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ORBITAL STABILITY OF PLANE WAVES IN THE KLEIN-GORDON
EQUATION AGAINST LOCALIZED PERTURBATIONS

EMILE BUKIEDA, LOUIS GARÉNAUX, AND BJÖRN DE RIJK

Abstract. We investigate the stability and long-term behavior of spatially periodic plane
waves in the complex Klein-Gordon equation under localized perturbations. Such perturbations
render the wave neither localized nor periodic, placing its stability analysis outside the scope
of the classical orbital stability theory for Hamiltonian systems developed by Grillakis, Shatah,
and Strauss. Inspired by Zhidkov’s work on the stability of time-periodic, spatially homogeneous
states in the nonlinear Schrödinger equation, we develop an alternative method that relies on an
amplitude-phase decomposition and leverages conserved quantities tailored to the perturbation
equation. We establish an orbital stability result of plane waves that is locally uniform in space,
accommodating L2-localized perturbations as well as nonlocalized phase modulations. In certain
regimes, our method even allows for unbounded modulations. Our result is sharp in the sense
that it holds up to the spectral stability boundary.

Keywords: complex Klein-Gordon equation, periodic traveling waves, orbital stability,
conservation laws, phase modulation
AMS Subject Classifications: 35B10, 35B40, 37K45, 37K58

1. Introduction

This paper focuses on the stability and modulational behavior of plane-wave solutions to the
one-dimensional complex Klein-Gordon equation

utt ´ uxx ` f
`

|u|2
˘

u “ 0, x, t P R, upx, tq P C, (1.1)

with nonlinearity f P C2pr0,8q,Rq. Plane waves represent the most basic periodic traveling-wave
solutions. They are monochromatic waves, characterized by a single nonzero Fourier mode, of
the form

upx, tq “ aeikx`iωt, (1.2)

where a ą 0 denotes the amplitude, k P Rzt0u is the wave number, ω P R represents the temporal
frequency, and s “ ´ω

k is the associated wave speed. Inserting (1.2) into (1.1), we find that (1.2)
is a solution to (1.1) if and only if

ω2 “ k2 ` fpa2q. (1.3)

The nonlinear dispersion relation (1.3) expresses the temporal frequency ω in terms of the wave
number k and the amplitude a.

The Klein-Gordon equation arises in a wide array of physical contexts, including nonlinear
wave propagation, superconductivity, and quantum field dynamics; see, for instance, the classical
textbooks [Lee81, RS75, Whi99] and references therein. In many applications, the nonlinearity
takes a specific form, such as the power law fpνq “ 1 ˘ νp with p P N. In this work, however,
we consider a general class of nonlinearities and impose no specific structural assumptions on f ,
beyond its C2-regularity.

Since the plane-wave solution (1.2) traces a circle of radius a centered at the origin, only the
leading-order behavior of the nonlinearity near this circle is relevant for our stability analysis.
This behavior is naturally described in polar coordinates by writing u “ aeρ`iϕ, where ρmeasures
deviations from the circle. Expanding the nonlinearity yields

f
`

|u|2
˘

u “ f
`

a2
˘

u` 2a2f 1
`

a2
˘

ρu` O
`

ρ2u
˘

, (1.4)
1



so that for small ρ, the dominant contributions are the linear term fpa2qu and the quadratic
term 2a2f 1pa2qρu. In the context of quantum field theory, the linear term can be interpreted as
a mass term: fpa2q ą 0 corresponds to a real mass, fpa2q “ 0 to a massless field, and fpa2q ă 0
to an imaginary, or tachyonic, mass. Moreover, the sign of f 1pa2q determines the nature of the
leading-order nonlinear interactions: it is defocusing if f 1pa2q ą 0 and focusing if f 1pa2q ă 0. As
we will see, the signs of fpa2q and f 1pa2q are decisive for the stability properties of the plane
wave and therefore play a central role in our analysis.

The Klein-Gordon equation is a prototypical example of a Hamiltonian system

ut “ JH 1puq, (1.5)

where J is a skew-symmetric operator and H is a nonlinear functional on a suitable Hilbert
space. Upon introducing the vector u “ pRepuq, Impuq,Reputq, ImputqqJ, the Klein-Gordon
equation (1.1) can indeed be cast into the form (1.5) with

J “

ˆ

0 I2
´I2 0

˙

, I2 “

ˆ

1 0
0 1

˙

,

and Hamiltonian

Hpξ, ζ, µ, νq “
1

2

ż

I
ξ1pxq2 ` ζ 1pxq2 ` µpxq2 ` νpxq2 ` F

`

ξpxq2 ` ζpxq2
˘

dx,

where F is the primitive function of f with F p0q “ 0. Here, we have I “ R in case of localized
initial data, and I “ r0, Ls in case of L-periodic initial data.

A characteristic feature of Hamiltonian systems is the conservation of the Hamiltonian along
solutions. In addition to this, the complex Klein-Gordon equation exhibits a gauge (or rotational)
invariance, i.e., if uptq is a solution to (1.1), then so is eiϕuptq for any ϕ P R. This gives rise to a
second conserved quantity: the charge, defined by

Qpξ, ζ, µ, νq “

ż

I
ξpxqνpxq ´ ζpxqµpxq dx.

Conservation laws play a crucial role in understanding the long-term dynamics of Hamiltonian
systems. Their use in proving global existence or finite-time blow-up of solutions is classical;
see, for example, [CH98] for applications to the Klein–Gordon equation. Conserved quantities
also form the backbone of the orbital stability theory of traveling (or standing) wave solutions.
The primary approach to proving orbital stability of traveling waves is to characterize them
as constrained minimizers of the Hamiltonian. This variational approach, dating back to ideas
of Boussinesq, was first introduced in the nonlinear stability analysis of solitary waves in the
Korteweg-de Vries equation by Benjamin [Ben72]. Its first application to the Klein-Gordon
equation, resulting in orbital stability of standing waves, is due to Shatah [Sha83]. Building on
the work of Benjamin and others, the method was formalized by Grillakis, Shatah, and Straus,
culminating in a comprehensive orbital stability theory [GSS87, GSS90] for traveling waves in
general Hamiltonian systems with symmetries. A thorough introduction on the method and
further references can be found in [KP13].

Although the theory of Grillakis, Shatah, and Strauss provides an adequate framework for the
stability analysis of solitary waves, its application to periodic waves faces limitations. Specifically,
the variational approach is heavily dependent on conserved quantities (such as the Hamilton-
ian), which require that the perturbed wave is either localized or periodic. As a result, the
class of admissible perturbations for a periodic wave is restricted to those with the same pe-
riod (co-periodic or harmonic perturbations) or those whose period is a multiple of that of the
wave (subharmonic perturbations). In the Klein-Gordon equation (1.1), orbital stability re-
sults of periodic waves against harmonic perturbations have been obtained for several classes
of nonlinearities; see [CP23, NPF08, Pal22]. For an overview of co-periodic stability results in
other Hamiltonian systems, as well as a general characterization of the Grillakis-Shatah-Strauss
stability criteria in the periodic context, we refer to [BGNR13, BGMR16].
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As outlined in [BGNR13, BGMR16, GH07], the nonlinear stability of periodic waves with
respect to localized perturbations in Hamiltonian systems remains a largely unsolved problem,
standing in sharp contrast with the dissipative case; see Remark 1. To the authors’ best knowl-
edge, the only known nonlinear stability result to date for this class of perturbations concerns
the orbital stability of plane waves in the one-dimensional nonlinear Schrödinger (NLS) equation

iut ` uxx ` f
`

|u|2
˘

u “ 0, x, t P R, upx, tq P C. (1.6)

Thanks to the Galilean invariance of the NLS equation, the plane-wave solution (1.2) can be
transformed into the time-periodic, spatially homogeneous solution

upx, tq “ aeipω`k2qt (1.7)

to (1.6). Its orbital stability with respect to localized perturbations was established by Zhid-
kov [Zhi01]. The result holds locally uniformly in space and is derived via variational methods:
by taking a suitable formal linear combination of the classical conservation laws for mass and
energy, one obtains a well-defined conserved quantity, which serves to close the nonlinear ar-
gument. As observed in [GH07], this also implies orbital stability of the associated plane-wave
solution under localized perturbations.

Remark 1. The nonlinear stability theory of periodic waves in dissipative systems with respect
to localized perturbations has advanced significantly over the last decades. The first nonlin-
ear stability result was obtained for plane-wave solutions in the real Ginzburg-Landau equa-
tion [CEE92] by exploiting its gauge invariance. The use of mode filters in Bloch frequency
domain [Sch96, Sch98], combined with the modulational ansatz proposed in [DSSS09], led to
a breakthrough in the nonlinear stability analysis of periodic waves in large classes of dissipa-
tive systems such as reaction-diffusion models [JZ11, JNRZ13, SSSU12] and systems of viscous
conservation laws [JZ10, JNRZ14]. Based on these developments, we believe that the orbital
stability analysis of plane waves in the complex Klein-Gordon equation presented in this paper
offers a promising step toward developing an orbital stability theory for more general periodic
waves in Hamiltonian systems.

