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Abstract. Temporal metamaterials are artificially manufactured materials with time-dependent material
properties that exhibit interesting phenomena when waves propagate through them. The propagation of elec-
tromagnetic waves in such time-varying dielectric media is governed by Maxwell’s equations, which lead to wave
equations with temporal highly oscillatory coefficients for the electric and magnetic fields. In this study, we analyze
the effective behavior of electromagnetic fields in time-varying metamaterials using a formal two-scale asymptotic
expansion. We provide a mathematical derivation of the effective equations for the leading-order homogenized
solution, as well as for the first- and second-order corrections of the effective solution. While the effective solution
and the first-order correction are governed by local material laws, we reveal a nonlocal constitutive relation for the
second-order corrections. Special attention is also paid to temporal interface conditions through initial values of
the homogenized equations. The results provide a mathematically justified framework for the effective description
of wave-type equations of time-varying media, applicable to models in optics, elasticity, and acoustics.

Key words. Homogenization, asymptotic expansion, Maxwell equations, wave equation, temporal metama-
terial, time-varying media
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1 Introduction
Metamaterials are artificially structured media with spatially and/or temporally varying mate-
rial properties that enable wave phenomena beyond those found in natural materials, such as
amplification, negative refraction indices, non-reciprocity, and cloaking [3, 4, 5, 8, 9, 10, 12, 22].
In recent years, temporal and spatiotemporal metamaterials have attracted significant attention
due to their intriguing physical behaviour and potential applications in optics, acoustics, and
elasticity. The mathematical analysis of such materials has become an active area of research,
ranging from Morgenthaler’s early work on time-varying media [19] to more recent studies in
time-harmonic regimes [11, 13, 14, 24, 28, 29] and in the context of homogenization theory
[16, 20, 21, 25, 26, 27].

This work is devoted to the higher-order homogenization of temporally modulated electro-
magnetic metamaterials characterized by a spatially homogeneous but temporally heterogeneous
permittivity. Electromagnetic wave propagation in such media is governed by Maxwell’s equa-
tions, which give rise to wave-type equations with time-dependent coefficients for the electric
and magnetic fields. Using a formal two-scale asymptotic expansion, we derive effective wave
equations for both fields. In addition to the leading-order homogenized equations, we carry
out higher-order homogenization by deriving governing equations for the first- and second-order
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– SFB 1173 and under Germany’s Excellence Strategy – EXC-2047/1 – 390685813.
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correctors of the effective solution. These higher-order terms yield refined approximations of
the effective description and capture nonlocal physical effects as light propagates through the
medium. A key finding is that the homogenized equations differ for the electric and magnetic
fields due to the distinct placement of the time-dependent coefficients in their respective wave
equations. Initial conditions also introduce temporal interface conditions that require careful
treatment. Recasting our results within the Maxwell framework leads to both local and nonlocal
effective material laws. Nonlocality means that the corresponding constitutive relation involves
derivatives of the electric field, aligning with the literature, c.f. [15, 18, 21]. While our primary
focus is electromagnetics, the generality of our approach extends naturally to other wave systems
in temporally modulated media, such as acoustics and elasticity.

Our analysis generalizes and unifies results from previous studies. For instance, the work [21]
addresses a case corresponding to the electric field setting considered here and derives second-
order effective equations in the time-frequency domain, which are consistent with our results
in physical space. Our contribution complements theirs by providing a general derivation of
the homogenized equations and extending the analysis to the magnetic field case. Higher-order
homogenization for spatiotemporal metamaterials has also been explored in the works [25, 26],
which study material modulations along traveling wave trajectories. However, these settings do
not cover the purely time-dependent case considered in our study. At leading order, an effective
description for purely time-dependent dielectric composites was derived in [20], where the authors
obtain the harmonic mean as the effective permittivity for a two-component system with piece-
wise constant modulations. Their setting also corresponds to our electric field case. Although
our framework assumes smooth modulations, it can be applied to the composite setting of [20].
In contrast, [27] examines time-varying acoustic media and finds that the arithmetic mean is
the effective coefficient. At first, this seems to contradict [20], but our analysis reconciles the
discrepancy. In fact, in [27], the authors consider time-varying compressibility, which, via the
derivation of the wave equation, corresponds to a different coefficient placement. Consequently,
our findings provide a mathematically justified framework for simulating wave propagation in
time-varying media and lend theoretical support to prior observations.

Outline. The structure of the paper is as follows: In Section 2, we formulate the problem
by presenting Maxwell’s equations and the associated wave-type equations for the electric and
magnetic fields. Section 3 introduces the formal two-scale asymptotic expansion that forms the
basis of our analysis. First, we homogenize the electric field in Section 4, and then we present
the analogous treatment for the magnetic field in Section 5. Section 6 connects our findings back
to Maxwell’s equations, yielding the effective local and nonlocal material laws. Finally, Section 7
provides numerical simulations that demonstrate light propagation through time-varying media
and validate our theoretical results.

2 Problem derivation
Electromagnetic wave propagation in time-varying metamaterials is governed by Maxwell’s equa-
tions in time domain R3 × R+, reading in the absence of sources as

curlE+ ∂tB = 0, divD = 0,

curlH− ∂tD = 0, divB = 0.
(2.1)

Here D : R3 × R+ → R3 is the electric displacement (induction), E : R3 × R+ → R3 is the
electric field, and B,H : R3 × R+ → R3 are the magnetic fields of the wave. This system is
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complemented with the linear constitutive relations

D(x, t) = εη(t)E(x, t), B(x, t) = µ(t)H(x, t), (2.2)

where the properties of the time-varying metamaterial are described by the permittivity εη :
R+ → R, respectively the permeability µ : R+ → R, that relates the electric components D and
E, respectively the magnetic components H and B, of the electromagnetic wave. For simplicity,
we only consider non-magnetic materials in the following and set µ ≡ 1 so that B = H. In
contrast, the electric permittivity is rapidly oscillating with respect to time on a microscopic
length scale 0 < η ≪ 1, but spatially constant, modeling the time-varying property of the
metamaterial. More specifically, we assume εη to be periodic in time with period η. This
corresponds to a time modulation of εη with large modulation frequency ωm = η−1. We denote
by ε the 1-periodic blueprint so that

εη(t) = ε(t/η), 0 < η ≪ 1.

