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THE TROUBLE WITH THE LIMITING ABSORPTION PRINCIPLE
FOR PERIODIC WAVEGUIDES

ANDREAS KIRSCH

Abstract. In this paper we consider the open waveguide source problem ∆u+ k2ñu =
−f in R2

+ := {x ∈ R2 : x2 > 0} with homogeneous Neumann conditions for x2 = 0.
Here, k > 0 is the wavenumber and ñ a local perturbation of a refractive index n which
is periodic with respect to x1 and equals to one for x2 > h0. We derive radiation
conditions by replacing k2 or ñ or the boundary condition by k2 + iε or ñ+ iεp (for some
function p, periodic with respect to x1) or a boundary condition of impedance type,
respectively, and let ε tend to zero. We show that in general we derive different radiation
conditions. They coincide only in the case that the spaces of propagating modes are
one-dimensional.
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1. Introduction

In this paper we consider the following open waveguide source problem. Let k > 0 be the
wavenumber which is fixed throughout the paper. Set R2

+ := {x ∈ R2 : x2 > 0}, and let
n ∈ L∞(R2

+) be the real valued index of refraction which is assumed to be 2π−periodic
with respect to x1. Let ñ ∈ L∞(R2

+) be a local perturbation of n; that is, ñ−n is supported
in Qh0 := (0, 2π) × (0, h0) for some h0 > 0. We assume that n(x) ≥ n0 and ñ(x) ≥ n0

on R2
+ for some constant n0 > 0 and n(x) = 1 for x2 > h0. Finally, let f ∈ L2(R2

+) have
compact support in Qh0 . It is well known that in general the boundary value problem

(1) ∆u+ k2ñu = −f in R2
+ ,

∂u

∂x2

= 0 on Γ0 := R× {0} ,

fails to be solvable if in addition the “angular spectrum radiation condition” (see, e.g.
[?] or (7) below) is assumed. This is due to the fact that the unperturbed homogeneous
equation ∆u + k2nu = 0 can have quasi-periodic (with respect to x1) solutions u ∈
H2
loc(R2

+) with ∂u/∂x2 = 0 on Γ0 which are called guided waves, see Definition 2.1 below.

A similar problem occurs for the scattering of plane incident waves uinc(x) = eikθ̂·x where

θ̂ =
(

sin θ
− cos θ

)
for |θ| < π

2
denotes the direction of the incident wave directed downwards.

Then the total field u = uinc + us satisfies (1) for f = 0. As mentioned already in [5] the
upwards propagating radiation condition does not rule out guided waves; that is, is not
strict enough. For locally perturbed periodic structures usually (see, e.g. [?]) it is assumed
that u is the sum u = u0 + upert of a α−quasi-periodic solution u0 of the unperturbed
equation ∆u0 + k2nu0 = 0 where α = k sin θ and a solution of the source problem (1)
for upert with right hand side f = k2(ñ− n)u0 satisfying the angular spectrum radiation
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condition. However, in general the angular spectrum radiation condition is too strict for
the source problem to allow a solution.

A standard tool to derive a correct radiation condition is to justify the Limiting Absorption
Principle; that is, consider the problem where k2 is replaced by k2 + iε for ε > 0 and show
convergence of the corresponding solution as ε tends to zero. From the spectral point of
view k2 + iε belongs to the resolvent set of the selfadjoint operator − 1

ñ
∆ with respect

to Neumann boundary conditions and one has to prove convergence of the solution when
k2 + iε approaches the point k2 in the spectrum of this operator. We refer to [?] for the
problem with Dirichlet boundary conditions on Γ0 and [1, 6, 2] for closed infinite or semi-
infinite waveguides. The spectral point of view does not explain the notion of absorption
principle. However, if one considers the problem as the TM-mode E = (0, 0, u(x1, x2))>

of an electromagnetic problem in the half space R3
+ := {x ∈ R3 : x2 > 0} with constant

permeability µ(x) = µ0 and electric permittivity ε(x1, x2) then k2 = ω2ε0µ0 and ñ(x) =
ε(x)
ε0

. The modification k2 + iε corresponds to adding the conductivity σ(x) = ε ε(x)
ωε0µ0

to the

system globally in R3
+. Indeed, the refractive index is then 1

ε0

(
ε(x)+iσ(x)

ω

)
=
(
1+i ε

k2

)
ñ(x).

