵ 2 [�1/2, 1/2] (partition of

unity). Therefore,

u↵," = ⌘0(↵) u↵," +
X

j2J

⌘j(↵) u↵,"

= ⌘0(↵) u↵," +
X

j2J

⌘j(↵)

mjX

`=1

hf,�
`,j
iL2(Wh0 )

�`,j(↵� ↵̂j)� i"
e
i(↵�↵̂j)x1�

`,j

+
X

j2J

⌘j(↵)
⇥
u
j

1(↵, ") + �|j|,1 s
sign j(↵, ") uj

2(↵, ")
⇤
, (↵, ") 2 [�1/2, 1/2]⇥ (0, �) .
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4.7. Proof of Theorem 4.2. Recall that u" is the inverse Floquet-Bloch transform of
↵ 7! u↵,", i.e.

u" =

1/2Z

�1/2

u↵," d↵ =
X

j2J

mjX

`=1

hf,�
`,j
iL2(Wh0 )

1/2Z

�1/2

⌘j(↵)

�`,j(↵� ↵̂j)� i"
e
i(↵�↵̂j)x1d↵�

`,j

+
X

j2J

1/2Z

�1/2

⌘j(↵)
⇥
u
j

1(↵, ") + �|j|,1 s
sign j(↵, ") uj

2(↵, ")
⇤
d↵ +

1/2Z

�1/2

⌘0(↵) u↵," d↵

(63)

in W
h where u

j

1(↵, ") and u
j

2(↵, ") are uniformly bounded in H
1(Qh). We now consider

the limit as " tend to zero. The first integral had been is investigated already in several
papers, we repeat the arguments for the convenience of the reader. First we write

1/2Z

�1/2

⌘j(↵)

�`,j(↵� ↵̂j)� i"
e
i(↵�↵̂j)x1 d↵ =

�Z

��

⌘j(↵ + ↵̂j)� 1

�`,j↵� i"
e
i↵x1 d↵ +

�Z

��

e
i↵x1

�`,j↵� i"
d↵

and note that the first integral converges to 1
�`,j

R
�

��

⌘j(↵+↵̂j)�1
↵

e
i↵x1 d↵ (uniformly with

respect to x1) which represents a H
1
�function because ⌘j(↵+↵̂j)�1

↵
= ⌘j(↵+↵̂j)�⌘j(↵̂j)

↵
is

smooth). Partial integration shows that this part decays as 1/|x1| as x1 ! ±1. In the
appendix we show that

(64) lim
"!0

�Z

�

1

�`,j↵� i"
e
i↵x1 d↵ =

2⇡i

|�`,j|
 

�(x1)

uniformly with respect to |x1|  R for every R > 0 where � = sign�`,j and

(65)  
±(x1) =

1

2
±

1

⇡

Z
�x1

0

sin t

t
dt , x1 2 R .

For the remaining integrals in (63) we use Lebesgue’s theorem on dominated conver-
gence. Indeed, k⌘j(↵)u

j

1(↵, ")kH1(Qh)  c and k⌘0(↵)u↵,"kH1(Qh)  c (because ⌘0 vanishes
in neighborhoods of ↵̂j) and k⌘±1(↵)s±(↵, ")u

±1
2 (↵, ")kH1(QR,h)  c(R)/|⇢±(↵)| for every

R > 0 where again Q
R,h = (�R,R) ⇥ (0, h). This term is intergrable with respect to

↵. Furthermore, we have pointwise convergence for almost all ↵. Therefore, we conclude
that

R 1/2

�1/2 ⌘j(↵) u
j

1(↵, ") d↵ and
R 1/2

�1/2 ⌘0(↵) u↵," d↵ converge to
R 1/2

�1/2 ⌘j(↵) u
j

1(↵, 0) d↵ and
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R 1/2

�1/2 ⌘0(↵) u↵,0 d↵, respectively, in H
1(W h), and

R 1/2

�1/2 ⌘±1(↵) s±(↵, ") u
±1
2 (↵, ") d↵ con-

verges to
R 1/2

�1/2 ⌘±1(↵) s±(↵, 0) u
±1
2 (↵, 0) d↵ in H

1(QR,h) for all R > 0. We write again

1/2Z

�1/2

⌘±1(↵) s
±(↵, 0) u±1

2 (↵, 0) d↵ = �hf, �̂
±
iL2(Wh0 )

1/2Z

�1/2

⌘±1(↵)

⇢±(↵)
e
i(↵⌥)x1 d↵ �̂

±

+

1/2Z

�1/2

⌘±1(↵)
⇥
u
±1
21 (↵) + ⇢

±(↵)u±1
22 (↵)

⇤
d↵

= hf, �̂
±
iL2(Wh0 ) '

±(x1) �̂
±

� hf, �̂
±
iL2(Wh0 )

±+�Z

±��

⌘±1(↵)� 1

⇢±(↵)
e
i(↵⌥)x1 d↵ �̂

±

+

1/2Z

�1/2

⌘±1(↵)
⇥
u
±1
21 (↵) + ⇢

±(↵)u±1
22 (↵)

⇤
d↵

(66)

with

(67) '
±(x1) = �

±+�Z

±��

1

⇢±(↵)
e
i(↵⌥)x1 d↵ , x1 2 R .