1.1. Goal, challenges, and strategy. Our aim is to develop a variational framework, in the
spirit of [Zhi01], for establishing orbital stability of plane waves in the complex Klein-Gordon
equation (1.1) against localized perturbations. In contrast to the NLS equation, the Klein-
Gordon equation is not completely integrable, which significantly limits the number of (formally)
conserved quantities that could be used in a nonlinear stability argument. In addition, unlike
the NLS equation, where Galilean invariance enables a reduction to a spatially homogeneous
solution, no such reduction is available for the Klein-Gordon equation (1.1).

To address these difficulties, we adopt an alternative reduction inspired by the spectral sta-
bility analysis [DHSS15] of spatially periodic waves in (1.1). Specifically, we introduce the new
coordinate

upx, tq “ wpx´ ct, tqaeikx`iωt, (1.8)

where c P R is a free parameter denoting the speed of the co-moving frame in which the dynamics
of the new w-variable is observed. The Hamiltonian structure of (1.1) is preserved under the
coordinate transformation (1.8), and the plane-wave solution (1.2) is mapped to the homogeneous
equilibrium state wpx, tq ” 1. This transformation thus reduces the stability problem to that of
a (nonlocalized) stationary solution w˚ to a Hamiltonian system of the form

wt “ JH1pwq. (1.9)

The goal is to control the dynamics of a perturbed solution wptq to (1.9) with initial condition
wp0q “ w˚ ` z0, where z0 is an L2-localized perturbation. A crucial observation is that, since
stationary solutions to (1.9) are critical points of the Hamiltonian, the formal expression

Epzptqq “ Hpw˚ ` zptqq ´ Hpw˚q “ O
`

}zptq}2
˘

(1.10)
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represents a well-defined conserved quantity for the L2-localized perturbation zptq “ wptq ´w˚.
If the second variation H2pw˚q were positive definite, then the energy acts as a Lyapunov

functional and }zptq}2 can be bounded in terms of Epzptqq “ Epz0q, implying nonlinear stability.
However, this is obstructed by the gauge symmetry of (1.1) which forces 0 to lie in the spectrum
of H2pw˚q. We emphasize that, since H2pw˚q has constant coefficients, there is also no finite-
codimensional subspace of L2pRq on which H2pw˚q is positive definite, which is a key assumption
in the classical Grillakis-Shatah-Strauss stability framework.

To overcome this difficulty, we decompose the w-variable in polar coordinates

wptq “ eρptq`iϕptq, (1.11)

where the phase variable ϕptq captures the neutral behavior caused by the gauge symmetry. This
allows us to derive effective lower bounds on the conserved energy Epzptqq, which control ρptq
and derivatives of ϕptq over time. Our analysis shows that such bounds can be obtained provided
that the spectral condition

a2f 1
`

a2
˘

ą 2max
␣

0,´f
`

a2
˘(

, (1.12)

ensuring that H2pw˚q is positive semi-definite, is satisfied. All in all, the obtained control on
ρptq and on derivatives of ϕptq is sufficient to close a nonlinear iteration argument, yielding an
orbital stability result which is locally uniform in space.

Remark 2. The plane wave (1.2) is a trivial example of a traveling-kink solution

ψpx, tq “ ψ0px´ stqeikx`iωt,

where the wave speed s, wave number k, and temporal frequency ω are real parameters and the
wave profile ψ0 : R Ñ R connects nonvanishing asymptotic end states ψ˘ “ limξÑ˘8 ψpξq ‰ 0.
When the wave profile is strictly monotone, i.e. ψ1

0pξq ‰ 0 for all ξ P R, the use of variational
methods to prove orbital stability is well-established in one-dimensional Hamiltonian systems.
We refer to [BGSS08, GZ09, HPW82, IK87, Zhi87a, Zhi87b, Zhi01] for results in the (general-
ized) Korteweg-de Vries, Klein-Gordon, NLS, and nonlinear wave equations. A further exten-
sion to solitonic bubble solutions of the form ψpx, tq “ ψ0px ´ stqeiϕ0px´stq, with ψ0 even and
pψ0pξq, ϕ1

0pξqq Ñ pψ8, 0q as ξ Ñ ˘8 can be found in [Lin02].

1.2. Main result. We formulate our main result concerning the orbital stability of plane waves
in the complex Klein-Gordon equation under localized perturbations. Since our analysis only
requires control over the L2-norm of the spatial and temporal derivatives of the phase variable,
we are able to establish orbital stability under nonlocalized initial phase modulations. Thus, we
consider initial data of the form

ˆ

upx, 0q

Btupx, 0q

˙

“ aeikx´iθ8pxq

ˆ

1
iω

˙

`

ˆ

w0pxq

v0pxq

˙

(1.13)

where θ8 : R Ñ R is a continuously differentiable phase function with θ1
8 P H1pRq, and w0 P

H1pRq and v0 P L2pRq are localized perturbations. The sign of fpa2q plays an important role in
our analysis and determines whether unbounded phase modulations are admissible or not. This
gives rise to the following definition.

Definition 3. Let a ą 0. We say that θ8 P C1pR,Rq is a-admissible if θ1
8 P H1pRq and if one of

the following two scenarios holds.
(i) fpa2q ą 0,
(ii) fpa2q ď 0 and θ1

8 P L1pRq.
If θ8 is a-admissible, we then write

E8 “ ∥θ1
8∥L2pRq `

#

0 in case piq,

∥θ1
8∥

1
2

L1pRq
in case piiq.
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Thus, unbounded initial phase modulations θ8 P C1pRq in (1.13) are a-admissible if fpa2q ą 0
and θ1

8 P H1pRq. In contrast, if fpa2q ď 0, then only bounded phase modulations θ8 are
a-admissible. We refer to Remarks 5 and 6 for further details.

We are now in a position to state the main result of this paper.

Theorem 4. Let pa, k, ωq P p0,8q ˆ R2 with pk, ωq ‰ p0, 0q. Assume that the existence condi-
tion (1.3) and the spectral condition (1.12) are satisfied. Fix R ą 0. Then, there exist constants
C, δ ą 0 such that, whenever θ8 P C1pR,Rq is a-admissible and satisfies

E8 ď δ, (1.14)

the following holds.
If pw0, v0q P H2pRq ˆH1pRq obeys

E0 :“ ∥w0∥H1pRq ` ∥v0∥L2pRq ď δ, (1.15)

then there exists a unique global classical solution

u P C
`

r0,8q, H2
locpRq

˘

X C1
`

r0,8q, H1
locpRq

˘

X C2
`

r0,8q, L2
locpRq

˘

(1.16)

to the Klein-Gordon equation (1.1) with initial condition (1.13). Furthermore:

˛ (Local orbital stability) For every x˚ P R and t ě 0 there exists a constant γ “ γpx˚, tq P

R such that

∥uptq ´ aeikp¨q`iωt`iγ∥H1px˚´R,x˚`Rq ď CpE0 ` E8q. (1.17)

˛ (Bounds on phase and radius) There exist continuously differentiable functions ϱ, ϑ P

C1
`

R ˆ r0,8q,R
˘

satisfying ϱptq, ϑptq P H1pRq and ϱtptq, ϑtptq P L2pRq such that the
polar decomposition

upx, tq “ aeikx`iωt´iθ8pxq eϱpx,tq`iϑpx,tq (1.18)

holds for all x P R and t ě 0. Moreover, we have the bounds

∥ϱtptq∥L2pRq ` ∥ϑtptq∥L2pRq ` ∥ϱptq∥H1pRq ` ∥ϑxptq∥L2pRq ď CpE0 ` E8q,

∥ϑptq∥L2pRq ď CpE0 ` E8qpt` 1q
(1.19)

for t ě 0.

Remark 5. In the regime fpa2q ą 0, Theorem 4 allows for unbounded phase modulations
θ8. For instance, there exists a constant C0 ą 0 such that the unbounded smooth function
θ8pxq “ p1 ` ϵ4x2q

1
8 satisfies }θ1

8}H1pRq ď C0ϵ for all ϵ P p0, 1q. Thus, for any fixed δ,K ą 0, the
condition (1.14) can be met by taking ϵ P p0, 1q sufficiently small. In contrast, when fpa2q ď 0, we
impose the additional requirement θ1

8 P L1pRq. This condition guarantees that θ8 is bounded,
its asymptotic limits Θ˘8 “ limxÑ˘8 θ8pxq exist, and the phase offset Θ8 ´ Θ´8 is bounded
by }θ1

8}L1pRq. As a result, the phase offset must remain small when fpa2q ď 0. As an illustrative
example, consider

θ8pxq “ kx´

1 ´ tanhpxq

2
` kx`

1 ` tanhpxq

2

with x˘ P R. There exists a constant C0 ą 0 such that this function satisfies ∥θ1
8∥L1pRq “

|kpx` ´ x´q| and ∥θ1
8∥H1pRq ď C0|kpx` ´ x´q|. Hence, when fpa2q ď 0, then for any fixed

δ,K ą 0, it obeys condition (1.14) provided that the phase offset Θ8 ´ Θ´8 “ kpx` ´ x´q

is sufficiently small. The associated modulated plane wave aeikx´iθ8pxq connects to the phase-
shifted waves aeikpx´x˘q at ˘8.
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1.3. Discussion and outlook. Our spectral analysis in §7 shows that Theorem 4 is sharp in
the sense that it holds up to the spectral stability boundary. That is, at the critical value
a2f 1pa2q “ 2maxt0,´fpa2qu where condition (1.12) ceases to be satisfied, the plane wave (1.2)
transitions from a spectrally stable to a spectrally unstable solution of (1.1). Notably, the
condition (1.12) only involves the leading-order terms in the expansion (1.4) of the nonlinearity.
When fpa2q ě 0, the loss of stability corresponds to a transition from a defocusing to a focusing
nonlinearity. In contrast, if fpa2q ă 0, the instability arises within the defocusing regime itself.
We note that a change in stability is accompanied by a corresponding change in character (from
elliptic to hyperbolic) of the Whitham’s modulation equation, which can be derived via a long-
wave ansatz. For further details and the rigorous justification of the Whitham’s modulation
equation for plane waves in the complex cubic Klein–Gordon equation, we refer to [HLS22].