An alternative way is to put some conductivity εσ(x1, x2) to the inhomogeneous layer

R× (0, h0)×R only which replaces ñ(x) by ñ(x)+ iεp(x) with p(x) = σ(x)
ωε0

for 0 < x2 < h0

and p(x) = 0 for x2 > h0. A third possibility is to put absorption to the boundary
condition at Γ0; that is, replace the boundary condition ∂u

∂x2
= 0 on Γ0 which corresponds

to H × ν = 0 on ∂R3
+ by H × ν + εE = 0 on ∂R3

+ which is ∂u
∂x2

+ iεωµ0u = 0 on Γ0. Here,

ν = (0, 1, 0)> denotes the normal at ∂R3
+.

It is the aim of the paper to show that these concepts lead to different radiation conditions.
Therefore, there is no “one” radiation condition for waveguides in general. We note that
the following analysis carries over without difficulty to closed waveguides; that is where
R2

+ is replaced by R× (0, h0) and where an additional homogeneous boundary condition
on Γh0 = R× {h0} is assumed1.

The paper is organized as follows. In Sections 2–4 we will consider the unperturbed case;
that is ñ = n. In Section 2 we will introduce propagating (or guided) modes. In Section 3
we will recall the Floquet-Bloch transform as a useful tool for treating periodic problems
and will prove a representation of the transformed solutions, and in Section 4 we will prove
the Limiting Absorption Principles for the three cases introduced above. The perturbed
case will be studied in Section 5.

We use the following notations: Wh = R × (0, h) for h > 0, Γh = R × {h} for h ≥ 0,
Qh := (0, 2π)× (0, h) for h > 0, Q∞ = (0, 2π)× (0,∞), and Sh = (0, 2π)×{h} for h ≥ 0.
Finally, we set Let WR,h := (−R,R)× (0, h) for R > 0 and h > 0.

2. Propagating Modes and Formulation of the Problems

We first recall some notations.

Definition 2.1. (a) α ∈ R is called a cut-off value if there exists ` ∈ Z with |`+ α| = k.

1This case is even a bit simpler because it avoids the use of the Dirichlet-Neumann operator.
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(b) α ∈ R is called a propagative wave number (or quasi-momentum or Floquet spectral
value) if there exists a non-trivial φ ∈ H1

loc(R2
+) such that

(2) ∆φ+ k2nφ = 0 in R2
+ ,

∂φ

∂x2

= 0 on Γ0 ,

φ is α−quasi-periodic; that is, φ(x1 + 2π, x2) = eiα2πφ(x1, x2) for almost all x, and φ
satisfies the Rayleigh expansion

(3) φ(x) =
∑
`∈Z

φ` e
i(`+α)x1+i

√
k2−(`+α)2|x2| for x2 > h0

for some φ` ∈ C where the convergence is uniform for x2 ≥ h0 + δ for all δ > 0. The
functions φ are called propagating (or guided) modes.

If we decompose k into k = ˆ̀+ κ with ˆ̀∈ N ∪ {0} and κ ∈ (−1/2, 1/2] we observe that
the cut-off values are given by ±κ+ ` for any ` ∈ Z.

Since with α also α + ` for every ` ∈ Z is a propagative wave number we can restrict
ourselves to propagative wave numbers in (−1/2, 1/2].

Under the following assumption it can easily be seen that every propagating mode φ
corresponding to some propagative wave number α is evanescent; that is, φ` = 0 for all
|`+ α| ≤ k; that is, there exist c, δ > 0 with |φ(x)| ≤ c e−δx2 for all x2 > h0.

Assumption 2.2. Let |`+α| 6= k for all propagative wave numbers α and all ` ∈ Z; that
is, the cut-off values are no propagative wave numbers.

