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A LOCALIZED ORTHOGONAL DECOMPOSITION METHOD

FOR HETEROGENEOUS STOKES PROBLEMS

MORITZ HAUCK∗, ALEXEI LOZINSKI†

Abstract. In this paper, we propose a multiscale method for heterogeneous
Stokes problems. The method is based on the Localized Orthogonal Decom-

position (LOD) methodology and has approximation properties independent

of the regularity of the coefficients. We apply the LOD to an appropriate re-
formulation of the Stokes problem, which allows us to construct exponentially

decaying basis functions for the velocity approximation while using a piecewise

constant pressure approximation. The exponential decay motivates a localiza-
tion of the basis computation, which is essential for the practical realization

of the method. We perform a rigorous a priori error analysis and prove op-

timal convergence rates for the velocity approximation and a post-processed
pressure approximation, provided that the supports of the basis functions are

logarithmically increased with the desired accuracy. Numerical experiments

support the theoretical results of this paper.

1. Introduction

This paper considers a heterogeneous Stokes problem posed in a bounded Lips-
chitz polytope Ω ⊂ Rn, n ∈ {2, 3}, which we assume to be of unit size. Given an
external force f , it seeks a velocity u and a pressure p such that

(1.1)


−∇ · (ν∇u) + σu+∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω

holds, where the coefficients ν and σ, hereafter referred to as viscosity and damping
coefficients, respectively, encode the heterogeneity of the problem. They may possi-
bly be rough and involve oscillations on multiple non-separated length scales. Such
problems may arise, for example, as part of more complex coupled problems where
the viscosity is an unknown. A specific example is magma modeling, where the
temperature-dependent viscosity can exhibit large spatial variations, cf. [GP10].
Problems like (1.1) can also be used as approximations to (slow) flow problems
around numerous obstacles of possibly small diameter, cf. [ABF99]. In this case,
one sets ν as the physical viscosity and σ to zero in the fluid domain, while assigning
large values to these coefficients inside the obstacles.

The numerical treatment of such heterogeneous problems with classical finite el-
ement methods (FEMs) suffer from suboptimal approximation rates and preasymp-
totic effects on meshes that do not resolve the coefficients. Since globally resolving
all microscopic details of the coefficients may not be computationally feasible, we
aim to construct a numerical method with reasonable errors already on coarse
meshes. For diffusion-type problems, there is a whole zoo of multiscale methods
that use coarse problem-adapted ansatz spaces. Two classes of methods may be
distinguished: First, methods that exploit structural properties of the coefficients,

2020 Mathematics Subject Classification. 65N12, 65N15, 65N30, 76D07.
Key words and phrases. Stokes problem, flow around obstacles, multiscale method, a priori

error analysis, exponential decay.

1



2 M. HAUCK, A. LOZINSKI

such as periodicity and scale separation, to construct the problem-adapted basis
functions. Their computational cost differs from that of classical FEMs on the
same mesh only by the cost of solving a fixed number of local problems. This
class includes the Heterogeneous Multiscale Method [EE03], the Two-Scale FEM
[MS02], and the Multiscale FEM [HW97]. In contrast, methods in the second class
achieve optimal approximation orders under minimal structural assumptions on the
coefficients. This is achieved at the expense of a moderate computational overhead
compared to classical FEMs. This overhead manifests itself in an enlarged support
of the basis functions or an increased number of basis functions per mesh entity.
Prominent methods for diffusion-type multiscale problems include the Generalized
Multiscale FEM [EGH13, CEL18], the Multiscale Spectral Generalized FEM (MS-
GFEM) [BL11, MSD22], Adaptive Local Bases [GGS12], the (Super-) Localized
Orthogonal Decomposition (LOD) method [MP14, HP13, HP22b], or Gamblets
and operator-adapted wavelets [Owh17, OS19]; see also the review article [AHP21].
We mention that the LOD and the MS-GFEM have been applied to Darcy-type
problems, cf. [MHH16, AMS24], which is also of mixed form but different in nature
than the Stokes problem; see also [LM09].

Some of the methods of the first class have been successfully generalized to
heterogeneous Stokes problems. For example, a homogenization-based method has
been proposed in [BEL+13, BEH13] for slowly varying perforated media. As for the
Multiscale FEM, its Crouzeix–Raviart version, first proposed in [LBLL14], has been
applied to the Stokes problem in perforated domains in [MNLD15, JL24, FAO22,
Bal24]. The weak notion of continuity of the Crouzeix–Raviart method and an
appropriate choice of the problem-adapted approximation space make it flexible
enough to cope with the divergence-free constraint of the Stokes problem. On
the contrary, we are not aware of any multiscale method for heterogeneous Stokes
problems that works under the minimal structural assumptions on the coefficients,
with the exception of [BOD19], which generalizes the concept of operator-adapted
wavelets to accommodate differential constraints such as divergence-freeness.

The goal of the present paper is to fill this gap in the literature by adapting
the LOD methodology to heterogeneous Stokes problems. The basic idea of the
LOD is to decompose the solution space into a fine-scale space and its orthogonal
complement with respect to the energy inner product induced by the considered
problem. By choosing the fine-scale space to consist of functions that average out
on coarse scales, one obtains a finite-dimensional mesh-based complement space
that is adapted to the problem at hand and has uniform approximation properties
under minimal structural assumptions on the coefficients. It possesses exponentially
decaying basis functions whose computation can thus be localized to subdomains,
resulting in a practically feasible method. For Stokes problems, the divergence-free
constraint poses a major challenge to LOD-type methods, since directly incorporat-
ing the constraint can lead to ill-posed problems or slowly decaying basis functions.
To overcome this problem, we reformulate the Stokes problem using the space of
(H1

0 (Ω))
n-functions, whose divergence is piecewise constant with respect to some

coarse mesh, as the solution space for the velocity. The divergence-free velocity is
then recovered using a piecewise constant Lagrange multiplier defined on the same
mesh. Inspired by the Crouzeix–Raviart Multiscale FEM mentioned above, we then
choose the fine-scale space for the velocity as the functions whose averages vanish
on all faces of the coarse mesh. We prove that the finite-dimensional orthogonal
complement possesses exponentially decaying basis functions, which paves the way
to the construction of an LOD-type multiscale method. The use of face averages to
define the fine-scale space is novel in the LOD context and allows us to construct
the velocity approximation space independent of the pressure. The approximation



A LOD METHOD FOR HETEROGENEOUS STOKES PROBLEMS 3

of the resulting LOD method is exactly divergence-free and thus pressure robust in
the sense of [JLM+17]. We also perform an a priori error analysis of the proposed
method and prove optimal orders of convergence as the mesh size is decreased,
provided that the support of the basis functions is allowed to increase logarith-
mically with the desired accuracy. More specifically, for L2-right-hand sides we
prove first- and second-order convergence for the L2- and H1-errors of the velocity
approximation, respectively, and first-order convergence for a post-processed pres-
sure approximation. If the right-hand side is H1-regular, we can squeeze out an
additional order of convergence for the velocity approximation. We emphasize that
only minimal structural assumptions on the coefficients are necessary for this error
analysis.

The paper is organized as follows: In Section 2 we introduce the model prob-
lem and a prototypical multiscale method is presented in Section 3. We prove the
exponential decay of the prototypical basis functions and localize the basis compu-
tation in Section 4. A practical multiscale method is then presented in Section 5.
Numerical experiments supporting our theoretical results are given in Section 6.

2. Model problem

This section introduces the weak formulation of the heterogeneous Stokes prob-
lem, along with classical results guaranteeing its well-posedness. The weak formu-
lation is based on the Sobolev space V := (H1

0 (Ω))
n endowed with homogeneous

Dirichlet boundary conditions on ∂Ω and the spaceM := {q ∈ L2(Ω) :
´
Ω
q dx = 0}

satisfying an integral-mean-zero constraint. In the following, we will always assume
that there exist constants νmin, νmax and σmin, σmax such that

(2.1) 0 < νmin ≤ ν ≤ νmax <∞, 0 ≤ σmin ≤ σ ≤ σmax <∞
holds almost everywhere in Ω. Denoting by (·, ·)Ω the L2(Ω)-inner product, the
problem’s bilinear forms a : V × V → R and b : V ×M → R are defined as

a(u, v) := (ν∇u,∇v)Ω + (σu, v)Ω, b(u, q) := −(q,∇ · u)Ω.
Given a source term f ∈ L2(Ω), the weak formulation of the considered hetero-

geneous Stokes problem seeks a pair (u, p) ∈ V ×M such that

a(u, v) + b(v, p) = (f, v)Ω,(2.2a)

b(u, q) = 0(2.2b)

holds for all (v, q) ∈ V ×M .
Using the uniform coefficient bounds (2.1) one can show that the bilinear form a

is continuous and coercive, i.e., there exist constants ca, Ca > 0 such that

(2.3) |a(v, v)| ≥ ca∥∇v∥2Ω, |a(u, v)| ≤ Ca∥∇u∥Ω∥∇v∥Ω
holds for all u, v ∈ V , where ∥ · ∥2Ω := (·, ·)Ω denotes the L2(Ω)-norm. Note that
by the Poincaré–Friedrichs inequality, the seminorm ∥∇ · ∥Ω is equivalent to the
full (H1(Ω))n-norm. The constants in (2.3) can be specified as ca = νmin and
Ca = νmax + C2

PFσmax, where CPF > 0 denotes the Poincaré–Friedrichs constant.
To establish the well-posedness of problem (2.2), we need a compatibility condi-

tion between the spaces V and M , expressed as the inf–sup condition

(2.4) inf
q∈M

sup
v∈V

|b(v, q)|
∥∇v∥Ω∥q∥Ω

≥ cb,

where cb > 0 is typically called the inf–sup constant. This condition is classical
and it is typically proved using the so-called Ladyzhenskaya lemma, cf. [Lad63]. It
states that for any q ∈M there exists v ∈ V such that

(2.5) ∇ · v = q, ∥∇v∥Ω ≤ CL∥q∥Ω,
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which directly implies the inf–sup stability with inf–sup constant cb = C−1
L . After

establishing conditions (2.3) and (2.4), the well-posedness of weak formulation (2.2)
can be concluded using classical inf–sup theory; see, e.g., [BBF13].