The second and third term on the right hand side of (66) represent functions in H
1(W h)

because the integrands are bounded. They decay as O(1/|x1|) which is seen as follows.
First we note that ⌘±1(↵)�1

⇢±(↵) = ⌘±1(↵)�1
↵

↵

⇢±(↵) = A
±(↵)⇢±(↵) for some smooth function

A
±(↵). The integral

R ±+�

±��
A

±(↵)⇢±(↵)d↵ decays as O(1/|x1|) as seen from the last part
of the proof of Lemma A.2. In the same way it is seen that the last integral of (66) decays
as O(1/|x1|).
Summarizing we have convergence of u" to some u0 which is of the form

u0(x) = ũ(x) +
X

j2J

X

�`,j>0

2⇡i

|�`,j|
hf,�

`,j
iL2(Wh0 ) 

+(x1)�
`,j(x)

+
X

j2J

X

�`,j<0

2⇡i

|�`,j|
hf,�

`,j
iL2(Wh0 ) 

�(x1)�
`,j(x)

+ hf, �̂
+
iL2(Wh0 )'

+(x1) �̂
+(x) + hf, �̂

�
iL2(Wh0 )'

�(x1) �̂
�(x)

(68)

where ũ 2 H
1(W h) decays as 1/|x1| as x1 ! ±1. The convergence is in H

1(QR,h) for
every R > 0 where again Q

R,h = (�R,R)⇥ (0, h).

Since also h � h0 is arbitrary we have convergence in H
1(QR,h) for all R > 0 and h � h0

of u" 2 H
1
⇤ (R2

+) to some function u0 which has the form (68).
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It remains to transform the representation (68) into the form (25), (26). We decompose
 

±(x1) and '±(x1) as

 
±(x1) = ⇠

±(x1) + [ ±(x1)� ⇠
±(x1)] ,

'
±(x1) =

e
i⇡/4

p
2⇡k|x1|

⇠
±(x1) +


'
±(x1)�

e
i⇡/4

p
2⇡k|x1|

⇠
±(x1)

�

and use the asymptic behavior  ±(x1)�⇠±(x1) = O(1/|x1|) and '±(x1)�
e
i⇡/4

p
2⇡k|x1|

⇠
±(x1) =

O(1/|x1|) as |x1| ! 1 (Lemma A.1 and Lemma A.2). Therefore, we can split u0 from
(68) into the form u0 = u

prop

0 + u
rad

0 with u
prop

0 , u
rad

0 from (25), (26), respectively, with

ũ
rad(x) =

X

�2{+,�}

[ �(x1)� ⇠
�(x1)]

X

j2J

X

��`,j>0

2⇡i

|�`,j|
hf,�

`,j
iL2(Wh0 ) �

`,j(x)

+ ũ(x) +
X

�2{+,�}


'
�(x1)�

e
i⇡/4

p
2⇡k

⇠
�(x1)

�
hf, �̂

�
iL2(Wh0 )

1p
|x1|

�̂
�(x) .

Then ũ
rad

2 H
1
⇤ (R2

+), and ũ
rad decays as 1/|x1|. The proof of Theorem 4.2 is complete.

5. The Open Waveguide Radiation Condition and Uniqueness

5.1. The Open Waveguide Radiation Condition. Theorem 4.2 describes the behav-
ior of the solution u0 in the x1�direction. It remains to construct a radiation condition
which describes also the behavior as x2 ! 1. We show first the following representation
of urad

0 from Theorem 4.2 in the half plane x2 > h0.

Lemma 5.1. The radiating part u
rad

0 from (26) can be expressed as

u
rad

0 (x) =
i

4

Z

R2
h0

R0(y)
⇥
H

(1)
0 (k|x� y|)�H

(1)
0 (k|x� y

⇤
|)
⇤
dy

+
i

2

Z

�h0

u
rad

0 (y) @y2H
(1)
0 (k|x� y|) ds(y) in R2

h0

(69)

where now y
⇤ = (y1, 2h0�y2)>, R2

h0
= R⇥(h0,1), and �h0 = R⇥{h0}, and R0 2 L

2(R2
h0
)

is given by

(70) R0(x) = i

X

j2J

mjX

`=1

hf,�
`,j
iL2(Wh0 )

�`,j

�Z

��

⇥
2 @x1�

`,j(x) + i↵�
`,j(x)

⇤
e
i↵x1d↵ .
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Proof. We go back to the representation (63) of u" and define

u
prop

"
(x) =

X

j2J

mjX

`=1

hf,�
`,j
iL2(Wh0 )

�Z

��

1

�`,j↵� i"
e
i↵x1 d↵ �

`,j(x) ,

u
rad

"
=

X

j2J

mjX

`=1

hf,�
`,j
iL2(Wh0 )

�Z

��

⌘j(↵ + ↵̂j)� 1

�`,j↵� i"
e
i↵x1d↵ �

`,j

+
X

j2J

1/2Z

�1/2

⌘j(↵)
⇥
u
j

1(↵, ") + �|j|,1 s
sign j(↵, ") uj

2(↵, ")
⇤
d↵ +

1/2Z

�1/2

⌘0(↵) u↵," d↵ .