Similar to the orbital stability result for time-periodic, spatially homogeneous solutions (1.7)
to the NLS equation in [Zhi01], our result is locally uniform in space. Numerical simulations,
see §6, suggest that an orbital stability result, where H1px˚ ´R, x˚ `Rq in (1.17) is replaced by
H1pRq is not attainable. Specifically, our simulations reveal that localized perturbations trigger
a local phase rotation of the plane wave, which subsequently spreads with constant speed in
both spatial directions. That is, perturbations initiate a two-sided expanding phase front. Our
numerical analysis indicates that the L2-norm of ϑptq grows algebraically at rate t

1
2 , while its

L8-norm remains bounded. Thus, we do not expect the growth rate of the L2-norm of ϑptq
in Theorem 4 to be sharp. A compelling direction for future research would be to characterize
the leading-order phase dynamics, which may, at least for long-wavelength perturbations, be
governed by Whitham’s modulation equation; see [HLS22].

It remains an open question whether the conditions on θ8 in the regime fpa2q ď 0 can be
relaxed in Theorem 4, potentially admitting unbounded phase modulations in this case as well.
Crossing the boundary fpa2q “ 0, however, marks a fundamental change in the character of
equation (1.1), corresponding to a qualitative shift from a real to a tachyonic mass term in (1.4).

We note that the regularity assumptions on the initial data in Theorem 4 can be relaxed
to w0 P H1pR,Cq and v0 P L2pR,Cq by working with mild rather than classical solutions
of the perturbation equation; see equation (3.3) in §3. One then obtains a function u P

C
`

r0,8q, H1
locpRq

˘

XC1pr0,8q, L2
locpRq

˘

which satisfies (1.17), (1.18) and (1.19), and is the limit
of a sequence of classical solutions tunptqun to (1.1) with initial data

ˆ

unpx, 0q

Btunpx, 0q

˙

“ aeikx´iθ8pxq

ˆ

1
iω

˙

`

ˆ

wnpxq

vnpxq

˙

,

where tpwn, vnqJun is a sequence in H2pRq ˆH1pRq converging to pw0, v0qJ in H1pRq ˆ L2pRq.
For the sake of simplicity of exposition, we do not pursue this generalization here.

We expect that the variational approach in this paper can be extended to higher spatial
dimensions. In such settings, an intriguing direction is to explore whether the method can be
combined with dispersive estimates to derive optimal or sharper bounds on the ϱ- and ϑ-variables
in Theorem 4. Owing to stronger dispersive decay in higher dimensions, one could even try to
establish an asymptotic nonlinear stability result for plane-wave solutions. To the best of the
authors’ knowledge, no asymptotic nonlinear stability results currently exist for periodic waves
in dispersive Hamiltonian systems; we refer to [ARS24, Rod18] for linear asymptotic stability
results for periodic solutions to the (generalized) Korteweg-de Vries equation. By contrast, the
asymptotic nonlinear stability theory for soliton and kink solutions in such systems has seen
significant advances over the past decades; see, for instance, the surveys [CM21, KMMn17] and
references therein. Finally, another interesting avenue for future research is whether the orbital
stability analysis presented here can be extended beyond plane waves to other classes of periodic
solutions in Hamiltonian systems, particularly those that do not permit a reduction to a spatially
homogeneous state.
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1.4. Organization. In §2, we apply the coordinate transform (1.8) to the Klein-Gordon equation
and use the Hamiltonian structure of the transformed system to establish an energy. In §3, we
introduce the perturbation of the modulated plane wave, derive the corresponding perturbation
equation, and establish local existence and uniqueness of its solutions. In §4, we show that
the energy is conserved and derive associated lower and upper bounds. Section 5 is devoted to
the proof of our main result, Theorem 4. Numerical simulations, supporting our analysis, are
presented in §6. Finally, we carry out a spectral analysis in §7, demonstrating that our orbital
stability result holds up to the spectral stability boundary.

1.5. Acknowledgments. This work is funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – Project-ID 258734477 – SFB 1173. We would like to thank
Maximilian Ruff for helping us set up the numerical simulations.

2. Coordinate transformation and energy

In this section, we apply the coordinate transformation (1.8) to the complex Klein–Gordon
equation (1.1), under which the plane-wave solution (1.2) is mapped to the equilibrium state
wpx, tq ” 1. We establish that the transformed system retains a Hamiltonian structure, from
which we derive an energy using the strategy outlined in §2. The conservation of this energy
forms the backbone of our orbital stability argument.

Inserting (1.8) into (1.1) and using (1.3), we find that the evolution of the w-variable is
governed by the equation

wt “ v,

vt “
`

1 ´ c2
˘

wyy ` 2cvy ´ 2iωv ` 2i pcω ` kqwy ´
`

f
`

a2|w|2
˘

´ f
`

a2
˘˘

w.
(2.1)

In pw, vq-coordinates the plane-wave solution (1.2) corresponds to the homogeneous rest state
p1, 0qJ. In terms of the real coordinate vector w “ pRepwq, Impwq,Repvq, ImpvqqJ, the trans-
formed system (2.1) takes the Hamiltonian form (1.9), where J denotes the skew-symmetric
operator

J “

¨

˚

˚

˝

0 0 1 0
0 0 0 1

´1 0 2cBy 2ω
0 ´1 ´2ω 2cBy

˛

‹

‹

‚

,

H : X Ñ R is the Hamiltonian

Hpξ, ζ, µ, νq “
1

2

ż

R
p1 ´ c2q

`

ξ1pyq2 ` ζ 1pyq2
˘

` µpyq2 ` νpyq2 `
1

a2
F
`

a2
`

ξpyq2 ` ζpyq2
˘˘

´ f
`

a2
˘ `

ξpyq2 ` ζpyq2
˘

` 2pcω ` kq
`

ξpyqζ 1pyq ´ ξ1pyqζpyq
˘

dy,

and X “ H1pRqˆH1pRqˆL2pRqˆL2pRq is the associated Hilbert space. A nonlinear functional,
corresponding to the formal expression (1.10), is then given by the energy

Ecpw, vq “
1

2

ż

R
p1 ´ c2q|w1pyq|2 ` |vpyq|2 ` U

`

|wpyq|2
˘

´ 2pcω ` kq Im
´

wpyqw1pyq

¯

dy (2.2)

where we denote

Upsq “

ż s

1
f
`

a2υ
˘

´ f
`

a2
˘

dυ. (2.3)

For the orbital stability analysis of the equilibrium state p1, 0qJ in (2.1), it is convenient to use
the polar representation

ˆ

wpy, tq
vpy, tq

˙

“

ˆ

eρpy,tq`iϕpy,tq

vpy, tq

˙

.
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Then, ρ and v measure the deviation from the manifold of equilibria M “ tpeiγ , 0qJ : γ P Ru

in (2.1), and ϕ tracks the solution’s orbit along M induced by gauge symmetry. Expressing

Ecpw, vq “
1

2

ż

R
p1 ´ c2q

`

ρ1pyq2 ` ϕ1pyq2
˘

e2ρpyq ` |vpyq|2 ` U
`

e2ρpyq
˘

` 2pcω ` kq

´

ϕ1pyq

´

e2ρpyq ´ 1
¯

` ϕ1pyq

¯

dy,

(2.4)

it follows that the energy Ecpw, vq is well-defined as long as v P L2pRq and w “ eρ`iϕ with
ρ P H1pRq and ϕ1 P L2pRq. In case cω`k ‰ 0, we must additionally require that ϕ1 is integrable,
see Remark 6. In §4, we prove that this energy is indeed conserved and use (1.12) and (2.4) to
derive lower and upper bounds which are sufficient to close an orbital stability argument.