Using the constitutive relations, Maxwell’s equations reduce to a system for either E and H or D
and B. It is well known that one can combine the two time-dependent equations of (2.1) to one
single evolution for any of the four fields. Incorporating the divergence constraints and using the
identity curl curl = −∆ +∇ div with the vector Laplacian ∆, we deduce a wave-type equation
for the selected component of the electromagnetic wave. We obtain three independent equations
of different type for each of the fields B, D and E:

∂t(εη∂tB)−∆B = 0, (2.3)
εη∂ttD−∆D = 0, (2.4)

∂tt(εηE)−∆E = 0. (2.5)

Obviously, the equations for the electric components (2.4) and (2.5) are strongly related and can
be transferred into each other by the constitutive relations (2.2) and it suffices to consider only
(2.4). Thus, we end up with two different wave equations describing the time evolution of the
magnetic field (2.3) and of the electric displacement (2.4).
The system of Maxwell’s equations is closed with the initial conditions

B(x, 0) = vm
0 and D(x, 0) = ve

0

for smooth initial vector fields vm
0 : R3 → R3 and ve

0 : R3 → R3. This determines the first
initial conditions for the wave-type equations (2.3) and (2.4). Both wave-type problems are
closed with second initial conditions that can be derived from the temporal interface conditions
of Morgenthaler [19]. They require the curls of B and D to be continuous at t = 0 leading to

εη(0)∂tB(x, 0) = − curlD(x, 0) = − curlve
0 (2.6)

and
∂tD(x, 0) = curlB(x, 0) = curlvm

0 . (2.7)

Note that we discuss spatially unbounded media so that no spatial boundary conditions are
required. Summarizing we obtain the following settings – PDE and initial conditions – for
the magnetic field and the electric displacement, where we now generalize to arbitrary space
dimensions d = 1, 2, 3, arbitrary sufficiently smooth initial data ve

0, ve
1, vm

0 , vm
1 : Rd → Rd that

may (or may not) satisfy the temporal interface conditions of Morgenthaler vm
1 = − curlve

0 and
ve
1 = curlvm

0 .
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Electric case: The electric displacement D is a solution uη to the initial value problem

εη∂ttuη −∆uη = 0 in Rd × R+,

uη(·, 0) = ve
0 in Rd,

∂tuη(·, 0) = ve
1 in Rd.

(2.8)

Magnetic case: The magnetic field B is a solution uη to the initial value problem

∂t(εη∂tuη)−∆uη = 0 in Rd × R+,

uη(·, 0) = vm
0 in Rd,

εη(0)∂tuη(·, 0) = vm
1 in Rd.

(2.9)

Our goal is to derive an effective description of the solutions to (2.8) and (2.9), that is, we consider
the limit η → 0 of very fast time modulations of the material. Due to the time dependence of the
permittivity εη the two wave equations have different mathematical nature so that we expect also
a different effective behavior and need to treat the two wave equations (2.8) and (2.9) separately.
We also derive formulas for the first and second order corrections of the effective behavior, which
vanish as η → 0, but lead to higher order approximations of the solutions in the case of large
but finite modulation frequencies ωm = η−1. In the latter case we strictly assume that the time
modulations are much larger than the spatial modulations, i.e., ω0 ≪ ωm, where ω0 denotes
the spatial modulation frequency determined by the initial values. Therefore, in the asymptotic
regime η → 0 this condition is always satisfied, but one has to take care of it in particular
simulations when the time modulation is finite.

3 Homogenization via asymptotic expansion
In this section we introduce the formal two-scale asymptotic expansion of the solution uη of (2.8)
and (2.9), respectively. We define the microscopic time variable τ = t/η and expand uη into

uη(x, t) = u0(x, t, τ) + ηu1(x, t, τ) + η2u2(x, t, τ) + · · · =
k∑

j=0

ηjuj(x, t, τ) +O(ηk+1) (3.1)

for some k ∈ N and where each uj is 1-periodic w.r.t. τ . With the introduced notation, the time
derivative ∂t yields ∂t + η−1∂τ for any uj due to the chain rule. We plug-in this ansatz into the
corresponding wave equations (2.8), (2.9) and derive problems for the expansions functions u0,
u1, u2. In particular, we derive problems for the macroscopic and microscopic components of
the expansions functions uj by the splitting

uj(x, t, τ) = uj(x, t) + ũj(x, t, τ), j ∈ N0.

Here, uj(x, t) is the macroscopic, τ -independent component of the k-th expansion function (some-
times also called time-averaged part) and ũj is the microscopic component which is 1-periodic
w.r.t. τ and has zeromean, i.e., ∫ 1

0

ũj(x, t, τ)dτ = 0 (3.2)

for all (x, t) ∈ Rd×R+. In the subsequent sections we first consider the equations for the electric
displacement (2.8) (Section 4), which we frequently refer to as the electric case. Then we tackle
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the system (2.9) describing the propagation of the magnetic field (Section 5) which is referred to
the magnetic case.
Clearly, for (3.1) to hold we need to assume that the solution uη of (2.9) and (2.8), respectively,
depends smoothly on η. This can be expected as long as the permittivity coefficient εη and the
initial data ve

0, ve
1 and vm

0 , vm
1 are sufficiently smooth. However, in this work we do not aim

at a rigorous justification of the formal asymptotic expansion (3.1), but at the derivation and
mathematical underpinning of the effective local and nonlocal material laws as electromagnetic
waves propagate through time-varying metamaterials. In this sense, our results are purely formal,
but several classical homogenization techniques can be used to rigorously justify our findings, e.g.,
the method of two-scale convergence [1] or other related homogenization methods [2, 6, 7, 17, 23].
The techniques used therein have mainly been applied to spatial multiscale problems, but a
suitable exchange of space and time might allow to treat time-dependent problems in a similar
way. In fact, the media oscillate rapidly with respect to a one-dimensional variable, namely time,
and homogenization in one dimension is an extensively studied area. Finally, for an application
of these techniques, it is crucial that our media are constant in space and that the initial values
do not contain any spatial multiscale features. This is expressed by the small spatial modulation
frequencies imposed by the initial values in (2.8) and (2.9), so that no coupling with the fast
temporal scale can occur.

4 The electric case
In this section we consider the initial value problem (2.8) for the electric displacement and derive
equations for the effective solution u0 and the higher order corrections uj , j ≥ 1. The general
strategy for the derivation relies on plugging the formal asymptotic expansion from (3.1) into the
PDE in (2.8) and then comparing powers in η. This leads to governing PDEs for the effective
solution and the higher-order corrections. Similarly, the initial conditions from (2.8) are treated
so that initial value problems for the effective solution and higher-order corrections are observed.

4.1 Effective electric behavior
We start with the effective behavior u0 in (3.1). First, we consider the PDE in (2.8) and discuss
the initial conditions for u0 afterwards. Plugging in the formal asymptotic expansion (3.1) into
the PDE in (2.8) yields

0 = εη∂ttuη −∆uη =
1

η2
ε∂ττu0 +

1

η
ε
(
2∂tτu0 + ∂ττu1

)
+

k−2∑
j=0

ηjε
(
∂ttuj + 2∂tτuj+1 + ∂ττuj+2 − ε−1∆uj

)
+O(ηk−1).

(4.1)

For the O(η−2)-term we obtain

ε∂ττu0 = 0.

Since ε is strictly positive, this implies that u0 is independent of τ and therefore its zero-mean
component vanishes, ũ0 = 0. Furthermore, the O(η−1)-term yields

ε∂ττu1 = 0 (4.2)

and hence also ũ1 = 0. The equation for the O(1)-term reads after dividing by ε as

∂ttu0 − ε−1∆u0 + ∂ττu2 = 0. (4.3)
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Integration over (0, 1) w.r.t. τ and using the periodicity of u2 yields the compatibility condition∫ 1

0

∂ttu0 − ε−1∆u0 dτ = 0.