We recall from the proof of Theorem 4.2 that uprop

"
and u

rad

"
converge to u

prop

0 and u
rad

0 ,
respectively, where u

prop

0 and u
rad

0 are given by (25) and (26), respectively.
We prove first a representation of urad

"
for x2 > h0 analogously to (69). We observe that

u
rad

"
satisfies the boundary value problem

(71) (�+ k
2)urad

"
= �R" for x2 > h0 , u

rad

"
= S" for x2 = h0 ,

where

R"(x) =
X

j2J

mjX

`=1

hf,�
`,j
iL2(Wh0 )

�Z

��

1

�`,j↵� i"
(�+ k

2)
⇥
e
i↵x1 �

`,j(x)
⇤
d↵

=
X

j2J

mjX

`=1

hf,�
`,j
iL2(Wh0 )

�Z

��

i↵

�`,j↵� i"

⇥
2 @x1�

`,j(x) + i↵�
`,j(x)

⇤
e
i↵x1d↵ ,

and S" = u
rad

"
|�h0

. We note that R" is a linear combination of terms of the form

�Z

��

2i↵

�`,j↵� i"
e
i↵x1 d↵ @x2�

`,j(x) and

�Z

��

↵
2

�`,j↵� i"
e
i↵x1 d↵�

`,j(x) .

As inverse Floquet-Bloch transforms of smooth functions the integrals are L2(R)�functions
with respect to x1. Since �`,j decay exponentially with respect to x2 we conclude R" 2

L
2(R2

h0
). Furthermore, S" 2 H

1/2(�h0). From the radiation condition (4) for u" we have

@x2(Fu
rad

"
)(⇠, x2)� i

p
k2 � ⇠2 (Fu

rad

"
)(⇠, x2)

= �
⇥
@x2(Fu

prop

"
)(⇠, x2)� i

p
k2 � ⇠2 (Fu

prop

"
)(⇠, x2)

⇤

which converges to zero as x2 ! 1 for every fixed ⇠ 2 R. Therefore, urad

"
satisfies the

radiation condition

(72) @x2(Fu
rad

"
)(⇠, x2)� i

p
k2 � ⇠2 (Fu

rad

"
)(⇠, x2) �! 0 , x2 ! 1 ,
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for almost all ⇠ 2 R. Application of Lemma A.3 yields the representation

u
rad

"
(x) =

i

4

Z

R2
h0

R"(y)
⇥
H

(1)
0 (k|x� y|)�H

(1)
0 (k|x� y

⇤
|)
⇤
dy

+
i

2

Z

�h0

u
rad

"
(y) @y2H

(1)
0 (k|x� y|) ds(y) in R2

h0
.

(73)

We will now show that we can take the limit in (73) as " ! 0. It is easy to see that R"

converges to R0, given by (70) uniformly in the sense that

|R"(x)�R0(x)|  c "| ln "| e��x2 for x 2 R2
h0
.

Indeed
�Z

��

����
i↵

�`,j↵� i"
�

i

�`,j

����
⇥
2 |@x1�

`,j(x)|+ |↵| |�
`,j(x)|

⇤
d↵  c

"

|�`,j|

�Z

��

1q
�
2
`,j
↵2 + "2

d↵ e
��x2

and
�R

��

d↵p
�
2
`,j↵

2+"2
 c | ln "|.

Next, we recall from Theorem 4.2 that u
rad

"
converges to u

rad

0 locally, i.e. in H
1(QR,h)

for every R > 0 and h > h0. Furthermore, since ⌘j(↵+↵̂j)�1
�`,j↵�i"

and u
j

`
(·,↵, ") (for ` = 1, 2)

and ⌘0(↵)u↵,") are uniformly (with respect to ↵ and ") bounded in H
1(Qh) and are quasi-

periodic we have global boundedness of S" in the sense that, for any m 2 Z,

ku
rad

"
kH1(Qh

m) 

X

j2J

mjX

`=1

|hf,�
`,j
iL2(Wh0 )|

�Z

��

|⌘j(↵ + ↵̂j)� 1|

|�`,j↵� i"|
d↵ k�

`,j
kH1(Qh

m)

+
X

j2J

1/2Z

�1/2

|⌘j(↵)| ku
j

1(↵, ")kH1(Qh
m) +

1/2Z

�1/2

|⌘0(↵)| ku↵,"kH1(Qh
m) d↵

+
X

|j|=1

↵̂j+�Z

↵̂j��

c

|⇢sign j(↵)|
ku

j

2(·,↵, ")kH1(Qh
m) d↵

 c
0 for all " > 0 and m 2 Z ,

where Q
h

m
= (2⇡m, 2⇡m + 2⇡) ⇥ (0, h) and c

0 is independent of " and m. Therefore, for
fixed x 2 R2

h0
,

|u
rad

"
(x)� u

rad

0 (x)|  c "| ln "|

Z

R2
h0

e
��y2

��H(1)
0 (k|x� y|)�H

(1)
0 (k|x� y

⇤
|)
�� dy

+
1

2

X

m2Z

2⇡(m+1)Z

2⇡m

|u
rad

"
(y1, h0)� u

rad

0 (y1, h0)|
��@y2H

(1)
0 (k|x� y|)|y2=h0

�� dy1 .
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First we consider the integral over R2
h0

which we split into the bounded ball {y : |y�x| < 1}
and the unbounded complement {y : |y � x| > 1}. The integral over {y : |y � x| < 1}
converges because of the weak singularity at y = x. For the region {y : |y � x| > 1} we
use the estimate

