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A LIMITING ABSORPTION PRINCIPLE FOR THE SCATTERING BY
A PERIODIC LAYER IN THE CASE OF A CUT-OFF VALUE

ANDREAS KIRSCH

ABSTRACT. In this paper we consider the propagation of waves in an open waveguide
in the half space R2 = {z € R? : 25 > 0} under Dirichlet- or Neumann boundary
condition for o = 0. The index of refraction n = n(z) is periodic along the axis of
the waveguide (which we choose to be the z;—axis) and equal to one for x5 > hg for
some hg > 0. We show first existence and uniqueness of a solution for the absorbing
case, i.e. where the index of refraction is given by n(x) + ieq(x) with € > 0 and some
function ¢ which is periodic with respect to 1, vanishes for x5 > hg, and satisfies the
angular spectral representation radiation condition. Then we prove convergence of the
solution as e tends to zero. We show that the limit solves the source problem for n(x)
and satisfies a radiation condition which depends, first, on the choice of the absorption
function ¢ and, second, whether or not a cut-off value is critical with a non-evanescent
mode.

MSC: 35J05

Key words: Helmholtz equation, open waveguide, limiting absorption principle, radia-
tion condition

1. INTRODUCTION

In this paper we study the boundary value problem
(1) Au+k*nu = —f inRZ, u=0 or Opu=0 forz =0,

where R? = {z € R? : 25 > 0}. We assume that the (real valued) index of refraction
n e L“(Ri) is 2wr—periodic with respect to x; and equals to 1 for x5 > hg for some
ho > 0 and n(z) > ng in R for some ny > 0. Furthermore, & > 0 denotes the (real) wave
number which is fixed throughout the paper and f € L*(R?%) with compact support in
Who where Wh := R x (0,h) C R? denotes the layer of height A > 0. The boundary value
problem (1) has to be complemented by a suitable radiating condition. Its derivation is
the main subject of this paper.

In this paper we continue earlier contributions as in [13, 11] and investigate the scattering
of sources by a periodic inhomogeneous layer. It is the aim to derive "natural” radiation
conditions arizing from limiting absorption principles. For the scattering of electromag-
netic waves by bounded objects the Sommerfeld radiation condition (for scalar problems)
or the Silver-Miiller radiation condition (for Maxwell’s equations) are certainly the nat-
ural conditions. The situation is more complicated for scattering problems by periodic
structures due to the presense of guided waves. The investigation of radiation problems
for periodic structures has a long history, and it is impossible to list all of the relevant
literature. Instead, we refer to [1, 17] for a comprehensive introduction of electromagnetic
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scattering theory for diffraction gratings. Radiation conditions play an important role in
the modeling of these problems because they assure uniqueness (from the mathematical
point of view) and that energy is transported away from the structure (from the phys-
ical point of view). Prominent examples of radiation conditions for periodic structures
are the Rayleigh expansion (for the scattering by plane waves), the upwards propagating
radiation condition suggested by Chandler-Wilde in several papers (for rough surfaces
which include locally perturbed periodic structures, see, e.g. [4]) or the angular spectrum
representation condition. This notion is popular in the physics literature, see e.g. [§],
but has been used also (without using this name) in, e.g., [3, 2, 9]. All of the mentioned
radiation conditions, however, are appropreate only if no guided waves exist as, e.g., in
the case of the scattering by a conductor described as the graph of a periodic function.
There is much less literature for cases where guided waves exist. The above concepts have
to be modified to include guided waves. For layered media, in [18, 5, 6] a splitting of the
field into a sum of guided waves and a part which satisfied a kind of Sommerfeld radia-
tion condition is suggested. A completely different approach, based on a modal radiation
condition, is suggested in [7], using earlier concepts from, e.g., [16].

As in, e.g. [13, 10] and [14] (for closed waveguides) we consider first the case when the
refractive index n is absorbing, i.e. n = n(z) is replaced by n.(z) := n(x) + ieq(x) with
e > 0 and some fixed ¢ € L°°(R?) which is 2r—periodic with respect to z1, q(z) > go on
Who for some ¢ > 0 and g(z) = 0 for 25 > hg. For this absorbing case we expect the
solution u, to be in H'(W™") for all h > 0. Therefore, the Fourier transform with respect
to xy is well defined, and the angular spectral representation (see (4) below) is the natural
radiation condition because no guided waves exist for absorbing layers.

As a main result in this paper we prove convergence of u. as ¢ — 0. It will turn out
that the limiting field ug satisfies a radiation condition which will in general depend on
the absorption function ¢ — although this function does not appear in the boundary value
problem (1). As a consequence we emphasize that for these kind of problems there does
not exist a unique radiation condition but rather a class of radiation conditions which
depends on the limiting procedure. We illustrate this in Example 4.4 below. This rather
strange situation has been observed already in [14, 12].

We recall that the solution of (1) (for n replaced by n. := n + icq) is understood in

the variational sense. Set H} (R%) = {ulgz : v € H} (R?)} for the case of a Neumann
Jr

(R2) = {ulpz :u € H}

boundary condition and H! L(R?), u =0 for xy = 0} for the case

loc
of a Dirichlet boundary condition.

Definition 1.1. A function u € H}

Le(R2) s called a variational solution of (1) (for
n=n.) if

(2) /[VU-V@U—/@%’LSUMCM = /f@/)d:}:
Who

RY
for ally € H} (R%) with compact support in {z € R? : x5 > 0}.
By choosing ¢ € H'(R?%) in (2) with compact support in R3 \ Who we note that u is a

classical solution of the Helmholtz equation Au + k?u = 0 for x5 > hy and thus analytic.
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As mentioned above, if € > 0 we expect the solution to decay as x; — doo. More
precisely, we search for a solution in

(3) H!(R%) = {u€ H..(RL) :ulyn € H'(W") for all h > 0}.

A common radiation condition (see, e.g. [3, 2, 9]) is the angular spectrum representation,
i.e. the Fourier transform (Fu)(&, z2) of u(-, x2) with respect to z; (which exists because
u(-, 29) € H'?(R)) has the representation

(4) (Fu)(§ z2) = (Fu)(&, ho) e kLéQ(xrhO), Ty > hg,
for almost all ¢ € R. The Floquet-Bloch transform (see Subsection 2.2) reduces the
equation Au + k*n.u = —f to a family of quasi-periodic problems. Therefore, we study

quasi-periodic problems in the following section.

2. THE QUASI-PERIODIC PROBLEMS AND THE CASE OF ABSORPTION

2.1. The Quasi-periodic Problems. A function v € L*(R?) is called quasi-periodic
with respect to z; with parameter a € R if v(zy + 27, x9) = €*™v(xy, 29) for all x =
(.Tl, LCQ) € Ri

We set Q* := (0,27) x (0,00) and Q" := (0,27) x (0, h) for h > 0 and define

H10.(Q%°) = {ulg~ :u € H(RY), u(:,z2) is a—quasi-periodic} .

Recall that H ;. (Q>) contains the boundary conditions in the Dirchlet case. The quasi-

periodic analog to (1), (4) is the problem to determine, for any given o € R and g, €
L*(QM), a a—quasi-periodic solution uq € H} ;,.(Q>) of

(5) Ay + E*noug = —go  in Q™ Uey =0 or Opu,=0 forazy =0,
which satisfies the Rayleigh expansion

(6) o) = Y up VR hasitn g,
ez
for some uy, € C where the convergence is uniform for x5 > h for all h > hy. We note

that this problem is well defined for all ¢ > 0, i.e. in particular for the case n. = n
of no absorption. The coefficients u, are actually the Fourier coefficients u,(a, ho) =

% o27r Uq (21, ho)efi(”o‘)‘“dxl of u(+, ho).

It is well known that this problem can be reduced to a problem on the bounded domain
Q" (for any h > hg) with the Dirichlet-to-Neumann operator. We set H1(Q") := {u €
HY(Q") : u(-,z2) is a—quasi-periodic} and include the boundary conditions u = 0 for
29 = 0 in the case of Dirichlet boundary conditions.

Lemma 2.1. Let a € R and g, € L*(Q™) be fived. Let h > hy be arbitrary.

(a) Let uq € HY,,.(Q%) be a solution of (5), (6). Then uq|gn € HY(Q") solves

(7) /[Vua Vip = k*ne ug ] do — 2mi Z ug(or, h) Yla, h) k2 — (0 + )2 = / Go ¥ dx
on tez oo
2T

for all ¢ € HL(Q") where ug(a,h) = 5= 7 ua (@1, h)e T dx, are the Fourier coeffi-
cients of ua (-, h).
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(b) Let u, € HL(Q") solve (7). Extend u,, into Q> by defining
(8) ua(x) _ ZW(O@ h) eiw/k2—(f+a)2(:r2—h)+i(2+a)x1 . Ty > h.

LET

Then uq € HY, 1, (Q%) solves (5), (6).

We omit the proof because it is standard. As mentioned above, the connection between
the quasi-periodic problems (5), (6) and the original problem (1), (4) is given by the
Floquet-Bloch transform which we recall next.

2.2. The Floquet-Bloch Transform. Recall that the Floquet-Bloch transform F' :
L*(R) — L2((0,27) x (—1/2,1/2)) is defined by (for f € S(R))

(Ff)(t, ) th—i-Qﬁm) e~ -t o€ R.
meZ
This formula directly shows that for smooth functions f and fixed o the transformed
function ¢t — (Ff)(t, ) is a—quasi-periodic while for fixed ¢ the function a +— (F' f)(t, @)
is periodic with period 1. It is hence sufficient to consider L*((0,27) x (—1/2,1/2)) as
image space of F'. The inverse transform is given by
1/2

(F_lg)(t +2ml) = / g(t, o) e™ida te (0,2m), L€ Z.
~1/2

There is a simple relationship to the Fourier transform F : L*(R) — L?*(R) given by (for
f € SR))

) FNO = o [ I, cer.

Indeed, for a € [-1/2,1/2] and ¢ € Z we have

(]:f)(oz—l—E) = /f —zx a+£ Z /f x—i—27rm —i x+27rm)(a+£)d

(10) _ /Zf m—i—27rm —ia2wm —zx(Z—l—a)d

meZ
2w

1

— 5 [FD @) e — o)

0

where fy(a) are the Fourier coefficients of the a—quasi-periodic function (Ff)(-,@). In
particular,

(11> (Ff z, Ck Zf z:cEJra _ Z(Ff)(()é+€)€im(€+a).
LeZ LeZ

In view of our scattering problem, we apply the Floquet-Bloch transform to the variable

z1 and consider x4 as a parameter. Recalling that W" := R x (0, k) and Q" := (0, 27) x
4



(0,h) and I = (—1/2,1/2) one can then show that F is an isometry from L?(W") onto
LX(Q" x I),

1/2

IFfgmn = | [1FN@aPdrda = [1@)Fde = 171
Wh

~1/2 Q"
It has been shown (see, e.g. [15, Section 6]) that F is also an isomorphism from H!(W")
onto

LA(I, HA(QM) = {u e L)1, H\(QY): ™ u(z, @) is }

a—quasi-periodic

2.3. Equivalence and Existence in the Case of Absorption. The following connec-
tion between (5), (6) and (1), (4) is well known (see, e.g., [14] for closed waveguides)

Lemma 2.2. Let ¢ > 0 be fized and f € L*(Who) with compact support and g, :=
(Ff)(-,a) € L*(Q") its Floquet-Bloch transform.

(a) Let uw € HY(RY) be a solution of (1), (4) and us(z) := (Fu)(x, @) be its Floquet-Bloch
transform. Then u, € H(Q™) solves (5), (6) with right hand side g, for almost all
a € 1. Furthermore, o — u, belongs to L? (], Hl(Qh)) for every h > 0.

(b) Let u, € HL(Q™) solve (5), (6) with right hand side g, for almost all « € I, and
let the mapping o — u, belong to LQ(I,Hl(Qh)) for every h > 0. Then the inverse
transform u = [ uqda belongs to H}(R%) and is a solution of (1), (4).

We did not indicate the dependence on e because € is kept fixed. We note that the
relationship between (4) and the Rayleigh expansion (6) is given by (10). Also we observe
that a — g, is infinitely often differentiable (even analytic) because the Floquet-Bloch
transform reduces to a finite sum.

This lemma holds for € > 0 but also for ¢ = 0. In the latter case, however, existence
of a solution v € H}(R%) or, equivalently, L?—boundedness of o > u, is not assured in
general, but only for special right hand sides (which are orthogonal to the modes, see, e.g.,
[13] or, for closed waveguides, [14]). It is convenient to introduce the space of periodic
functions as

(12) H(Q") = {ue H(Q") : u(-,x5) is 2mr—periodic} .