3. Prototypical multiscale method

This section introduces a prototypical multiscale method that achieves optimal
order approximations without preasymptotic effects under minimal structural as-
sumptions on the coefficients. To this end, we introduce a geometrically conform-
ing, quasi-uniform, and shape-regular hierarchy of simplicial1 meshes {TH}H . Each
mesh is a finite subdivision of the closure of Ω, into closed elements K, which are
n-dimensional simplices. The parameter H > 0 denotes the mesh size and is defined
as the maximum diameter of the elements in TH , i.e., H := maxK∈TH

diam(K). We
further denote the space of TH -piecewise constant functions by P0(TH) and write
ΠH : L2(Ω) → P0(TH) for the corresponding L2-orthogonal projection. The set of
all faces of the mesh TH is denoted by FH and the subset of interior faces by F i

H .
For the construction of the prototypical multiscale method we will use an equiv-

alent reformulation of problem (2.2). This reformulation is based on the spaces

(3.1) Z :=
{
v ∈ V : ∇ · v ∈ P0(TH)

}
, MH :=M ∩ P0(TH),

where the space Z partially integrates the divergence-free constraint into the ve-
locity space. Thus, the smaller space MH is sufficient to enforce that the velocity
is divergence-free. The reformulation seeks (u, pH) ∈ Z ×MH such that

a(u, v) + b(v, pH) = (f, v)Ω,(3.2a)

b(u, qH) = 0.(3.2b)

holds for all (v, qH) ∈ Z ×MH . To prove the well-posedness of this reformulated
problem we verify the corresponding inf–sup condition. This inf–sup condition can
be shown to hold with the constant cb from (2.4), using again the Ladyzhenskaya
lemma, cf. (2.5). It is easy to verify that the first component of the solution to
the reformulated problem coincides with the velocity u from (2.2) and that for the
second component we have pH = ΠHp, where p is the pressure from (2.2).

Following the construction of the LOD for diffusion-type problems, cf. [MP14,
MP20], we consider a decomposition of the space Z into the direct sum of two
subspaces. The first one, typically referred to as fine-scale space, contains functions
that average out on coarse scales and is defined as

(3.3) W :=
{
v ∈ Z :

´
F
v dσ = 0, F ∈ F i

H

}
.

The second subspace is finite-dimensional and will serve as the approximation space
of the prototypical LOD method. It is defined as the orthogonal complement of W
with respect to the energy inner product a, i.e.,

(3.4) Z̃H :=
{
u ∈ Z : a(u, v) = 0, v ∈W

}
.

Note that, since Z̃H is constructed as the orthogonal complement ofW with respect
to the problem-dependent inner product a, it contains problem-specific information
that allows reliable approximations even at coarse scales. The use of tildes in the
notation of functions and spaces is intended to emphasize that they are adapted to
the problem at hand. The following lemma constructs a basis of the space Z̃H .

1One can also use general polygonal/polyhedral meshes. We assume that the meshes are
simplicial only to simplify the presentation. The method itself can be applied to more general
meshes in a straightforward manner. An extension to meshes with curved elements is also possible.
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Lemma 3.1 (Prototypical basis). The space Z̃H has dimension N := n · #F i
H

with #F i
H denoting the number of interior faces, and a basis of it is given by

(3.5)
{
φ̃F,j : F ∈ F i

H , j = 1, . . . , n
}

with φ̃F,j defined for all F ∈ F i
H and j = 1, . . . , n as the unique solutions to: seek

(φ̃F,j , ξF,j , λ) ∈ V ×Q×RN with Q := {q ∈M :
´
K
q dx = 0, K ∈ TH} such that

a(φ̃F,j , v) + b(v, ξF,j) + c(v, λ) = 0,(3.6a)

b(φ̃F,j , χ) = 0,(3.6b)

c(φ̃F,j , µ) = µF,j(3.6c)

holds for all (v, χ, µ) ∈ V ×Q×RN . Here, we label the entries of a vector µ ∈ RN

using face-index pairs as µ = {µE,k : E ∈ F i
H , k = 1, . . . , n

}
, and the bilinear

form c : V × RN → R is defined as

c(v, µ) :=
∑

E∈Fi
H

n∑
k=1

µE,k

ˆ
E

v · ek dσ,

where {ek : k = 1, . . . , n} denotes the canonical basis of Rn.

The prototypical basis functions are chosen such that they minimize the energy
(associated with the inner product a) under the constraints that their divergence
is TH -piecewise constant and that a Kronecker delta property with respect to the
quantities of interest v 7→

´
F
v · ej dσ is satisfied. The Kronecker delta property

ensures that the set (3.5) is linearly independent and therefore is a basis of Z̃H .
Problem (3.6) for the prototypical basis functions differs from the corresponding
one in the classical elliptic setting, cf. [AHP21, Sec. 3], mainly in the additional
constraint to enforce that the divergence of the basis function is TH -constant.

Before proving this lemma, we introduce some technical tools that will be used
not only in its proof, but also on several other occasions in the remainder of this
paper. First, we note that the Ladyzhenskaya lemma stated in (2.5) for the whole
domain Ω also holds locally on elements K ∈ TH . More precisely, there exists a
constant C ′

L > 0 such that, for every element K ∈ TH and all functions q ∈ L2(K)
with

´
K
q dx = 0, there exists v ∈ (H1

0 (K))n such that

(3.7) ∇ · v = q, ∥∇v∥K ≤ C ′
L∥q∥K

holds, where the constant depends only on the shape regularity of the mesh. The
latter statement can be inferred, for example, from [BCDG16], where the shape-
dependence of the Ladyzhenskaya constant is investigated. The locally supported
functions v from (3.7), hereafter referred to as element bubble functions, will be
frequently used to estimate the bilinear form b.

Furthermore, for estimating the bilinear form c, we introduce face bubble func-
tions denoted by {bF,j : F ∈ F i

H , j = 1, . . . , n}. Each bubble function is locally
supported with bF,j ∈ (H1

0 (ωF ))
n, where ωF is the union of the two elements that

share face F . The face bubbles are chosen such that
´
E
bF,j · ek dσ = δEF δjk holds

for all E,F ∈ F i
H and j, k = 1, . . . , n, and the two stability estimates

(3.8) ∥bF,j∥ωF
≤ CbH

−n/2+1, ∥∇bF,j∥ωF
≤ CbH

−n/2

are satisfied for a constant Cb > 0 independent of H. Additionally, we demand
that the divergence of the face bubbles is piecewise constant, i.e., bF,j ∈ Z. Note
that bubbles with these properties can be constructed using classical face bubbles,
which we denote by ψF below, cf. [VZ19]. They satisfy

´
E
ψF dσ = δEF for any

E,F ∈ F i
H . We then define bF,j := ψF ej + vF,j , where vF,j is supported on ωF

and defined locally on K ⊂ ωF as the (H1
0 (K))n-function satisfying ∇ · vF,j =
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−∇ · (ψF ej) + nF,K · ej , where nF,K denotes the unit normal on F outward of K.
The function vF,j exist thanks to (3.7) and satisfies ∥∇vF,j∥K ≤ C ′

L∥∇ψF ∥K .
Now let us proceed with the proof of the lemma above.