(74)
��H(1)

0 (k|x� y|)�H
(1)
0 (k|x� y

⇤
|)
��+

��@y2H
(1)
0 (k|x� y|)

��  c
x2 + y2

|x� y|3/2

for x, y 2 R2
h0
, |x� y| � 1 (see [4]). Therefore,

Z

|y�x|>1

e
��y2

��H(1)
0 (k|x� y|)�H

(1)
0 (k|x� y

⇤
|)
�� dy  c

Z

|y�x|>1

e
��y2

x2 + y2

|x� y|3/2
dy

which shows convergence of this part.
For the line integral we split the series into |m|  M and |m| > M . We estimate

X

|m|�M

2⇡(m+1)Z

2⇡m

|u
rad

"
(y1, h0)� u

rad

0 (y1, h0)|
��@y2H

(1)
0 (k|x� y|)|y2=h0

�� dy1

 c (x2 + h0)
X

|m|�M

2⇡(m+1)Z

2⇡m

|u
rad

"
(y1, h0)� u

rad

0 (y1, h0)|

[(x1 � y1)2 + (x2 � h0)2]3/4
dy1

 c (x2 + h0) sup
m2Z

ku
rad

"
(·, h0)� u

rad

0 (·, h0)kL2(Im)

X

|m|�M

 2⇡(m+1)Z

2⇡m

dy1

|x1 � y1|
3

�1/2

 c̃

X

|m|�M

1

|m|3/2

where Im = (2⇡m, 2⇡m + 2⇡). Here we used the Cauchy-Schwarz inequality and thatR 2⇡(m+1)

2⇡m
dy1

|x1�y1|3 behaves as O(|m|
�3). Therefore, for given small ⌘ > 0 we can choose

M such that c̃
P

|m|�M

1
|m|3/2  ⌘. For this M we use the convergence of urad

"
to u

rad

0 in

L
2
�
�2⇡(M � 1), 2⇡(M � 1)

�
and the continuity of @y2H

(1)
0 (k|x � y|)| for x2 > h0 and

y2 = h0. This yields convergence of
P

|m|<M

R
Im

|u
rad

"
(y1, h0)� u

rad

0 (y1, h0)|
��@y2H

(1)
0 (k|x�

y|)|y2=h0

�� dy1 =
R 2⇡(M�1)

�2⇡(M�1) |u
rad

"
(y1, h0) � u

rad

0 (y1, h0)|
��@y2H

(1)
0 (k|x � y|)|y2=h0

�� dy1 to zero
as "! 0. ⇤

This result motivates the following formulation of the radiation condition. We recall that
�
`,j are the evanescent modes corresponding to the critical values ↵̂j 2 (�1/2, 1/2], j 2 J ,

and �̂± are the non-evanescent modes of ↵̂±1 = ± (if Mevan(±) 6= M(±)).

Definition 5.2. Let Assumptions 3.9 and 3.10 hold. Fix R0 > 2⇡+1, and let ⇠
±
2 C

1(R)
with ⇠

±(x1) = 1 for ±x1 � R0 and ⇠
±(x1) = 0 for ±x1  R0�1. A solution u 2 H

1
loc
(R2

+)
of (1); that is, of

(75) �u+ k
2
nu = �f in R2

+ , u = 0 or @x2u = 0 for x2 = 0 ,

satisfies the open waveguide radiation condition if u has a decomposition in the

form u = u
rad + u

prop
where
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(a) u
prop

and u
rad

have the forms

u
prop(x) =

X

�2{+,�}

X

j2J

⇠
�(x1)

X

`:��`,j>0

a`,j �
`,j(x) ,(76)

u
rad(x) = ũ

rad(x) +
X

�2{+,�}

⇠
�(x1)

b
�

p
|x1|

�̂
�(x) , x 2 R2

+ ,(77)

respectively, for some a`,j, b
±
2 C and ũ

rad
2 H

1
⇤ (R2

+). If Mevan(±) = M(±)
then b

± = 0.
(b) For x2 > h0 the radiating part u

rad
can also be expressed as

(78) u
rad(x) = v

rad(x) +
i

2

Z

�h0

u
rad(y) @y2H

(1)
0 (k|x� y|) ds(y) in R2

h0
,

where v
rad

2 H
1
⇤ (R2

h0
) satisfies the generalized angular spectrum radiation condition

(79)

1Z

�1

��@x2(Fv
rad)(⇠, x2)� i

p
k2 � ⇠2 (Fv

rad)(⇠, x2)
��2d⇠ �! 0 , x2 ! 1 .

Here, the space H
1
⇤ (R2

h0
) is defined analogously to H

1
⇤ (R2

+) in (3).