In the case of a Dirichlet boundary condition the condition u = 0 for o, = 0 is added to

the definition of H) . (Q"). In the absorbing case ¢ > 0 we have existence.

Theorem 2.3. Let € > 0, i.e. Imn. > 0 on W". Then there exists a unique solution
u. € HI(BZ) of (1), (4).

Proof. For every a € I we consider the quasi-periodic problem (7) for h = hy where

go = (Ff)(-, ) is the Floquet-Bloch transform of f. The mapping a — g, is smooth

because f has compact support. By Lemma 2.1 this problem is equivalent to the quasi-

periodic problem (5), (6) in Q*. We replace u, € H:(Q"™) and ¢ € HL(Q"™) by

Va() = €7 ug(z) and ¢(x) = e "*"1¢)(x), respectively. Then v,,¢ € H).(Q"), and
5



(7) transforms into

1o (vas§) = / V(10 - V@) — Kn, v, §) da
Qho

— 2m’Zw(a, ho) de(cr, ho) /K2 — (L + ) = /ga (eter1¢) dx

LET Q

(13)

for all ¢ € H}, (Q"™). Here, v(a,hy) = 5= 027r vo(11, ho)e 1 dx; are the Fourier co-

efficients of v,(-, ho) with respect to {e*®' : ¢ € Z} (which coincide with the Fourier
coefficients of (-, ho) with respect to {e!F®)=1 . ¢ € Z}). Let qo > 0 with g(z) > g for
all z € W, Then

Reaq(u,u) = / [V (e ) > — K*n|ul’] dz + 27 Z lug(cr, ho)|> /(€ + )2 — k2
QhO ‘Z+a|>k

V(e u)|ze = K lInllcllullze = lliow + Vul[Z2 — k2|[nloo|lullZ2

1 1
SIValz: = (Rlalle + 3 ) Tl

v

v

—Imay(u,u) = k25/q|u|2dx—|—27r Z lug(a, ho)|? /K2 — (€4 )2
Q"o [+al<k

> ke qollullz:

where we used the elementary estimate |iau + Vu|* > [|[Vul|? + {|ull® — [|[Vul|[|u]] =
sVl +5(IVul = [lul)? = Fllull* = 51 Vull* = Hul]?. Let now ¢ > 0 such that £(k*|[n]|« +
1/4) < k%¢ qo. Then

Re[(t + 1) aa(u,u)] = tReaq(u,u) —Imaq(u,u)

t 1
> LIl = o(Rlalle + 3 )l + Rea ul

t t
= GIVul + (Feq =l = ) Tl 2 clulf

Therefore, (¢t + i)a, is coercive, uniformly with respect to o € [—1/2,1/2], and depends
continuously on «. Therefore, the theorem of Lax-Milgram yields the existence and
uniqueness of a solution v, € H! (Q™) of an(va, @) = thO go (€19719) dz for all ¢ €

per
ngr(QhO), and thus of (7), which depends continuously on «. In particular, a +— wu, is in
L? (I, Hl(QhO)). Application of part (b) of Lemma 2.2 ends the proof. O

Remark 2.4. The assumption that q is uniformly bounded below on W"o by some positive
constant qo can be relaved. If q is only bounded below on some open subset U C Q" then we
still have uniqueness. Indeed, if aq(va, ) = 0 for all ¢ € H}, (Q") then aq(va,va) = 0,
.e. Uy and thus u, vanishes on U. The unique continuation principle implies that u,
vanishes everywhere. Since a, has the Fredholm property (see Subsection 3.2) we have
again also existence for all o and continuous dependence, and can take the inverse Floquet-

Bloch transform.
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3. MODES

3.1. Critical Values, Cut-off Values, and Mode Spaces. The arguments in the proof
of Theorem 2.3 do not work if € = 0. Indeed, in this case of no absorption there exist (in
general) parameters « for which the homogeneous equation (5) (i.e. for g, = 0) admits
non-trivial quasi-periodic solutions ¢ satisfying also the Rayleigh expansion (6).
Definition 3.1. (a) a € [—1/2,1/2] is called cut-off value if there exists { € 7 with
la+ ¢ = k.

(b) a € [-1/2,1/2] is called eritical value if there exists a non-trivial solution ¢ €
H;JOC(QOO) of Ap + k*ng = 0 in Q™ satisfying the Rayleigh expansion (6). The set of
critical values o € [—1/2,1/2] is denoted by A. For a € A we define the space M(a) of
modes by

(14) M(a) = {¢ € H,;,.(Q%) : ¢ satisfies Ap + k*ng =0 in Q> and (6)} .

If we decompose k into the form k = £+ x with £ € Zsq and x € (—1/2,1/2] then £k are
the cut-off values. It is obvious that « is a critical value with mode ¢ if, and only if, —«
is a critical value with mode ¢.

Lemma 3.2. Let o € A and ¢ € M(«).

(a) Then the coefficients ¢, in the Rayleigh expansion (6) vanish for all { € Z with
|0+ o] < k.

(b) Let ¢y = 0 for all ¢ € Z with |{ + «| < k. Then ¢ is evanescent, i.e. for every
h > hg there exist c,o > 0 with |¢(x)| < ce™ "2 for xy > h.

Proof. (a) From Lemma 2.1 (for e = 0 and g, = 0 and some h > hg) we conclude that
(15) /[Vd).vw_ Fnodlde — 2wy do(a, h) e, h) /K2 = ((+a)? = 0
Qh LET

for all 1 € H1(Q"). Taking 1 = ¢ and the imaginary part yields the assertion.
(b) From part (a) we have for h = hg
¢(x) _ Z b pilltta)zr o=/ ((+a)?=k?(z2—ho)  fop. Ty > ho.

[0+a|>k

Since \/({ + a)? —k? > 20 for some ¢ > 0 and all ¢ with [{ + «| > k we obtain

|p(z)| < eolw2=ho) D jeralsk |9l e 2V (el =k (h=ho) which yields the assertion with ¢ =
~ 1) —k2 (h—

e7ho Z\£+a|>k |pel €72 ()= (h=ho), O

From this result we conclude that every ¢ € M(«) is evanescent if a € A is not a cut-off
value. However, if & € A is a cut-off value, i.e. [{y+a| = k for some ¢y € Z, and ¢ € M(«)
then ¢ is evanescent if, and only if, ¢y, = 0. We illustrate this with two examples.

Example 3.3. In the case of the Neumann boundary condition O,,u = 0 for xo = 0 the
simplest example is just ¢(x) = e**1, x € R%. We observe that ¢ is quasi-periodic with
parameter k where again k = { + . Furthermore, r is obviously a cut-off value and
also critical because ¢ satisfies the Helmholtz equation, the boundary condition O.,¢ = 0
for xo = 0, and the Rayleigh expansion. In this case M(k) = span{¢}, and ¢ is not

evanescent.
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The following example, again for the Neumann boundary condition, constructs a critical
value a which is also a cut-off value with a two-dimensional mode space M(«). The mode
space is spanned by an evanescent mode and a non-evanescent mode.

Example 3.4. This example deals again with the Neumann boundary condition. Let first
k > 0 be arbitrary, ho =1 andn =1+ 72/k? for 0 < 29 < 1 and n =1 for x5 > 1. Then

1, To > 1,
—cos(mzy), 0<mxe <1,

¢1(21,00) = €M {

solves A¢ + k*ng = 0 in RY and d,,¢(x1,0) = 0. The function is k—quasiperiodic if k is
decomposed into k = 0+ r with { € Zsy and & € (=1/2,1/2]. In particular, r is a critical
value, i.e. k € A, and also a cut-off value. The mode ¢1 € M(K) is non-evanescent.
Note that k > 0 is arbitrary and n depends explicitely on k through n = 1 + w2 /k?.

We show now the existence of k > 0 such that for the same n = 1+7%/k? there is another
mode in M(k) which is evanescent. Indeed, the function

cos /2 + k2 — (k+1)2eV (kt12=k2(z2=1) ) > 1,

?

cos(yv/m2 + k2 — (k+ 1)%2,), 0<zy<1,

¢2<$1,£L’2> — ez’(k+1):p1 {

18 k—quasi-periodic and a mode if k solves

(16) (k+1)2 —k?costy — tgsinty = 0.

where ty = /T2 +k2— (k+1)2. Using \/(k+1)2—k% = /72 — 2 we have to find
te (O, V2 — 1) such that

f(t) = Vn?2—t?cost —tsint = 0.

From f(0) = m > 0 and f(n/2) = —7w/2 < 0 we conclude that such a zero t) exists.
Then k = %(W2 —t2 — 1) satisfies (16), i.e. also ¢o is a mode corresponding to k which is
evanescent.

We define the subspace M. yan(ar) of M(a) for o € A by
Mepan(a) = {¢ € M(a) : ¢ is evanescent} = {¢ € M(a): ¢, =0 for [{+af < k}.

Lemma 3.5. Let k ¢ N and o € A. Then the codimension of Meyan(a) in M(a) is
zero or one.

Proof. Assume that Meyen(a) # M(a). Let ¢ € M(a) \ Mepan(). From the remark
following Lemma 3.2 a must be a cut-off value, i.e. there exists ¢y € Z with o + {y| = k.
From k ¢ %N it is easily seen that ¢y is unique. Therefore, ¢ has the form

QZ;( ) QWO(OZ h) i(lo+a)xy + Z ¢Z a ho i(l+a) a:1 —/(t+K)2—k2 (z2—ho) Ty > h07

)

[0+a|>k

and ¢y, (v, ho) # 0. Without loss of generality we can assume that e, (ax, ho) = 1. Then

every ¢ € M(a) has the decomposition ¢ = ¢, (a, ho)¢ + [¢ — ¢ry(; ho)¢] and [¢p —

¢€o (Oé, hO)(b] € Mevan(a)- Therefore, M(Ck) - Span{¢} + Mevan(a>- ]
8



We note that ¢ € M(a) constructed in the proof has the form
é(fb) _ ei(ﬁo-‘roc):m + Z QEZ(O&, h) ei(Z—l—a);rl e—\/(Z—I—n)Q—kQ (3}2—]1)’ Ty > h,
[l4a|>k
for any h > ho. In particular, ¢y, (a, h) = 1 for all h > hy.

We will see that the existence of critical cut-off values with M. ,a, () # M () lead to a
slower decay of the radiating part of the solution of (1).

3.2. The Mode Spaces are Finite Dimensional. We fix i > hy. From Lemma 2.1
(for ¢ = 0 and g, = 0) we obtain for the transformed modes ¢ € H] . (Q"), defined by

d(x) = e ¢(x), the equivalent characterization

[I9(€6) - Ty - il de — 20’3 di /= T+ a = 0,

Qh LETL

i.e.

(17) /[V&-w—%aaméw(a?—k2n>¢3w}dx — 2w Y b /K = ({+0a)? = 0
on ez

for all ¢ € H,.(Q) where we dropped the argument (a, ) in the Fourier coefficients. We
equip H;er(Qh) with the inner product

(18) (u,v), = /Vu-VT)dx + QNZWU_@(1+|€]), u,v € H(Q).

on ez

Then this inner product generates a norm which is equivalent to the usual norm in H*(Q").
This well known result can be easily shown by, e.g., an indirect proof. By the Theorem
of Riesz there exists a bounded operator K (a) from H],.(Q") into itself with

(K()u,v), = /[Qia O ud — (0 — k*n) uv] do
(19) o

+ 21 ) uemy [iy/k2 — (C+ @) + (] + 1]
LeZ

for u,v € H',,(Q"). With this operator K () equation (17) is written as (¢— K (a)¢, ¥), =

per

0 for all ¥ € H...(Q"), i.e.

(20) ¢—K()¢ =0 forde Hp(Q").
Therefore, « is critical if, and only if, I — K(«) is not invertible. Further properties of

K () are collected in the following lemma.