Proof of Lemma 3.1. We first prove the well-posedness of problem (3.6). To this
end, we verify the inf–sup stability of the bilinear form d : V × (Q×RN ) defined as
d(v, (χ, µ)) := b(v, χ) + c(v, µ), i.e., there exists a constant cd > 0 such that

(3.9) inf
(χ,µ)∈Q×RN

sup
v∈V

|d(v, (χ, µ))|
∥∇v∥Ω∥(χ, µ)∥

≥ cd

holds, where ∥(χ, µ)∥2 := ∥χ∥2Ω + |µ|2 with | · | denoting the Euclidean norm.
Given any (χ, µ) ∈ Q× RN , we choose a function v ∈ V defined as

v :=
∑

K∈TH

vK +
∑

F∈Fi
H

n∑
j=1

µF,jbF,j ,

where, for any K ∈ TH , vK ∈ (H1
0 (K))n satisfies ∇· vK = χ locally on K as well as

∥∇vK∥K ≤ C ′
L∥χ∥K , cf. (3.7). By construction, it holds |d(v, (χ, µ))| = ∥(χ, µ)∥2

and we have for any K ∈ TH that

∥∇v∥2K ≤ 2(C ′
L)

2∥χ∥2K + 2

( ∑
F∈Fi

H∩∂K

n∑
j=1

µ2
F,j

)( ∑
F∈Fi

H∩∂K

n∑
j=1

∥∇bF,j∥2K
)

≤ 2(C ′
L)

2∥χ∥2K + 2n(n+ 1)C2
bH

−n

( ∑
F∈Fi

H∩∂K

n∑
j=1

µ2
F,j

)
,

where we used estimates (3.7) and (3.8). Summing over all elements gives

∥∇v∥2Ω ≤ max{2(C ′
L)

2, 4n(n+ 1)C2
bH

−n}∥(χ, µ)∥2,
which proves inf–sup condition (3.9) with the constant cd, defined as the reciprocal
of the constant in the estimate above.

Next, we prove that (3.5) constitutes a basis of the space Z̃H . To this end, we

first note that conditions (3.6a) and (3.6b) imply that φ̃F,j ∈ Z̃H for all F ∈ F i
H

and j ∈ {1, . . . , n}. To prove the basis property, we consider an arbitrary u ∈ Z̃H

and set w = u − ∑
F∈Fi

H

∑n
j=1

´
F
u · ej dσφ̃F,j . Since w ∈ W and, at the same

time, w is a-orthogonal to W , it must hold that w = 0. Thus, any u ∈ Z̃H can be
written as a unique linear combination of the linearly independent functions φ̃F,j ,

which shows that they form a basis of the space Z̃H . This concludes the proof. □

Having introduced the prototypical basis functions, we can define a projection
operator R : Z → Z̃H which preserves face integrals for any v ∈ Z by

(3.10) Rv :=
∑

F∈Fi
H

n∑
j=1

ˆ
F

v · ej dσ φ̃F,j .

This operator coincides with the a-orthogonal projection onto Z̃H , since for any
v ∈ Z and w ∈ Z̃H it holds that a(v − Rv, w), noting that v − Rv ∈ W . This
orthogonality property also implies the continuity of R, i.e., for any v ∈ Z it holds

(3.11) ∥∇Rv∥Ω ≤
√
Ca/ca∥∇v∥Ω,

where we used (2.3). Furthermore,

(3.12) (∇ · Rv)|K = (∇ · v)|K
holds for any v ∈ Z and K ∈ TH . By the definitions of Z, we have that ∇ · Rv
and ∇· v are TH -piecewise constant functions. Using the fact that R preserves face
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integrals, we therefore obtain with the divergence theorem that
´
K
∇ · Rv dx =´

K
∇ · v dx. Identity (3.12) will play an important role in the analysis of the

prototypical method, and can be used, for example, to prove that its approximation
is exactly divergence-free. Having such an identity is the main reason for defining
the fine-scale space W using face integrals as in (3.3).

The desired prototypical method then seeks (ũH , p̃H) ∈ Z̃H ×MH such that

a(ũH , ṽH) + b(ṽH , p̃H) = (f, ṽH)Ω,(3.13a)

b(ũH , q̃H) = 0.(3.13b)

holds for all (ṽH , q̃H) ∈ Z̃H ×MH . For the analysis of this method in the theorem
below we need an approximation result for ΠH . Using the Poincaré inequality on
convex domains, cf. [PW60], it follows that for all K ∈ TH and v ∈ H1(K) it holds

(3.14) ∥v −ΠHv∥K ≤ π−1H∥∇v∥K ,
where π > 0 denotes the ratio of the circumference of a circle to its diameter.

Theorem 3.2 (Prototypical method). The prototypical multiscale method (3.13)
is well-posed, and its solution is given by (ũH , p̃H) = (Ru,ΠHp), where (u, p) solves
problem (2.2). Furthermore, there exist constants Ce, C

′
e > 0 independent of H such

that for any right-hand side f ∈ Hs(Ω) with s ∈ {0, 1}, we have the error estimates

∥u− ũH∥Ω ≤ CeH
2+s|f |s,Ω,(3.15)

∥∇(u− ũH)∥Ω ≤ C ′
eH

1+s|f |s,Ω,(3.16)

where | · |s,Ω denotes the Hs(Ω)-seminorm.

Proof. First, we prove the inf–sup condition

(3.17) inf
q̃H∈MH

sup
ṽH∈Z̃H

|b(ṽH , q̃H)|
∥∇ṽH∥Ω∥q̃H∥Ω

≥ c̃b

for some constant c̃b > 0, which implies the well-posedness of (3.13). Given any
q̃H ∈MH , we denote by v ∈ V the function with∇·v = q̃H and ∥∇v∥Ω ≤ CL∥q̃H∥Ω,
cf. (2.5), and define ṽH := Rv. One can show that |b(ṽH , q̃H)| = |b(v, q̃H)| =

∥q̃H∥2Ω using (3.12), and that ∥∇ṽH∥Ω ≤
√
Ca/ca∥∇v∥ ≤ CL

√
Ca/ca∥q̃H∥Ω by the

continuity of R, cf. (3.11), and the particular choice of v. Combining these results,

inf–sup condition (3.17) follows directly with the constant c̃b = (CL

√
Ca/ca)

−1.

Using that R : Z → Z̃H is a-orthogonal, identity (3.12), as well as that (u, pH)
solves (3.2), it is a straightforward observation that (Ru, pH) solves (3.13). The
uniqueness of the solution to (3.13) then implies that ũH = Ru and p̃H = pH .

Second, we derive error estimates for the prototypical multiscale method. To this
end, we note that the error e := u− ũH is an element of the space W . Furthermore,
we have for all K ∈ TH that (∇ · ũH)|K = (∇ · u)|K = 0, where we apply (3.12)
to u and note that ũH = Ru. This implies that ∇ · e = ∇ · ũH = 0. Using the first
estimate in (2.3), that a(ũH , e) = 0, (3.2a) with e as test function, that b(e, pH) = 0,
and the local Poincaré-type inequality from Lemma A.1, we obtain that

(3.18) ca∥∇e∥2Ω ≤ a(e, e) = a(u, e) = (f, e)Ω ≤ CPH∥f∥Ω∥∇e∥Ω,
which implies the desired H1-error estimate for s = 0.

In the case s = 1, we add and subtract ΠHf in (3.18), the L2 projection of f
onto piecewise constants, which results in

(3.19) ca∥∇e∥2Ω ≤ (f −ΠHf, e)Ω + (ΠHf, e)Ω,

where the first term on the right-hand side can be bounded using approximation
result (3.14) and the Poincaré-type inequality from Lemma A.1 as

(3.20) (f −ΠHf, e)Ω ≤ ∥f −ΠHf∥Ω∥e∥Ω ≤ π−1CPH
2∥∇f∥Ω∥∇e∥Ω.
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Abbreviating fK := (ΠHf)|K , the second term on the right-hand side of (3.19) can
be locally rewritten using the divergence theorem and that ∇ · e = 0 as

(3.21) (ΠHf, e)K =

ˆ
K

∇(fK · x) · edx =

ˆ
∂K

(fK · x)(e · n) dσ.

Summing over all elements using that
´
F
e · nF dσ = 0 for all F ∈ F i

H then gives

(3.22) (ΠHf, e)Ω =
∑

F∈Fi
H

ˆ
F

(
[ΠHf ]F · (x− xF )

)
(e · nF ) dσ,

where we denote by xF the barycenter of F and by [·]F the jump of a function
across face F chosen consistently with the fixed normal nF associated to F .

To estimate the term on the right-hand side of the previous equation, we combine
the approximation result of (3.14) with Lemma A.2, which gives for any F ∈ F i

H

and K ∈ TH with ∂K ⊃ F that ∥v − vK∥2F ≤ CH∥∇v∥2K holds for any v ∈ H1(K)
with vK := (ΠHv)|K and the constant C := CT(1+π

−1)π−1. Applying this estimate
to e and f , noting that ∥e∥2F ≤ ∥e− eK∥2F and [ΠHf ]F = −[f −ΠHf ]F yields that

∥e∥2F ≤ 1
2CH∥∇e∥2ωF

, ∥[ΠHf ]
2
F ∥2F ≤ 2CH∥∇f∥2ωF

.

Combining (3.22) with the latter bounds and using the Cauchy–Schwarz inequality,
we obtain for the second term on the right-hand side of (3.19) that

(3.23) (ΠHf, e)Ω ≤ 2(n+ 1)CH2∥∇f∥Ω∥∇e∥Ω.
Inserting estimates (3.20) and (3.23) into (3.19) yields the desiredH1-error estimate
in the case that s = 1. Therefore, taking the maximum of the constants yields
estimate (3.16) with C ′

e := max{c−1
a CP, c

−1
a (π−1CP + 2(n+ 1)C)}.

The L2-error estimate (3.15) with constant Ce := CPC
′
e can be proved by apply-

ing Lemma A.1 once again. This completes the proof. □

We emphasize that squeezing out an additional order of convergence for H1-
regular right-hand sides only works in the context of Stokes problems and not for
diffusion-type problems. This observation can also be verified numerically.