Corollary 5.3. Let Assumptions 3.9 and 3.10 hold. The solution u0 of Theorem 4.2

satisfies the open wavegiode radiation condition of the previous definition with a`,j =
2⇡i
|�`,j |

hf,�
`,j
iL2(Wh0 ) and b

± = e
i⇡/4

p
2⇡k

hf, �̂
±
iL2(Wh0 ).

Proof. It remains to show part (b) of the radiation condition. Application of Lemma 5.1
yields the form (78) with

v
rad(x) =

i

4

Z

R2
h0

R0(y)
⇥
H

(1)
0 (k|x� y|)�H

(1)
0 (k|x� y

⇤
|)
⇤
dy .

Since R0, given by (70), satisfies the assumptions of Lemma A.3 we conclude that v
rad

satisfies the radiation condition (79) which ends the proof. ⇤
5.2. Uniqueness. We show finally that the radiation condition implies uniqueness.

Theorem 5.4. Let Assumptions 3.9 and 3.10 hold and let u be a solution of (1) cor-

responding to f = 0 satisfying the open waveguide radiation condition of Definition 5.2.

Then u has to vanish identically.

Proof. Let u be a solution corresponding to f = 0 satisfying the open waveguide radiation
condition of Definition 5.2. Again, we observe that ũrad has the form

(80) ũ
rad(x) = u(x) �

X

�2{+,�}

⇠
�(x1)


b
�

p
|x1|

�̂
�(x) +

X

j2J

X

`:��`,j>0

a`,j �
`,j(x)

�
.

In the form of (� + k
2
n)ũrad the expressions (� + k

2
n)('±

�̂
±) and (� + k

2
n)(⇠±�`,j)

appear where '
±(x1) = ⇠

±(x1)/
p
|x1|. Let the pair ( ,�) be ('±

, �̂
±) or (⇠±,�`,j).

Then (� + k
2
n)( (x1)�(x)) = 2 0(x1)@x1�(x) +  

00(x1)�(x). Since ũ
rad and the function

2 0
@x1� +  

00
� are in L

2(W h) for all h > 0 we can take the Floquet-Bloch transform.
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Therefore (�+k
2
n)(F ũ

rad)(x,↵) is a linear combinations of terms of the form F (2 0
@x1�+

 
00
�)(x,↵). Note that � is ↵̂j quasi-periodic and therefore, F (2 0

@x1� +  
00
�)(x,↵) =

2(F 0)(x1,↵� ↵̂j)@x1�(x) + (F 00)(x1,↵� ↵̂j)�(x). We assume that ↵ 2 (�1/2, 1/2] \ A
and set � = ↵ � ↵̂j for the moment. Then 0 < |�| < 1 and (F 0)(x1, �) has a Fourier
expansion in the form

(F 0)(x1, �) =
X

m2Z

 m(�) e
i(m+�)x1 =

X

m2Z

F( 0)(m+ �) ei(m+�)x1

with the Fourier transform F( 0) of  0
2 L

2(R) (see (11)). Now we observe that

(F 0)(x1, �) =
d

dx1
 ̃(x1, �) with  ̃(x1, �) =

X

m2Z

F( 0)(m+ �)

i(m+ �)
e
i(m+�)x1

for 0 < |�| < 1. Therefore, we can write

2F 0(x1,↵� ↵̂j)@x1�(x) + F 
00(x1,↵� ↵̂j)�(x)

= 2 ̃0(x1,↵� ↵̂j)@x1�(x) +  ̃
00(x1,↵� ↵̂j)�(x)

= (�+ k
2
n)[ ̃(x1,↵� ↵̂j)�(x)]

for ↵ 2 (�1/2, 1/2] \ A. Now we substitute ( ,�) = ('±
, �̂

±) and ( ,�) = (⇠±,�`,j) and
denote the corresponding functions  ̃ by '̃± and ⇠̃±, respectively. Then we have from the
Floquet-Bloch transform of (80) that v(·,↵), defined by

v(x,↵) := (F ũ
rad)(x,↵) �

X

�2{+.�}

b
�
'̃
�(x1,↵� �) �̂�(x)

�

X

�2{+.�}

X

j2J

X

`:��`,j>0

a`,j ⇠̃
�(x1,↵� ↵̂j)�

`,j(x) ,

satisfies (� + k
2
n)v(·,↵) = 0. Furthermore, v(·,↵) is ↵�quasi-periodic and satisfy the

Rayleigh expansion. The uniqueness result for ↵ /2 A implies v(·,↵) = 0, i.e.