Lemma 3.6. (a) K(«) is compact for every a and depends continuously on «.
(b) Let v be a critical value (could also be a cut-off value), i.e. o € A. Then 1 is
a semi-simple eigenvalue of K(a), i.e. N([I — K(a)*) = N(I — K()). The
decomposition of H;er’o_(Q) in the form

H.(Q" = N(I-K(e) ® R(I-K()
9



15 orthogonal.
(¢) The operator K(«) is infinitely often differentiable at all o which are not cut-off

values.
Proof. (a) Compactness follows from the compact embedding of H..(Q") into L*(Q") and
the boundedness of —\/(¢ + a)? — k2 + |¢| + 1 for large values of |¢|. Continuity follows
from the continuity of every term and the convergence of

_ 1/2 1/2

S luge] < [0 ful?) [ foel] 72 < elfuly s sl imssgy) where 7 = (0,27) x {h}.
(b) First we show N'(I — K(a)) = N (I — K(«)*). Indeed, Let ¢ € N (I — K(a)) and
Y€ H..o (Q") arbitrary. Then

(1= K@).6), = [[V0:-95-2i0 556~ (n—a®)ud] ds
Qh
+ Y Ve =k g

[{+a|>k
Therefore, (I — K(«)*)¢ = 0. This shows V(I — K(a)) = N (I — K(®)*).
Let now u € N((I — K(a))?) and set v = (I — K(«))u. Then v € N(I — K(a)) =
N (I — K(a)*) by the previous argument. Therefore, [[v|2 = ((I = K(a))u,v), = (u, (I —
K(a)*)v), = 0. Therefore, v = 0; that is, u € N'(I— K(a)). The orthogonality follows by
the same arguments. Indeed, if u € N (I—K(a)) = N(I—K(a)*) andv = (I-K (o)) €
R(I — K()) then (v,u), = ((I = K(a))¥,u), = (¥, (I — K(a)")u), = 0.
(c) The integral is certainly smooth at all a. Furthermore, £\/k? — [{+ a? = —({ +

k? — |¢ + «|* which is also bounded for large values of ¢ because |¢ + a| # k for all
¢. The same holds for all derivatives. Then we can argue as in Part (a). 0

By a theorem of Riesz the null space N'(I — K(«)) is finite dimensional. This implies the
following corollary.

Corollary 3.7. Every space M(«) of modes for a € A is finite dimensional.

3.3. Construction of a Basis. As the next step we construct a convenient basis of
M(a). As in [14] the following sesqui-linear form will play an important role.

(21) E(u,v) = i / (00,0 — 00y, u] du for u,v € H(Q™).
Qoo
We collect some properties.

Lemma 3.8. Let u € M(«) and v € M(B) for o, € A and at least one of them is
evanescent.

(a) Then E(u,v) ezists and
(22) E(u,v) = 2mi / [w0,,0 — 00y u] ds  for any b € R

r1=b

where we write fm:b for the line integral [, with C = {b} x (0, 00).
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(b) E(u,v) =0ifa,B € A\ {—1/2} and a # 0.
Proof. Existence of the integrals follows because the product uv is evanescent.
(a) First we note that the line integrals [ _, [u8,,0—0 8,,u|ds are independent of b which

1

follows from Green’s second theorem, applied in the region (b1, b2) x (0, R) and letting R
tend to infinity.

We apply Green’s first theorem in Q> to the functions zju(z) and v(x). With (A +
k*n)(x1u) = 20,,u we obtain

/ [V(z1u) - VO — E*naqut + 20 0y, ulde = / O, (zqu) Vds,
Q> x1=2m
ie.
/ 21 [Vu -V — Enut] + [w8,,0 + 200, u|dr = / [2700,,u v + uv]ds.
Q> x1=2m

Now we interchang the roles of v and v and take the difference. This yields

/ (005, u —u0,,0] dv = 2 / [00p,u — u0,,0] ds
Qe T =27

which proves part (a).

(b) By (22) and the quasi-periodicity of u and v we obtain

/ [17 Oz U — u&tlz—)] ds = / ['U Op u — u@mlﬁ] ds = el@=h)2m / [17 Oz, U — u&“z—)] ds

xr1=0 r1=271 xr1=0
which shows that the integrals vanish because e/@=#)27 £ 1. O

With this form £ we contruct a basis of M(«) for any a € A. We will see below that the
following basis will follow naturally from the Limiting Absorption Principle as in, e.g.,
[13] or [14].

We make the following assumptions.

Assumption 3.9. Let k ¢ %N and decompose k into k = { + & for some (e Z>o and
k€ (—1/2,1/2)\ {0}. Then £k are the cut-off values. We assume that k (and thus also
—k) are critical values, i.e. £k € A.

The assumption that the cut-off values are critical (as in Examples 3.3 and 3.4) decribes
the new situation in this paper. If the set of cut-off values is disjoint from the set of critical
values we refer to [11] for a complete discussion. If & € 1N then k = 0 or k = 1/2, and the
space Meyan (k) can have co-dimension 2. This situation requires a different discussion.

Assumption 3.10. For every a € A and every v € Meyan() with v # 0 let the linear
form E(-,v) be not trivial on M eypan ().

Let @ € A and let Meyan(a) # {0}. With the hermetian sesqui-linear form E from
(21) we consider the self-adjoint eigenvalue problem to determine )\, € R and non-trivial
' € Mepan(@), £=1,...,m := dim Myan(c), with

(23) E(¢',9) = MK / q¢tdr  for all 1 € Meyan(a).

Q
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The eigenfunctions ¢* are orthogonal with respect to the inner product (u, v), := k*(qu, v) 12(Q)-
We normalize the eigenfunctions such that (¢*, ¢’), = ;. Note that the eigenfunctions
depend on the function ¢ which appears in the definition of n. = n + icq.

In the case M(a) # Mpan(a) we extend this basis to a basis of M(«).

Lemma 3.11. Let Assumptions 3.9 and 3.10 hold.

(a) Then E(¢*,¢°) =X\ #0 forall{=1,...,m.

(b) Let a € A and Meyan(a) # {0} and ¢, £ = 1,...,m, be the eigenfunctions of
the eigenvalue problem (23). Then {¢* : € = 1,...,m} is an orthonormal (with
respect to (u,v),) basis of Meyan ().

(c) Let a € A be a cut-off value, i.e. o = £k, such that M(£k) # Mepan(E£rK). Then

there exist a unique ¢F € M(EkK) with E(@i,w) =0 for all v € Mepan(£K) and
¢ has the form

(24) o5 (x) = 4 GZ (@), @ > ho,
and qﬁwm is evanescent. We set ¢mm .= ¢ for x5 < hy. Therefore, if {qﬁe’i :
(= 1,...,m} is a basis of Meyan(E£K) determined by part (b) then {¢Z’i =
.,m} U {¢%) is a basis of M(£k).

We note that ¢=  is a £k—quasi-periodic solution of the Helmholtz equation in Q¥ \{z:

zy = ho} satisfying the transmission conditions [¢F,_ | = e***1 and [8,,6% ] = 0 for
To = h(].

Proof. (a) We assume that A, = 0 for some ¢. Then E(¢",¢) = \k? [, q 6" dx = 0 for
all ) € Meyan(a), ie. E(¢f,-) is trivial on My, (@), a contradiction to Assumption 3.10.
(b) This is obvious.

(c) Let a = k and q~5~€ M(k) be the function constructed in the proof of Lemma 3.5
normalized such that ¢;(k, hg) = 1. 1 We set

v=1
where again {¢"" : v =1,...,m} is the basis of M,y (K) constructed by the eigenvalue

problem (23). Then ¢+ has the desired properties. Indeed, for any j = 1,...,m we
compute

. . m E(p, ¢"") )
Bt ) = B@geh) — 3 1) ¢ P B, ) = 0
v=1

Furthermore, Qgg(/f, ho) = qzzg(/f,ho) = 1 because ¢g’+(/<,h0) =0foralv=1..m

Therefore, ¢* has the form (24) O

IRecall that k = ¢ + k. Note that &g(/{,ho) = 1 implies (ﬁg(/@,h) =1 for all h > hg by the remark
following Lemma 3.5.
12



4. FINITENESS OF THE SET OF CRITICAL VALUES AND THE LIMITING ABSORPTION
PRINCIPLE

4.1. Statement of the Main Results. A first goal is to show that the set A of critical
values is finite.

Theorem 4.1. Let Assumptions 3.9 and 3.10 hold. Then there exist only finitely many
critical values in the interval [—1/2,1/2]. They are symmetric with respect to 0, i.e. « is
critical if, and only if, —a is critial. We number them by ¢&;, j € J, where J C Z\ {0}
s a finite set which is symmetric with respect to 0. By Assumption 3.9 the cut-off values
+k are included in the set of critical values. Therefore, |J| > 2, and we denote these
particular critical values by & = Kk and &_1 = —K.

The corresponding mode spaces M(&;) are finite dimensional for every j € J. We set
m; = dim M eyan(&;).

We will prove this theorem in Subsection 4.5. For every j € J we determine the basis
{9 : 4 =1,...,m;} of Meyan(d;) by the eigenvalue problem (23) and extend this basis

to a basis of M(d;) if j = £1 and Moy (£K) # M (k) by contructing ¢+ € M(£k) as
in Lemma 3.11.

We consider now the equation (7) for n. = n 4 ieq and € > 0. The second goal of this
paper is the proof of the following convergence property.

Theorem 4.2. Let Assumptions 3.9 and 3.10 hold. For any Ry > 27 +1 let ££ € C®(R)
be a pair of functions with £ (x1) = 1 for a1 > Ry and £ (z1) = 0 for a1 < Ry — 1.
The solutions u. € HI(R%) of (1), (4) (which exist and are unique by Theorem 2.3)
converge to some function ug which has the form ug = ub " + ul*® where

25) @) = 3 T E@) Y o (6 99(), 7€ R,

oe{+,-} jeJ L:oNg, ;>0 | Z,]'

ZTI'/4
(26) ugad(x) — ~rad é-a
Ue{; ) \/27Tk5|$1|
respectively, for some @™ € H}(R2). If Meyan(£r) = M(Ek) then up™ = a"*. Here,
@7 are the evanescent modes corresponding to the critical values &; € (—1/2,1/2], j € J,

and qgi are the non-evanescent modes of Gy = £k if Mepan(Er) # M(£K). The
convergence is understood in H'((—R, R) x (0,h)) for all R >0 and h > he.
Finally, the part i (x) decays as O(1/|x1]) as x, — Fo00 for every xy > 0.

~

([, 07) 2 wr0)0”(2), T ERZ,

Before we prove these theorems we want to illustrate the previous result with two exam-
ples.

Example 4.3. We consider the simplest case of a homogeneous half space with Neumann
boundary conditions as in Ezample 3.3. Let f € L*(W") have compact support. Then
the unique solution of the problem Au+ k*u = —f in R, 9,,u = 0 for x5 = 0, satisfying
the Sommerfeld radiation condition is given by

ue) = 5 [ [HOFe = o)+ B (o -y D] S)dy, @ B2,

Who
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where y* = (y1, —y2) . From the asymptotics
im/4  giklal

2v27k /||

7
“H" (klz —y|) =

1 e~ Y L O(|z|7*?) as |z| = oo

(where & = x/|z|) we obtain

in/diklal
u(z) = e e

2V27k /| x|
who

Therefore, for fized x5 and 1 — 400 we obtain (since & =~ (1,0))
( ) eim/4 pika / ik f( )d N (’)(] |73/2
u(z) = e x :

2mk /%1 v '

Who

[e7™5 4 e f(y)dy + O] ™) as || — oo,

This coincides with (26) because in this case no evanescent modes exist and ¢*(zx) =
+ikxq

e .

With respect to radiation conditions the following example illustrates a fundamental dif-

ference to source problems for inhomogeneous media with refractive indices n = n(x)

where n(z) — 1 has bounded support. While for these problems the limits as ¢ — 0 of the

solutions corresponding to n + ieq (for some ¢ = g(x) > 0 on the support of n — 1) are
independent of ¢ in the case considered here the limit does depend on the choice of q.

Example 4.4. Let k > 0 and m € Z with m+1/2 > k. Set w :=m+1/2 and define ¢

by
(b (.T) o eiiwzl ) COS vV an — W2 eV w?—k?(z2-1) , Tg > 1 ,
* cos(\/an — w2:v2) , 0<mzy <1,

where the constant n > 0 is chosen such O,,¢+ is continuous al xo =1, i.e. n satisfies

(27) Vw? — k2cos Vk2n — w? — VEk2n — w?sin Vk2n —w? = 0.

Such a value of n ezists. Indeed, set V() := vVw? — k?cost —tsint. Then ¥(0) > 0 and
Y(r/2) < 0, d.e. there evists t € (0,7/2) with ¢(t) = 0. Then n = tQ;ng solves (27).
We note further that ¢1 are evanescent and a— quasi-periodic with o = 1/2. Therefore,

M(1/2) = Meyan(1/2) = span{¢, ¢_}. Furthermore, E(¢4,¢4) >0 and E(¢p—,¢p_) <0
and E(¢4,¢_) = 0 because fO% etridy, = 0.