4. Exponential decay and localization

We emphasize that the prototypical LOD basis functions defined in (3.5) are
globally supported. Therefore, their computation would require the solution to
global problems, which we consider infeasible. In this section, we show that the
prototypical LOD basis functions decay exponentially, which motivates their ap-
proximation by locally computable counterparts. A practical multiscale method
based on such local approximations is presented in Section 5.

To quantify the decay of the basis functions, we introduce the notion of patches
with respect to the coarse mesh TH . Given an oversampling parameter ℓ ∈ N,
where N denotes the (positive) natural numbers, we define the patch of order ℓ
around a union of elements S ⊂ Ω recursively by

(4.1) Nℓ(S) := N1(Nℓ−1(S)), ℓ ≥ 2, N1(S) :=
⋃{

K ∈ TH : S ∩ K ̸= ∅
}
,

and set N(S) := N1(S). The notion of patches can also be extended to faces by
defining, for any F ∈ FH , the patch of order ℓ around F by Nℓ(F ) = Nℓ(ωF ), where
ωF denotes the union of the two elements sharing the face F .

The following theorem proves the exponential decay of the prototypical LOD ba-
sis functions. The exponential decay proof is based on cut-off techniques, where the
H1-seminorm of the basis function outside a patch of coarse elements is estimated
against the norm on a ring of elements at the patch boundary. This estimate can
then be reformulated and iterated, leading to the desired exponential decay result;
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see also the proofs in [MP20, AHP21]. On an intuitive level, the energy mini-
mization property of the basis functions, while constrained by a Kronecker delta
property of the quantities of interest, cf. (3.6), triggers oscillations on the length
scale H and leads to an exponential decay with respect to the coarse mesh.

Theorem 4.1 (Exponential decay). There exists a constant c > 0 independent of
H, ℓ, F , and j such that for all F ∈ F i

H , j ∈ {1, . . . , n}, and ℓ ∈ N, it holds that

(4.2) ∥∇φ̃F,j∥Ω\Nℓ(F ) ≤ exp(−cℓ)∥∇φ̃F,j∥Ω.

Proof. In the following, we will use the abbreviation φ̃ := φ̃F,j and consider a cut-off
function η ∈W 1,∞(Ω) with the properties

η ≡ 0 in Nℓ−1(F ),

η ≡ 1 in Ω \ Nℓ(F ),

0 ≤ η ≤ 1 in R := Nℓ(F ) \ Nℓ−1(F )

(4.3)

and the bound

(4.4) sup
x∈Ω

|∇η| ≤ CηH
−1,

where Cη > 0 is a constant independent of H.
Using ηφ̃ as a test function in (3.6a) gives that

a(φ̃, ηφ̃) = −b(ηφ̃, ξ)− c(ηφ̃, λ),

which, using subscripts to denote the restrictions of the bilinear forms a, b, and c
to subdomains, can be rewritten as

(4.5) aΩ\Nℓ(F )(φ̃, φ̃) = −aR(φ̃, ηφ̃)− bR(ηφ̃, ξ)− cR(ηφ̃, λ).

Here, we dropped the subscript of ξ and used that supp(ηφ̃) ⊂ (Ω \ Nℓ(F )) ∪ R,
that the divergence of ηφ̃ is piecewise constant on Ω \R, and that

´
E
ηφ̃dσ = 0 for

all faces E not inside R. Using coefficient bound (2.1), we can estimate (4.5) as

ca∥∇φ̃∥2Ω\Nℓ(F ) ≤ −aR(φ̃, ηφ̃)− bR(ηφ̃, ξ)− cR(ηφ̃, λ)

=: Ξ1 + Ξ2 + Ξ3.
(4.6)

To estimate Ξ1, we again use coefficient bound (2.1), the bound on η from (4.4),
and the Poincaré-type inequality from Lemma A.1 to get that

(4.7) Ξ1 ≤ C ′
a∥∇φ̃∥R∥∇(ηφ̃)∥R ≤ C ′

a(1 + CηCP)∥∇φ̃∥2R
with the constant C ′

a := (νmax + C2
Pσmax). Above we used that, for any element

K ⊂ R, there exists a face E ⊂ ∂K such that
´
E
ηφ̃dσ =

´
E
φ̃dσ = 0.

Using similar arguments, we obtain for Ξ2 that

(4.8) Ξ2 ≤ ∥∇ · (ηφ̃)∥R∥ξ∥R ≤ (1 + CηCP)∥∇φ̃∥R∥ξ∥R.
To continue the latter estimate, we need a local bound for ∥ξ∥K . To this end, we
test (3.6a) for any element K with vξ ∈ (H1

0 (K))n chosen such that ∇·vξ = ξ holds
locally in K and ∥∇vξ∥K ≤ C ′

L∥ξ∥K is satisfied, cf. (3.7). This results in

∥ξ∥2K = a(φ̃, vξ) ≤ CaC
′
L∥∇φ̃∥K∥ξ∥K .(4.9)

Summing the latter bound over all elements with K ⊂ R, we obtain an estimate
for ∥ξ∥R which can be inserted in (4.8) to conclude

Ξ2 ≤ (1 + CηCP)CaC
′
L∥∇φ̃∥2R.
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To estimate Ξ3, we apply the Cauchy–Schwarz inequality for all faces E ∈ F i
H(R),

where F i
H(R) denotes the set of faces inside R, which yields that

Ξ3 = −
∑

E∈Fi
H(R)

n∑
k=1

|λE,k|
ˆ
E

ηφ̃ · eknσ ≤
∑

E∈Fi
H(R)

n∑
k=1

|λE,k| |E|1/2n−1∥φ̃ · ek∥E ,

where | · |n−1 denotes the (n−1)-dimensional volume. We derive a bound for |λE,k|
for all faces E ∈ F i

H(R) by testing (3.6a) with the bubble function bE,k, which gives

(4.10) |λE,k| ≤ Ca∥∇φ̃∥ωE
∥∇bE,k∥ωE

≤ CaCbH
−n/2∥∇φ̃∥ωE

.

Here, we used the second estimates of (2.3) and (3.8) and that b(bE,k, ξ) = 0 since
the divergence of bE,k is piecewise constant and ξ has zero element averages.

Noting that |E|n−1 ≤ Hn−1, the latter estimate can be used to show that

Ξ3 ≤ CaCbH
−1/2

∑
E∈Fi

H(R)

n∑
k=1

∥∇φ̃∥ωE
∥φ̃ · ek∥E

≤ CaCb

(
n

∑
E∈Fi

H(R)

∥∇φ̃∥2ωE

)1/2(
1

H

∑
E∈Fi

H(R)

∥φ̃∥2E
)1/2

,

where we applied the discrete Cauchy–Schwarz inequality. Using the trace inequal-
ity from Lemma A.2, we obtain that

Ξ3 ≤ 2CaCb

√
nCT(1 + CP)CP∥∇φ̃∥2R.

Inserting the above estimates for Ξ1, Ξ2, and Ξ3 into (4.6) and noting that R
can be rewritten as R = (Ω \ Nℓ−1(F )) \ (Ω \ Nℓ(F )), we obtain that

∥∇φ̃∥2Ω\Nℓ(F ) ≤ C∥∇φ̃∥2R = C∥∇φ̃∥2Ω\Nℓ−1(F ) − C∥∇φ̃∥2Ω\Nℓ(F )

with the constant

C := c−1
a

(
C ′

a(1 + CηCP) + (1 + CηCP)CaC
′
L + 2CaCb

√
nCT(1 + CP)CP

)
> 0.

As a direct consequence, we obtain that

∥∇φ̃∥Ω\Nℓ(F ) ≤
√

C

1 + C
∥∇φ̃∥Ω\Nℓ−1(F ),

which, after iterating, yields that

∥∇φ̃∥Ω\Nℓ(F ) ≤
(

C

1 + C

)ℓ/2

∥∇φ̃∥Ω = exp(−cℓ)∥∇φ̃∥Ω

for the constant c := 1
2 log

(
1+C
C

)
> 0. This concludes the proof. □

Motivated by the exponential decay of the prototypical LOD basis functions
defined in (3.5), we will introduce localizations of them. These localized versions can
be practically computed by solving local problems on subdomains and enable the
sparse representation of the discrete operator. To formulate these local problems,
we introduce localized versions of the spaces V and Q as

V ℓ
F := {v ∈ V : supp(v) ⊂ Nℓ(F )},

Qℓ
F := {χ ∈ Q : supp(χ) ⊂ Nℓ(F )}.

(4.11)

Furthermore, we denote by Rℓ
F ⊂ RN the subspace consisting of vectors µ with

µF,j = 0 for all faces not contained in the interior of the patch Nℓ(F ), where we
recall that µF,j is a notation for the entries of the vector µ.