(F ũ
rad)(x,↵) =

X

�2{+,�}

b
�
'̃
�(x1,↵� �) �̂�(x)

+
X

�2{+,�}

X

j2J

X

`:��`,j>0

a`,j ⇠̃
�(x1,↵� ↵̂j)�

`,j(x)

for all x and all ↵ 2 (�1/2, 1/2] \ A. Now we fix ◆ 2 J and consider the behavior as
↵ ⇡ ↵̂◆. Let first |◆| > 1 and � = +. The left hand side is in L

2
�
(�1/2, 1/2), L2(Qh)

�

by part (b) of the radiation condition and the mapping property of the Floquet-Bloch
transform. The term ⇠̃

+(x1,↵� ↵̂◆) has been investigated in Lemma A.4 in the appendix
(set � := ↵ � ↵̂◆), and we observe that this term behaves as 1/(↵ � ↵̂◆) and is thus not
in L

2 (locally at ↵ ⇡ ↵̂◆). Since all the other terms are locally (in a neighborhood of
↵̂◆) in L

2 we conclude that
P

�`,◆>0 a`,◆�`,◆ has to vanish identically, i.e. a`,◆ = 0 for all

` = 1, . . . ,m◆ with �`,◆ > 0. The same arguments, applied to ⇠̃� yields that a`,◆ = 0 for
all ` = 1, . . . ,m◆ with �`,◆ < 0.
This holds for all ◆ with |◆| > 1. For ◆ = ±1 we have ↵̂◆ = ± and, as before, ↵ 7!

⇠̃
±(x1,↵ ⌥ ) behaves as 1/(↵ ⌥ ) and thus a`,±1 = 0. For j = ±1 there can also be
the term '̃

±(x1,↵ ⌥ ). Again, by Lemma A.4 we conclude that this term behaves as
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1/
p

|↵� ↵̂◆|), and is again not in L
2. This shows that also b

± = 0, i.e. also F ũ
rad(·,↵)

vanishes for almost all ↵ which implies that u = ũ
rad = 0. ⇤

Appendix A. Investigation of some integrals

Lemma A.1. Let � > 0 and � 2 R, � 6= 0. Set � = sign�. Then

�Z

�

1

�↵� i"
e
i↵x1 d↵ �!

2⇡i

|�|
 

�(x1)

as "! 0 uniformly with respect to |x1|  R for every R > 0. Here,

(81)  
±(x1) =

1

2
±

1

⇡

�x1Z

0

sin t

t
dt , x1 2 R .

The functions  
±

behave asymptotically as  
±(x1) = 1 + O(1/|x1|) as ±x1 ! 1 and

 
±(x1) = O(1/|x1|) as ±x1 ! �1.

Proof. We calculate

�Z

��

e
i↵x1

�↵� i"
d↵ =

�Z

��

[cos(↵x1) + i sin(↵x1)][�↵ + i"]

�2↵2 + "2
d↵

= 2i"

�Z

0

cos(↵x1)

�2↵2 + "2
d↵ + 2i�

�Z

0

↵ sin(↵x1)

�2↵2 + "2
d↵ ,

where we used that the integral over odd integrands vanishes. Let us start with an analysis
of the first term, using the substitution ↵ = t "/|�|,

2i"

�Z

0

cos(↵x1)

�2↵2 + "2
d↵ =

2i"2

|�|

�|�|/"Z

0

cos(t"x1/|�|)

t2"2 + "2
dt =

2i

|�|

�|�|/"Z

0

cos(t"x1/|�|)

1 + t2
dt .

Therefore, using the transformation t = ↵x1 in the second integral,

�Z

��

e
i↵x1

�↵� i"
d↵ =

2i

|�|

�|�|/"Z

0

cos(t"x1/|�|)

1 + t2
dt + 2i�

�x1Z

0

t sin t

�2t2 + "2x2
1

dt .

In the limit "! 0, we therefore find

�Z

��

e
i↵x1

�↵� i"
d↵ �!

2i

|�|

1Z

0

1

1 + t2
dt +

2i

�

�x1Z

0

sin t

t
dt =

⇡i

|�|


1 + sign�

2

⇡

�x1Z

0

sin t

t
dt

�
.

The convergence is uniform in x1 on compact subsets of R. ⇤
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Lemma A.2. Let � > 0 and � 2 R, � 6= 0. Then

'
+(x1) = �

+�Z

��

1

⇢+(↵)
e
i(↵�)x1 d↵ =

8
><

>:

e
i⇡/4

p
2⇡k|x1|

+ O(1/|x1|) , x1 ! +1 ,

O(1/|x1|) , x1 ! �1 ,

and

'
�(x1) = �

�+�Z

���

1

⇢�(↵)
e
i(↵+)x1 d↵ =

8
><

>:

e
i⇡/4

p
2⇡k|x1|

+ O(1/|x1|) , x1 ! �1 ,

O(1/|x1|) , x1 ! +1 .

Proof. We consider the integral �
R

+�

��

1
⇢+(↵) e

i(↵�)x1 d↵ and recall that k = ˜̀+  and

⇢
+(↵) = 2⇡i

p
� ↵

p
2˜̀+ + ↵. Therefore,

1

⇢+(↵)
=

1

2⇡i
p
2k

p
� ↵

+
p
� ↵ f(↵)

with

f(↵) =
1

2⇡i[
p
2k +

p
2˜̀+ + ↵]

p
2k

p
2˜̀+ + ↵

.