If ¢ > 0 is a constant then also (¢4, d_), = k*q fQoo b ¢d_dx = 0. Therefore, in this case
&t = ¢ /l|psll, and ¢* = ¢_/||¢_||, are the eigenfunctions of (23) with Ny = E(¢, ¢).
The solution ug of the source problem (1) arizing from the limit e — O for n+ieq has the
asymptotic form uy(z) ~ c ' (x) as x1 — oo for some ¢ € C.

If, however, q = cj(ml) > 0 is not constant but 27 periodic (and constant with respect to
x9) such that fo (m1)e*® 1 dxy # 0 then ¢y, ¢_ are not orthogonal anymore with respect
to (-,-)g, and the eigenfunctions {¢1 ¢2} and eigenvalues {5\1,5\2} of (23) are different
from {¢', &*} and {\, )\2} respectively. A simple argument shows that i and Xy are of
different sign. Let, e.g., \1 > 0. Then ¢' has the form ¢* = ad* + bp? with a,b # 0.

Therefore, the solution iy of the source problem (1) arizing from the limit € — 0 for
n +ieq has the asymptotic form tg(x) ~ 6(51(33) = clag' + bd?| as ¥y — oo for some
¢ eC.
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We conclude that uy and tg are both solutions of (1), and they are linearly independent.
Both arize from limiting absorption principles, and there is no preferable solution. In this
way there is no unique radiation condition but only a class of radiation conditions which
depend on the inner products (-,-), in (23).

We return to the proof of Theorems 4.1 and 4.2, fix any h > hg and write equation (7) in
the form

(28> U(Oé, 8) - K(a7 Ef)U(O{, 8) = T’(Oé)

for the transformed field v(a, &) = e~*®1u, . € H! (Q") where the operator K (a,¢) from

per

H),.(Q") into itself is now defined in the same way as K(a) from (19), but depends now
on the two parameters « and e. The right hand side r(«) is given by

(29) (@) = [ e W@, b€ Q")

Q}LO
where g, is the Floquet-Bloch transform of the right hand side f of (1), i.e. g, =
(Ff)(-,). We note that K(a,¢) and r(«) depend on h.

For the behavior of the solution as ¢ — 0 the smoothness of (a,¢) — K(a,e) and
a +— r(«a) is important. Since f has compact support we conclude that g, and thus also
r(a) depends smoothly on a.

4.2. Smoothness of (a,e) — K(a,¢&). The operator K(a,¢) is certainly infinitely
often differentiable with respect to € (it is even linear with respect to ). From Lemma 3.6
we know that K(«,e¢) is also infinitely often differentiable with respect to « at & if & is
not a cut-off value, i.e. |¢ + &| # k for all £. Let now & be a cut-off value and ¢, € Z with
6o+ &| = k. Recall that £y = £/ if & = +k. For « in a neighborhood of & we decompose

K(a,¢e) into K(a,¢) = K(a,¢) + p(a) B with

(K(a,e)u,v), = /[2ia Oput — (a* — k*n.) ud) dx
Qh
(30) +2m > wT [iVE = ((+ )2+ [ + 1] + 2mug, g (1+ |6])
¢#0o
(31) pla) = 2mi/k2— (ly+ )2,
(32)  (Bu,v), = wug,Ug

for u,v € H! (Q")where we dropped the argument (a, k) in the coefficients. We note that

per
Bu = (u,b),b where b € H!.(Q") is defined by (u,b). = ug = 5 OQWu(xl,h)e_MO“dxl

per

for u € HL.(Q"). Then K(a,e) is infinitely often differentiable in a neighborhood of
(&,0).

4.3. An Abstract Representation Theorem. In this section we consider (28) in an
abstract setting. Without loss of generality we assume that the critical value is & = 0.

Setting and Assumptions: In the following theorem let H be a (complex) Hilbert

space, K(a,¢e): H— H and r(«a) € H for (a,e) € (—dg,00) X [0,d9) C R x R be families

of compact operators and elements, respectively. Set L(a,e) = I — K(a,¢) and assume

that 1 is a semi-simple eigenvalue of K(0,0); that is, N'(L(0,0)?) = N(L(0,0)) where
15



N(L) = {x € H : Lv = 0} denotes the nullspace of an operator L. Furthermore, let
P : H — N C H be the projection onto the finite dimensional space N := N(L(O, 0))
with respect to the direct decomposition H = N ®R where R := R(L(O, O)) We assume
that this decomposition is orthogonal with orthogonal projection operator P : H — N.
Let @ := I — P the projection onto R.

Furthermore, we assume that K (o, ¢) : H — H has the form K (o, &) = K(a,¢) + p(a) B
where K (a, €) depends smoothly, i.e. infinitely often differentiably, on (a, &) € (—do, o) X
[0,00) and p : (—dg, d9) — C is continuous with p(0) = 0 such that p(a) # 0 for o # 0 and
a — p(a)? is smooth with - [p(a)?][a—o # 0. (Essentially, p is the square root function.)
Furthermore, B : H — H is a one-dimensional operator, given by Bv = (v,b) b for v € H
and some b € H. 3 )

We denote the projections of the partial derivatives of L(a,¢) := I — K(a,¢) at (0,0)
by M, := P(?QIN/(O, 0) and M. = z’P@Ei(O,O). We assume that M,|[y and M|y are
self-adjoint, and M. is positive (i.e. (M.u,u) > 0 for u € N, u # 0).

Let Aj be the orthogonal complement of Pbin A, i.e. Ny := {¢p € N : (¢, Pb) = 0} =
{op e N :(¢,b) =0}. (If Pb =0 then Ny = N.) Let Py : N' = N be the orthogonal
projection, given by Pyv = v — <U,Pb>ﬁ = —(v,b)ﬁ, v € N. (The operator Py is
the identity if Pb=10.) Then PyP is the orthogonal projection from H onto Nj.

Since also the operators PyM,|n;, and PyM, |y, are self-adjoint and PyM.|a; is positive we
can consider the following self-adjoint eigenvalue problem in the finite dimensional space
Np: Determine )\, € R and non-trivial ¢, € Ny, £ =1,...,m, (where m = dim Ny) with

(33) PoMage = MPoM:y .

The eigenfunctions corresponding to different eigenvalues are orthogonal with respect to
(u,v)ar. = (u, M.v). We normalize the eigenfunctions by (¢;, ¢¢) . = d;-

If N # Ny we extend this basis to a basis in A by defining qg e N by

- L N (M P 60 }
(34) ¢ = ”PbHZ[Pb ; " dol -

We note that ¢ € A is uniquely determined by (gg, Pb) =1 and <P0Magz§, ¢¢) = 0 for all
(=1,....,m.

We assume in addition that PyMy|n; : No — Np is one-to-one, i.e. Ny = (My¢y, ¢¢) # 0
forall{=1,...,m.

Under these assumptions the following auxiliary result holds.

Lemma 4.5. Let Aj(a,€) be smooth and uniformly bounded for j = 1,2. Set U° :=
{(a,e) € (=9,0) x [0,0) : (ov,e) # (0,0)} and define D(a,e) : Ny — Np by

D(aye) = [RyPL(a,e) — PyPL(a,e)(Ai(a,€) + pla) As(ev, €)) QL(a, )]y, -

(a) Then D(«,€) is invertible for (a,e) € U for sufficiently small 6 > 0 and

| D(av,e)7Y| < ¢/vVa?+ &2
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(b) Forr € Ny the solution w = w(a,e) € Ny of D(a, e)w(a,e) = r has a decomposi-
tion into w(a, ) = wo(a, e) +wi (e, €) + p(a) we(a, €) where wy is given by

Z)\ga—ze ’

and w;(a, €) are smooth in U° and w;(a,e) = O(||r]|) for j = 1,2 uniformly with
respect to (a,¢).

(¢) If r = r(a,e) € Ny is of the form r(a,e) = ri(a,e) + p(a) ra(a, ) with smooth
ri(a,e) = O(Va? +e?) then the solution w(a,e) of D(a,e)w(a,e) = (o, €) has
a decomposition into w(w,e) = wi(a, €) + p(a) we(a, €) where w;(a, ) are smooth
in U® and uniformly bounded.

Proof. (a), (b) Using the linearization of Iff}(a, ¢) and PL(a,¢) = P[L(a, ) — L(0,0)] =
O(Wa? +e?) and L(a,e)|n, = [L(a,e) — L(0,0)]|n, = O(Va? + €2) we have

D(a,e) = [aPyMy —iePoM.] — Bi(a,e) — pla)Ba(a,e)
where B;(a, ) are smooth with Bj(a,e) = O(a?+¢?). Set S(a,¢) = [aPyM, —ie PoM,]™*

which is given by
(r, de)
Slave)r = Z ApQr — za

From this we observe that ||S(«,¢)|| = 1/va? + 2. The equation D(q, e)w(a, &) = r is
therefore equivalent to

[I —S(a,e)Bi(a,g) — p(a) S(a,e)Bs(a, &) Jw(a, ) = ,e)r = wo(a,e) .

(cv
Note that S(a,e) and Bj(a,¢) are smooth in U° and S(a,e)Bj(a,e) = O(Va? + £2).
The Neumann series argument yields w(«,e) = S(a, e)r + wi(a, ) + p(a)wsy(a, g) where
w;(a, €) are smooth with w;(a, ) = O(||r|).
(c) In this case we have wo(a,g) = S, &0 o o i) ST (2@ o, ang the

Apa—ie Apa—ie
sums are smooth in U° and uniformly bounded. U

Now we can formulate and prove the main functional analytic theorem.

Theorem 4.6. Let the assumptions at the beginning of this subsection hold. Set again
U :={(a,e) € (=6,6) x [0,9) : (a,e) # (0,0)} for § > 0.

(a) Then the operators L(a,e) are invertible for (a,e) € U° for sufficiently small
6>0.

(b) Let the right hand side r(a) € H have the form r(a) = 7(a) + n(a)p(a)b
where n(a) € C and 7(a) € H are smooth. Then the unique solution u(c,e) =
L(a, &) tr(a) of u(a, e) — K(a, e)u(a, g) = r(a) for (a,e) € U° has a decomposi-
tion in the form

(35) Z )\g@—za ¢ + ui(a,e) + s(a,e)us(a,e)
=1

17



where s(a, ) and uj(a, ) are continuous in U° and u;(«, €) are uniformly bounded
for (a,e) € U?, and s(a, €) € C satisfies

36 s(a,e)| < for all (a,e) € U°.
(30 sl € ot for (@9
Finally, ui(c,0) has the form uy (o, 0) = upr(a) + p(a)uia(a) with smooth uy;()
and
<T(0)7¢> 1

(37) li_)I%[S(Oé,g)UQ(Oéag)] - pla)

¢ + un(a) + pla)usn(e) fora#0

where uy; () are smooth in (—0,8) and ¢ is given by (34).
If N = Ny then (35) holds with s(c,e) = 0.
Proof. We use the splitting H = N @ R where again N := N(L(0,0)) and R :=
R(L(0,0)) with corresponding projections P and () := I — P, respectively. Then the
equation L(a,e)u(a, ) = r(a) is equivalent to the set of equations
[PL(a.e) = pla)PBluN(a,e) + [PL(a,e) = p(a)PBJuR(ae) = Pi(a) + n(a)p(a) Pb,
QL(av, e)uM (e €) + QL(a, )u”(a¢) = Qr(a)
for u(a,e) = " (a,€) + uR(a, €) with (uV(a, ), uR(a,€)) € N x R.
We consider first the case Pb # 0, i.e. N' # N, and remark on the (simpler) case Pb =0

below.

We observe that PyPBv = (v,b)PyPb = 0 and (PBv, ¢) = (v,b)(Pb,$) = (v,b) because
(Pb,$) = 1. Applying Py to the first quation and multiplying the first equation by )
results in the equivalent system (note that (Pz, gb) = <zgz5> for any z € H)

(38) PyPL(a,)uN (o, €) + PyPL(cv, e)u™(a, ) = PyPi(a),
(39) (LM (o e) + uR(€)), d) — pla) (M (o, e) + uR (e, €),b) = (7(a), §) + np(c)
(40) QL(a,e)uN(a, e) + QL(a,e)u™(a,e) = Qr(a),

We make an ansatz for uM (e, ) in the form v (o, €) = w(a, e) +ud (a, €) + s(, €)p with
wla,e) =Y £©) ¢; and u) (o, e) € Np and s(a, e) € C. Then (38), (40) is written

J=1 XNja—ie
as
(41) PyPL(u}) +w) + PyPLu® + sPyPLp = P,Pr,
(42) QL(ué\/+w) + QLu® + sQLd = Qr.