Remark 6. In the regime fpa2q ą 0, we can choose c “ ´ω
k P p´1, 1q so that the term

ż

R
pcω ` kqϕ1pyqdy

in (2.4) vanishes. However, when fpa2q ď 0, it turns out that this choice of c no longer yields
a good lower bound on Ecpw, vq, since (1.3) then implies 1 ´ c2 “ 1 ´ pω{kq2 ď 0. In this case,
a different choice of c is required, and we impose the additional condition in Theorem 4 that
θ1

8 P L1pRq is sufficiently small.

3. Local existence analysis

In this section, we introduce a localized perturbation of the modulated plane wave, derive an
associated perturbation equation, and establish local existence and uniqueness of its solutions.
We then transfer the obtained localization and regularity properties to the polar representation
of the perturbation, which, as outlined in §1.1, effectively captures the neutral behavior induced
by gauge symmetry in our orbital stability analysis.

The coordinate transformation (1.8) maps the modulated plane wave

upx, tq “ aeikx`iωt´iθ8px´ctq

to wpy, tq “ e´iθ8pyq. We measure the deviation from the modulated plane wave by writing

wpy, tq “ e´iθ8pyq p1 ` zpy, tqq . (3.1)

Our next step is to derive an evolution equation for the perturbation z and its temporal derivative
by inserting (3.1) into (2.1). It is convenient to rescale the temporal derivative by 1{

?
1 ´ c2,

which renders the principal linear part of the equation skew-adjoint. Accordingly, we assume
that the free variable c P R satisfies c P p´1, 1q, and introduce

Zpy, tq “

˜

zpy, tq
ztpy,tq
?
1´c2

¸

. (3.2)

We arrive at the semilinear evolution system

Zt “ ΛZ `NpZq (3.3)

posed on the Hilbert space X “ H1pRq ˆ L2pRq, where the linear operator Λ: DpΛq Ă X Ñ X
is defined on the domain DpΛq “ H2pRq ˆH1pRq by

Λ “
a

1 ´ c2
ˆ

0 1
Byy ´ 1 2c?

1´c2
By

˙

,

and the nonlinearity N : X Ñ X is given by

NpZq “

ˆ

0
rNpZq

˙

8



with

rNpz1, z2q “
2ipk ` cωq
?
1 ´ c2

Byz1 ´ 2iωz2 `
a

1 ´ c2 z1 ´
1 ` z1

?
1 ´ c2

ˆ

f
`

a2|1 ` z1|2
˘

´ f
`

a2
˘

˙

´ 2iθ1
8

´

a

1 ´ c2 Byz1 ` cz2

¯

´ p1 ` z1q

ˆ

a

1 ´ c2
`

iθ2
8 ` pθ1

8q2
˙

´
2pk ` cωq
?
1 ´ c2

θ1
8

˙

.

Local existence and uniqueness of classical solutions to (3.3) follows from standard semigroup
theory.

Proposition 7. Assume that c P p´1, 1q. Let θ8 P C1pRq be such that θ1
8 P H1pRq. Take

Z0 P DpΛq. Then, there exist a maximal time T “ T pZ0q P p0,8s and a unique classical solution
Z P Cpr0, T q, Xq X C1pr0, T q, DpΛqq to (3.3) with initial value Zp0q “ Z0. Moreover, if T ă 8,
then it holds

lim sup
tÒT

∥Zptq∥X “ 8. (3.4)

Proof. Note that Λ is a skew-adjoint operator. As such, it generates a unitary group on the
Hilbert space X by Stone’s Theorem; see [EN00, Corollary II.3.24]. On the other hand, using
that H1pRq continuously embeds into L8pRq and that we have f P C1pRq, one readily infers that
N is a well-defined locally Lipschitz continuous map. The result directly follows from standard
semigroup theory for semilinear evolution equations; see [CH98, Theorem 4.3.4 and Proposi-
tion 4.3.9]. □

In our orbital stability analysis, we employ the polar representation

zpy, tq “ eρpy,tq`iθpy,tq ´ 1 (3.5)

of the perturbation to control its long-term dynamics. The following result shows that ρ and
θ inherit the localization and regularity properties of z, as long as 1 ` zptq remains sufficiently
close to the circle of radius 1 centered at the origin.

Proposition 8. Take c P p´1, 1q, δ1 P p0, 14q, and θ8 P C1pR,Rq with θ1
8 P H1pRq. Let

ρ0, θ0 P H2pR,Rq, z1 P H2pR,Cq and z2 P H1pR,Cq be such that∥∥eρ0 ´ 1
∥∥
L8pRq

ď δ1, z1 “ eρ0`iθ0 ´ 1. (3.6)

Denote by zptq the first coordinate of the classical solution Z : r0, T pZ0qq Ñ DpΛq to (3.3) with
initial condition Zp0q “ Z0 “ pz1, z2q P DpΛq, which was established in Proposition 7.

Then,

tmax “ sup
!

t P r0, T pZ0qq :
∥∥ |1 ` zptq| ´ 1

∥∥
L8pRq

ď 2δ1

)

is strictly positive, and there exist unique continuously differentiable functions ρ, θ P C1
`

R ˆ

r0, tmaxq,R
˘

with ρp0q “ ρ0 and θp0q “ θ0 such that the polar decomposition (3.5) holds for all
y P R and t P r0, tmaxq. Moreover, we have ρptq, θptq P H1pRq and ρtptq, θtptq P L2pRq with

∥ρptq∥L8pRq ď 4δ1, ∥ρptq∥L2pRq ď 4∥zptq∥L2pRq, (3.7)

and

∥ρyptq∥2L2pRq ` ∥θyptq∥2L2pRq ď
∥zyptq∥2L2pRq

p1 ´ 2δ1q2
,

∥ρtptq∥2L2pRq ` ∥θtptq∥2L2pRq ď
∥ztptq∥2L2pRq

p1 ´ 2δ1q2
,

∥θptq∥L2pRq ď ∥θ0∥L2pRq ` t
supsPr0,ts∥Bszpsq∥L2pRq

1 ´ 2δ1

(3.8)

for all t P r0, tmaxq.
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Proof. First, we recall from (3.2) that the second coordinate of Zptq is given by the temporal
derivative ztptq{

?
1 ´ c2. Therefore, Proposition 7 ensures that

z P C
`

r0, T q, H2pRq
˘

X C1
`

r0, T q, H1pRq
˘

X C2
`

r0, T q, L2pRq
˘

. (3.9)

In particular, using the continuous embeddingH1pRq ãÑ L8pRq, this implies that z : Rˆr0, T q Ñ

C is continuously differentiable in both space and time. Moreover, in conjunction with the
condition (3.6), it guarantees that tmax is strictly positive.

Expanding the real logarithm at 1 as logpxq “ x´1`Oppx´1q2q, we find that, for any ψ P C
with ||1 ` ψ| ´ 1| ď 2δ1, we have

log|1 ` ψ| ď 2||1 ` ψ| ´ 1|.

Hence, the function ρ : R ˆ r0, tmaxq Ñ R given by ρpy, tq “ log|1 ` zpy, tq| is well-defined,
continuously differentiable in space and time, and satisfies ρp¨, 0q “ ρ0 and ∥ρptq∥L8pRq ď 4δ1 ă 1
for t P r0, tmaxq, which yields the first bound in (3.7). Furthermore, the definition of tmax and
the equality eρptq “ |1 ` zptq| ensure that for all t P r0, tmaxq we have

1 ´ 2δ1 ď inf
yPR

eρpy,tq. (3.10)

On the other hand, since the function ς : Rˆ r0, tmaxq Ñ S1 given by ςpy, tq “ e´ρpy,tqp1` zpy, tqq

is continuously differentiable in space and time, there exists a unique argument function θ P

C1
`

R ˆ r0, tmaxq,R
˘

with θp¨, 0q “ θ0, which satisfies (3.5) for all t P r0, tmaxq.
We now prove that ρ, θ, and their spatial and temporal derivatives are localized in space.

To this end, we note that |er ´ 1| ě 1
4 |r| holds for all r P p´1, 1q by the mean value theorem.

Therefore, using (3.10) and the fact that }ρptq}L8pRq ď 1, we obtain

∥zptq∥L2pRq “ ∥eρptq`iθptq ´ 1∥L2pRq ě ∥eρptq ´ 1∥L2pRq ě
1

4
∥ρptq∥L2pRq,

∥zyptq∥2L2pRq “ ∥pρyptq ` iθyptqqeρptq`iθptq∥2L2pRq “ ∥eρptqρyptq∥2L2pRq ` ∥eρptqθyptq∥2L2pRq

ě p1 ´ 2δ1q2
´

∥ρyptq∥2L2pRq ` ∥θyptq∥2L2pRq

¯

.

for t P r0, tmaxq, implying the second bound in (3.7) and the first bound in (3.8). Thus, we find
that zptq P H1pRq implies ρptq P H1pRq and θyptq P L2pRq for all t P r0, tmaxq. Similarly, (3.10)
leads to

∥ztptq∥2L2pRq “ ∥pρtptq ` iθtptqqeρptq`iθptq∥2L2pRq

ě p1 ´ 2δ1q2
´

∥ρtptq∥2L2pRq ` ∥θtptq∥2L2pRq

¯

,

for t P r0, tmaxq, yielding the second bound in (3.8). Finally, the above estimate, together with
the fundamental theorem of calculus

θpy, tq “ θpy, 0q `

ż t

0
Bsθpy, sqds, y P R, t P r0, tmaxq

provide the last claimed bound in (3.8). □

4. Energy estimates

In this section, we establish upper and lower bounds on the energy (2.2), which play a pivotal
role in our stability argument. Expressing (2.2) in Z-coordinates via (3.1) and (3.2), we arrive
at the quantity

Epz1, z2q “
1

2

ż

R
p1 ´ c2q

ˆ

|z2pyq|2 `

∣∣∣By ´p1 ` z1pyqqe´iθ8pyq
¯∣∣∣2˙ ` U

`

|1 ` z1pyq|2
˘

´ 2pk ` cωq

´

Im
´

p1 ` z1pyqqz1
1pyq

¯

` θ1
8pyq|1 ` z1pyq|2

¯

dy,

(4.1)
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where we recall that U P C3
`

r0,8q,R
˘

is given by (2.3). Before showing that the energy is
conserved and bounded from below, we first prove that it is bounded from above.