Under Assumption 2.2 it can also be shown (see, e.g. [?]) that at most a finite number of
propagative wave numbers exist in [−1/2, 1/2]. Furthermore, if α is a propagative wave
number with mode φ then −α is a propagative wave number with mode φ. Therefore,
we can numerate the propagative wave numbers in [−1/2, 1/2] such they are given by
{α̂j : j ∈ J} where J ⊂ Z is finite and symmetric with respect to 0 and α̂−j = −α̂j for
j ∈ J . Furthermore, it is known that every eigenspace

(4) X̂j :=
{
φ ∈ H1

α̂j ,loc
(R2

+) : φ satisfies (2) and (3)
}

is finite dimensional with some dimensionmj > 0. Here, and in the following, H1
α,loc(R2

+) :=

{u ∈ H1
loc(R2) : u is α−quasi-periodic}.

We now formulate the three modified problems discussed in Section 1.

Problem I: It is the aim to prove convergence of the solution uε ∈ H1(R2
+) of

(5) ∆uε + (k2 + iε) ñ uε = −f in R2
+ ,

∂uε
∂x2

= 0 on Γ0 ,

as ε→ 0. This problem has been considered (for the Dirichlet boundary condition on Γ0)
in [?] or for tubes in R3 in [3].

Let H1
∗ (R2

+) be defined as

H1
∗ (R2

+) :=
{
u ∈ H1

loc(R2
+) : u ∈ H1(Wh) for all h > 0

}
.
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Problem II: Let p ∈ L∞(Wh0) be some non-negative periodic (with respect to x1) func-
tion with p(x) ≥ p0 on some open subset of Qh0 where p0 > 0. We extend p by zero into
p ∈ L∞(R2

+). It is the aim to prove convergence of the solution uε ∈ H1
∗ (R2

+) of

(6) ∆uε + k2(ñ+ iεp)uε = −f in R2
+ ,

∂uε
∂x2

= 0 on Γ0 ,

satisfying the angular spectrum radiation condition

(7) uε(x) =
1√
2π

∞∫
−∞

(Fuε)(ω, h0) ei
√
k2−ω2(x2−h0)+iωx1 dω , x2 > h0 ,

where the Fourier transform is defined as

(Fφ)(ω) :=
1√
2π

∞∫
−∞

φ(s) e−isω ds , ω ∈ R ,

considered as an unitary operator from L2(R) onto itself.

Problem III: Let q ∈ L∞(R) be some non-negative periodic function with q(x1) ≥ q0 on
some open interval in R where q0 > 0. It is the aim to prove convergence of the solution
uε ∈ H1

∗ (R2
+) of

(8) ∆uε + k2ñ uε = −f in R2
+ ,

∂uε
∂x2

+ iεq uε = 0 on Γ0 ,

satisfying again the angulur spectrum radiation condition (7).

Theorem 2.3. For all ε > 0 there exists a unique solution uε ∈ H1(R2
+) of (5). Further-

more, there exists at most one solution uε ∈ H1
∗ (R2

+) of (6), (7) and (8), (7).

Proof: For (5) we write k2 + iε in polar coordinates as k2 + iε = ρ eis with ρ := |k2 + iε|
and some s ∈ (0, π/2). Then we show that the sesqui-linear form

a(u, ψ) :=

∫
R2
+

[∇u · ∇ψ − (k2 + iε) ñ u ψ] dx , u, ψ ∈ H1
+(R2

+) ,

is coercive. Indeed, we have that

Re
[
e(π/2−s/2)ia(u, u)

]
= sin(s/2)

∫
R2
+

[|∇u|2 + ρ ñ |u|2] dx

≥ sin(s/2) min{1, ρ n0} ‖u‖2
H1(R2

+) .