It is easily seen that QL(0,0)|g : R — R is an isomorphism from R onto itself. There-
fore, also QL(av,€)|g : R — R are isomorphisms from R onto itself for (a,e) € U° =
[—0,0] x [0, 6] for sufficiently small § > 0. We set A(a,¢) := [QL(a,e)hz}_l : R — R for
abbreviation and recall that QL(«,e) = QL(a,€) + p(a)@QB. The Neuman series repre-
sentation of the inverse (and combining terms with even and odd powers of p) yields the
form A(a,e) = Ai(a,e) + p(a)As(a, €) where A; are smooth and bounded uniformly for

(a,€) € U°. Therefore, we can express u™ as

uR = (A1 + pA2)Qr — s (A1 + pA2) QLS — (A1 + pAz)QLu) — (Ay + pAr)QLw .
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Here we have used that Bw = (w,b)b = (w, Pb)b = 0 because w € Nj.
The first term is (smooth and) bounded, and we write Qr = Qr+np Qb. For the last term
we note that L(a, e)w(a,€) = [L(a, e)—L(0,0)]w(a, ). Since |[w(a, )| = O(1/Va? + €2)

we conclude that also the last term is smooth in U? and bounded. Therefore, we can write

u™ in the form

(43) u® = W 4 palk — s (A + pAl)QLG — (Ay + pAy)QLu)

where @ are smooth in U° and uniformly bounded. We substitute this into (41) and

arrive at
(44) [PoPL — PyPL(A; + pAs)QLJug)
— PyPF — PyPLw — PyPL(af + piy) + s PyPL(A; + pA3)QL¢ — s PyPL¢
— PyPi— PyPLw — PyPL(a} + piy) — s [PyPL — PyPL(A; 4 pA3)QL]6 .
We define w), u} € Nj as the solutions of
(45) (PyPL — PyPL(A; + pA)QL)uyY = PyPi — PyPLw — PyPL(af + piy),
(46) (PyPL — PyPL(A; + pAs)QL)uy = —(PyPL— PyPL(A, + pA2)QL)¢.
Then u) = u) + su2 . On the left hand sides of (45) and (46) we can replace QL by QL
because QBu; = (Y uy, b)Qb = (u uy', Pb)Qb = 0. The first two terms on the right hand
side of (45) are Written as
PyPi — PyPLw = [PyP7(a) — PyP#(0)] + [aPyM, — icPyM. — PyPL(av, €)]w(av, €)
where we used the definition of w as the solution of [aPyM,, —ic PpM Jw = PyPr(0). This

expression is smooth in U? and of order O(v/a2 + €2). Since PyPL(a, &) = PyP[L(c, ) —
L(0,0)] also the remaining terms are of order O(v/a? + £2), and we have a representation
of the right hand sides of (45) and (46) as 71 (a, €)+p(a)ra(a, €) and r3(a, €)+p(a)ra(a, €),
respectively, where 7;(«, ) are smooth in U° and of order O(v/a? + £2).

Application of Lemma 4.5 yields a representation of uj\/ (cv,€) in the form

(47) u) (ae) = wji(a,e) + pla) uh(ae)

for j = 1,2 where u{\]/ (a, 5) € Ny are smooth in U° and uniformly bounded. Now we
substitute u) = w) + suj) into (43) and arrive at u® = uf + sul} where

(48) WFo,e) = ul(o) + pla) (o)

and ujg(oz g) € R are smooth in U? and uniformly bounded. Using Lg% [:gg + p(g?) b)b =

Lo+ pb and LuJQ\J/ Lujz\g + p(uQJ, byb = Lu2 and sorting terms we note that u} (o, ) has
the form

uy (a,e) = — [AlQIZngS + A QL + p?AQb + pzAQQzu%]

2, R

4
() — p(@) (@, 2) + u¥(a, <)

where ul¥(a, €) is bounded and uf¥(a,¢) = O(vVa? + £2).

The scalar quantity s = s(a, ) has to be determined from (39). We substitute v =

w+ )Y + s(u) + ¢) and u® = uR + sul into (39) and collect the terms with the factor
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s. This yields s(a, &) = Spum (@, €)/Sden(, €) where
(50) saen = (L(wy" +0),0) + (Luf, ¢) — p — pluz,b),
(51) Swum = (7,0) +np — (L(u +w),0) — (LuF, é) + p(uf’,b).
Here we used <u§‘/,b> = (w,b) = 0 and (},b) = 1. Multiplication of (46) by u} € N
yields (with (PyPz,u)) = (z,u}) for all z € H)
(L' + @), uy) = (L(AL+ pA)QL(wy + 8), u3")
= (L(A1+ pA)QL(wy + ), ud") + p(L(A1 + pA2)Qb,1s”) .
Addition of this equation to (50) yields
Sden = <E(u/2\/+ ¢E) UJQV"‘@ <Eu§,¢?> — p — plug,b)
—<LA1—|—pA2)QLu2 —|—q§ >—p< A1+pA2Qbu2>

We determine the behavior at («, ) = (0,0) for the terms appearing in this expression of

(52)

Sden - _ _
First we note that PL(a,€) = (\/042 +¢2) and L(o, e)|p = O(vVa? +¢€2). This yields
already <PL (Ay + pAr)QL(uy + u)') = O(a? +¢€?). The first term in (52) behaves as

<PL(U2 ‘|’¢>7U2 +¢5> = a<Ma(U2 +¢),u2 +¢g>
—ie(M(u) + §), w5 + ) + O(a® +27).

Then we recall u} = ul + pu22 = p(pu3 + u22) + ul with bounded puX + u}, and

ul = O(Va? 4 2). Therefore, (Luf,¢) = (PLuR, ¢) = O(a? + £2) + p(a)O(vVa? + £2)
and plul, b) = O(p(a)Q) + p(a)O(vVa? + €2). Finally, the last term in (52) behaves as
(PL(A; + pAy)o, u}'y = O(Va? +€2). Summarizing, sg, has the form
saen(,€) = alMa(uw) + §),uy” + ) — ie(M(uw + ), w5 + )

+ arfae) — pla)[1+ax(a.e) + pla)as(a, o)
with ai(a, €) = O(a? + €%) and as(a,e) = O(Va2 + €2) and as(a, ¢) is continuous in Q°
and bounded. We show the existence of 6 > 0 and ¢ > 0 such that
(54) |Saen(c,€)| > c(|p(@)| +¢) for all (a,e) € U°.
If this claim does not hold there exist sequences a;; — 0 and €; — 0 and ¢; — 0 such that
Sden(&jagj) =G (‘p(aj)l + 6]’)7 Le.
(55) o (Ma(wy(7) + 6). ) (7) + &) — &5 s + M- () + 0), w3y (5) + )
|p(04j)|1 _

faage) — pla >[1+a2<aj,ej>+p<aj>a3<aj,ej>+cj .

where u) (5) == u}(a;, ;). We set aj = az/yJoi + e and é; = €5/, /af + 5. Then & +

5 = 1 and there exist convergent subsequences &; — & and &; — ¢ and u}/(j) — @} in H
for some @, € Ny. (Note that Nj is finite dimensional.) Then (Mo (uy N +0),ud (1) +¢)

and (M, (1 ()+9), 1w (7)+6) converge to (M (@ +3), 2 +) and (M.(ad+3), a3 +5),
respectively, which are real.

(53)
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Division of (55) by /a2 4 €3 and letting j — oo shows convergence p(«;)//a3 + €7 to
some p with Im p > 0 and

QM (i + @), 4 +d) — E(M(a) + ), @ +¢) = p

Since M, is positive and ﬁé\/+§£ # 0 and Im p > 0 we conclude that € = 0, i.e. — 0.

\/m
This implies Z—J] — 0 and thus also ;/p(c;) — 0. Division of (55) by p(a;) and using
a;/pla;) — 0 and £;/p(a;) — 0 and ai(aj,&;)/ple;) — 0 yields [1 +---] — 0, a
contradiction. This proves (54).

Therefore, s = s, ¢) is well defined. Since the numerator $,,,,, is uniformly bounded we
have an estimate of s(a, ) of the form (36).

We recall the representation

w(e,e) = uN(a,e) + uR(a,e)
w(a, ) +u) (o, e) + uf(a,e) + s(a, &) [ud (a,e) + & + uf(a, )]
= w(a,e) +upy (o, €) +ufi(a,e) + pla)[ugg(a, e) + ufs(a, e)]
(56) + s(a, e)upy (a, €) + s(a, €)p(a) [u22(oc £) + uly (e, €)]
+ s(a€) [¢ + udi ()] -

The term with s(a g)p(a) is certainly bounded. Furthermore, we recall that u} (a,e) =
p(@)?ul (o, €) + uf(a, €) with bounded uf(«, ) and uf¥ (o, €) = O(v/a? + €2). Therefore,
also s(a, e)ul (o, €) is bounded. Therefore, u(a, €) has a representation in the form (35)

with ug(a, €) = ¢ + uh (a, €).

Finally, we consider the limit ¢ — 0. We note that w(a,0) = £ 37", (0) %) ¢,. From
the discussion of the pair (45), (46) we note that the functions r; (a 0) appearmg on their
right hand sides are now smooth in (—6,0) with r;(0,0) = 0. This implies that all of the
functions wu; (a 0) and uf(a,0) and uf (e, 0) and uf¥ (e, 0) from (47), (48), and (49) are
smooth in ( 9,d). We go back to the definitions (50) and (51) of Sgen, and Spum, respec-
tively. With u = p(pul}l +uly) +ulf we conclude that sze,(c, 0) has the form sg., (o, 0) =
—p(a) + z(a) + p(a)z3(«) with smooth functions z9, z3 which satify z;(0) = 0. Analo-
gously, since (L(a, 0)uR(a,0), ¢) = (PL(a, 0)uR (ar,0), ¢) + p(a)(PL(a, 0)uR (ar,0), ¢) we
conclude that S,um(a, 0) = (T(a), @) + p(a)zo () + 21 () with smooth functions zg, z; and
21(0) = 0. Therefore,

(7(a (>§>> (a)zo<a>+z(1<§z> _ 09 L ) 1 o) sa(a)

+ zo() + pa)z3(a pa)
with smooth s;(«). Therefore,

‘@\) ||

s(a,0) =

s(a,0)uz(a,0) = | =5 4 s1(@) + pa) so(@) | [+ udi(a,0)] .
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Next we recall that u) = u)| + pud) solves (46). For e = 0 we devide (46) by o and let
a tend to zero. This gives the equation PoMauév(O, 0) = —PyM,¢ and thus

m

PM a
a(0,0) = 1(0,0) = ZM@ _ oy (Ma9idy) f‘”@ -

j=1 A j=1 J

Collecting the terms with p(«) yields the representation (37). The form of u;(«,0) is
obtained from (56) when we use s(a, 0)p(a) = —(7(0),¢) + s1(a)p(a) + p(a)? so(a).
The proof is finished for the case Pb # 0.

Let now Pb = 0. Then all the arguments of this previous proof are valid if one replaces
Pb and s(a, €) by 0. O

4.4. Checking the Assumptions of Theorem 4.6. Let & be a critical value, i.e.
a € A, and h > hg. We check the assumptions of Theorem 4.6 for both cases, i.e. & is not
a cut-off value or & is a cut-off value, i.e. & = +x if we decompose k again as k = (+k
with £ € Z>o and k € (—1/2,1/2]. By Assumption 3.9 we assume x € (—1/2,1/2), k # 0,
and +x € A. Of course, the critical value & has to be moved to & = 0 when we apply
Theorem 4.6.

Case 1: & € A is not a cut-off value. Then M(&) = Mpan(@), and L(«, €) is smooth
with respect to both variables. In this case Theorem 4.6 has to be applied with b = 0,
thus also Ny = N' = N'(L(&,0)). To clarify the connection between M (&) = Meyqen (@)
and the null space N of L(&,0) we define the operator Js : M(&) — HL (Q") by

(Jag)(w) = e M(x), z€Q", ¢ € M(d).

Then J; maps M(&) onto N = N(L(&,0)) as seen above from the construction of
L(a,e). To connect the basis of M(&), contructed in Lemma 3.11, with the basis of
N := N(L(&,0)), determined by the eigenfunctions ¢, of (33), we need the following
result. It contains the case of & being a cut-off value (needed for Case 2).

Lemma 4.7. (a) Let & € A not be a cut-off value. For w, ¢ € Meyan(&) we have

(57) <%L(&,O)J&w,Jd¢> = —Zi/qﬁamwd:v = E(w,¢).
* QOO

Note that in this case M(&) and Mepan (&) coincide.