Given an oversampling parameter ℓ, the localized basis functions, denoted by

{φ̃F,j : F ∈ F i
H , j = 1, . . . , n},
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are determined by the problems: Seek (φ̃ℓ
F,j , ξ

ℓ
F,j , λ) ∈ V ℓ

F ×Qℓ
F ×Rℓ

F such that

a(φ̃ℓ
F,j , v) + b(v, ξℓF,j) + c(v, λ) = 0,(4.12a)

b(φ̃ℓ
F,j , χ) = 0,(4.12b)

c(φ̃ℓ
F,j , µ) = µF,j(4.12c)

holds for all (v, χ, µ) ∈ V ℓ
F × Qℓ

F × Rℓ
F . This saddle point problem is well-posed,

which can be shown using similar arguments as in the proof of Lemma 3.1.
In the following, we will frequently use the bound

(4.13) ∥∇φ̃ℓ
F,j∥Ω ≤ c−1

a CaCbH
−n/2,

which can be proved by testing equation (4.12a) first with φ̃ℓ
F,j and then with bF,j ,

and combining the resulting estimates.
With the localized basis functions at hand, we are now able to define a localized

counterpart of the operator R from (3.10). This operator, denoted by Rℓ, is a
projection onto the span of the localized basis functions with the property that it
preserves face integrals. More precisely, it is for any v ∈ Z defined as

(4.14) Rℓv :=
∑

F∈Fi
H

n∑
j=1

ˆ
F

v · ej dσ φ̃ℓ
F,j .

We emphasize that, unlike R, this projection is not a-orthogonal.
The following theorem proves that Rℓ approximates R exponentially well. Note

that using this result for the bubble function bF,j gives an exponential approxima-
tion result for the corresponding localized and prototypical basis functions.

Theorem 4.2 (Localization error). There exist a constant CR > 0 independent
of H and ℓ such that for all v ∈ Z and ℓ ∈ N, it holds that

(4.15) ∥∇(R−Rℓ)v∥Ω ≤ CRℓ
n/2 exp(−cℓ)

(
∥∇v∥Ω +H−1∥v∥Ω

)
.

Proof. We consider an arbitrary but fixed v ∈ Z and abbreviate e := (R − Rℓ)v
and vF,j :=

´
F
v · ej dσ, which allows us to write

(4.16) e =
∑

F∈Fi
H

n∑
j=1

vF,j (φ̃F,j − φ̃ℓ
F,j),

using the definitions of R and Rℓ. Applying the first bound from (2.3) then gives

ca∥∇e∥2Ω ≤
∑

F∈Fi
H

n∑
j=1

vF,ja(φ̃F,j − φ̃ℓ
F,j , e).(4.17)

To estimate the terms on the right-hand side of the latter inequality, we fix a face
F ∈ F i

H and index j ∈ {1, . . . , n} and recall the definition of the cut-off function

in (4.3), which we now denote by ηF . Note that, by the definition of the space Z̃H

and since e ∈ W , it holds that a(φ̃F,j , e) = 0. Using this and observing that
(1− ηF )e ∈ V ℓ

F is an admissible test function in equation (4.12a), we obtain that

a(φ̃F,j − φ̃ℓ
F,j , e) = −a(φ̃ℓ

F,j , (1− ηF )e+ ηF e)(4.18)

= b((1− ηF )e, ξ
ℓ
F,j) + c((1− ηF )e, λ)− a(φ̃ℓ

F,j , ηF e)

=: Ξ1 + Ξ2 + Ξ3.

In the following, we estimate the terms Ξ1, Ξ2, and Ξ3 separately. To esti-
mate Ξ1, we note that the divergence of (1−ηF )e is piecewise constant on Ω\RF and
that ξℓF,j has zero element averages. This together with (4.4) and Lemma A.1 gives

Ξ1 ≤ ∥∇ · (1− ηF )e∥RF
∥ξℓF,j∥RF

≤ (1 + CηF
CP)∥∇e∥RF

∥ξℓF,j∥RF
.(4.19)
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To derive a L2-bound for ξℓF,j , we proceed similarly as in (4.9), which yields that

∥ξℓF,j∥RF
≤ CaC

′
L∥∇φ̃ℓ

F,j∥RF
,

and inserting this into (4.19) gives

Ξ1 ≤ CaC
′
L(1 + CηF

CP)∥∇e∥RF
∥∇φ̃ℓ

F,j∥RF
.

To estimate Ξ2, we apply the discrete Chauchy–Schwarz inequality, the trace
inequality from Lemma A.2, the bound |E|n−1 ≤ Hn−1, and the local Poincaré-
type inequality from Lemma A.1, which yields that

Ξ2 ≤
( ∑

E⊂RF

n∑
k=1

λ2E,k

)1/2( ∑
E⊂RF

|E|n−1∥e∥2E
)1/2

≤
( ∑

E⊂RF

n∑
k=1

λ2E,k

)1/2(
CT

∑
E⊂RF

|E|n−1∥e∥K(∥∇e∥K +H−1∥e∥K)

)1/2

≤
( ∑

E⊂RF

n∑
k=1

λ2E,k

)1/2√
nCTCP(1 + CP)H

n/2∥∇e∥RF
.

To derive a bound for |λE,k|, we proceed as in (4.10), but locally, which results in

|λE,k| ≤ |a(φ̃ℓ
F,j , bE,k)| ≤ CaCbH

−n/2∥∇φ̃ℓ
F,j∥ωE

.

Using this estimate, the above estimate for Ξ2 can be continued as

Ξ2 ≤ CaCbn
√
CTCP(1 + CP)∥∇e∥RF

∥∇φ̃ℓ
F,j∥RF

.

To estimate Ξ3, we again use similar arguments as in (4.7), which yields that

Ξ3 ≤ C ′
a∥∇(ηF e)∥RF

∥∇φ̃ℓ
F,j∥RF

≤ C ′
a(1 + CηF

CP)∥∇e∥RF
∥∇φ̃ℓ

F,j∥RF

with C ′
a := (νmax + C2

Pσmax).
Inserting the above estimates for Ξ1, Ξ2, and Ξ3 into (4.18) gives the bound

a(φ̃F,j − φ̃ℓ
F,j , e) ≤ C∥∇e∥RF

∥∇φ̃ℓ
F,j∥RF

with

C :=
(
(CaC

′
L + C ′

a)(1 + CηF
CP) + CaCbn

√
CTCP(1 + CP)

)
.

We can now apply the exponential decay result of Theorem 4.1 to φ̃ℓ
F,j instead

of φ̃F,j , where we replace Ω in the statement of the theorem by Nℓ(F ). Using this
and bound (4.13) for the localized basis function then gives

a(φ̃F,j − φ̃ℓ
F,j , e) ≤ C exp(−cℓ)∥∇e∥RF

∥∇φ̃ℓ
F,j∥Nℓ(F ) ≤ C ′H−n/2 exp(−cℓ)∥∇e∥RF

,

where we abbreviated C ′ := c−1
a CaCbC.

It remains to sum the above estimate over all faces F ∈ F i
H and indices j ∈

{1, . . . , n} as in (4.17). Using the discrete Cauchy–Schwarz inequality, the trace
inequality from Lemma A.2, and Young’s inequality, we get that

ca∥∇e∥2Ω ≤ √
nC ′ exp(−cℓ)H−n/2

( ∑
F∈Fi

H

|F |n−1∥v∥2F
)1/2( ∑

F∈Fi
H

∥∇e∥2RF

)1/2

≤
√
nCTC

′Colℓ
n/2 exp(−cℓ)∥∇e∥Ω(∥∇v∥Ω +H−1∥v∥Ω),

where Col > 0 is a constant only depending on the regularity of the mesh TH . This
proves the desired estimate with the constant CR := a−1

a

√
nCTC

′Col. □
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5. Localized multiscale method

In this section, we introduce the proposed multiscale method for heterogeneous
Stokes problems. Its approximation space, denoted by Z̃ℓ

H , is defined as the span
of the localized basis functions (4.12), i.e.,

(5.1) Z̃ℓ
H := span{φ̃ℓ

F,j : F ∈ F i
H , j = 1, . . . , n}.

The proposed multiscale method then seeks (ũℓH , p̃
ℓ
H) ∈ Z̃ℓ

H ×MH such that

a(ũℓH , ṽ
ℓ
H) + b(ṽℓH , p̃

ℓ
H) = (f, ṽℓH)Ω,(5.2a)

b(ũℓH , q̃
ℓ
H) = 0(5.2b)

holds for all (ṽℓH , q̃
ℓ
H) ∈ (Z̃H ,MH).

The remainder of this section is devoted to the error analysis of this method. We
emphasize that the pressure approximation p̃ℓH is piecewise constant, and therefore,
e.g., first-order convergence can only be expected if p ∈ H1(Ω). However, such reg-
ularity requirements are generally not satisfied for heterogeneous Stokes problems
(or, if they are, the H1-norm of p can be very large). As a remedy, we introduce
a post-processing step that uses the local pressure contributions ξℓF,j computed

together with the LOD basis functions in (4.12), as

(5.3) p̃ℓ,ppH := p̃ℓH +
∑

F∈Fi
H

n∑
j=1

cF,j ξ
ℓ
F,j ,

where cF,j is the coefficient of φ̃ℓ
F,j in the representation of ũℓH . The following

theorem proves the well-posedness of the method (5.2) and its uniform convergence
properties for the velocity and post-processed pressure approximations under min-
imal regularity assumptions, provided that the ℓ is chosen sufficiently large. In
addition, it is proved that the piecewise constant (not post-processed) pressure
approximation p̃ℓH converges exponentially to ΠHp as ℓ is increased.