The Theorem of Lax-Milgram yields existence and uniqueness of a solution uε ∈ H1(R2
+)

of Problem I.
Let now uε ∈ H1

∗ (R2
+) be a solution of (6), (7) or (8), (7) for f = 0. Application of Green’s

theorem in the strip Wh yields∫
Wh

[|∇uε|2 − k2 (ñ+ iε2p) |uε|2] dx =

∫
Γh

uε
∂uε
∂x2

ds + iε3

∫
Γ0

q |uε|2 ds .

where Γh := R × {h} for h ≥ 0 and ε2 = ε and ε3 = 0 for (6) and ε3 = ε and ε2 = 0
for (8). It is easily seen using Plancherel’s formula that the angular spectrum radiation
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condition (7) implies that Im
∫

Γh
uε

∂uε
∂x2

ds ≥ 0. Therefore, taking the imaginary part
yields

−k2ε2

∫
Wh

p |uε|2 dx ≥ ε3

∫
Γ0

q |uε|2 ds .

For (6), (7) we conclude that uε vanishes on some open set in Wh and thus in all of R2
+

by the unique continuation principle. For (8), (7) we conclude that uε vanishes on some
open interval (a, b)× {0} ⊂ Γ0, and thus also ∂uε/∂x2. We extend uε and ñ by zero into
U := (a, b)× (−1, 0). Then uε ∈ H2(R2

+∪U) and ∆uε+k2ñuε = 0 in R2
+∪U . The unique

continuation principle implies again that uε vanishes in R2
+. �

Existence of solutions for problems (6), (7) and (8), (7) for the unperturbed case ñ = n will
be shown by applying the Floquet-Bloch transform, see Lemma 3.1 below. The perturbed
case will be treated in Section 5.

3. Representation of the Floquet-Bloch-Transformed Fields

To treat all three problems simultaneously we introduce three parameters εj, j = 1, 2, 3,
for Problems I, II, and III, respectively, for ñ = n; that is, we consider

(9) ∆uε + (k2 + iε1) (n+ iε2p)uε = −f in R2
+ ,

∂uε
∂x2

+ ε3 q uε = 0 on Γ0 ,

and the corresponding condition at infinity. The Floquet-Bloch transform is the standard
tool to transform the problems to families of quasi-periodic problem in the cell Q∞. We
use the periodic Bloch transform transform, defined as

(Fu)(x1, x2;α) :=
∑
`∈Z

u(x1 + 2π`, x2) e−iα(x1+2π`) , x = (x1, x2) ∈ R2
+ ,

for sufficiently smooth functions u. Then it is known (see, e.g. [4]) that F has an ex-
tension to an isomorphism from H1(Wh) onto L2

(
(−1/2, 1/2), H1

per(Qh)
)

:=
{
u ∈ L2

(
Qh×

(−1/2, 1/2)
)

: u(·;α) ∈ H1
per(Qh)

}
. Here, H1

per(Qh) := {v ∈ H1(Qh) : v is 2π−periodic wrt x1}.

Let uε ∈ H1
∗ (R2

+) be a solution of (9). Then it is known that the Floquet-Bloch transform
uε,α := (Fuε)(·;α) ∈ H1

loc(Q∞) is a α−quasi-periodic solutiuon of (9) in the cell Q∞.
The variational can be reduced to the bounded rectangle Qh0 by the use of the Dirichlet-

Neumann operator Λα,k2 : H
1/2
per (Sh0)→ H

−1/2
per (Sh0), given by

(10) (Λα,k2φ)(x1, h0) :=
i√
2π

∑
`∈Z

√
k2 − (`+ α)2 φ`(h0) ei`x1 , x1 ∈ (0, 2π) ,

for φ ∈ H1/2
per (Sh0). Here, φ`(h0) are the Fourier coefficients of φ(·, h0). Then the problem

(9) is equivalent to the problem to determine uε,α ∈ H1
per(Qh0) with∫

Qh0

(
∇uε,α · ∇ψ − 2iα

∂uε,α
∂x1

ψ − [(k2 + iε1) (n+ iε2p)− α2]uε,α ψ

)
dx(11)

−
∫
Sh0

(Λα,k2+iε1uε,α)ψ ds − iε3

∫
S0

q uε,α ψ ds =

∫
Qh0

fα ψ dx for all ψ ∈ H1
per(Qh0) ,

5



where fα = (Ff)(·;α).