(b) If & = +k is a cut-off value then (57) holds for L(£k,0) replacing L(é,0). Fur-
thermore, if g= € M(%k) is the unique element from part (c) of Lemma 3.11 which
is orthogonal to M eyan (k) (with respect to E) then <a (E= O)Ji,.cgb Jiﬁ(b>
0 for all ¢ € Meyan(EK).

(c) Forv, € H.(Q"). we have

(58) %<fz(d,0)v,¢>* = %<L(d,0)v,¢>* = —k‘%’/quﬁdm

Q"o
22



Proof. (a) Since ¢ and w are evanescent we have ¢y = wy = 0 for [( + & < k. With
v = Jaw and Y := J4¢ we have

(L(aye)v, ), = /[VU Vi — 2@04 — w + (a® = k’n.)vi] dz
Qh
+27T Z wg@ (€+Od)2—/€2

[0+&|>k

for a close to & (such that also |¢ + a| > k). Therefore,

P ) ‘ - — (+a
9 (L@op.p), = -2 / Ouo+idu]Fd+2m 3 wifi s
[0+é&|>k
- /qﬁ@xlwdx + 27 Z wy P ( ) 3
[0+&|>k

Since w has the representation
Z w, T efm(mgfh)
[¢+6|>k
and analogously for ¢ we compute

/ &axlw d$ — 47T Z Wy (bf g _|_ C( / \/(lL|*0A4)72*]€2(3327]7,)dl.2

Q\Q" [e+6|>k

{4+ &
= 2m Z —
P \/ L+ &)? — k2

which shows the first identity in (57). The second is shown by partial integration with
respect to x; (note that x1 — w(x)¢(x) is 2r—periodic).

(b) The proof follows exactly the same lines because 2((I — K(&))Jaw, Ja¢), has the
same form as 2 ((I — K(&))Jaw, Ja¢), whenever wy, ¢, vanishes.

(c) This part is obvious. O

We continue with Case 1 and note that (v,¢) — i2(L(&,0))v,), is hermetian and
positive on N := N(L(d,O)). Indeed, i%<L(d,0)v,v>* = 0 implies that v vanishes on
the support of ¢. Since v € ./\/(L(d, O)) is of the form v(x) = e 1 ¢(z) with some ¢
satisfying the equation A¢ + k*n¢ = 0 the unique continuation principle implies v = 0
everywhere.

Therefore, this lemma implies that the eigenvalue problem (23) is equivalent to

0 0
(59) a—&<L(&,0)¢e,¢>* = m%@(@,om,@* for all ¢y € N/
for ¢y = Ja¢' = e7"1¢¢|on € N which coincides with (33) in the case b = 0.
Assumption 3.10 and Lemma 3.8 implies that M, = P%L(d, 0)| is onto to one.

Therefore, in this Case 1 all of the assumptions of Theorem 4.6 are satisfied.
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Case 2: & € Ais a cut-off value, i.e. & = +x. By (30) the operator L(a, €) has a decom-
position into L(a, &) = L(a, ) 4+ p*(a) b* in a neighborhood of £+ where b* € H!.(Q")

had been defined by (¢, b%). = ¢ ;(£k, h), see the definition of B in (32), and p(a) =
271 \/k2 — (£0 + a)?, see (31). We note that p? is smooth with L [p(+r)?| = £87%k # 0.
The subspaces M.,an(£k) are either equal to M(+£k) or are subspaces of co-dimension
one. Therefore, the subspace Ny of N := N(L(%k,0)), defined as in Theorem 4.6 by
= {u € N : (u, Pb*) = 0}, is exactly the image JioMpan(Er) = {Jreu @ u €
Mevan(j:'%)} of Mevan<:|:'%> Le. NO Jiﬁ evan(i/ﬂ)-
The eigenvalue problem (23) for the construction of a basis of M., (k) is again equiv-
alent to the eigenvalue problem (59) in N, i.e. for ¢y = Ji.¢" and ¢ € N.
Furthermore, part (b) of Lemma 4.7 implies also that the restrictions Jindt € N of
ot € M(=£k) from Lemma 3.11 satisfy (Majiﬁqgi,JiHaS} = 0 for all ¢ € Meyan(Er).
Since also (Jy 0%, b%), = q@ig(im, h) = 1 we conclude that Jo.¢* € N is exactly the

function ¢ € N from the abstract theorem.

Therefore, also in this Case 2 the assumptions of Theorem 4.6 are satisfied.

4.5. Proof of Theorem 4.1. Let & € [—1/2,1/2] be fixed. Two cases can occur.

Case 1: & ¢ A, ie. & is not a critical value. Then L(&,0) is an isomorphism from
H]..(Q") onto itself. Since L(w,e) depends continuously on (a,e) the operators L(a,¢)

are isomorphisms for all (a,¢) in a neighborhood of (&,0). Furthermore, since r(«)

depends continuously on «, also (a, €) +— L(a, )" 'r(a) is continuous.

Case 2: & € A, ie. & is a critical value. Application of part (a) of Theorem 4.6 yields

that L(a,e) = I — K(a, ) is invertible for (a,¢) # (&,0) in a neighborhood of (&, 0).

Therefore, for every & € [—1/2.1/2] there exists a neighborhood U of & which contains at

most one critical value. Since [—1/2,1/2] is compact finitely many set U suffice to cover
[—1/2,1/2], and the proof of Theorem 4.1 is complete.

As a next step towards the proof of Theorem 4.2 we apply part (b) of Theorem 4.6 to
(28).

4.6. Local Representation of the Solution in Q". Since r(a) is smooth the assump-
tions on r(«) are trivially satisfied.

We define the punctured neighborhood U? = {(a,¢) € (&; — 6,65 + 6) x [0,6) : (a,e) #
(djv O)} of (dja O)
We fix j € J and consider first the case j = +1, i.e. &; = £x. We recall that

pE(a) = 27m'\/k2 — (£l +a)? =27mivV/ETaV2 +k+ o
which has a square root singularity at £x. Application of part (b) of Theorem 4.6 provides
a representation of the solution v(a,¢) of (28) as

§2 (), ),

)\g:ﬂ(Oé F :‘i) — 1€

TG ot a,e) + 5(0,€) vF ()

v(a,€)
=1
m41

gim¢ L2(Qo ir
- maEa s+ o) + et
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for (a, ) € UZ, where we used the definition (29) of r(a). We wrote ¢**! for ¢“*!|on for
simplicity. The parts v7™'(, ) and v3 (a, ) are uniformly bounded for (a,¢) € UZ,, and
s*(a, €) € C satisfies

(60) |s%(a, 8)| < for all (a,e) € U2, .

c
[P ()] + e
: +1 +1 +1
Finally, 7' (e, 0) has the form vF' (o, 0) = v (a) + p*(a)vi! (a) and
<T(:|:/i), e:anxlgbi)

lgré[si(a,a) vi(a,e)] = — e “eFrgE 4 v (a) + pF(a)vs (a)
<gin(i’i)7§5i>L2 Q"o ikz1 ]
- REEDEHE et ui(a) + () )

for 0 < |a| < 0 where Uil(a) € H..(Q") depend smoothly on o. We note that
(9a;:0) r2groy = (f,0"7) L2qwnoy by the definition of the Floquet-Bloch transform g,
of f. Transformation to the a—quasi-periodic solution u,. € HL(Q") of (7) (where we

indicated the dependence on ¢) yields the representation

m41 /,+
f Qb L2(Who)
61 z(a:Fn):m (,+1 +1 +1 :
60w Zmlan_w S ,e) + s (e (a.2)

for (a, ) € U2, where uil(a,g) = eiwlvj-d(a, e) are uniformly bounded and
it
62 lim[st (o, &) ut(a.e)] = _Mei(a%)m
) 2 )

7+ U uE o
u 7 (a) ¢~ + 21()+P()22<)

for all 0 < |a|] < d. The convergence in understood in H'(Q"). Since the functions
are quasi-periodic the convergence holds even in H'(Qf") for all R > 0 where QF" :=
(=R, R) x (0, h).

For j € J with |j| > 2 the same representation as in (61) holds without the last term, i.e.

<f ¢ >L2 Who)

i(a—aj)r1 10,j J
e + uy(a, €
A jla—é;) —ie ¢ i e)

=1
in U? where W (a,€) € HL(Q") are uniformly bounded. Furthermore, u!(a,0) have the
forms u!(a,0) = ul, (o) + p(a)uly(a) with smooth u/, ().
We now set U := (=1/2 —6,1/2+6) \ {&; : j € J} and choose functions n; € C*(R),
j € JU{0}, with suppn; C U; and Y n;(a) = 1 for all a € [~1/2,1/2] (partition of
unity). Therefore,

Uae = no(a)ua,e + an(a> Ua,e
jeJ

L2(Wh0 i(a—a&j )z 40,7
= auas + E 77] E )\ 6( i) 1¢,]
0,5 Oé—OéJ — 1€

JjeJ

I OIACH: +5m1351gn](0z e)u(a,e)], () € [-1/2,1/2] x (0,6).
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4.7. Proof of Theorem 4.2. Recall that wu. is the inverse Floquet-Bloch transform of
Q> Uge, 1.€.

1/2 . 1/2
J
_ _ l,5 nj(a) i(a—a; )z 0,7
U = / ua,s doa = ZZ<JC7 (b J)LQ(WhO) / >\Zj<a _ OAéJ) — e € ’ 1da¢ J
“1/2 jeJ =1 12
63)
( 1/2 1/2
+ Z / n;(c) [u{(a,e) + 0151 $¥E (o, €) ué(a,e)] do + / o () U e dav
i€ /2 ~1/2

in W" where w)(a, €) and (e, €) are uniformly bounded in H'(Q"). We now consider
the limit as € tend to zero. The first integral had been is investigated already in several
papers, we repeat the arguments for the convenience of the reader. First we write

1/2 ) . é )
/ 7 (a) ei(a—dj):cl do — / 7j (a + aj) -1 elar g0, + / e do
)\g,j(oz - d]) — 1€ )\gd‘a — 1€ /\&ja/ — i€
—1/2 -5 -5
and note that the first integral converges to l% 55 % e*®1 do (uniformly with

njlatdy)—1 773(0‘+é‘j) n; ()

respect to x;) which represents a H'—function because - is
smooth). Partial integration shows that this part decays as 1/|z,| as 1 — +00. In the
appendix we show that

1 ) 271
(64) lim [ com gy — =
=0 Agjo —ig RY¥]

1)

Y7 (1)

uniformly with respect to |z1| < R for every R > 0 where o = sign A, ; and

1 | 1 [ sint

65 + = - 4 = ——dt, eR.

(65) V) = & 2 [ e @

For the remaining integrals in (63) we use Lebesgue’s theorem on dominated conver-

gence. Indeed, ||n;(a)ui(a,e)|mgr < ¢ and ||no(a)uac | migr < ¢ (because 7o vanishes

in neighborhoods of &;) and |ni1(a)s*(a,e)uy" (o, )|l grgrny < c(R)/|p* ()| for every

R > 0 where again Q%" = (=R, R) x (0,h). This term is intergrable with respect to

Q. Furthermore we have pointwise convergence for almost all a. Therefore, we conclude
. 170 :

that f 12 M(c) ui (e, €) da and f_{/Q No(@) Ug - da converge to f 12 M5(c) ui(ev, 0) dev and
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flﬁz no(a )uaoda, respectively, in HY(W"), and f_lﬁg Ne1 () st (a, e) uz'(a,e) da con-

verges to f 12 ne1(a) sT(a, 0) ui' (e, 0) da in HY(QR") for all R > 0. We write again

1/2 1/2
/ ner(a) 5% (@, 0) v o, 0) da = —{f,6%) e / Zil(g)) TN da G
~1/2 ~1/2
1/2
4 [ nate) [ (0) + p* (@) (@) da
~1/2
(66) +r+6 ( ) ]
~ o) — ) A
<f Cb >L2 who) @i(%)ﬁbi <f Cb >L2 WhO)i[(s %g(a%)m da Gbi
1/2
4 [ neate) [ (0) + p*(@u (@) da
~1/2
with
+r+6 1
(67) (1)) = — / pi_(a)ei(a%)m da, x1 €R.

The second and third term on the right hand side of (66) represent functions in H*(W")
because the integrands are bounded. They decay as O(1/|x;|) which is seen as follows.