Theorem 5.1 (Localized method). The localized multiscale method (5.2) is well-
posed. Furthermore, there exist constants Cu, C

′
u, Cp, C

′
p > 0 independent of H

and ℓ such that for any right-hand side f ∈ Hs(Ω) with s ∈ {0, 1}, it holds that

∥∇(u− ũℓH)∥Ω ≤ Cu

(
H1+s|f |s,Ω +H−1ℓn/2 exp(−cℓ)∥f∥Ω

)
,(5.4)

∥u− ũℓH∥Ω ≤ C ′
u

(
H +H−1ℓn/2 exp(−cℓ)

)
∥∇(u− ũℓH)∥Ω(5.5)

for the velocity approximation, where we recall that | · |s,Ω denotes the Hs(Ω)-
seminorm. For the pressure approximation, we have the error estimates

∥ΠHp− p̃ℓH∥Ω ≤ CpH
−1ℓn/2 exp(−cℓ)∥f∥Ω,(5.6)

∥p− p̃ℓ,ppH ∥Ω ≤ C ′
p

(
H +H−1ℓn/2 exp(−cℓ)

)
∥f∥Ω.(5.7)

Proof. We begin this proof by showing the inf–sup condition

(5.8) inf
q̃ℓH∈MH

sup
ṽℓ
H∈Z̃ℓ

H

|b(ṽℓH , q̃ℓH)|
∥∇ṽℓH∥Ω∥q̃ℓH∥Ω

≥ c̃ℓb

for some constant c̃ℓb > 0 to be specified later, which implies the well-posedness of
problem (5.2). To this end, we first show the continuity of the operator Rℓ. Using
the continuity of R, cf. (3.11), the approximation result from Theorem 4.2, and the
Poincaré–Friedrichs inequality on Ω, it follows that

∥∇Rℓv∥Ω ≤
(√

Ca/ca + CRℓ
n/2 exp(−cℓ)(1 + CPFH

−1)
)
∥∇v∥Ω.

Given any q̃ℓH ∈ MH , we denote by v ∈ V the function satisfying ∇ · v = q̃ℓH and
∥∇v∥Ω ≤ CL∥q̃ℓH∥Ω, cf. (2.5). Choosing ṽℓH := Rℓv, we obtain noting that (3.12)
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also holds for the operator Rℓ that b(ṽℓH , q̃
ℓ
H) = b(v, q̃ℓH) = ∥q̃ℓH∥2Ω. The desired

inf–sup condition (5.8) then follows with the constant

(5.9) c̃ℓb = C−1
L

(√
Ca/ca + CRℓ

n/2 exp(−cℓ)(1 + CPFH
−1)

)−1
.

To prove the H1-error estimate for the velocity approximation, we denote by

Z̃ℓ,0
H := {v ∈ Z̃ℓ

H : ∇ · v = 0} the subspace of divergence-free functions of the
localized approximation space. Problem (5.2) can then be equivalently reformulated

as the unique solution to: seek ũℓH ∈ Z̃ℓ,0
H such that

a(ũℓH , ṽ
ℓ
H) = (f, ṽℓH)Ω

holds for ṽℓH ∈ Z̃ℓ,0
H .

Similarly, also the prototypical multiscale method (3.13) can be equivalently
reformulated in the corresponding subspace of divergence-free functions defined as
Z̃0
H := {v ∈ Z̃H : ∇ · v = 0}, i.e., we seek ũH ∈ Z̃0

H such that

a(ũH , ṽH) = (f, ṽH)Ω

holds for all ṽH ∈ Z̃0
H .

Interpreting ũℓH ∈ Z̃ℓ,0
H as a non-conforming, non-consistent approximation of

ũH ∈ Z̃0
H , we can apply Strang’s second lemma, cf. [EG04, Lem. 2.25], which gives

∥∇(ũH − ũℓH)∥Ω ≤
(
1 + c−1

a Ca

)
inf

ṽℓ
H∈Z̃ℓ,0

H

∥∇(ũH − ṽℓH)∥Ω

+c−1
a sup

ṽℓ
H∈Z̃ℓ,0

H

|(f, ṽℓH)Ω − a(ũH , ṽ
ℓ
H)|

∥∇ṽℓH∥Ω
.

(5.10)

To estimate the infimum on the right-hand side of (5.10), we choose ṽℓH = Rℓu,

and note that Rℓu ∈ Z̃ℓ,0
H . The latter holds since property (3.12) also holds for

operator Rℓ. Furthermore, since we can identify ũH = Ru, cf. Theorem 3.2, we
have that ũH − ṽℓH = (R−Rℓ)u, which allows to apply Theorem 4.2. This gives

inf
ṽℓ
H∈Z̃ℓ,0

H

∥∇(ũH − ṽℓH)∥Ω ≤ CRℓ
n/2 exp(−cℓ)(∥∇u∥Ω +H−1∥u∥Ω).

The supremum on the right-hand hand side of (5.10) can be estimated noting

that for any ṽℓH ∈ Z̃ℓ,0
H and ṽH ∈ Z̃0

H it holds that

|(f, ṽℓH)Ω − a(ũH , ṽ
ℓ
H)| = |(f, ṽℓH − ṽH)Ω − a(ũH , ṽ

ℓ
H − ṽH)|.

Given ṽℓH ∈ Z̃ℓ,0
H we choose ṽH = RṽℓH and use that ṽH − ṽℓH = (R−Rℓ)ṽℓH ∈ W ,

which implies that a(ũH , ṽ
ℓ
H − ṽH) = 0. Applying Theorem 4.2 and the Poincaré–

Friedrichs inequality then yields the estimate

sup
ṽℓ
H∈Z̃ℓ,0

H

|(f, ṽℓH)Ω − a(ũH , ṽ
ℓ
H)|

∥∇ṽℓH∥Ω
≤ CPFCRℓ

n/2 exp(−cℓ)(1 + H−1CPF)∥f∥Ω.

We are now ready to continue (5.10). Applying the Poincaré–Friedrichs inequal-
ity again and using the stability estimate ∥∇u∥Ω ≤ c−1

a CPF∥f∥Ω, we obtain

(5.11) ∥∇(ũH − ũℓH)∥Ω ≤ Cℓn/2 exp(−cℓ)∥f∥Ω,
with the constant C := c−1

a (2 + c−1
a Ca)CRCPF(1 +H−1CPF) > 0. Estimate (5.4)

can now be concluded with Cu := max{C ′
e, C} > 0 using the triangle inequality

and the H1-convergence of the prototypical method, cf. Theorem 3.2. Note that to
simplify the constant, we have used that Ω is of unit size, i.e., H ≤ 1.

Next, we show that the piecewise constant pressure approximation p̃ℓH converges
exponentially to ΠHp in the L2-norm as ℓ is increased. For this, we recall that
p̃H = ΠHp solves (3.13), and consider v ∈ V satisfying ∇ · v = p̃H − p̃ℓH as well
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as the estimate ∥∇v∥Ω ≤ CL∥p̃H − p̃ℓH∥Ω, cf. (2.5). Since p̃H − p̃ℓH is piecewise
constant, it holds that ∇ ·Rv = ∇ ·Rℓv = p̃H − p̃ℓH . Using Rv and Rℓv as the test
functions in (5.2a) and (3.13a), and subtracting the resulting equations gives

∥p̃H − p̃ℓH∥2Ω = (p̃H ,∇ · Rv)Ω − (p̃ℓH ,∇ · Rℓv)Ω

= (f,Rv −Rℓv)− a
(
ũℓH , (R−Rℓ)v

)
− a(ũH − ũℓH ,Rv).

To estimate the right-hand side of the latter equation, we apply the Poincare–
Friedrichs inequality and (2.3), (4.15), and (5.11) to obtain that

∥p̃H − p̃ℓH∥2Ω
≤ CPF(1 + c−1

a Ca)∥f∥Ω∥∇(R−Rℓ)v∥Ω + Ca∥∇(ũH − ũℓH)∥Ω∥∇Rv∥Ω
≤ CpH

−1ℓn/2 exp(−cℓ)∥f∥Ω∥p̃H − p̃ℓH∥Ω.
Note that in the last step we have used the stability bound (2.5) to estimate v,
which proves the desired estimate (5.6) with the constant

Cp := CL

(
CPF(1 + c−1

a Ca)CR(1 + CPF) + CaC
√
Ca/ca

)
.

To prove the L2-error estimate for the velocity approximation, we use an Aubin–
Nietsche-type duality argument. Denoting by (ū, p̄) ∈ V ×M the solution to (2.2)

for the right-hand side g := u− ũℓH , we obtain for any v ∈ Zℓ,0
H that

∥u− ũℓH∥2Ω = (g, u− ũℓH)Ω = a(u− ũℓH , ū− v) ≤ Ca∥∇(u− ũℓH)∥Ω∥∇(ū− v)∥Ω.
Choosing v as the approximation of the proposed method to ū, and applying the
already established H1-error estimate (5.4) for s = 0 to ū, we get that

∥u− ũℓH∥2Ω ≤ CaCu

(
H +H−1ℓn/2 exp(−cℓ)

)
∥∇(u− ũℓH)∥Ω∥g∥Ω.