We note that f is smooth for |↵ � | < �. We compute, analogously to the proof of the
previous lemma,

1

i

+�Z

��

1
p
� ↵

e
i(↵�)x1 d↵ = �i

�Z

��

1
p
�
e
�i�x1 d�

= �i

�Z

0


cos(�x1)� i sin(�x1)

p
�

+
cos(�x1) + i sin(�x1)

i
p
�

�
d�

= �(1 + i)

�Z

0

cos(�x1) + sin(�x1)
p
�

d�

= �

p
2 ei⇡/4p
|x1|

�|x1|Z

0

cos t+ (sign x1) sin t
p
t

dt

where we used the transformation t = �|x1| in the last step. Since
�|x1|R
0

cos tp
t
dt =

p
⇡

2 +

O(1/
p

|x1|) and
�|x1|R
0

sin tp
t
dt =

p
⇡

2 +O(1/
p

|x1|) as |x1| ! 1 we obtain

�
1

2⇡i
p
2k

+�Z

��

1
p
� ↵

e
i(↵�)x1 d↵ =

8
><

>:

e
i⇡/4

p
2⇡k|x1|

+ O(1/|x1|) , x1 ! +1 ,

O(1/|x1|) , x1 ! �1 ,
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For the integral
R

+�

��

p
� ↵ f(↵) ei(↵�)x1 d↵ we use partial integration and obtain

+�Z

��

p
� ↵ f(↵) ei(↵�)x1 d↵ =

1

ix1

+�Z

��

p
� ↵ f(↵)

d

d↵
e
i(↵�)x1 d↵

=
1

ix1


p
� ↵ f(↵) ei(↵�)x1

����
+�

��

�

+�Z

��

d

d↵

�p
� ↵ f(↵)

�
e
i(↵�)x1 d↵

�

which behaves as O(1/|x1|) since 1/
p
� ↵ is integrable.

The analysis for '�(x1) follows the same arguments. ⇤

Lemma A.3. Let v 2 H
1
⇤ (R2

h0
) for some h0 > 0 such that u satisfies the radiation

condition (72) and such that f := �(� + k
2)v 2 L

2(R2
h0
). Furthermore, assume that the

f satisfies an estimate of the form |f(x)|  |f1(x1)| e��x2 for x 2 R2
h0

and some � > 0
and f1 2 L

2(R). Then v can be represented as

v(x) =
i

4

Z

R2
h0

f(y)
⇥
H

(1)
0 (k|x� y|)�H

(1)
0 (k|x� y

⇤
|)
⇤
dy

+
i

2

Z

�h0

v(y) @y2H
(1)
0 (k|x� y|) ds(y) for x 2 R2

h0

(82)

where �h0 = R ⇥ {h0}. The first part of v satisfies the stronger radiation condition (79)
while the line integral satisfies even (4).

Proof. Let ṽ be the right hand side of (82). The volume potential which we denote by ṽ1,
satisfies (� + k

2)ṽ1 = �f in R2
h0

and ṽ1 = 0 on �h0 . This is well known, but we repeat
the argument. We fix x0 and consider x in a neighborhood of x0. We split the region of
integration into {y : |y � x0| < R} [ {y : |y � x0| > R}. The formula

(�+ k
2)

Z

R2
h0

|y�x0|<R

f(y)
i

4

⇥
H

(1)
0 (k|x� y|)�H

(1)
0 (k|x� y

⇤
|)
⇤
dy = �f(x)

is standard. For the remaining integral we use (74) and estimate |f(y)|
⇥
H

(1)
0 (k|x� y|)�

H
(1)
0 (k|x � y

⇤
|)
⇤
 c|f1(y1)|e��y2 x2+y2

|x�y|3/2 for |y � x0| > R and the same kind of estimate
for the derivatives. Lebesgues theorem on dominated convergence implies that we can
interchange integration and the Helmholtz operator which shows (� + k

2)ṽ1 = �f in
R2

h0
. The line integral which we denote by ṽ2, satisfies (�+ k

2)ṽ1 = 0 in R2
h0

and ṽ1 = v

on �h0 . This follows from the jump conditions of the double layer potential on �h0 with
H

1/2
�densities.

We show that ṽ satisfies the radiation condition (72). This is seen by observing that
both integrals are convolution-type integrals with respect to y1. Setting '1(x1, x2, y2) =
i

4

⇥
H

(1)
0 (k

p
x
2
1 + (x2 � y2)2)�H

(1)
0 (k

p
x
2
1 + (x2 + y2)2)

⇤
and '2(x1, x2) =
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i

2@y2H
(1)
0 (k

p
x
2
1 + (x2 � h0)2) we express the right hand side ṽ of (82) as

ṽ(x) =

1Z

h0

[f(·, y2) ⇤ '1(·, x2, y2)](x1) dy2 + [v(·, h0) ⇤ '2(·, x2)](x1) .

We apply the convolution theorem and use

(F'1)(⇠, x2, y2) =
i

2
p
k2 � ⇠2

⇥
e
i

p
k2�⇠2|x2�y2| � e

i

p
k2�⇠2(x2+y2)

⇤
,

(F'2)(⇠, x2) = e
i

p
k2�⇠2(x2�h0) .

Therefore, the Fourier transform of ṽ is given by

(F ṽ)(⇠, x2) =
i

2
p

k2 � ⇠2

1Z

h0

(Ff)(⇠, y2)
⇥
e
i

p
k2�⇠2|x2�y2| � e

i

p
k2�⇠2(x2+y2)

⇤
dy2

+ (Fv)(⇠, h0) e
i

p
k2�⇠2(x2�h0) .