First we note that L=l — mal@=l_a  _ A+(4))%(q) for some smooth function
p=(a) a  p=(a)

A*(a). The integral ff:j; A*(a)p*(a)da decays as O(1/|x1]) as seen from the last part
of the proof of Lemma A.2. In the same way it is seen that the last integral of (66) decays
O(1/]a1])-

Summarizing we have convergence of u. to some ug which is of the form

up(z) =u(z) + Z Z sl f¢ Y 2oy (1) 6% (2)

J€J Mg j >0

(68) i Z Z 271 f ¢€ >L2 Who)w (xl)gb (l‘>

GEJ A ;<0 [Acsl

+ (f. 0" ) L2(Who) P ot (1) o () + <f7€5_>L2(Who)90_($1)95_($)

where @ € H'(W") decays as 1/|x1| as z; — Fo00. The convergence is in H!(Q™") for
every R > 0 where again Q" = (=R, R) x (0, h).

Since also h > hy is arbitrary we have convergence in H(Q®") for all R > 0 and h > hg

of u. € H}(R3) to some function uy which has the form (68).
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It remains to transform the representation (68) into the form (25), (26). We decompose
YE(z1) and p* () as

VH(z1) = () + [T (o) — £ (m)],

67271'/4 67l7r/4

) = —— £ (n, ) — ——

and use the asymptic behavior ¥*(x,)—£%(z1) = O(1/|z1]) and ™= (x;)— _2”;‘4 *(2y) =

O(1/|z41]) as |x1| = oo (Lemma A.1 and Lemma A.2). Therefore, we can spht ug from
(68) into the form ug = uh ™ + up® with ul™”, w5 from (25), (26), respectively, with

aa) = Z (7 (21) — £ (1) Z Z sl L2(Who)¢é’j(x>

| €J|

£ (1)

oe{+,—} Jj€J oA ;>0
~ i z7r/4 . Y 1 .
T ) +U€{§+;_} {so (w0~ el >] D) = ).

Then @ € H}(R?%), and @@ decays as 1/|z1|. The proof of Theorem 4.2 is complete.

5. THE OPEN WAVEGUIDE RADIATION CONDITION AND UNIQUENESS

5.1. The Open Waveguide Radiation Condition. Theorem 4.2 describes the behav-
ior of the solution ug in the z;—direction. It remains to construct a radiation condition
which describes also the behavior as zo — co. We show first the following representation
of uy® from Theorem 4.2 in the half plane xq > ho.

Lemma 5.1. The radiating part up® from (26) can be expressed as

upla) = 5 [ Rolw) [ blo — o)) ~ B Kl = 7)) dy
(69) Z.R%‘)
4y [ 2, HE (ke — g dsty) in B,

0

where now y* = (y1,2ho—1y2) ", Ry = RxX (ho,00), and Ty = Rx{ho}, and Ry € L*(R3,)

s given by

5
(70) Ry(z) = ZZ Z s 0 i) /[2 00y 0™ () +ic ¢ (2)] € dax .

IV
jed =1 b s
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Proof. We go back to the representation (63) of u. and define

)

ro 1 T 0,7
) = S (g szhO/AN_w da 9"(a),
—0

jeJ £=1

)

ra (o +a5) —1 iox j
= Y S sy [ PELELIZE comg g
-0

o Ao jo — i
1/2 1/2
+Z / : U1 a,e) + 01 S5 (v, €) 1 (e, e)] do + / Mo () U e dov.
I€T 19 ~1/2

We recall from the proof of Theorem 4.2 that u£™? and ul® converge to uh ™ and ujy™,
respectively, where ul"” and uf®@ are given by (25) and (26), respectively.
We prove first a representation of u’® for zo > hg analogously to (69). We observe that

u’*? satisfies the boundary value problem

(71) (A + kHul = —R, for my > ho, u' =S, for x5 = hy,

£

where

R.(z) = Z

1)
1 iaxy 4 f,j
v [ 5 B+ R [E 0H)] do
-4

L2 WhO /L |:2 a.’El gbe’](x) + iy ¢Z7j (x)] eiazlda7

Zw )
/=1
_ ;;w ) Sy

and S, = ug“d|ph0. We note that R, is a linear combination of terms of the form

0

1
2l - . o . .
iazy g ax £,j d / iazy g l,j .
/ A jo — e ‘ @0y (z) an A jo — ig ‘ ag™(z)
s Z

As inverse Floquet-Bloch transforms of smooth functions the integrals are L?(R)—functions
with respect to x;. Since ¢/ decay exponentially with respect to x5 we conclude R. €
L*(R3,). Furthermore, S. € H'*(I',). From the radiation condition (4) for u. we have

Oua (Fur™) (€, ) — i/ k2 — €2 (Ful™)(€, 2»)

£

=[O (Ful"T) (&, 1’2) — i/ k? = €2 (Ful"")(§, a2)]

which converges to zero as xy — oo for every fixed & € R. Therefore, u"® satisfies the
radiation condition

(72) Oy (Ful™) (€, w2) — i/ k2 — € (Ful™)(§,02) — 0, w2 — 00,
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for almost all £ € R. Application of Lemma A.3 yields the representation

wia) = 5 [ R [H Fe — ol) - B Gl — )] dy

R2
(73) o
] .
b5 [0 0, B e~y dsty) n .

Thy

We will now show that we can take the limit in (73) as e — 0. It is easy to see that R.
converges to Ry, given by (70) uniformly in the sense that

|R-(z) — Ro(z)| < ce|lnele ™ forz €R;, .
Indeed

/

o _
e oro

— 2(0,, 0" + |a| |¢% (2)]] da < ¢ / d
S | 2100 @) lal 6 @] do < ol e

and f\/—f—ij <C‘1n€|

Next, we recall from Theorem 4.2 that u’® converges to u5® locally, i.e. in H'(Q®")

for every R > 0 and h > hg. Furthermore, since % and ) (-, a, ¢) (for £ = 1,2)
»J

and 7)(@)uq ¢y are uniformly (with respect to a and €) bounded in H'(Q") and are quasi-
periodic we have global boundedness of S. in the sense that, for any m € Z,

ra |77 OK"‘OC | .
sy < 3506 / e da 6 oy
4,5

jeJ =1
1/2 1/2
=3 [ @l @l + [ (o) el oy da
I€T_1/2 ~1/2
a;+46
+Z / |p51gn3 |||uQ( , 0, )|l gn y do
i=la;—s

< ¢ foralle>0and meZ,

where Q" = (2mm, 2mm + 27) x (0,h) and ¢ is independent of ¢ and m. Therefore, for
fixed x € Rho,

ul(z) —ug*(z)] < cellnsl/ e~ H" (k| — y|) — H" (k|z — y*)| dy
R2
2w (m+1)

+35 Z / Tad (Y1, ho) —uS“d (Y1, ho) ||8y2H (k]x ?/’)‘yz=h0|dy1'

mEZ -~
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First we consider the integral over R} which we split into the bounded ball {y : |y—z| < 1}
and the unbounded complement {y : |y — x| > 1}. The integral over {y : |y — z| < 1}
converges because of the weak singularity at y = z. For the region {y : |y — 2| > 1} we
use the estimate

(1) (1) T2 + Y2
(74) |HV (k| — y)) — HEY (Kl — y*|)| + [0, H" (klz — y])| < ST

for z,y € R} , |v —y| > 1 (see [4]). Therefore,

o (1) (1) . —oys T2t Y2
| e e =)~ B e =Dy < ¢ [ ety
ly—=z[>1 ly—z|>1
which shows convergence of this part.
For the line integral we split the series into |m| < M and |m| > M. We estimate

2m(m+1)
Z / |Tad(yl,ho)—uo (y1, ho) ||8y2H (klz — y|)|y2:h0|dy1
|m|>M 2mm
27r(m+1
yl,ho)—ug “(y1, ho)|
S l'2+h0 Z / 213 dyl
_ /4
SR D
2m(m+1) 1/2
rad rad dyl
< (o + ho) sup [[u2(-, ho) — w5 (-, ho)ll 2,y D =P
meEZ |m|>M = or, ‘xl B yl|

. 1
<) EEE

jml>M

where I, = (2mm,2mm + 27). Here we used the Cauchy-Schwarz inequality and that

;:;mﬂ) ‘xldy; s behaves as O(|m|™3). Therefore, for given small n > 0 we can choose

M such that CZ|m|>M Iml‘*/Q < 7. For this M we use the convergence of u* to uj® in

L2( 2r(M — 1),2n(M — 1)) and the contlnulty of 8y2H( (klx — y|)| for o > hy and

= ho. This yields convergence of 37\ [; |[ul*(y1, ho) — ug™ (1, ho)] |8y2H(()1)(k;|x —

2m(M—1) ra rad
y' ‘y2=h0| dyl - 27(r(M 1) |u d(ylaho) — Ug yth | ‘ayzHO (k‘l’ - y|)|y2=h0| dyl to zero

as € — 0. ]

This result motivates the following formulation of the radiation condition. We recall that
@" are the evanescent modes corresponding to the critical values &; € (—1/2,1/2], j € J,

and ¢* are the non-evanescent modes of a1y = +r (if Meyan(£r) £ M(%5)).

Definition 5.2. Let Assumptions 3.9 and 3.10 hold. Fix Ry > 27+1, and let £ € C*(R)
with £*(z1) = 1 for a1 > Ry and £ (x1) = 0 for 21 < Ry—1. A solution u € H (R%)
of (1); that is, of

(75) Au+knu = —f inR%, u=0 or 0y,u=0 forxo =0,

satisfies the open waveguide radiation condition if u has a decomposition in the
form u = u"* 4 uP™P where
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(a) uP™P and u™* have the forms

(76) W) =YY ) Y an; (),

oce{+,—} jeJ L:oXg ;>0

(77) uz) = @"(z) + £ (1)

respectively, for some ay;,bt € C and @™ € H}RY). If Mepan(£K) = M(£K)
then b* = 0.

(b) For zo > hg the radiating part u™® can also be expressed as

1) wn) = va) + g [ ) 0, H (ke — g dsty) in B,

'y

¢7(x), =e€R%,

0

where v™ € H} (R%O) satisfies the generalized angular spectrum radiation condition

/\am(fumd)(g,@) —ik2—¢€2 (fvmd)(é,xg)‘Qdf — 0, z3— 0.

Here, the space H! (R} ) is defined analogously to H!(R%) in (3).

Corollary 5.3. Let Assumptions 3.9 and 3.10 hold. The solution uy of Theorem 4.2
satisfies the open wavegiode radiation condition of the previous definition with a;; =

oy 1 17r/4
|§£,j| <f7 ¢E’J>L2(Wh0) and bi <f Qb >L2(Wh0

Proof. Tt remains to show part (b) of the radiation condition. Application of Lemma 5.1
yields the form (78) with

ey = / Ro(y) [H (k| — ) — H (k| — )] dy

2
Rho

Since Ry, given by (70), satisfies the assumptions of Lemma A.3 we conclude that v

satisfies the radiation condition (79) which ends the proof. O
5.2. Uniqueness. We show finally that the radiation condition implies uniqueness.

Theorem 5.4. Let Assumptions 3.9 and 3.10 hold and let u be a solution of (1) cor-
responding to f = 0 satisfying the open waveguide radiation condition of Definition 5.2.
Then u has to vanish identically.

Proof. Let u be a solution corresponding to f = 0 satisfying the open waveguide radiation
condition of Definition 5.2. Again, we observe that @ *¢ has the form

) W) =) - Y )| e - Y Y age)]

oe{+,—} JE€J Lok ;>0

In the form of (A + k2n)a™*® the expressions (A + k2n)(¢¢*) and (A + E*n) (£ ¢")
appear where ¢ (z1) = £5(x1)/\/]z1]. Let the pair (¥, ¢) be (¢F,¢F) or (&%, ¢%9).
Then (A + k*n)(¢(x1)d(x)) = 20/ (21)0, ¢(2) + " (21)¢p(z). Since umd and the function

200y, 6 + "¢ are in L2(W") for all h > 0 we can take the Floquet-Bloch transform.
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Therefore (A+k?n)(Fa")(x, o) is a linear combinations of terms of the form F(2¢/0,, ¢+
" ¢)(z,a). Note that ¢ is &; quasi-periodic and therefore, F'(2¢'0,,¢ + ¢"¢)(x, ) =

2(FY) (21, — &) 0p, () + (FYV") (21, — &) p(x). We assume that o € (—1/2,1/2]\ A
and set § = a — @&; for the moment. Then 0 < |B| < 1 and (F¢')(x1, 8) has a Fourier
expansion in the form

(FU) ) = 3 ) m P = 37 F @) + ) s

meZ meZ
with the Fourier transform F(¢') of ¢/ € L*(R) (see (11)). Now we observe that

F@")(m+ B) pilm+B)e:

! = i~x wi h(z =
(F)a, §) = golen ) with e ) = 3= v

dxl meZ
for 0 < |B| < 1. Therefore, we can write
2P (01,0 = )00 + PV (11,0~ o)
= 20(x1, 00 — 45) 0, 0() + V" (21, — G;)p()
= (A +En)[d(z1, 0 —d;)¢()]

for a € (=1/2,1/2] \ A. Now we substitute (1, ) = (¢* ,6F) and (¥, ¢) = (€%, ¢%7) and
denote the corresponding functions 1 by @* and £+, respectively. Then we have from the
Floquet-Bloch transform of (80) that v(-, «), defined by

v(z,a) = (Fi™)(r,a) — Z b 7 (11,00 — oK) ¢° ()
oe{+.—}

= 2 D D i €(wa—dy)et(),

oe{+.—} j€J Lia)y ;>0

satisfies (A + k?n)v(-, @) = 0. Furthermore, v(-,a) is a—quasi-periodic and satisfy the
Rayleigh expansion. The uniqueness result for a ¢ A implies v(-,a) = 0, i.e.