Estimate (5.5) can then be concluded with the constant C ′
u := CaCu.

To prove the L2-error estimate for the post-processed pressure approximation, we
consider an arbitrary but fixed element K ∈ TH and a function v ∈ (H1

0 (K))n to be
specified later. For any F ∈ F i

H and j ∈ {1, . . . , n}, we then test equation (4.12a)
determining the respective localized basis functions with v. Multiplying the re-
sulting equation by cF,j , the coefficient of φ̃ℓ

F,j in the basis representation of ũℓH ,

cf. (5.3), and summing up yields that

aK(ũℓH , v) + bK(v, p̃ℓ,ppH − p̃ℓH) = 0,

where the subscript denotes the restriction of bilinear forms a and b to K.
Moreover, testing (2.2) with the same v and using that by the divergence theorem

there holds bK(v,ΠHp) = (ΠHp)|K
´
K
∇ · v dx = 0, we obtain that

aK(u, v) + bK(v, p−ΠHp) = (f, v)K .

Subtracting the latter two equations results in

(5.12) aK(u− ũℓH , v) + bK(v, p−ΠHp− (p̃ℓ,ppH − p̃ℓH)) = (f, v)K .

Abbreviating q := p − ΠHp − (p̃ℓ,ppH − p̃ℓH), the Ladyzhenskaya lemma, cf. (3.7),
asserts the existence of a function v ∈ (H1

0 (K))n such that ∇ · v = q holds locally
in K and which satisfies ∥∇v∥K ≤ C ′

L∥q∥K . Choosing this v in equation (5.12) and
using the uniform coefficient bounds (2.1) as well as the local Poincaré–Friedrichs
inequality ∥v∥K ≤ H∥∇v∥K for all v ∈ (H1

0 (Ω))
n, we obtain that

∥q∥2K = (f, v)K − aK(u− ũℓH , v)

≤ C ′
L

(
H∥f∥K + σmaxH∥u− ũℓH∥K + νmax∥∇(u− ũℓH)∥K

)
∥q∥K .

Summing this inequality over all K ∈ TH , we arrive at

(5.13) ∥q∥Ω ≤
√
3C ′

L

(
H∥f∥Ω + σmaxH∥u− ũℓH∥Ω + νmax∥∇(u− ũℓH)∥Ω

)
.
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The triangle inequality inequality finally yields that

∥p− p̃ℓ,ppH ∥Ω ≤ ∥ΠHp− p̃ℓH∥Ω + ∥q∥Ω,
where the first term can be bounded using (5.6) and the second term using (5.13)
and estimates (5.4) and (5.5) for s = 0. This proves estimate (5.7) with the constant

C ′
p := Cp +

√
3C ′

L(1 +CuC
′
uσmax(1 + νmax + ℓn/2 exp(−cℓ))), which is independent

of H and can be bounded independently of ℓ. This proves the assertion. □

If the oversampling parameter is suitably coupled to the coarse mesh size, one
obtains uniform spatial convergence, as can be seen in the following corollary.

Corollary 5.2 (Uniform convergence). Let f ∈ Hs(Ω), s ∈ {0, 1}. Then, if the
oversampling parameter ℓ is increased logarithmically with the coarse mesh size H,
i.e., ℓ ∈ O

(
log(1/H)

)
, we have for a constant C > 0 independent of H and ℓ that

∥∇(u− ũℓH)∥Ω ≤ CH1+s, ∥u− ũℓH∥Ω ≤ CH2+s, ∥p− p̃ℓ,ppH ∥Ω ≤ CH.

6. Implementation and numerical experiments

In this section, we discuss the implementation of the proposed multiscale method
and present numerical experiments that support the theoretical results of this paper.

Implementation. For a practical implementation of the method, the local but
still infinite-dimensional patch problems (4.12) need to be discretized using the fine
meshes Th,F of the patches Nℓ(F ). These meshes need to resolve all microscopic
features of the coefficients to obtain a reliable approximation. The overall structure
of the algorithm is summarized in Table 1.

Remark 6.1 (Computational complexity). Typically, the LOD method is used in
a multi-query context, where the basis functions are constructed once (the offline
stage, i.e., steps (1)−(2) in the algorithm of Table 1), while the actual computation
of an approximate solution (the online stage, i.e., step (3) in Table 1) is performed
many times for different right-hand sides f . This is a common feature with other
multiscale numerical methods; we refer, e.g., to the MsFEM for the Stokes prob-
lem in [MNLD15, Bal24], where possible applications of offline-online strategies are
described. Furthermore, it is possible to combine the LOD method (similarly for
the MsFEM) with the Reduced Basis approach to treat parameter-dependent co-
efficients; see [AH15]. This is one example where the high cost of the offline stage
is well justified because the resulting basis functions can be reused many times.

However, using the LOD as a one-time solver may also be justified in some
cases. For example, if the direct solution of the linear system of equations of the
fine-scale FEM is prohibitively expensive in terms of memory usage. The LOD, on
the other hand, requires only fine-scale solutions on relatively small subdomains.
Furthermore, the construction of the LOD basis functions can be easily parallelized.
Finally, the LOD as solver can be advantageous over a direct solver for the global
fine-scale FEM (even when used on a single instance of f) if a linear solver of
superlinear complexity is considered in both cases. Indeed, suppose one uses a

Table 1. Main steps of the fully discrete LOD algorithm.

(1) Generate coarse mesh TH and ℓ-th order patches Nℓ(F ) around its faces.
(2) For each patch (in parallel), create a fine local mesh Th,F , assemble local

matrices, and solve problems (4.12) for LOD basis functions.
(3) Assemble and solve coarse LOD Stokes system (5.2) and perform post-

processing of pressure as in (5.3).
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direct solver that solves a linear system of size N × N , resulting from a FEM-
discretization of a Stokes-type system, in O(Nq) CPU time, where q > 1. In the
offline phase of the LOD one computes O(H−d) basis functions (Ω is of unit size).
Computing each function takes O(( ℓHh )dq) CPU time, so the entire offline phase

costs (ℓH)d(q−1) ×O(h−dq). The cost of the online phase is usually negligible. On
the other hand, the cost of solving the linear system of equations of the fine-scale
FEM is O(h−dq). Under the above assumptions, the LOD is thus cheaper by a
factor of (ℓH)d(q−1) ≪ 1, where ℓ typically scales as log(1/H) to get convergence of
optimal order. The same complexity considerations apply to the above-mentioned
MsFEM-type methods for Stokes problems, noting that their offline cost is usually
much lower than that of LOD, since they do not require oversampling, and thus
the complexity estimates hold with ℓ = 1. On the other hand, the accuracy of
MsFEM can be rather low in practice, cf. the numerical results in [JL24, Bal24],
and the theoretical analysis can only be done under the periodicity assumptions
on the coefficients. This can be contrasted with the LOD method proposed here,
which provides guaranteed accurate approximations under only minimal structural
assumptions on the coefficients, as seen in the numerical results below.

For our numerical experiments, we use a fine-scale discretization based on the
Crouzeix–Raviart FEM (CR-FEM), cf. [CR73]. The CR-FEM is particularly well
suited since its piecewise constant pressure approximation space allows for defini-
tion (3.1), the resulting reformulated Stokes problem (3.2), and the problems defin-
ing the localized basis functions (4.12) to be easily adapted to the fully discrete
setting. The fully discrete velocity approximation obtained by (5.2) is divergence-
free in the weak discrete sense, i.e., its divergence vanishes on all elements of the
fine mesh. This does not mean, however, that it is divergence-free on Ω, since the
CR velocity space is non-conforming. For simplicity, we assume that the global
fine mesh, denoted by Th, is obtained by (multiple) uniform red refinement of the
coarse mesh TH . The patch problems (4.12) are then discretized using discrete
versions of the infinite-dimensional spaces V ℓ

F and Qℓ
F , cf. (4.11), defined on the

local meshes Th,F obtained by restricting Th to the respective patches (the global
mesh Th is never used directly). To practically enforce that the Lagrange multipli-
ers ξℓF,j in (4.12) have zero element averages, another Lagrange multiplier, which is
piecewise constant with respect to TH , must be added.