Lemma 9. Let c P p´1, 1q. There exists C1 ą 0 such that for each ρ, θ P H1pR,Rq, z1 P

H1pR,Cq, z2 P L2pR,Cq, and θ8 P C1pR,Rq satisfying θ1
8 P L2pRq, pk ` cωqθ1

8 P L1pRq, and

z1 “ eρ`iθ ´ 1, ∥ρ∥L8pRq ď 1,

the energy Epz1, z2q is well-defined and enjoys the upper bound

|Epz1, z2q| ď C1

´

∥z2∥2L2pRq ` ∥ρ∥2H1pRq ` ∥θ1∥2L2pRq ` ∥θ1
8∥2L2pRq ` |k ` cω| ∥θ1

8∥L1pRq

¯

.

Proof. We successively bound the three terms in the expression for E. First, using Young’s
inequality, we establish∣∣∣By ´p1 ` z1pyqqe´iθ8pyq

¯
∣∣∣2 ď 2|z1

1pyq|2 ` 2|1 ` z1pyq|2|θ1
8pyq|2

“ 2
`

ρ1pyq2 ` θ1pyq2 ` θ1
8pyq2

˘

e2ρpyq

for y P R. Combining this pointwise bound with ∥e2ρ∥L8pRq ď e2 yields the desired estimate on
the first term in (4.1).

For the second term, we note that Up1q “ U 1p1q “ 0. Hence, Taylor’s Theorem yields a
constant C˚ ą 0 such that

|e2s ´ 1| ď C˚|s|, |Upe2sq| ď C˚|s|2, (4.2)

for s P r´1, 1s. As a consequence, it holds

U
`

|1 ` z1pyq|2
˘

“ U
`

e2ρpyq
˘

ď C˚|ρpyq|2

for y P R, which establishes the desired bound on the second term in (4.1).
For the third term, we compute

Im
´

p1 ` z1pyqqz1
1pyq

¯

` θ1
8pyq|1 ` z1pyq|2 “

`

θ1
8pyq ´ θ1pyq

˘

e2ρpyq,

“ θ1pyq ´ θ1pyq

´

e2ρpyq ´ 1
¯

` θ1
8pyqe2ρpyq

(4.3)

for y P R. Hence, using that θ P H1pRq and applying the estimate (4.2), we infer

|k ` cω|

∣∣∣∣ż
R
Im

´

p1 ` z1pyqqz1
1pyq

¯

` θ1
8pyq|1 ` z1pyq|2dy

∣∣∣∣
“ |k ` cω|

∣∣∣∣ż
R
θ1pyq

´

e2ρpyq ´ 1
¯

´ θ1
8pyqe2ρpyqdy

∣∣∣∣
ď C˚∥θ1∥L2pRq∥ρ∥L2pRq ` |k ` cω|e2∥θ1

8∥L1pRq,

which yields the desired bound on the third term in (4.1) by evoking Young’s inequality. This
completes the proof of the lemma. □

Next, we show that the energy is conserved under the evolution of (3.3).

Lemma 10. Let c P p´1, 1q and θ8 P C1pR,Rq be such that θ1
8 P L2pRq and pk`cωqθ1

8 P L1pRq.
Take Z0 P DpΛq. Let Z P Cpr0, T q, Xq X C1pr0, T q, DpΛqq be the classical solution to (3.3) with
initial condition Zp0q “ Z0, which was established in Proposition 7. Let τ P p0, T s be such that
the energy EpZptqq is well-defined for all t P r0, τq. Then, we have

EpZptqq “ EpZ0q, t P r0, τq.

Proof. Denote Zptq “ pzptq, vptqqT. We successively differentiate the different terms in the ex-
pression (4.1) for the energy with respect to time. First, using ztptq “

?
1 ´ c2 vptq, we compute

d

dt

1

2

ż

R
p1 ´ c2q |vpy, tq|2 dy “

a

1 ´ c2Re xvtptq, ztptqyL2pRq
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for t P r0, T q. Moreover, using integration by parts, we derive

d

dt

ˆ

1

2

ż

R

∣∣∣By ´p1 ` zpy, tqqe´iθ8pyq
¯∣∣∣2 dy˙ “ Re

A

By

´

p1 ` zptqe´iθ8

¯

, By

´

ztptqe
´iθ8

¯E

L2pRq

“ ´Re
A

eiθ8Byy

´

p1 ` zptqqe´iθ8

¯

, ztptq
E

L2pRq
.

for t P r0, T q. We proceed with differentiating the second term in the energy. Recalling the
definition (2.3) of U , we compute

d

dt

ˆ

1

2

ż

R
U
`

|1 ` zpy, tq|2
˘

dy

˙

“ Re
A

p1 ` zptqq

´

f
`

a2|1 ` z|2
˘

´ f
`

a2
˘

¯

, ztptq
E

L2pRq

for t P r0, T q. For the third term, we use integration by parts to arrive at

d

dt

1

2

ż

R
Im

´

p1 ` zpy, tqqzypy, tq
¯

dy “
1

2
Im

´

xztptq, zyptqyL2pRq
` x1 ` zptq, zytptqyL2pRq

¯

“
1

2
Im

´

xztptq, zyptqyL2pRq
´ xzyptq, ztptqyL2pRq

¯

“ Re
´

i xzyptq, ztptqyL2pRq

¯

for t P r0, T q. Moreover, we find

d

dt

1

2

ż

R
θ1

8pyq|1 ` zpy, tq|2dy “ Re
@

θ1
8p1 ` zptqq, ztptq

D

L2pRq
.

for t P r0, T q. Gathering the above computations, using that Zptq “ pzptq, vptqqT is a classical
solution of (3.3), recalling ztptq “

?
1 ´ c2 vptq, and integrating by parts, we obtain

d

dt
EpZptqq “ Re

@

2cztyptq ´ 2ipω ` cθ1
8qztptq, ztptq

D

L2pRq

“ cRe xztyptq, ztptqyL2pRq
´ cRe xztptq, ztyptqyL2pRq

“ 0

for t P r0, T q, which finishes the proof. □

We conclude this section by proving that the energy is bounded from below, provided that
the spectral condition (1.12) holds.

Lemma 11. Let pa, k, ωq P p0,8q ˆ R2 with pk, ωq ‰ p0, 0q. Assume that the existence condi-
tion (1.3) and the spectral condition (1.12) hold. Then, there exist constants C2 ą 0, δ2 P p0, 1q,
and c P p´1, 1q such that for each ρ, θ P H1pR,Rq, z1 P H1pR,Cq, z2 P L2pR,Cq, and a-admissible
θ8 P C1pR,Rq such that

z1 “ eρ`iθ ´ 1, }ρ}L8pRq ď δ2,

the energy Epz1, z2q enjoys the lower bound

∥z2∥2L2pRq ` ∥ρ∥2H1pRq ` ∥θ1∥2L2pRq ď C2

´

Epz1, z2q ` ∥θ1
8∥2L2pRq ` |k ` cω|∥θ1

8∥L1pRq

¯

. (4.4)

where we note that k ` cω “ 0 whenever fpa2q ą 0.

Proof. We successively bound the terms in the expression (4.1) for the energy from below. First,
we note that Up1q “ U 1p1q “ 0 and U2p1q “ a2f 1pa2q. Hence, Taylor’s Theorem affords a
constant C˚ ą 0 such that

ˇ

ˇU
`

e2s
˘

´ 2a2f 1pa2qs2
ˇ

ˇ ď C˚|s|3,
ˇ

ˇe2s ´ 1 ´ 2s
ˇ

ˇ ď C˚|s|2,
ˇ

ˇe2s ´ 1
ˇ

ˇ ď C˚|s| (4.5)
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for s P r´1, 1s. Taking δ2 P p0, 1q such that 1´C˚δ2 ą 0, we use (4.5) and Young’s inequality to
establish the pointwise lower bound∣∣∣By ´p1 ` z1pyqqe´iθ8pyq

¯∣∣∣2 “ e2ρpyq
`

|ρ1pyq|2 ` |θ1pyq ´ θ1
8pyq|2

˘

ě p1 ´ C˚δ2q

ˆ

|ρ1pyq|2 ` p1 ´ δ2q|θ1pyq|2 ´
1 ´ δ2
δ2

|θ1
8pyq|2

˙

for y P R. Hence, we arrive at
p1 ´ C˚δ2qp1 ´ δ2q

δ2
∥θ1

8∥2L2pRq `

ż

R

∣∣∣By ´p1 ` z1pyqqe´iθ8pyq
¯
∣∣∣2 dy

ě p1 ´ C˚δ2q

´

∥ρ1∥2L2pRq ` p1 ´ δ2q∥θ1∥2L2pRq

¯

.