Since u0 is independent of τ we conclude that the effective behavior u0 is given as a solution to
the homogenized equation

εhom∂ttu0 −∆u0 = 0 (4.4)

with the homogenized coefficient

εhom =
(∫ 1

0

ε−1dτ
)−1

. (4.5)

In other words, the effective permittivity in this case is the harmonic average of the time-
modulated permittivity over one time period. This is exactly the well-known formula in one-
dimensional spatial homogenization, see e.g. [2, 7, 17].
Next we discuss the initial conditions for the effective equation (4.4). The first initial condition,
uη(·, 0) = ve

0 in (2.8), directly implies u0(·, 0) = ve
0 (and u1(x, 0) = u2(x, 0, 0) = 0). The second

initial condition ∂tuη(·, 0) = ve
1 in (2.8) yields ∂tu0(·, 0) = ve

1, since u1 is independent of τ . Our
observations for the effective behavior u0 are summarized in the following conclusion.

Conclusion 1. Suppose the asymptotic expansion (3.1) holds for the solution uη of the initial
value problem (2.8) up to order k = 2. Then ũ0 = 0 in Rd × R+ and the effective solution
u0 = u0 solves the homogenized initial value problem

εhom∂ttu0 −∆u0 = 0 in Rd × R+,

u0(·, 0) = ve
0 in Rd,

∂tu0(·, 0) = ve
1 in Rd

(4.6)

with the homogenized coefficient εhom from (4.5).

4.2 Electric first order correction
We continue with the problem derivation for the first order corrector u1 for which we have already
seen that it is independent of τ ; cf. (4.2). Recalling the expansion from (4.1), we see that the
O(η)-term is

∂ττu3 + 2∂tτu2 + ∂ttu1 − ε−1∆u1 = 0. (4.7)

Again, integrating over (0, 1) w.r.t. τ and taking the periodicity of u2 and u3 into account yields,
similar to the derivation of the homogenized equation (4.4), that

εhom∂ttu1 −∆u1 = 0.

Hence, u1 also solves the homogenized equation as u0 does, but the initial conditions differ as we
now discuss. The first initial condition in (2.8) directly implies u1(x, 0) = 0 and we again focus
on the second initial condition ∂tuη(·, 0) = v1 from (2.8). Plugging in the asymptotic expansion
(3.1) into the initial condition we obtain for the O(η)-term

∂tu1(x, 0) + ∂τu2(x, 0, 0) = 0.
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We can calculate ∂τu2(x, 0, 0) explicitly. For this, we recall the O(η)-term of the asymptotic
expansion in the PDE, see (4.3). Integrating with respect to τ , we obtain

∂τu2(·, ·, τ)− ∂τu2(·, ·, 0) =
∫ τ

0

∂ττu2ds

= −
∫ τ

0

∂ttu0 − ε−1∆u0 ds =
(∫ τ

0

ε−1ds
)
∆u0 − τ∂ttu0.

Another integration over (0, 1) w.r.t. τ yields, using
∫ 1

0
∂τu2dτ = 0 due to periodicity,

∂tu1(x, 0) = −∂τu2(x, 0, 0) =
(∫ 1

0

∫ τ

0

ε−1ds dτ
)
∆u0(x, 0)−

1

2
∂ttu0(x, 0)

=
(∫ 1

0

∫ τ

0

ε−1ds dτ − 1

2εhom

)
∆ve

0

= −χ0ε
−1
hom∆ve

0,

where we used that u0 is a smooth solution of (4.6) and set

χ0 :=
1

2
− εhom

∫ 1

0

∫ τ

0

ε−1dsdτ. (4.8)

We summarize our findings in the following conclusion.

Conclusion 2. Suppose the asymptotic expansion (3.1) holds for the solution uη of the initial
value problem (2.8) up to order k = 3. Then ũ1 = 0 in Rd × R+ and the first order correction
u1 = u1 solves the homogenized initial value problem

εhom∂ttu1 −∆u1 = 0 in Rd × R+,

u1(·, 0) = 0 in Rd,

∂tu1(·, 0) = −χ0ε
−1
hom∆ve

0 in Rd

with the homogenized coefficient εhom from (4.5).

We emphasize that if the permittivity blueprint ε satisfies∫ 1

0

∫ τ

0

ε−1 ds dτ =
1

2

∫ 1

0

ε−1 dτ, (4.9)

i.e., χ0 = 0, then we have u1 ≡ 0 on Rd × R+ and the effective solution u0 is expected to be a
second order approximation of uη in η. However, this is clearly a very specific condition on the
time variation of ε and belongs to a degenerate case.

4.3 Electric higher order corrections
We next investigate how higher order terms in the asymptotic expansion can lead to refined
effective material laws, especially for finite η and derive a system of equations for the second
order corrector u2 for the electric field in (2.8). As we will see the resulting effective equations
involve higher order derivatives. Recall, such higher-order effects are called nonlocal in line with
the physics literature.
From (4.3), we see that

∂ττu2 = ε−1∆u0 − ∂ttu0 = (εhomε
−1 − 1)∂ttu0,
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where we used that u0 solves the homogenized equation. Thus we can write u2 as

u2(x, t, τ) = θ(τ)∂ttu0 + u2(x, t)

so that ũ2(x, t, τ) = θ(τ)∂ttu0(x, t) and where θ is the unique 1-periodic solution of the cell-
problem

∂ττθ = εhomε
−1 − 1,

∫ 1

0

θ dτ = 0. (4.10)

We can calculate θ explicitly as

θ(τ) = θ0 −
1

2
(τ2 − τ) + εhom

(∫ τ

0

∫ s

0

ε−1drds− τ

∫ 1

0

∫ s

0

ε−1drds
)
,

where

θ0 = − 1

12
− εhom

(∫ 1

0

∫ τ

0

∫ s

0

ε−1drdsdτ − 1

2

∫ 1

0

∫ s

0

ε−1drds
)
.

Next we derive the equation for u2. The O(η2)-term in the asymptotic expansion gives

∂ττu4 + 2∂tτu3 + ∂ttu2 − ε−1∆u2 = 0.

From there we obtain the compatibility condition

0 =

∫ 1

0

∂ttu2 − ε−1∆u2 dτ =

∫ 1

0

∂ttu2 − ε−1∆u2 − ε−1θ∆∂ttu0 dτ.

Replacing ∆∂ttu0 by ε−1
hom∆

2u0 due to (4.6), this yields the homogenized equation with a (non-
local) correction

εhom∂ttu2 −∆u2 = εcor∆
2u0,

where

εcor =

∫ 1

0

ε−1θ dτ (4.11)

is the correction coefficient of the material. Next we discuss the initial conditions. The first
initial condition uη(·, 0) = ve

0 yields u2(x, 0, 0) = 0 which implies u2(·, 0) = −θ0∂ttu0(·, 0) =
−ε−1

homθ0∆ve
0 where we again used that u0 is a smooth solution of (4.6). Plugging in the asymp-

totic expansion into the second initial condition ∂tuη(·, 0) = ve
1 yields for the O(η)-term

0 = ∂tu2(x, 0, 0) + ∂τu3(x, 0, 0).