The error estimates for the prototypical multiscale method from Theorem 3.2
can be transferred to the case of a CR fine-scale discretization with some minor
modifications. For example, one needs to generalize the Poincaré-like inequality
from Lemma A.1 to the case of fine-scale CR functions which are not H1

0 (Ω)-
conforming. This can be easily done using the concept of conforming companions
to CR-functions, cf. [Gal14, Chap. 5.2]. With this tool at hand, one can redo the
proof of Theorem 3.2, redefining e as the error between the fine-scale CR-FEM
solution and the fully discrete prototypical LOD solution. The only part of the
proof that deserves special attention is the integration by parts in (3.21), used to
show the second-order H1-convergence of the method provided f ∈ H1(Ω). Here,
due to the non-conformity, we need to apply integration by parts on each element
of the fine mesh Th, and (3.21) becomes

(ΠHf, e)K =

ˆ
∂K

(fK · x)(e · n) dσ +
∑

Fh∈Fi
h(K)

ˆ
Fh

(fK · x)([e]Fh
· nFh

) dσ

where F i
h(K) regroups the faces of the fine mesh Th inside the coarse element K,

and [e]Fh
in the integral over the face Fh denotes the jump of e across Fh consistent

with the normal nFh
, arbitrarily chosen on Fh. Summing this over all elements,

using
´
Fh

[e]Fh
· nFh

dσ = 0 for all Fh ∈ F i
h (i.e., all the internal faces of Th), and
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´
F
{e}F · nF dσ = 0 on all F ∈ F i

H with {·} denoting from now on the average of a
discontinuous function on a face, we obtain the following counterpart of (3.22):

(ΠHf, e)Ω =
∑

F∈Fi
H

ˆ
F

([ΠHf ]F · (x− xF ))({e}F · nF ) dσ

+
∑

Fh∈Fi
h

ˆ
Fh

({ΠHf}Fh
· (x− xFh

))([e]Fh
· nFh

) dσ .

We recall that xF stands here for the barycenter of F and the similar notation
is used for the barycenters of the fine mesh faces. The first term in the equation
above can be estimated as in the original proof, following (3.22). The second term
can be bounded by Ch∥ΠHf∥Ω∥∇e∥Ω, which needs to be added to the right-hand
side of (3.23). The exponential decay and approximation result from Theorems 4.1
and 4.2 can be easily adapted to the fully discrete setting by inserting an appropriate
interpolation to the CR space on Th wherever necessary, cf. [MP20, Chap. 4.4].
Adapting the proof of Theorem 5.1 using the aforementioned results in the fully
discrete setting, then gives, for example, the H1-error estimate:

(6.1) ∥∇(uh − ũℓH,h)∥Ω ≤ C
(
H2∥∇f∥Ω + (H−1ℓn/2 exp(−cℓ) + h)∥f∥Ω

)
,

where ũℓH,h and uh denote the fully discrete LOD solution and fine-scale CR-FEM
solution, respectively. and C > 0 is a constant independent of H, ℓ, and h. An error
estimate against the continuous solution can be inferred using the triangle inequal-
ity, estimate (6.1), and classical a priori convergence results for the CR-FEM. Note
that in error estimates against the continuous solution, the term Ch∥f∥Ω is domi-
nated by the error of the fine-scale CR-FEM, proportional to h(|u|2,Ω+|p|1,Ω). Nev-
ertheless, some of our numerical experiments, where we compute the error against
the fine-scale CR-FEM solution (not detailed here), confirm the presence of this
term in the error estimates. Note also that the respective first-order H1-estimate
for the case f ∈ L2(Ω) can be generalized to the fully discrete setting directly,
without the above considerations. In particular, it does not include the h-term.4

Numerical experiments. We consider the domain Ω = (0, 1)2 and introduce a
hierarchy of meshes generated by uniform red refinement of the initial mesh shown
in Figure 6.1 (left). For simplicity, we denote the meshes in the hierarchy by
T20 , T2−1 , . . . , where the subscript refers to the side length of the squares formed
by joining opposing triangles. The coefficient ν is chosen to be piecewise constant
with respect to the mesh Tϵ with element values obtained as realizations of inde-
pendent random variables uniformly distributed in the interval [0.1, 1]. Note that ϵ
is assumed to be a negative power of two. For elements whose midpoints have a
distance less than 4ϵ from a parabola, the corresponding element values are set
to 10; see Figure 6.1 (right). The coefficient σ is set to zero for simplicity.

Note that all numerical experiments presented below can be reproduced using
the code available at https://github.com/moimmahauck/Stokes_LOD_CR.

Exponential decay of basis functions. For the first numerical experiment we use the
coefficient ν as described above for the value ϵ = 2−6. The mesh for the fine-scale
discretization is chosen to be T2−8 , which sufficiently resolves the coefficient. This
relatively large fine mesh size is necessary to compute the prototypical LOD basis
functions needed to evaluate the localization errors.

In Figure 6.2 (left), we illustrate the modulus of an exemplary basis function
using a logarithmic color scale. A trained eye observes an exponential decay of
the modulus with respect to the underlying coarse mesh, which we indicated in
light gray. This supports the exponential decay result of Theorem 4.1. Next, we
numerically investigate the localization error when replacing a prototypical basis

https://github.com/moimmahauck/Stokes_LOD_CR
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Figure 6.1. Initial mesh for the mesh generation (left). Multi-
scale coefficient used in all numerical experiments (right).
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ℓ 7→ errloc(2−3, ℓ)

ℓ 7→ errloc(2−4, ℓ)

ℓ 7→ errloc(2−5, ℓ)

ℓ 7→ exp(−1.3ℓ)

Figure 6.2. Decay of the modulus of a prototypical LOD basis
function, plotted using a logarithmic color scale (left). H1-errors
of the localized approximation of the prototypical LOD basis func-
tions for several coarse mesh sizes H, plotted as a function of the
oversampling parameter ℓ (right).

function by its localized counterpart. For a given coarse mesh size H and localiza-
tion parameter ℓ, we define the H1-localization error as

errloc(H, ℓ) := max
F∈Fi

H

max
j=1,...,n

∥∇(φ̃F,j,h − φ̃ℓ
F,j,h)∥Ω.

In Figure 6.2 (right), one clearly observes an exponential decay of the H1-norm
localization error as the localization parameter ℓ is increased. This supports the
exponential approximation result from Theorem 4.2.

Optimal order convergence. For the second numerical experiment, we use the co-
efficient ν from above for the value ϵ = 2−8 and choose the mesh T2−10 for the
fine-scale discretization. Furthermore, as right-hand side we use the function

f(x, y) := (−y, x)T .
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Figure 6.3. L2-errors (left) and H1-errors (right) for the velocity
approximation for several oversampling parameters ℓ, plotted as
functions of the coarse mesh size H.

In the following, we investigate the errors

erru,H1(H, ℓ) := ∥∇(uh − ũℓH,h)∥Ω, erru,L2(H, ℓ) := ∥uh − ũℓH,h∥Ω,
errp,L2(H, ℓ) := ∥ph − p̃ℓ,ppH,h∥Ω, errΠHp,L2(H, ℓ) := ∥ΠHph − p̃ℓH,h∥Ω,

where we recall that above (uh, ph) denotes the reference solution computed on the
fine mesh. For the L2- and H1-errors of the velocity approximation, we observe
in Figure 6.3 the (almost) third and second order convergence, respectively, pro-
vided that the localization parameter is chosen sufficiently large. Recalling that
f ∈ H1(Ω), this is in line with the prediction from Theorem 5.1. For a fixed over-
sampling parameter, we observe that after a certain error level is reached, the error
increases again as the mesh size is decreased. This is a well-known effect that occurs
for some LOD methods such as [MP14, Mai21]. It can be overcome with a more
sophisticated localization strategy; see, e.g., [HP13, HP22a, DHM23]. Transposing
the idea of these works into the context of the present article, one would consider a
quasi-interpolation operator to a finite-dimensional subspace of Z with local basis
functions, whose kernel coincides with the space W , and perform a localization of
the correctors to this operator, cf. [HP13]. The quasi-interpolation operator typi-
cally involves certain bubble functions, cf. [HP22a, DHM23], and their construction
is not straightforward in the present case of Stokes equations due to the divergence
constraint. In future work, we hope to propose an alternative improved localization
strategy that avoids the explicit use of bubble functions.

Now we turn to the pressure approximation. For the L2-error of the post-
processed pressure approximation we observe in Figure 6.4 (left) the first-order
convergence, again provided that the localization parameter is chosen sufficiently
large. This observation is in line with Theorem 5.1. For the piecewise constant pres-
sure approximation p̃ℓH,h, we observe the exponential L

2-convergence towards ΠHph
in Figure 6.4 (right), which is also consistent with Theorem 5.1. Note that the out-
liers are due to combinations of H and ℓ where all patches are global, which implies
that the pressure approximation coincides with ΠHph, cf. Theorem 3.2.
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tion computed with respect to ΠHp for several coarse mesh sizesH,
plotted as a function of the oversampling parameter ℓ (right).
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Appendix A. Collection of frequently used bounds

Lemma A.1 (Local Poincaré-type inequality). There exists CP > 0 independent
of H such that, for all K ∈ TH and all v ∈ H1(K) satisfying

´
F
v dσ = 0 for at

least one face with F ⊂ ∂K, it holds that

(A.1) ∥v∥K ≤ CPH∥∇v∥K .
Proof. This result can be derived from [EG04, Lem. B.66] using a transformation to
the reference element and the corresponding estimates in [EG04, Lem. 1.101]. □

Lemma A.2 (Trace inequality). There exists a constant CT > 0 independent of H
such that, for all K ∈ TH and v ∈ H1(K), it holds for any face with F ⊂ ∂K that

∥v∥2F ≤ CT

(
∥∇v∥K +H−1∥v∥K

)
∥v∥K .

Proof. The proof of this result can be done as in [DPE12, Lem. 1.49], invoking the
quasi-uniformity we assumed for the sequence of meshes considered. □
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