We note that in Problem I the parameter ε = ε1 appears in the volume integral and in the
Dirichlet-to-Neumann map while in Problems II and III the parameter ε = ε2 and ε = ε3
appears only in the volume integral over Qh0 or line integral over S0, respectively. In all
three cases the variational equations can be written as (I −Kεj ,α)uε,α = rα with compact
operators Kεj ,α from H1

per(Qh0) into itself2 when we use the inner product

(u, v)∗ :=

∫
Qh0

[∇u · ∇v + u v] dx +
∑
`∈Z

√
1 + `2 u`(h0) v`(h0)

for u, v ∈ H1
per(Qh0). Also, the operators Kεj ,α and the right hand sides rα depend

continuously on α.

Lemma 3.1. For εj > 0 the operators Lε,α := I − Kε,α are invertible for all α and
the inverses L−1

ε,α depend continuously on α. Furthermore, there exist unique solutions

uε ∈ H1
∗ (R2

+) of problems (6), (7) and (8), (7).

Proof: Uniqueness of solutions of (11) for all α ∈ [−1/2, 1/2] is shown exactly as in the
proof of Theorem 2.3. Therefore, Fredholm’s theory implies that Lε,α are invertible for
all α and the inverses L−1

ε,α depend continuously on α.
With respect to existence of solutions of (6), (7) and (8), (7) we note that the fact that
uε,α depends continuously on α implies that α 7→ uε,α is in L2

(
(−1/2, 1/2), H1

per(Qh)
)
;

that is, the inverse Floquet-Bloch transform

(12) uε(x) =

1/2∫
−1/2

uε,α(x)eiαx1dα

is in H1
∗ (R2) and represents the solution of (6), (7) or (8), (7), respectively. �

We want to apply the following abstract result taken from [?].

Theorem 3.2. Let H be a (complex) Hilbert space, I = (−ε0, ε0) ⊂ R and J = (−α0, α0) ⊂
R open intervals containing 0. Let K(ε, α) : H → H and f(ε, α) ∈ H, (ε, α) ∈ I × J ,
be families of compact operators and elements, respectively, such that (ε, α) 7→ K(ε, α) is
twice continuously differentiable on I × J and (z, α) 7→ f(z, α) is Lipschitz continuous on
I × J . Set L(ε, α) = I −K(ε, α) and assume the following:

(a) The null space N := N
(
L(0, 0)

)
is not trivial and the Riesz number of L(0, 0)

is one; that is, the algebraic and geometric multiplicities of the eigenvalue 1 of
K(0, 0) coincide; that is, N

(
L(0, 0)2

)
= N

(
L(0, 0)

)
. Let P : H → N ⊂ H be

the projection operator onto N corresponding to the direct decomposition H =
N ⊕R

(
L(0, 0)

)
,

(b) L(ε, α) is one-to-one; that is, also onto, for all (ε, α) ∈ I × J , ε > 0,
(c) A := 1

i
P ∂
∂ε
K(0, 0)|N : N → N is selfadjoint and positive definite and B :=

P ∂
∂α
K(0, 0)|N : N → N is selfadjoint and one-to-one.

2The notation Kεj ,α means that for given j ∈ {1, 2, 3} the parameter εj is positive while the two other

parameters are zero.
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Let u(ε, α) ∈ H be the unique solution of L(ε, α)u(ε, α) = f(ε, α) for all (ε, α) ∈ I × J ,
ε > 0. Then there exists ε1 ∈ (0, ε0) and δ ∈ (0, α0) such that u has the form

u(ε, α) = u(1)(ε, α) −
m∑
`=1

f`,j
iε− λ`,jα

φ` for (ε, α) ∈ (0, ε1)× (−δ, δ) .

Here, ‖u(1)(ε, α)‖H is uniformly bounded with respect to (ε, α), and
{
λ`,j, φ` : ` = 1, . . . ,m

}
is an orthonormal eigensystem of the following generalized eigenvalue problem in the finite
dimensional space N (where m = dimN ):

(13) −Bφ` = λ`,j Aφ` in N with normalization
(
Aφ`, φ`′

)
H

= δ`,`′

for `, `′ = 1, . . . ,m. Finally, f`,j =
(
Pf(0, 0), φ`

)
H

are the expansion coefficients of

A−1Pf(0, 0) with respect to the inner product (A·, ·)H .