Further, recalling the O(η)-term from (4.7) we obtain after integration w.r.t. τ

∂τu3(x, 0, τ)− ∂τu3(x, 0, 0) =

∫ τ

0

∂ττu3(x, 0, s) ds

= −
∫ τ

0

2∂tτu2(x, 0, s) + ∂ttu1(x, 0)− ε−1(s)∆u1(x, 0) ds

= −
∫ τ

0

2∂τθ(s)∂tttu0(x, 0) + ∂ttu1(x, 0)− ε−1(s)∆u1(x, 0) ds
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= −
∫ τ

0

2∂τθ(s)∂tttu0(x, 0) ds,

where we used that ∆u1(x, 0) = 0 and ∂ttu1(x, 0) = ε−1
hom∆u1(x, 0) = 0. Another integration

over (0, 1) w.r.t. τ yields

−∂τu3(x, 0, 0) = −2

∫ 1

0

∫ τ

0

∂τθ dsdτ ∂tttu0(x, 0) = 2θ0∂tttu0(x, 0).

This yields

∂tu2(x, 0) = ∂tu2(x, 0, 0)− ∂tũ2(x, 0, 0) = θ0∂tttu0(x, 0) = ε−1
homθ0∆ve

1(x).

Conclusion 3. Suppose the asymptotic expansion (3.1) holds for the solution uη of the initial
value problem (2.8) up to order k = 4. Then the second order correction u2 = u2 + ũ2 is given
by

ũ2(x, t, τ) = θ(τ)∂ttu0(x, t) (4.12)

with the solutions θ of the cell problem (4.10). Furthermore, with the homogenized coefficient
εhom from (4.5) and the correction coefficient εcor from (4.11), u2 is given by the solution to the
second order corrector problem

εhom∂ttu2 −∆u2 = εcor∆
2u0 in Rd × R+,

u2(·, 0) = −ε−1
homθ0∆ve

0 in Rd,

∂tu2(·, 0) = ε−1
homθ0∆ve

1 in Rd.

(4.13)

Let us note here that computing u2 and clearly also u2 requires to first solve for u0 via (4.6).

4.4 Pure macroscopic description of the electric field
In contrast to solving for the full components uj , which in particular includes potential mi-
croscopic information via ũj , one is usually only interested in the purely macroscopic effective
behavior of the propagating wave. We can express this macroscopic behavior by the quantities

u(k)(x, t) =

k∑
j=0

ηjuj(x, t), k ∈ N. (4.14)

Due to our previous derivations we have u(0) = u0 and u(1) = u0 + ηu1 in the electric case. In
particular, u(1) solves, due to linearity, the initial value problem

εhom∂ttu
(1) −∆u(1) = 0 in Rd × R+,

u(1)(·, 0) = ve
0 in Rd,

∂tu
(1)(·, 0) = ve

1 − ηχ0ε
−1
hom∆ve

0 in Rd.

Considering u(2), we see that it solves the homogenized equation

εhom∂ttu
(2) −∆u(2) = η2εcor∆

2u0. (4.15)

In particular, solving for u(2) again requires solving for u0 first. Therefore, we aim for a O(η3)-
approximation u(2) = u(2) + O(η3), which solves an effective equation that does not depend
directly on the quantities uj . We can rewrite (4.15) using u0 = u(2) − ηu1 − η2u2 and obtain

εhom∂ttu
(2) −∆u(2) − η2εcor∆

2u(2) = −η3εcor∆
2u1 − η4εcor∆

2u2.

9



Neglecting the O(η3)-terms on the right hand side we can define u(2) as the solution of the initial
value problem

εhom∂ttu
(2) −∆u(2) − η2εcor∆

2u(2) = 0 in Rd × R+,

u(2)(·, 0) = ve
0 − η2ε−1

homθ0∆ve
0 in Rd,

∂tu
(2)(·, 0) = ve

1 − ηχ0ε
−1
hom∆ve

0 + η2ε−1
homθ0∆ve

1 in Rd.

(4.16)

We emphasize that u(2) can be computed without pre-computation of any other quantity uj and
is a third order approximation of u(2), i.e., u(2) = u(2) + O(η3). In particular, u(2) + η2ũ2 is a
O(η3)-approximation of full wave solution uη.

4.5 The electric field E

In the derivation of the model problems from Maxwell’s equations in Section 2 we also obtained
an equation for the electric field E, namely (2.5), for which the second time derivative in the wave
equation acts on εE, and for which we could derive a similar effective behavior as in the previous
sections. In particular, we obtain (2.5) from (2.4) by replacing D with εE and multiplying with
ε−1. Since this connection is based on physical laws given by the constitutive relation (2.2), it
should persist through the homogenization process. Homogenization approaches for (2.5) reveal
that D = εE is the quantity that can be homogenized and described by macroscopic quantities,
but not E. To illustrate this, we show in Figure 4.1 (left) an example of a E field solution from
(2.5). The solution clearly shows microscopic oscillations on the length scale η and therefore
cannot be described by a homogenized η independent quantity, while the quantity D = εE can,
as discussed in the previous sections.

Figure 4.1: The fields E (left) and D (right). Model setting as described in Section 7.

5 The magnetic case
Next, we homogenize the magnetic field and consider the initial value problem (2.9), where the
electric permittivity occurs between the two time derivatives in the wave equation. Pretending
that there is only one spatial dimension, we can exchange space and time, so that this case is
similar to the homogenization of the (one-dimensional) wave equation with spatially multiscale
coefficients (in divergence form), and we expect to obtain similar results. We follow the same
strategy as in the electric case, plugging the asymptotic expansion into the PDE and initial
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conditions (2.9) and comparing powers in η. However, due to the different type of wave equations,
we also get different problems for the effective solution and the higher order corrections compared
to the electric case.

5.1 Effective magnetic behavior
Again we start with the derivation of a system of equations for the effective component u0 in
(3.1). As in Section 4, we start considering the PDE first and discuss the initial value afterwards.
Plugging in the asymptotic expansion (3.1) into the PDE in (2.9) yields

0 = ∂t(εη∂tuη)−∆uη

=
1

η2
∂τ (ε∂τu0) +

1

η

(
∂t(ε∂τu0) + ∂τ (ε∂tu0) + ∂τ (ε∂τu1)

)
+

k−2∑
j=0

ηj
(
∂t(ε∂tuj) + ∂t(ε∂τuj+1) + ∂τ (ε∂tuj+1) + ∂τ (ε∂τuj+2)−∆uj

)
+O(ηk−1).

We compare powers of η and first deduce ∂τ (ε∂τu0) = 0 for the O(η−2)-term. With the periodic-
ity of u0 in τ this yields again ũ0 = 0, i.e., u0 is independent of τ . Considering the O(η−1)-term
we obtain

∂τ (ε∂tu0) + ∂τ (ε∂τu1) = 0.