(Far ) (z,a) = > b ¢ (21,0 —0k) ¢ ()

oe{+,—}

+ YYD a0 o — 6y)¢t (x)

oe{+,—} j€J L:oAy ;>0

for all z and all @ € (—=1/2,1/2] \ A. Now we fix ¢+ € J and consider the behavior as
o ~ d&,. Let first |o| > 1 and o = +. The left hand side is in L*((—1/2,1/2), L*(Q"))
by part (b) of the radiation condition and the mapping property of the Floquet-Bloch
transform. The term £*(z;, @ — &,) has been investigated in Lemma A.4 in the appendix
(set B := o — &,), and we observe that this term behaves as 1/(a — &,) and is thus not
in L? (locally at o ~ &,). Since all the other terms are locally (in a neighborhood of
&,) in L? we conclude that Z/\h>0 ag,¢¢, has to vanish identically, i.e. a,, = 0 for all

¢=1,...,m, with A\, > 0. The same arguments, applied to £~ yields that ag, = 0 for
all £ =1,...,m, with A\, <0.

This holds for all ¢ with [¢| > 1. For « = £1 we have &, = £k and, as before, o —
éi(xl,a F k) behaves as 1/(« F k) and thus a;41 = 0. For j = %1 there can also be

the term @*(z1,a F k). Again, by Lemma A.4 we conclude that this term behaves as
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1/y/]a — &,]), and is again not in L?. This shows that also b* = 0, i.e. also Fa"(-, a)
vanishes for almost all o which implies that v = 4% = 0. 0

APPENDIX A. INVESTIGATION OF SOME INTEGRALS
Lemma A.1. Let 6 >0 and A € R, A # 0. Set 0 =sign A\. Then

5
, 2m
elazt g anv e
/)\a—ze « |A| (21)
5

as € — 0 uniformly with respect to |x1| < R for every R > 0. Here,

ox1

t
/ﬂdt r1 € R.

(81) PHa) = 5+

The functions = behave asymptotically as Y*(z1) = 1 + O(1/|x1|) as £x; — oo and
E(x1) = O(1/|21|) as £x; — —oc0.

Proof. We calculate

5 5
iy s ot A .
/ = / [cos(axy) + isin(az)][Aa + ig] o
Ao — ig Ao + g2
) )
5 s
cos(aay , asin(axy)
- /)\2a2+ 5 da +22/\//\2 2+€2 @,
0 0

where we used that the integral over odd integrands vanishes. Let us start with an analysis
of the first term, using the substitution a = te /||,

5 8| /e 8|Al/e
2@,5/ cos(axy) do — 2ie? / cos(texy /|M|) g — 2i / cos(texy/|A]) gt
A2a? 4 €2 |A| 1262 + €2 I\l 1+1¢2
0
Therefore, using the transformation ¢ = axy in the second integral,
5 8|Al/e ( D 5z
et 21 cos(tex tsint
—da = — ———2dt 20N | ———dt
/Aa—z'g Y / 1+ T //\2t2+52x§
-5 0 0
In the limit ¢ — 0, we therefore find
) ) oo dxq oy
e 21 29 sin t sint
dav — — = 1 A— [ —dt]|.
/Aa—z’g “ |)\| 1+t2 / |{ + sign / t ]
_5 0
The convergence is uniform in x; on compact subsets of R. 0
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Lemma A.2. Let § >0 and A € R, A # 0. Then

im/4

. K+8 1 Lo 6— 4 O(l/|x1|), T — 400,
o (z) = —/p+(&) pila=r)z1 g, — Nl
" O1/|z1l) Ty — —00,
and
—k+48 6i7r/4
o) =~ [ %@eﬂwm do = 4 o T O, mo oo,
e O(1/]z1l), 21— +00.

Proof. We consider the integral — [ '{J:;S p+1

pt(a) = 2miv/k — aV/20 + k + a. Therefore,

1 1
@)~ mivihJr—e T VrT ol

¢l@e=m)z1 do and recall that k = ¢ + k and

with

1
Jlo) = 2mi[V2k + V20 + K+ VZE V2 + k+ o

We note that f is smooth for |a — k| < 6. We compute, analogously to the proof of the
previous lemma,

K+0

\/_

za nxlda —1

72611 dﬁ

%\H

dp

5
J
/J[COS Bxy) — zsm(ﬁxl) N cos(fxy) + isin(fxy)
0 wo

0

—(1+1) / cos(fBx1) + sin(Bxy)

d
NG &

, Sz
B V2 eim/4 / cost + (signxy)sint

Vi Vi

dt

Sl
where we used the transformation ¢ = f|z;| in the last step. Since f COSt dt = \/g +

6|z
O(1/+/|x1]) and f S‘“tdt V5 +O(1/y/]z1]) as |21| — oo we obtain
S eiﬂ'/4
— + O(1/|z4]|), x1 — +o0,
e @R oy = \/ 2mk|x
27?2\/ /\/ =
O(1/]a1]), T — —00,
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For the integral f VE —a f(a) @M1 do we use partial integration and obtain

K+0 K+0

/\//{—ozf(a)ei(o‘_”)“doz " VE—afla )—e”‘ R doy
1

Z

k-3
is  HES
o [Ear@et | o [ (VR ) e do
K-
which behaves as O(1/|x1]) since 1/y/k — « is integrable.
The analysis for ¢~ (1) follows the same arguments. O

Lemma A.3. Let v € H}(R} ) for some hg > 0 such that u satisfies the radiation
condition (72) and such that f := —(A +k*)v € L*(R}, ). Furthermore, assume that the
[ satisfies an estimate of the form |f(z)| < |fi(x1)|e™7™ for v € R} and some o > 0
and fi € L*(R). Then v can be represented as

/ F) [HO (k= ) — B (k) — 7)) dy

(82)

)
+ §/v(y) 0y2H[§1)(k:|x—y|)ds(y) for x € R,ZLO

I

where T'p, = R x {ho}. The first part of v satisfies the stronger radiation condition (79)
while the line integral satisfies even (4).

Proof. Let © be the right hand side of (82). The volume potential which we denote by o,
satisfies (A 4+ k%)0; = —f in R} and 9, = 0 on I'y,. This is well known, but we repeat
the argument. We fix xy and consider x in a neighborhood of xy. We split the region of
integration into {y : |y — xo| < R} U{y : |y — 29| > R}. The formula

@+#) [ )5 e =y — B ko = g7 D] dy = ~f(a)

is standard. For the remaining integral we use (74) and estimate |f(y)] [Hél)(k|:z; —yl) —
él)(k\x —y*D] < clfilyr)|e v “*'%32 for |y — zo| > R and the same kind of estimate
for the derivatives. Lebesgues theorem on dominated convergence implies that we can
interchange integration and the Helmholtz operator which shows (A + k?)o; = —f in
Rflo. The line integral which we denote by 0y, satisfies (A + k?)0; = 0 in ]R%LO and 0 = v
on I'y,. This follows from the jump conditions of the double layer potential on I'j, with
H'/?2—densities.
We show that o satisfies the radiation condition (72). This is seen by observing that
both integrals are convolution type integrals with respect to y;. Setting 1 (1, 22, y2) =

ﬂHél)(k\/x% + (29 — W(k/22+ xz +12)?)] and pa(z1,22) =




Z8@/2]—.1 (k\/23 + (22 — ho)?) we express the right hand side © of (82) as

o0

o(z) = /[f(‘7y2) *01(5 T2, y2)| (1) dy2 + [v(+, ho) * a(-, z2)] (1) -

ho
We apply the convolution theorem and use
(‘ngl)(gax%?ﬁ) = +§2 [ei\/ k2—€2|zo—ya| ei\/k2752($2+y2)]
(.F()OQ)(&-, SC2) = 67’ V k27§2($2*h0) )

)

Therefore, the Fourier transform of v is given by

¥ — \/k2—§2|962—y2| _ oV k2= (z2+y2)
(83) (‘FU)(§7x2) 2\/1{;2752/ 6 y2 € :|dy2

+ (Fv)(&, hy) e'VF ~E@a=ho)

Splitting the interval (hg, 00) into (hg,z2) U (z2,00) we obtain easily

o0

00 (F0) (&, 12) — i/k2 — 2 (FO)(,02) = / (FL)(E, yo) e VF €22 g

z2

(84) .
/ FIE ya + a2) V02 gy,
0

and thus

/ 1000 (FO)(E,22) — iR — €2 (FO)(€, va) [P

/ /|ff§yz+x2|d§ /|ff§y2+x2|d§dy2dy2
0

—0o0

[(FA)E v+ x2)| [(FF)E v + x2)| d€ dys dyy

IN
o\
8\8

IN
0\8

2 2

17 1 o
= —\/ﬁ/ﬂf(',b+y2)||L2(R)d?J2 < %Hfl”%?(m /6 (r2tu2) gy, |
0 0

and this converges to zero as xy — oo. Here we used the Plancherel formula. Therefore,
v satisfies (79). Since this is stronger than (72) we obtain © = v by the uniqueness of the
Dirichlet boundary value problem in R} . O
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Lemma A.4. Set p*(z;) = éi(l—\/z_il) for z1 € R. Then

(dJ?lS:t)(m_'_ﬁ) zm /3)561 —
T;Z (m+5) =

1 ezm T [1
W;Z (m—i-ﬁ) /27| 5]

for xy € [0,27] and 0 < |B| < 1 where g]j.E € C'[0,2n] x [-1,1]] for j =1,2.

elF’i,Bxl + gli(xbﬁ) )

T (sign B)i] €7 + g3 (a1, B)

Proof. The series on the left hand side of the first line can be written as

f(dzlgi)(ﬁ) z,Bxl + Z dzlgi)(m—{_ﬁ) m+B)z1

Zﬁ m#0 m_'_ﬁ
Ry
_ 1 i + —itB 31 ifw1 (dﬂ?lgi)<m+ﬁ) el(m+B)z
- z’ﬁ%_l —E5 () et mz s "

because ié‘i vanishes outside of (—Ry, Ry). Partial integration of the first term yields
z}} ;O LEE(t) e MPdt = %fi(t)e’wt‘]_ﬁ) f Ye " dt which yields the desired
result because because £¥(£Ry) = 1 and fi(:FRo) = O, and f_RO (t) e~*dt and the

contribution of the series ) o are smooth with respect to z; and B.

Analogously, the series on the left hand side of the second assertion can be written as

‘F(dil SO:t) (6) 15561 + Z d:c1 )(m + 6) P (m+p)z1

i3 = i(m+ B)
i d
- 5 / Lt e it + 3 Pl )+ 6) niare
i82m ) dt = i(m+ 5)
We consider, for some R > Ry + 1,
. R
—ztﬁdt —  — ot(p)e B R / +(4) e~ B gt
w/dt Sere + [erwe

0

11 R°§+() 1 i
. t) — .

= ——e 4 /—e”ﬁdt + /
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0
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Sl =

The first term tends to zero as R — oo. Therefore,

[e's) R 00

0
1 d 1 fer) -1 1 / 1
Cottye it = — [ S S emitbg 4 — [ By
i/327r/dt¢ (t)e 27r/ N T o) i ©
0 0
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Finally, with the substitution s = ¢|3| we have

SI

oo ] »
— e "dt

/\/5

0

ois(signf) g _ 1 /c Ss—1 51gn ﬁ) sin s s
7l

Wk

= Sl )i

because )~ 2 ds = I Sms S ds = /m/2. The analysis for ¢~ is done analogously. O

[1]
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