(4.6)

For the second term in (4.1), we apply (4.5) to bound

U
`

|1 ` z1pyq|2
˘

“ U
`

e2ρpyq
˘

ě
`

2a2f 1pa2q ´ C˚δ2
˘

|ρpyq|2

for y P R, yielding
ż

R
U
`

|1 ` z1pyq|2
˘

dy ě
`

2a2f 1pa2q ´ C˚δ2
˘

∥ρ∥2L2pRq. (4.7)

For the third term, we recall (4.3) and establish

Im
´

p1 ` z1pyqqz1
1pyq

¯

` θ1
8pyq|1 ` z1pyq|2

“ θ1pyq ` 2θ1pyqρpyq ´ θ1pyq

´

e2ρpyq ´ 1 ´ 2ρpyq

¯

` θ1
8pyqe2ρpyq

for y P R. Combining the latter with the bound (4.5) and using Young’s inequality with param-
eter γ ą 0, we obtain∣∣∣∣ż

R
Im

´

p1 ` z1pyqqz1
1pyq

¯

` θ1
8pyq|1 ` z1pyq|2dy

∣∣∣∣
ď

ˆ

1 `
1

2
C˚δ2

˙ˆ

γ∥ρ∥2L2pRq `
1

γ
∥θ1∥L2pRq

˙

` e2}θ1
8}L1pRq.

(4.8)

Gathering the bounds (4.6), (4.7), and (4.8), we finally establish

2Epz1, z2q ` C0pδ2q∥θ1
8∥2L2pRq ` 2|k ` cω|e2}θ1

8}L1pRq

ě p1 ´ c2q∥z2∥2L2pRq `
`

1 ´ c2
˘

p1 ´ C˚δ2q

´

∥ρ1∥2L2pRq ` p1 ´ δ2q∥θ1∥2L2pRq

¯

`
`

2a2f 1pa2q ´ C˚δ2
˘

∥ρ∥2L2pRq

´ |k ` cω| p2 ` C˚δ2q

ˆ

γ∥ρ∥2L2pRq `
1

γ
∥θ1∥L2pRq

˙

,

(4.9)

where C0pδ2q ą 0 is a constant depending on C˚, c and δ2 only.
Our next step is to choose c P p´1, 1q, γ ą 0, and δ2 P p0, 1q in such a way that all constants

in front of the norms on right-hand side of (4.9) are strictly positive. We distinguish between
the cases fpa2q ą 0, fpa2q ă 0, and fpa2q “ 0.

First, we consider the case fpa2q ą 0. Here, (1.3) allows us to choose c “ ´ k
ω P p´1, 1q such

that k ` cω “ 0. Subsequently choosing γ “ 1 and taking δ2 ą 0 sufficiently small, we find that
all constants in front of the norms on the right-hand side of (4.9) are strictly positive by (1.12).
This settles the lower bound (4.4) in the case fpa2q ą 0.

Next, suppose fpa2q ă 0. Here, (1.3) and (1.12) allow us to choose

c “ ´
ω

k
P p´1, 1q, γ “ ´|k|

a2f 1
`

a2
˘

´ 2f
`

a2
˘

2f
`

a2
˘ ą 0
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such that

|k ` cω| “ ´
fpa2q

|k|
, 1 ´ c2 ´

2|k ` cω|

γ
“
`

1 ´ c2
˘ a2f 1

`

a2
˘

` 2f
`

a2
˘

a2f 1
`

a2
˘

´ 2f
`

a2
˘ ą 0,

and

2a2f 1
`

a2
˘

´ 2|k ` cω|γ “ a2f 1
`

a2
˘

` 2f
`

a2
˘

ą 0.

Subsequently taking δ2 ą 0 sufficiently small, we again obtain that all constants in front of the
norms on the right-hand side of (4.9) are strictly positive, yielding the bound (4.4) for the case
fpa2q ă 0.

Finally, suppose fpa2q “ 0. We have k
ω P t˘1u by (1.3). Setting c “ ´ k

ω p1´ δ2q P p´1, 1q and
γ “ 1{

?
δ2, we find

|k ` cω| “ |k|δ2

and

2a2f 1pa2q ´ 2|k ` cω|γ “ 2a2f 1pa2q ´ 2
a

δ2 |k|, 1 ´ c2 ´
2|k ` cω|

γ
“ 2δ2 ´ 2δ2

a

δ2 |k| ´ δ22 .

Hence, taking δ2 ą 0 sufficiently small and recalling (1.12), we find that all constants in front of
the norms on the right-hand side of (4.9) are strictly positive. This establishes (4.4) for the case
fpa2q “ 0, which concludes the proof. □

5. Proof of the main result

We prove our orbital stability result, Theorem 4. The proof relies on the conservation of the
energy functional (4.1) and employs the upper and lower bounds obtained in Lemmas 9 and 11.

Proof – Theorem 4. Let c P p´1, 1q be as in Lemma 11, and let δ ą 0. Suppose θ8 P C1pR,Rq is
a-admissible and satisfies (1.14). Furthermore, let w0 P H2pRq and v0 P H1pRq satisfy (1.15).

We start by constructing a classical solution uptq to (1.1) with initial condition (1.13). The
existence of such a solution follows from the local well-posedness result for the perturbation
equation (3.3) in Z-coordinates, established in §3. Thus, recalling the coordinate transforma-
tions (1.8), (3.1), and (3.2), we introduce associated initial data

z1pyq “
w0pyq

aeiky´iθ8pyq
, z2pyq “

1
?
1 ´ c2

ˆ

v0pyq ´ i pck ` ωqw0pyq ` cw1
0pyq

aeiky´iθ8pyq
´ ciθ1

8pyq

˙

.

We note that z1 P H2pRq and z2 P H1pRq. Moreover, there exists an E0- and E8-independent
constant C0 ą 0 such that

}z1}H1pRq ď C0E0 ď C0δ, }z2}L2pRq ď C0pE0 ` E8q ď 2C0δ. (5.1)

Thanks to Proposition 7, there exist a maximal time T P p0,8s and a classical solution Z P

Cpr0, T q, Xq X C1pr0, T q, DpΛqq to (3.3) with initial value Zp0q “ pz1, z2qT such that, if T ă 8,
then (3.4) holds. Let zptq be the first coordinate of Zptq. Since the second coordinate of Zptq is
given by the temporal derivative ztptq{

?
1 ´ c2, we find that z obeys (3.9). Thus, by construction,

the function u : R ˆ r0, T q Ñ R given by

upx, tq “ p1 ` zpx´ ct, tqq aeikx`iωt´iθ8px´ctq (5.2)

satisfies (1.16) and is a classical solution to the complex Klein-Gordon equation (1.1) with initial
condition (1.13).

Our next step is to decompose zptq into polar coordinates and obtain bounds on the radius
and phase in terms of zptq. To do so, we apply Proposition 8, which first requires expressing the
initial condition zp0q “ z1 in polar coordinates. To this end, let δ2 P p0, 1q be as in Lemma 11 and
fix δ1 P p0, 14δ2q. Taking δ ą 0 smaller if necessary and using (5.1) and the continuous embedding
H1pRq ãÑ L8pRq, we arrange for }z1}L8pRq ď δ1. Since the principal logarithm h : D1 Ñ C,
hpsq “ logp1 ` sq is an analytic function on the open disk D1 of radius 1 and satisfies hp0q “ 0,
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the function logp1 ` z1q is a well-defined element of the algebra H2pRq via the holomorphic
functional calculus. We define ρ0, θ0 P H2pR,Rq as its real and imaginary part through

ρ0 ` iθ0 “ logp1 ` z1q. (5.3)

To bound the L2-norms of ρ0 and θ0, we use the mean value theorem, yielding a constant C˚ ą 0
such that | logp1 ` sq| ď C˚|s| for s P D 1

2
. Consequently, the estimate (5.1) implies

∥ρ0∥L2pRq, ∥θ0∥L2pRq ď C˚∥z1∥L2pRq ď C˚C0E0. (5.4)

On the other hand, we use the reverse triangle inequality to infer

∥eρ0 ´ 1∥L8pRq “ ∥|z1 ` 1| ´ 1∥L8pRq ď ∥z1∥L8pRq ď δ1.