In contrast to the electric case, this does not imply u1 to be independent of τ . Rather, we
calculate (due to linearity) u1 in dependence on u0 and obtain

u1(x, t, τ) = χ(τ)∂tu0(x, t) + u1(x, t),

where χ is the unique 1-periodic solution of the cell-problem

∂τ (ε∂τχ) = −∂τε,

∫ 1

0

χdτ = 0 (5.1)

and u1 still needs to be determined. In particular, χ from (5.1) is explicitly given by

χ(τ) = χ0 + εhom

∫ τ

0

ε−1ds− τ (5.2)

with χ0 from (4.8) such that
∫ 1

0
χdτ = 0. Next, the O(η)-term gives

∂t(ε∂tu0) + ∂t(ε∂τu1) + ∂τ (ε∂tu1) + ∂τ (ε∂τu2)−∆u0 = 0. (5.3)

Integrating the equation from 0 to 1 w.r.t. τ leads to the compatibility condition∫ 1

0

∂t(ε∂tu0) + ∂t(ε∂τu1)−∆u0 dτ = 0,

where we used the periodicity of ε,u1, and u2. Since u0 is independent of τ and ∂τu1 = (∂tu0)∂τχ,
we deduce

∂t(εhom∂tu0)−∆u0 = 0

with the homogenized coefficient

εhom :=

∫ 1

0

ε(1 + ∂τχ) dτ. (5.4)
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Inserting our explicit representation of χ from (5.2) into (5.4), we see that the expression from
(5.4) coincides with the one from (4.5), i.e., the homogenized coefficient is

εhom =
(∫ 1

0

ε−1dτ
)−1

.

Again, the homogenized coefficient is the harmonic average of the time-modulated permittivity
over one time period.
We continue with the initial values. From the initial condition uη(·, 0) = v0 we immediately infer
the first initial value u0(·, 0) = vm

0 . From the second initial condition εη(0)∂tuη(·, 0) = vm
1 we

find, after plugging in the asymptotic expansion, that ε(0)(∂tu0(x, 0) + ∂τu1(x, 0, 0)) = vm
1 (x).

Using ∂τu1(x, t, τ) = ∂τχ(τ)∂tu0(x, t) we obtain

ε(0)(1 + ∂τχ(0))∂tu0(x, 0) = vm
1 (x).

By (5.1) we conclude that ε(1+ ∂τχ) is constant in τ and it is equal to εhom by (5.4). This gives
the second initial condition

εhom∂tu0(·, 0) = vm
1 .

We summarize our findings regarding the effective solution u0:

Conclusion 4. Suppose the asymptotic expansion (3.1) holds for the solution uη of the initial
value problem (2.9) up to order k = 2. Then ũ0 = 0 in Rd × R+ and the effective solution
u0 = u0 solves the homogenized initial value problem

∂t(εhom∂tu0)−∆u0 = 0 in Rd × R+,

u0(·, 0) = vm
0 in Rd,

εhom∂tu0(·, 0) = vm
1 in Rd

(5.5)

with the homogenized coefficient εhom from (4.5).

5.2 Magnetic first order correction
Let us now derive a full description of the first order correction u1. We already derived in the
previous Section 5.1 that it is of the form

u1(x, t, τ) = χ(τ)∂tu0(x, t) + u1(x, t), (5.6)

where χ is the solution of the cell-problem (5.1) explicitly given by (5.2). Thus it remains to
derive an equation for the time average u1. For this purpose, we rewrite the O(1)-term from
(5.3) and plug in (5.6), so that

∂τ (ε∂τu2) = ∆u0 − ∂t(ε∂tu0)− ∂t(ε∂τu1)− ∂τ (ε∂tu1)

= ∆u0 − ε(1 + ∂τχ)∂ttu0 − ∂τ (εχ)∂ttu0 − (∂τε)(∂tu1)

= −∂τ (εχ)∂ttu0 − (∂τε)(∂tu1).

Here we used in the last step that u0 solves the homogenized equation (5.5). The equation is
solved by

u2(x, t, τ) = ξ(τ)∂ttu0(x, t) + χ(τ)∂tu1(x, t) + u2(x, t),
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where ξ is the unique 1-periodic solution of the second cell-problem

∂τ (ε∂τξ) = −∂τ (εχ),

∫ 1

0

ξ dτ = 0. (5.7)

The solution ξ is simply given by

ξ(τ) = ξ0 −
∫ τ

0

χds,

where

ξ0 =
1

12
− 1

2
εhom

∫ 1

0

∫ τ

0

ε−1dsdτ + εhom

∫ 1

0

∫ τ

0

∫ s

0

ε−1drdsdτ.

Next we consider the O(η)-term in the asymptotic expansion which yields

∂τ (ε∂τu3) + ∂t(ε∂τu2) + ∂τ (ε∂tu2) + ∂t(ε∂tu1)−∆u1 = 0.

Integration over (0, 1) w.r.t. τ gives the compatibility condition

0 =

∫ 1

0

∂t(ε∂τu2) + ∂t(ε∂tu1)−∆u1dτ

=

∫ 1

0

ε(χ+ ∂τξ)∂tttu0 + ε(1 + ∂τχ)∂ttu1 − χ∂t∆u0 −∆u1 dτ.

Since χ+ ∂τξ ≡ 0 and
∫ 1

0
χdτ = 0, u1 also solves the homogenized equation

∂t(εhom∂tu1)−∆u1 = 0.

The O(η)-term in the first initial condition, i.e., uη(·, 0) = v0, implies u1(x, 0) = 0 and therefore
u1(·, 0) = −χ0∂tu0(·, 0) = −χ0ε

−1
homv

m
1 . For the second initial condition, ε(0)∂tuη(·, 0) = vm

1 , we
obtain the O(η)-term

0 = ∂tu1(x, 0, τ) + ∂τu2(x, 0, τ).

Integration over (0, 1) w.r.t. τ yields due to the periodicity of u2

0 =

∫ 1

0

∂tu1(x, 0, τ)dτ =

∫ 1

0

χ(τ)dτ ∂ttu0(x, 0) + ∂tu1(x, 0) = ∂tu1(x, 0).

We now summarize our findings for the first order correction u1:

Conclusion 5. Suppose the asymptotic expansion (3.1) holds for the solution uη of the initial
value problem (2.9) up to order k = 3. Then the first order correction u1 = ũ1 + u1 is given by

ũ1(x, t, τ) = χ(τ)∂tu0(x, t)

with the solution χ of the cell-problem (5.1). Further, with the homogenized coefficient εhom from
(4.5), u1 is given by the solution to the first order corrector problem

∂t(εhom∂tu1)−∆u1 = 0 in Rd × R+,

u1(·, 0) = −χ0ε
−1
homv

m
1 in Rd,

εhom∂tu1(·, 0) = 0 in Rd.

(5.8)
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5.3 Magnetic higher order corrections
Finally, we derive the system of equations for the second order correction u2. We have already
shown in the previous section that u2 can be written as

u2(x, t, τ) = ũ2(x, t, τ) + u2(x, t),

where

ũ2(x, t, τ) = ξ(τ)∂ttu0(x, t) + χ(τ)∂tu1(x, t).