(83)

Splitting the interval (h0,1) into (h0, x2) [ (x2,1) we obtain easily

@x2(F ṽ)(⇠, x2)� i

p
k2 � ⇠2 (F ṽ)(⇠, x2) =

1Z

x2

(Ff)(⇠, y2) e
i

p
k2�⇠2(y2�x2) dy2

=

1Z

0

(Ff)(⇠, y2 + x2) e
i

p
k2�⇠2y2 dy2

(84)

and thus
1Z

�1

��@x2(F ṽ)(⇠, x2)� i

p
k2 � ⇠2 (F ṽ)(⇠, x2)

��2d⇠



1Z

0

1Z

0

1Z

�1

��(Ff)(⇠, y2 + x2)
�� ��(Ff)(⇠, y02 + x2)

�� d⇠ dy2 dy02



1Z

0

1Z

0

vuuut
1Z

�1

��(Ff)(⇠, y2 + x2)
��2d⇠

vuuut
1Z

�1

��(Ff)(⇠, y02 + x2)
��2d⇠ dy2 dy

0
2

=

2

4 1
p
2⇡

1Z

0

kf(·, x2 + y2)kL2(R) dy2

3

5
2


1

2⇡
kf1k

2
L2(R)

2

4
1Z

0

e
��(x2+y2)dy2

3

5
2

,

and this converges to zero as x2 ! 1. Here we used the Plancherel formula. Therefore,
ṽ satisfies (79). Since this is stronger than (72) we obtain ṽ = v by the uniqueness of the
Dirichlet boundary value problem in R2

h0
. ⇤
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Lemma A.4. Set '±(x1) =
⇠
±(x1)p
|x1|

for x1 2 R. Then

X

m2Z

F
�

d

dx1
⇠
±�(m+ �)

i(m+ �)
e
i(m+�)x1 = ±

1

2⇡i�
e
⌥i�x1 + g

±
1 (x1, �) ,

X

m2Z

F
�

d

dx1
'
±�(m+ �)

i(m+ �)
e
i(m+�)x1 =

1p
2⇡|�|

[1⌥ (sign �)i] ei�x1 + g
±
2 (x1, �)

for x1 2 [0, 2⇡] and 0 < |�| < 1 where g
±
j
2 C

1
⇥
[0, 2⇡]⇥ [�1, 1]

⇤
for j = 1, 2.

Proof. The series on the left hand side of the first line can be written as

F
�

d

dx1
⇠
±�(�)

i�
e
i�x1 +

X

m 6=0

F
�

d

dx1
⇠
±�(m+ �)

i(m+ �)
e
i(m+�)x1

=
1

i� 2⇡

R0Z

�R0

d

dt
⇠
±(t) e�it�

dt e
i�x1 +

X

m 6=0

F
�

d

dx1
⇠
±�(m+ �)

i(m+ �)
e
i(m+�)x1

because d

dx1
⇠
± vanishes outside of (�R0, R0). Partial integration of the first term yields

1
i�

R
R0

�R0

d

dt
⇠
±(t) e�it�

dt = 1
i�
⇠
±(t)e�i�t

��R0

�R0
+
R

R0

�R0
⇠
±(t) e�it�

dt which yields the desired

result because because ⇠±(±R0) = 1 and ⇠
±(⌥R0) = 0, and

R
R0

�R0
⇠
±(t) e�it�

dt and the
contribution of the series

P
m 6=0 are smooth with respect to x1 and �.

Analogously, the series on the left hand side of the second assertion can be written as

F
�

d

dx1
'
±�(�)

i�
e
i�x1 +

X

m 6=0

F
�

d

dx1
'
±�(m+ �)

i(m+ �)
e
i(m+�)x1

=
1

i� 2⇡

1Z

�1

d

dt
'
±(t) e�it�

dt e
i�x1 +

X

m 6=0

F
�

d

dx1
'
±�(m+ �)

i(m+ �)
e
i(m+�)x1 .

We consider, for some R > R0 + 1,

1

i�

RZ

�1

d

dt
'
+(t) e�it�

dt =
1

i�
'
+(t)e�it�

��R
0

+

RZ

0

'
+(t) e�it�

dt

=
1

i�

1
p
R

e
�iR� +

R0Z

0

⇠
+(t)� 1
p
t

e
�it�

dt +

RZ

0

1
p
t
e
�it�

dt .

The first term tends to zero as R ! 1. Therefore,

1

i�2⇡

1Z

�1

d

dt
'
+(t) e�it�

dt =
1

2⇡

R0Z

0

⇠
+(t)� 1
p
t

e
�it�

dt +
1

2⇡

1Z

0

1
p
t
e
�it�

dt .
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Finally, with the substitution s = t|�| we have
1Z

0

1
p
t
e
�it�

dt =
1p
|�|

1Z

0

1
p
s
e
�is(sign�)

ds =
1p
|�|

1Z

0

cos s� i(sign �) sin s
p
s

ds

=

p
2⇡p
|�|

[1� (sign �)i]

because
R1
0

cos sp
s
ds =

R1
0

sin sp
s
ds =

p
⇡/2. The analysis for '� is done analogously. ⇤
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