Hence, an application of Proposition 8 yields an E0- and E8-independent constant C1 ą 0 and
unique continuously differentiable functions ρ, θ : Rˆ r0, tmaxq Ñ R with ρp0q “ ρ0 and θp0q “ θ0
such that the polar decomposition

zpy, tq “ eρpy,tq`iθpy,tq ´ 1 (5.5)

and the bounds
∥ρptq∥L8pRq ď 4δ1 ď δ2,

∥ρyptq∥2L2pRq ` ∥θyptq∥2L2pRq ď C2
1∥zyptq∥2L2pRq,

∥ρtptq∥2L2pRq ` ∥θtptq∥2L2pRq ď C2
1∥ztptq∥2L2pRq,

∥θptq∥L2pRq ď ∥θ0∥L2pRq ` C1t sup
sPr0,ts

∥Bszpsq∥L2pRq

(5.6)

hold for all t P r0, tmaxq, where we denote

tmax “ sup
!

t P r0, T q :
∥∥ |1 ` zptq| ´ 1

∥∥
L8pRq

ď 2δ1

)

.

In particular, (5.1) and (5.6) imply

∥ρ1
0∥L2pRq, ∥θ1

0∥L2pRq ď C1C0E0. (5.7)

We proceed with bounding the norms of ρptq, θyptq, and ztptq for t P r0, tmaxq in terms of their
initial data, using the energy as a Lyapunov functional. We note that, by our choice of c, we
have k ` cω “ 0 whenever fpa2q ą 0. Moreover, from (5.6), we know that ∥ρptq∥L8pRq ď δ2 ď 1
for all t P r0, tmaxq. This ensures that the energy EpZptqq is well-defined for all t P r0, tmaxq by
Lemma 9. So, Lemma 10 yields

EpZptqq “ EpZ0q (5.8)

for all t P r0, tmaxq. The polar decompositions (5.3) and (5.5) along with the first bound in (5.6)
allow us to apply Lemmas 9 and 11 to bound the right-hand side of (5.8) from above and the
left-hand side of (5.8) from below, respectively. Recalling that the second coordinate of Zptq is
given by ztptq{

?
1 ´ c2 and using (5.1), (5.4), and (5.7), this results in E0- and E8-independent

constants C2, C3 ą 0 such that

∥ztptq∥2L2pRq ` ∥ρptq∥2H1pRq ` ∥θyptq∥2L2pRq

ď C2

ˆ

∥z2∥2L2pRq ` ∥ρ0∥2H1pRq ` ∥θ1
0∥2L2pRq ` ∥θ1

8∥2L2pRq ` |k ` cω| ∥θ1
8∥L1pRq

˙

ď C3

`

E2
0 ` E2

8

˘

ď 2C3δ
2

(5.9)

for t P r0, tmaxq.
Next, we argue that the solution Zptq is global, i.e., that it holds tmax “ T “ 8. First, we

note that the mean value theorem yields a constant C4 ą 0 such that

|es ´ 1| ď C4|s|, |es| ď C4 (5.10)
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for s P D1. Hence, using the continuous embedding H1pRq ãÑ L8pRq and taking δ ą 0 smaller
if necessary, estimate (5.9) implies

∥ |1 ` zptq| ´ 1∥LppRq “ ∥eρptq ´ 1∥LppRq ď δ1,

∥zyptq∥L2pRq ď ∥eρptq∥L8pRq

`

∥ρyptq∥L2pRq ` ∥θyptq∥L2pRq

˘

ď δ1
(5.11)

for all t P r0, tmaxq and p P t2,8u. Combining the latter with the fact that z : r0, T q Ñ H1pRq ãÑ

L8pRq is continuous by (3.9), it follows that, by definition, tmax must be equal to T . Conse-
quently, the inequalities (5.9) and (5.11) preclude (3.4) and it must hold 8 “ T “ tmax.

We proceed with establishing the decomposition (1.18) and the bounds (1.19). Combining (5.2)
and (5.5), we find that upx, tq satisfies (1.18), where ϱ, ϑ : R ˆ r0,8q Ñ R are defined by

ϱpx, tq “ ρpx´ ct, tq

and

ϑpx, tq “ θpx´ ct, tq ` θ8pxq ´ θ8px´ ctq “ θpx´ ct, tq `

ż 0

´ct
θ1

8px` yqdy.

Clearly, ϱ and ϑ are continuously differentiable in space and time, since ρ, θ, and θ8 are also C1.
On the one hand, the identities

∥ϱptq∥H1pRq “ ∥ρptq∥H1pRq, ∥ϱtptq∥L2pRq ď ∥ρtptq∥L2pRq ` |c| ∥ρyptq∥L2pRq (5.12)

show that ϱ P H1pRq and ϱt P L2pRq for t ě 0. On the other hand, the fact that ϑ P H1pRq and
ϑt P L2pRq follows from the estimates

∥ϑptq∥L2pRq ď ∥θptq∥L2pRq `

˜

ż 0

´|c|t

ż 0

´|c|t

ż

R
|θ1

8px` yqθ1
8px` lq| dxdydl

¸
1
2

ď ∥θptq∥L2pRq ` |c|t ∥θ1
8∥L2pRq

(5.13)

and
∥ϑxptq∥L2pRq ď ∥θyptq∥L2pRq ` 2∥θ1

8∥L2pRq,

∥ϑtptq∥L2pRq ď ∥θtptq∥L2pRq ` |c|
`

∥θyptq∥L2pRq ` ∥θ1
8∥L2pRq

˘ (5.14)

for t ě 0. Finally, combining (5.12), (5.13), and (5.14) with (5.4), (5.9), and the last two
inequalities in (5.6) yields (1.19).

It remains to show (1.17). To this end, take t ě 0 and x˚ P R. We set ψpx, tq :“ ϑpx, tq´θ8pxq,
γ “ ψpx˚, tq, and I “ rx˚ ´R, x˚ `Rs. Using (5.9), (5.14), and

ψpx, tq ´ γ “

ż x

x˚

ψxpy, tq dy, x P R,

we find an E0- and E8-independent constant C5 ą 0 such that

∥ψptq ´ γ∥L2pIq ď

ˆ
ż

I

ż

I

ż

I
|ψxpy, tq||ψxpl, tq|dydldx

˙
1
2

ď 2R∥ψxptq∥L2pIq ď C5 pE0 ` E8q ď 2C5δ.

(5.15)

Hence, taking δ ą 0 smaller if necessary, applying (5.9), (5.10), (5.12), (5.14), and (5.15), and
using the embedding H1pIq ãÑ L8pIq, we infer∣∣∣upx, tq ´ aeikx`iωt`iγ

∣∣∣ “ a
∣∣∣eϱpx,tq`iψpx,tq´iγ ´ 1

∣∣∣ ď aC4 |ϱpx, tq ` iψpx, tq ´ iγ| ,∣∣∣uxpx, tq ´ aikeikx`iωt`iγ
∣∣∣ ď |k|

∣∣∣upx, tq ´ aeikx`iωt`iγ
∣∣∣ ` C4 p|ϱxpx, tq| ` |ψxpx, tq|q

for x P I. Taking L2-norms of the latter two inequalities and applying (1.19) and (5.15)
yields (1.17), thereby completing the proof. □
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6. Numerics

We discuss the outcome of numerical simulations pertaining to our main result, Theorem 4.
Here, we focus on the defocusing cubic complex Klein-Gordon equation, i.e., we restrict ourselves
to the case fpsq “ 1` s. All computations are carried out in MATLAB. We consider plane-wave
solutions (1.2) which are perturbed by complex-valued Gaussians. Specifically, we consider a
perturbed plane-wave solution

upx, tq “ aeikx`iωt eϱpx,tq`iϑpx,tq, (6.1)

to (1.1) with initial condition (1.13) with parameters

ω “ 10, k “ 2π, a2 “ ω2 ´ k2 ´ 1,

θ8pxq “ 0, w0pxq “ 4p1 ` iqe´25px´10q2 , v0pxq “ 40p1 ` iqe´25px´10q2 .
(6.2)

We emphasize that the existence condition (1.3) and the spectral condition (1.12) are satisfied.
To compute the time evolution of the perturbed plane-wave solution (6.1), we employ a Strang
splitting algorithm. We simulate the dynamics on a spatial domain of 20 units with periodic
boundary conditions. The simulation time is chosen such that the perturbation does not reach
the domain boundary, preventing contributions of boundary effects. The results are plotted
in Fig.1.

Figure 1. Plots of the L2-norms of the polar coordinates ϱptq and ϑptq of
the perturbed plane-wave solution (6.1) with parameters (6.2) and initial con-
dition (1.13), along with those of their spatial derivatives. The norms of ϱptq,
ϱxptq and ϑxptq remain bounded in time. In contrast, the top-right panel illus-
trates that the L2-norm of ϑptq grows over time.