We consider the O(η)-term in the asymptotic expansion, plug in the expressions for u1, u2, and
use the fact that u1 solves (5.8) to obtain

∂τ (ε∂τu3) = ∆u1 − ∂t(ε∂tu1)− ∂t(ε∂τu2)− ∂τ (ε∂tu2)

= ∆u1 − ∂tεhom∂tu1 + χ∆∂tu0 − ∂τ (εξ)∂tttu0 − ∂τ (εχ)∂ttu1 − ∂τε∂tu2

= −(∂τ (εξ)− χεhom)∂tttu0 − ∂τ (εχ)∂ttu1 − ∂τε∂tu2.

(5.9)

Here we replaced ∆∂tu0 by εhom∂tttu0 in the last step. We can solve this for u3 and obtain

u3(x, t, τ) = ζ(τ)∂tttu0(x, t) + ξ(τ)∂ttu1(x, t) + χ(τ)∂tu2(x, t) + u3(x, t),

where ζ is the unique 1-periodic solution of the third cell-problem

∂τ (ε∂τζ) = −∂τ (εξ) + χεhom,

∫ 1

0

ζ dτ = 0.

Next we recall the O(η2)-term reading as

∂τ (ε∂τu4) + ∂t(ε∂τu3) + ∂τ (ε∂tu3) + ∂t(ε∂tu2)−∆u2 = 0.

Integration over (0, 1) w.r.t. τ yields with our derived expression for u3 and u2

0 =

∫ 1

0

∂t(ε∂τu3) + ∂t(ε∂tu2)−∆u2dτ

=

∫ 1

0

ε(ξ + ∂τζ)∂
4
t u0 + ε(χ+ ∂τξ)∂

3
t u1 + ε(1 + ∂τχ)∂ttu2 −∆u2dτ

=

∫ 1

0

ε−2
homε(ξ + ∂τζ)∆

2u0 + ε(χ+ ∂τξ)∂
3
t u1 + ε(1 + ∂τχ)∂ttu2 −∆u2dτ,

where in the last step we replaced ∂4
t u0 by ε−2

hom∆
2u0 if u0 is a smooth solution of (5.5). Next,

we make the important observation that, by straightforward calculations,

ε−2
hom

∫ 1

0

ε(ξ + ∂τζ)dτ = −
∫ 1

0

ε−1θ dτ = −εcor.

Therefore, with χ+ ∂τξ ≡ 0, u2 also solves the homogenized equation with the corrected right-
hand side

∂t(εhom∂tu2)−∆u2 = εcor∆
2u0

and with the correction coefficient from (4.11). For the initial conditions for u2, respectively u2,
we observe from uη(·, 0) = vm

0 that u2(x, 0, 0) = 0 and therefore

u2(x, 0) = −ξ0∂ttu0(x, 0)− χ0∂tu1(x, 0) = −ξ0∂ttu0(x, 0) = −ε−1
homξ0∆vm

0 ,
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since ∂tu1(x, 0) = 0 and where we assume that u0 is a smooth solution of (5.10). For the second
initial condition, ε(0)∂tuη(·, 0) = vm

1 , we now obtain with the O(η2)-term in the asymptotic
expansion

0 = ∂tu2(x, 0, 0) + ∂τu3(x, 0, 0).

Recalling the O(η)-term (5.9) in the asymptotic expansion, we solve for ∂τu3 and obtain

ε(τ)∂τu3(x, t, τ)− ε(0)∂τu3(x, t, 0) =
(
ε(0)ξ0 − ε(τ)ξ(τ) + εhom

∫ τ

0

χds
)
∂tttu0(x, t)

+ (ε(0)χ0 − ε(τ)χ(τ))∂ttu1(x, t) + (ε(0)− ε(τ))∂tu2(x, t).

Dividing by ε(τ) and by ε(0) yields, after integration over (0, 1) w.r.t. τ ,

−∂τu3(x, t, 0) = ξ0∂tttu0(x, t) +
ε2hom
ε(0)

∫ 1

0

ε−1

∫ τ

0

χds ∂tttu0(x, t)

+ χ0∂ttu1(x, t) + ∂tu2(x, t)−
εhom
ε(0)

∂tu2(x, t).

With ∂tu2(x, 0) = −∂τu3(x, 0, 0)−∂tũ2(x, 0, 0) and ∂tũ2(x, 0, 0) = ξ0∂tttu0(x, 0)+χ0∂ttu1(x, 0)
this implies

εhom∂tu2(x, 0) = ε2hom

(∫ 1

0

ε−1

∫ τ

0

χdsdτ
)
∂tttu0(x, 0) =

(∫ 1

0

ε−1

∫ τ

0

χdsdτ
)
∆vm

1 .

We summarize our findings for the second order correction u2:

Conclusion 6. Suppose the asymptotic expansion (3.1) holds for the solution uη of the initial
value problem (2.9) up to order k = 4. Then the second order correction u2 = ũ2 + u2 is given
by

ũ2(x, t, τ) = ξ(τ)∂ttu0(x, t) + χ(τ)∂tu1(x, t)

with the solutions ξ, χ of the cell-problems (5.7) and (5.1). Furthermore, with the homogenized
coefficient εhom from (4.5) and the correction coefficient εcor from (4.11), u2 is given by the
solution to the second order corrector problem

∂t(εhom∂tu2)−∆u2 = −εcor∆
2u0 in Rd × R+,

u2(·, 0) = −ε−1
homξ0∆vm

0 in Rd,

εhom∂tu2(·, 0) =
(∫ 1

0

ε−1

∫ τ

0

χdsdτ
)
∆vm

1 in Rd.

(5.10)

5.4 Pure macroscopic description of the magnetic field
As in the electric case, let us consider the macroscopic quantities given by (4.14) for the magnetic
field. Again we have u(0) = u0 and the initial value problem for u(1) = u0 + ηu1 now reads as

∂t(εhom∂tu
(1))−∆u(1) = 0 in Rd × R+,

u(1)(·, 0) = vm
0 − ηχ0v

m
1 in Rd,

εhom∂tu
(1)(·, 0) = vm

1 in Rd.
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In addition, we derive an initial value problem for a third order approximation u(2) of u(2), i.e.,
u(2) = u(2) +O(η3) given by

∂t(εhom∂tu
(2))−∆u(2) − η2εcor∆

2u(2) = 0 in Rd × R+,

u(2)(·, 0) = vm
0 − ηχ0v

m
1 − η2ε−1

homξ0∆vm
0 in Rd,

εhom∂tu
(2)(·, 0) = vm

1 + η2
(∫ 1

0

ε−1

∫ τ

0

χdsdτ
)
∆vm

1 in Rd.

(5.11)

6 Homogenized Maxwell’s equations
In this section we revise the system of Maxwell’s equations (2.1) in view of our observations
from the previous sections. In particular, we derive the homogenized Maxwell systems for the
effective behavior of an electromagnetic wave propagating through a time-varying metamaterial.
The homogenized Maxwell systems for the first order corrections as well as the equations for
nonlocal second order corrections are revised, revealing local and nonlocal material laws.
Recall the Maxewell system (2.1) which can be formulated with the constitutive relations (2.2)
with permittivity εη as a system for the pair (D,B) reading as

curlD+ εη∂tB = 0, divD = 0,

curlB− ∂tD = 0, divB = 0.
(6.1)

This system is equipped with the initial conditions

D(x, 0) = ve
0, B(x, 0) = vm

0 .

In the previous sections we assumed that the fields D and B can be formally expanded in η as

D(x, t) = D0(x, t, τ) + ηD1(x, t, τ) + η2D2(x, t, τ) + · · · ,
B(x, t) = B0(x, t, τ) + ηB1(x, t, τ) + η2B2(x, t, τ) + · · · ,

where τ = t/η, Dj(x, t, ·), Bj(x, t, ·) are 1-periodic and can be decomposed into macroscopic and
microscopic components according to

Dj(x, t, τ) = Dj(x, t) + D̃j(x, t, τ), Bj(x, t, τ) = Bj(x, t) + B̃j(x, t, τ).

Here D̃j and B̃j have zeromean over τ ; cf. (3.2). From (6.1) we immediately conclude divDj = 0
and divBj = 0 for all j ∈ N and we can further assume w.l.o.g that divDj = 0 and divBj = 0
for all j ∈ N. In view of the interface conditions of Morgenthaler [19] (cf. (2.6) and (2.7)) we set
ve
1 = curlvm

0 and vm
1 = − curlve

0 so that Conclusion 1 and Conclusion 4 imply that D̃0 = B̃0 = 0
and that the pair (D0,B0) is a solution of the homogenized Maxwell system

curlD0 + εhom∂tB0 = 0, divD0 = 0,

curlB0 − ∂tD0 = 0, divB0 = 0.

The initial conditions for this system are given by D0(x, 0) = ve
0 and B0(x, 0) = vm

0 . We can
proceed by formulating the system for the first order corrections (D1,B1). From Conclusion 2
and Conclusion 5 we infer that D̃1 = 0 and

B̃1(x, t, τ) = −ε−1
homχ(τ) curlD0(x, t)

16



with χ from (5.1). Thus, the pair (D1,B1) solves the homogenized Maxwell system

curlD1 + εhom∂tB1 = 0, divD1 = 0,

curlB1 − ∂tD1 = 0, divB1 = 0

with the initial conditions D1(x, 0) = 0 and B1(x, 0) = χ0v
e
0. Next we treat the nonlocal effects

and the second order corrections. We obtain from Conclusion 3 and Conclusion 6

D̃2(x, t, τ) = −ε−1
homθ(τ) curl curlD0(x, t),

B̃2(x, t, τ) = −ε−1
homξ(τ) curl curlB0(x, t)− ε−1

homχ(τ) curlD1(x, t)

with θ from (4.10), ξ from (5.7), and χ from (5.1). However, it is clear that the macroscopic
components (D2,B2) do not satisfy the homogeneous Maxwell equations. Instead, we consider
the concatenated macroscopic components

D
(2)

(x, t) = D0(x, t) + ηD1(x, t) + η2D2(x, t),

B
(2)

(x, t) = B0(x, t) + ηB1(x, t) + η2B2(x, t)

which are again divergence-free, i.e., divD
(2)

= 0 and divB
(2)

= 0. As in (4.15) we have

εhom∂ttD
(2) −∆D

(2)
= η2εcor∆

2D0 = η2εhomεcor∆∂ttD0.

Replacing D0 by D
(2) − ηD1 − η2D2, we obtain

(εhom − εhomεcor∆)∂ttD
(2) −∆D

(2)
= η3εhomεcor∆∂ttD1 + η4εhomεcor∆∂ttD2.

Dropping the O(η3) source terms on the right hand side, we define, in analogy of Section 4.4,
the macroscopic electric quantity D(2) as the solution of

(εhom − εhomεcor∆)∂ttD
(2) −∆D(2) = 0

with the initial conditions

D(2)(x, 0) = ve
0 − η2ε−1

homθ0∆ve
0,

∂tD
(2)(x, 0) = ve

1 − ηχ0ε
−1
hom∆ve

0 + η2ε−1
homθ0∆ve

1.

Then D(2) is an O(η3)-approximation of D
(2)

, i.e., D(2) = D
(2)

+O(η3). Similarly, we define the
macroscopic magnetic quantity B(2) as the solution of

(εhom − εhomεcor∆)∂ttB
(2) −∆B(2) = 0

with the initial conditions

B(2)(x, 0) = vm
0 − ηχ0v

m
1 − η2ε−1

homξ0∆vm
0 ,

εhom∂tB
(2)(x, 0) = vm

1 + η2
(∫ 1

0

ε−1

∫ τ

0

χdsdτ
)
∆vm

1 .

This is an O(η3)-approximation of B
(2)

, i.e., B(2) = B
(2)

+O(η3). Note that by construction

D(2) + η2D̃2 = D+O(η3) and B(2) + η2B̃2 = B+O(η3).
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Now we obtain that the pair (D(2),B(2)) is a solution of the Maxwell system

curlD(2) + (εhom + η2εhomεcor curl curl)∂tB
(2) = 0, divD(2) = 0,

curlB(2) − ∂tD
(2) = 0, divB(2) = 0

with the initial conditions

D(2)(x, 0) = ve
0 − η2ε−1

homθ0∆ve
0,

B(2)(x, 0) = vm
0 − ηχ0v

m
1 − η2ε−1

homξ0∆vm
0 .

This leads to the nonlocal constitutive relation

D(2) = (εhom + η2εhomεcor curl curl)E
(2)

between the macroscopic electric displacement D(2) and the associated macroscopic electric field
E(2). In the limit η → 0 this gives D(2) = εhomE

(2), which is the same local constitutive
relation as that of the effective fields. However, for η > 0 there is an additional contribution
of η2εhomεcor curl curlE(2). This additional contribution is nonlocal, as it involves derivatives of
the electric field. For monochromatic plane waves, this nonlocal material law produces artificial
magnetism in the material by altering the effective magnetic permeability obtained from the
dispersion relation; cf. [21, 24].

7 Numerical experiments
In this section, we verify our homogenization results in numerical simulations. We aim to (i)
illustrate the derived homogenized solutions for the electric and magnetic case and to (ii) verify
the expected approximation orders in terms of η. The implementation of the experiments is avail-
able as a MATLAB code on https://github.com/cdoeding/PropagationTimeVaryingMedia.

Model setting As a model problem, we consider a transverse electromagnetic wave that prop-
agates through a time-varying metamaterial, and we simulate its electric displacement and mag-
netic field independently. This allows us to describe the time evolution of the fields through the
equations (2.8) and (2.9) in one dimension. Note that our homogenization results do not depend
on the spatial dimension and, thus, the consideration of the one-dimensional case is not restric-
tive. We model the situation that the time oscillations of the material are instantly switched
on at time t = 0. For negative times t < 0 we assume that the material behaves as vacuum
(ε(t) = 1) so that the wave propagates through the medium at the speed of light c = 1. In this
case the electric displacement or magnetic field, respectively, can be described by a Gaussian
wave packet of the form

w(x, t) = exp
(
− (t− x)2

2T 2
0

)
cos(ω0(t− x)), x ∈ R, t ≤ 0, (7.1)

with T0 > 0 and ω0 ≥ 0. We choose T0 = 0.1 and ω0 = 0.01 in the subsequent experiments. Note
that ω0 is the carrier frequency and determines the spatial oscillations of the wave that we need
to keep small in comparison to the modulation frequency ωm = η−1 so that the homogenization
errors are small in view of the asymptotic expansion (3.1).
For t ≥ 0 the permittivity of the material is given by the blueprint

ε(τ) =
(
2 + sin(2πτ)

)−1 (7.2)
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and we vary the time modulations through different values of η satisfying ω0 ≪ η−1. The
homogenized coefficient from (4.5) and correction coefficient (4.11) can be calculated explicitly
and are given by

εhom =
1

2
, εcor = − 1

16π2
.