The numerical computations indicate that the bounds (1.19) on the L2-norm of ϱptq, ϱxptq,
and ϑxptq in (1.19) are sharp, as these do not seem to decay over time. However, the numerics
also suggest that the linear growth bound for ∥ϑptq∥L2pRq in (1.19) is not optimal. Indeed, a linear
regression for the log-log plot of }ϑptq}L2pRq indicates that }ϑptq}L2pRq grows algebraically with
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rate
?
t, see Fig. 2. The L8-norm of ϑptq, on the other hand, remains bounded. The dynamics

of the perturbed plane-wave solution uptq together with its phase ϑptq are illustrated in Fig. 3.
Similar behavior was observed in numerical simulations for different values of ω, k, and initial
perturbations w0, v0.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

log(t)
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0

1

2

lo
g(

||
|| 2

)

Figure 2. Log-log plot of the L2-norm of the phase ϑptq of the perturbed plane-
wave solution (6.1) with parameters (6.2) and initial condition (1.13). The best
linear fit, shown in red, is computed using the last quarter of data points. Its
slope is approximately 0.5051, suggesting that ∥ϑptq∥L2pRq grows with rate

?
t.

Figure 3. Plots of the real part of the perturbed plane-wave solution (6.1) (blue),
with parameters (6.2) and initial condition (1.13), along with its phase ϑpt0q

(orange) at different times t0. The initial perturbations are given by (6.2) scaled
by 7

4 for improved visibility. The perturbation triggers a phase defect that travels
outwards in both spatial directions.

7. Spectral stability analysis

The analysis in this section confirms that our orbital stability result, Theorem 4, is sharp in
the sense that it holds up to the spectral stability boundary. To study the spectral stability of
the plane-wave solution (1.2), we consider the perturbation

upx, tq “ aeikx`iωt p1 ` zpx´ ct, tqq , (7.1)
18



where the free parameter c P R denotes the speed of the co-moving frame in which we observe
the dynamics. Inserting (7.1) in the complex Klein-Gordon equation (1.1) while using (1.3), we
arrive at

ztt ´
`

1 ´ c2
˘

zyy ´ 2czyt ` 2iωzt ´ 2i pcω ` kq zy `
`

f
`

a2|1 ` z|2
˘

´ f
`

a2
˘˘

p1 ` zq “ 0. (7.2)

Writing (7.2) as a real system in Z “ pRe z, Im zqJ and linearizing, we obtain

Ztt ` JcpByqZt ` HcpByqZ “ 0

with

JcpDq “

ˆ

´2cD ´2ω
2ω ´2cD

˙

, HcpDq “

ˆ

´
`

1 ´ c2
˘

D2 ` 2a2f 1
`

a2
˘

2pcω ` kqD
´2pcω ` kqD ´

`

1 ´ c2
˘

D2

˙

.

The spectrum associated with the plane-wave solution (1.2) to (1.1) is thus given by the set

σc “ tλ P C : Pcpλq is not boundedly invertibleu ,

where Pcpλq : H2pRq Ă L2pRq Ñ L2pRq is the quadratic operator pencil

Pcpλq “ λ2I2 ` λJcpByq ` HcpByq.

We say that the plane wave (1.2) is spectrally stable if σc is confined to the imaginary axis and
spectrally unstable if it is not spectrally stable. Since Pcpλq has constant coefficients, we find
that it is boundedly invertible if and only if its Fourier symbol

P̂cpλ, ℓq “ λ2I2 ` λJcpiℓq ` Hcpiℓq

is invertible for each ℓ P R. That is, Pcpλq is not boundedly invertible if and only if there exists
ℓ P R such that pλ, ℓq is a root of the determinantal function Ec : C ˆ R Ñ C given by

Ecpλ, ℓq “ det P̂cpλ, ℓq.

Since we have P̂cpλ, ℓq “ P̂0pλ ´ ciℓ, ℓq for all λ P C and c, ℓ P R, the spectral stability of the
plane wave is independent of the choice of c P R.

The following result, summarizing the outcome of our spectral analysis, shows that condi-
tion (1.12) is sharp in the sense that it coincides with a change in spectral stability. Its proof
employs the instability index theory for quadratic operator pencils as developed in [BJK14].

Proposition 12. Let pa, k, ωq P p0,8qˆR2 be such that the existence condition (1.3) is satisfied.
˛ For fpa2q ą 0 the plane-wave solution (1.2) to (1.1) is spectrally stable if f 1pa2q ą 0 and

spectrally unstable if

´2fpa2q ă a2f 1
`

a2
˘

ă 0. (7.3)

˛ For fpa2q ă 0 the plane-wave solution (1.2) to (1.1) is spectrally stable if a2f 1pa2q ą

´2fpa2q and spectrally unstable if

0 ă a2f 1
`

a2
˘

ă ´2fpa2q. (7.4)

Proof. Assume that condition (1.12) holds. We show that the plane wave is spectrally stable.
As in the orbital stability analysis, we choose c P R depending on the sign of fpa2q. First, we
consider the case fpa2q ą 0. Using (1.3) and setting c “ ´ k

ω P p´1, 1q, we find that the diagonal
self-adjoint operator HcpByq is positive semidefinite on L2

perp0, Lq for any L ě 0. Therefore, the
instability index count in [BJK14] implies that the plane wave is spectrally stable. Next, we
consider the case fpa2q ă 0. We use (1.3) to set c “ ´ω

k P p´1, 1q. By (1.12) we find that

H´ω
k

pikℓq “

ˆ`

k2 ´ ω2
˘

ℓ2 ` 2a2f 1
`

a2
˘

2pk2 ´ ω2qiℓ
´2pk2 ´ ω2qiℓ

`

k2 ´ ω2
˘

ℓ2

˙

possesses nonnegative determinant

ℓ2
`

k2 ´ ω2
˘ `

ℓ2
`

k2 ´ ω2
˘

` 2a2f 1pa2q ´ 4
`

k2 ´ ω2
˘˘
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and one nonnegative eigenvalue

a2f 1pa2q ` ℓ2
`

k2 ´ ω2
˘

`

b

pa2f 1pa2qq
2

` 4ℓ2pk2 ´ ω2q2

for all ℓ P R. Therefore, both eigenvalues of Hcpikℓq are nonnegative and the self-adjoint operator
HcpByq is positive semidefinite on L2

perp0, Lq for any L ě 0. Therefore, the plane wave is spectrally
stable by [BJK14].

Next, we show that (7.3) and (7.4) yield spectral instability. We use that E0piω, ℓq is a quartic
polynomial in ω with real coefficients for ℓ P R. Let ∆pℓq be the discriminant of E0pi¨, ℓq. We
compute

∆p0q “ 0, ∆1p0q “ 0, ∆2p0q “ 1024a2f 1pa2q
`

2ω2 ` a2f 1
`

a2
˘˘3 `

2ω2 ´ 2k2 ` a2f 1
`

a2
˘˘

.

If we have (7.3) or (7.4), then ∆2p0q is negative by (1.3). Hence, there exists ℓ0 ą 0 such that
the discriminant ∆pℓq is negative for ℓ P p´ℓ0, ℓ0qzt0u. Therefore, the quartic polynomial E0pi¨, ℓq
must possess two non-real roots for ℓ P p´ℓ0, ℓ0qzt0u, implying that the plane wave is spectrally
unstable. □

Remark 13. Our analysis shows that, in the cases (7.3) and (7.4), the plane wave is spectrally
unstable due to the fact that Ecpi¨, ℓq possesses nonreal roots for all Fourier frequencies ℓ P

p´ℓ0, ℓ0qzt0u with ℓ0 ą 0 sufficiently small. That is, the plane wave undergoes a sideband,
Benjamin-Feir or long wavelength instability as it crosses the stability boundary a2f 1pa2q “

2maxt0,´fpa2qu.
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[BGSS08] F. Béthuel, P. Gravejat, J.-C. Saut, and D. Smets. Orbital stability of the black soliton for the
Gross-Pitaevskii equation. Indiana Univ. Math. J., 57(6):2611–2642, 2008.

[BJK14] J. Bronski, M. A. Johnson, and T. Kapitula. An instability index theory for quadratic pencils and
applications. Comm. Math. Phys., 327(2):521–550, 2014.

[CEE92] P. Collet, J.-P. Eckmann, and H. Epstein. Diffusive repair for the Ginzburg-Landau equation. Helv.
Phys. Acta, 65(1):56–92, 1992.

[CH98] T. Cazenave and A. Haraux. An introduction to semilinear evolution equations, volume 13 of Oxford
Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press,
New York, 1998. Translated from the 1990 French original by Yvan Martel and revised by the authors.

[CM21] S. Cuccagna and M. Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger
equations II. Discrete Contin. Dyn. Syst. Ser. S, 14(5):1693–1716, 2021.

[CP23] G. Chen and J. M. Palacios. Orbital stability and instability of periodic wave solutions for ϕ4n-models.
Nonlinearity, 36(5):2249–2285, 2023.

[DHSS15] A. Demirkaya, S. Hakkaev, M. Stanislavova, and A. Stefanov. On the spectral stability of periodic
waves of the Klein-Gordon equation. Differential Integral Equations, 28(5-6):431–454, 2015.

[DSSS09] A. Doelman, B. Sandstede, A. Scheel, and G. Schneider. The dynamics of modulated wave trains.
Mem. Amer. Math. Soc., 199(934):viii+105, 2009.

[EN00] K.-J. Engel and R. Nagel. One-parameter semigroups for linear evolution equations, volume 194 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 2000. With contributions by S. Brendle,
M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and
R. Schnaubelt.
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