Furthermore, the solution of the cell-problems (4.10), (5.1), and (5.7) can be solved explicitly.
However, we note that in any particular application the homogenized coefficients εhom and εcor
as well as the solutions to the cell-problems can be solved numerically using suitable quadratures
if an explicit representation is not available.
For the initial values in our model we use that the interface conditions of Morgenthaler [19]
require the fields to be continuous at t = 0 leading to the first initial condition for the electric
field ve

0 = w(x, 0) and for the magnetic field vm
0 = w(x, 0), respectively. A precise recap of the

model and in particular its simplification from three to one dimension reveals that the second
initial conditions for the wave-type problems (2.8) and (2.9) are given by ve

1 = ∂tw(x, 0) and
vm
1 = ∂tw(x, 0), respectively. Indeed the latter two conditions coincide with the conditions (2.6)

and (2.7).

Numerical discretization What remains to be solved numerically are the time-averaged so-
lutions uj given by the initial-value problems stated in Conclusion 1-6. In order to solve the
corresponding wave equations, we first restrict the initial-value problem to the bounded domain
Ω = (−1, 1), impose periodic boundary conditions, and solve on a finite time interval [0, T ]
with T = 0.4. Note that the initial conditions and system parameters are chosen such that the
propagating wave never reaches the boundary in the time interval [0, T ], so that the artificial
boundary conditions do not induce any additional effects. In space, we discretize using a Fourier
spectral method with N = 256 (for visualization) or N = 64 (for error computation) degrees
of freedom, which allows a simple discretization of ∆ and ∆2 in Fourier space and so that the
discretization errors are negligible. The Fourier spectral method is combined with the two-stage
Gauss-Legendre IRK of order four with variable time step size τ = 2−8T for visualization and
τ = 2−13T for the error computation. Again, the high order of the time integrator allows us
to neglect any errors induced by the time discretization, so that only the errors induced by the
homogenization process become dominant in our experiments. The actual full wave solution uη

is solved with the same method and parameter sets and serves as a reference solution.

Discussion of the results We first consider the electric displacement and compute the full wave
problem (2.8) for the choice η = 2−4T . Here we use N = 64 Fourier modes, step size τ = 2−8T
and plot the full wave solution uη in Figure 7.1 (top left). As expected, we see the wave propa-
gating to the right accompanied by a smaller reflected wave moving to the left. The latter comes
from the interface condition at t = 0 described by the initial values. This reflection is induced
when the permittivity of the metamaterial is switched from constant permittivity (t < 0) to
time-varying permittivity (t > 0). Visually, no fine oscillation can be observed, but the propa-
gation velocity is certainly governed by the time variation of the permittivity.
The effective solution u0 as given in Conclusion 1 is shown in Figure 7.1 (bottom left). As
expected, the effective solution captures the macroscopic behavior of to the full wave solution
uη and resolves the effective propagation of the wave through the metamaterial. The first and
second order homogenized solutions u1 and u2 as given in Conclusion 2 and Conclusion 3 are
also shown in Figure 7.1. We clearly see that the first order correction u1 does not contain any
microscopic information but gives a clear contribution to the transmitted and reflected wave.
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Figure 7.1: Full wave simulation and effective behavior of the electric field for the fine-scale
parameter η = 2−4T .

Only the second order correction u2 contains microscopic information in accordance with Con-
clusion 3. However, visually at this point we see no difference between the corrected solutions
u0 + ηu1 and u0 + ηu1 + η2u2 to the effective solution u0 and the full wave simulation uη.
However, the effective wave propagation through the time varying metamaterial is captured by
all homogenized solutions.

Next we consider the magnetic field of the electromagnetic wave described by the initial-value
problem (2.9), which we solve with the same set of parameters. The solution uη is shown in
Figure 7.2 and again we see a transmitted wave propagating to the right and a reflected wave
propagating to the left. Unlike the electric case, the reflected wave now has negative values and,
furthermore, shows a microscopic behavior through fine oscillations. These fine oscillations can-
not be resolved by the effective solution u0 from Conclusion 4, as shown in Figure 7.2 (bottom
left). Nevertheless, u0 captures again the effective behavior of the wave. In contrast, the first-
order correction u1 from Conclusion 5 resolves the fine oscillation, leading to no visual difference
between the corrected effective solution u0+ηu1 and the full wave solution uη. The second order
correction shown in the Figure 6 (bottom right) adds further micro- and macroscopic information
to the solution, but is visually indistinguishable from the first order corrected effective solution.
Summarizing, our theoretical results lead to visually good approximations of the full wave solu-
tion in both the electric and the magnetic case, and the effective and corrected equations resolve
the propagation of the electromagnetic wave through the time-varying metamaterial.

To quantify the approximation properties of the homogenized solutions and to validate the
derived equations in Section 4 and Section 5, we study the homogenization error

∥uη − u0∥L2(0,T ;L2),

for a set of fine-scale parameters η = T/ℓ, ℓ = 10, 20, 30, 40, 50, 60, 80, 100, 150, 200, 250, 300.
Similarly, we consider the homogenization errors for the first and second order homogenized
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Figure 7.2: Full wave simulation and effective behavior of the magnetic field for the fine-scale
parameter η = 2−4T .
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Figure 7.3: Homegenization errors in η for the electric field (left) and in the magnetic field (right).

solutions u0+ηu1 and u0+ηu1+η2u2. For the numerical computation of all quantities, we now
choose N = 64 Fourier modes in space and a step size of τ = 2−13T so that the homogenization
error is not polluted by additional discretization errors. Figure 7.3 shows the homogenization
errors over η in double-logarithmic scaling for both the electric case (left) and the magnetic case
(right) for which the observations are very similar. As highlighted by the reference lines, we
observe the expected linear convergence in η for the homogenized solution u0 and the expected
quadratic convergence in η for the first order corrections u0+ ηu1. In addition, the second order
corrections u0+ηu1+η2u2 show the expected cubic convergence in η. Finally, we computed the
second order macroscopic quantities u(2) from sections 4.4 and 5.4, which can be solved by the
higher order wave equations (4.16) and (5.11). Corrected with the microscopic quantities ũ1 and
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ũ2, the associated errors again show a cubic convergence in η, showing that u(2) coincides with
u(2) up to higher order errors, but for which one has to solve only a single wave-type equation.
In summary, our numerical results verify our theoretical findings from Conclusion 1-6 and the
derived equations for the effective solution and its first and second order corrections lead to to
an effective description of wave propagation through time-varying metamaterials.
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