We fix α̂j for some j ∈ J and define H = H1
per(Qh0) and K(ε, α) = Kε,α̂j+α for ε = ε1 or

ε = ε2 or ε = ε3 and f(α) = rα̂j+α for |α| < α0 where α0 is so small such that the interval
[α̂j − α0, α̂j + α0] contains no cut-off value. This is possible by Assumption 2.2. Then
the smoothness condition concerning K(ε, α) and f(α) are satisfied (see [?] or [?]). The
nullspace N = N (L(0, 0)) is given by N = {φ|Qh0 : φ ∈ Xj} where

Xj :=
{
φ ∈ H1

per(Q∞) : φ(x) = e−iα̂jx1φ̂(x) for some φ̂ ∈ X̂j

}
, j ∈ J ,

is the space X̂j of guided modes transformed to periodic functions. Furthermore, Xj is
also the nullspace of the adjoint L(0, 0)∗ which implies that the Riesz number of L(0, 0)
is one and that the decomposition H1

per(Qh0) = N ⊕R is orthogonal.

The derivative of K(ε, α) with respect to α at (ε, α) = (0, 0) is the same in Problems I,
II, and III, and its projection to N is given by

(14)

(
P
∂L(0, 0)

∂α
u, ψ

)
∗

=

(
∂L(0, 0)

∂α
u, ψ

)
∗

= −2i

∫
Q∞

(
∂u

∂x1

+ iα̂ju

)
ψ dx

for u, ψ ∈ Xj where we identified N with Xj. We refer again to [?].

The derivative with respect to ε is different for Problem I, II or III. For Problem I we
have

(15a)

(
P
∂L(0, 0)

∂ε
u, ψ

)
∗

=

(
∂L(0, 0)

∂ε
u, ψ

)
∗

= −i
∫
Q∞

nuψ dx

for u, ψ ∈ Xj (see [?]) while for Problems II or III we have obviously

(15b)

(
P
∂L(0, 0)

∂ε
u, ψ

)
∗

=

(
∂L(0, 0)

∂ε
u, ψ

)
∗

= −ik2

∫
Qh0

p uψ dx ,

and

(15c)

(
P
∂L(0, 0)

∂ε
u, ψ

)
∗

=

(
∂L(0, 0)

∂ε
u, ψ

)
∗

= −i
∫
S0

q uψ ds ,

respectively, for u, ψ ∈ Xj. This results in different eigenvalue problems for constructing
bases in Xj.
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For Problem I the eigenvalue problem has the form (after transformation into X̂j)

(16a) −2i

∫
Q∞

∂φ̂`,j
∂x1

ψ dx = λ`,j

∫
Q∞

n φ̂`,j ψ dx for all ψ ∈ X̂j ,

for ` = 1, . . . ,mj with normalization

(16b)

∫
Q∞

n φ̂`,j φ̂`′,j dx = δ`,`′ ,

while for Problems II and III the eigenvalue problems have the form

(16c) −2i

∫
Q∞

∂φ̂`,j
∂x1

ψ dx = λ`,j k
2

∫
Qh0

p φ̂`,j ψ dx for all ψ ∈ X̂j ,

for ` = 1, . . . ,mj with normalization

(16d) k2

∫
Qh0

p φ̂`,j φ̂`′ , j dx = δ`,`′ .

and

(16e) −2i

∫
Q∞

∂φ̂`,j
∂x1

ψ dx = λ`,j

∫
S0

q φ̂`,j ψ ds for all ψ ∈ X̂j ,

for ` = 1, . . . ,mj with normalization

(16f)

∫
S0

q φ̂`,j φ̂`′,j ds = δ`,`′ ,

respectively. Injectivity of the derivative B requires the following assumption.

Assumption 3.3. Let λ`,j 6= 0 for all ` = 1, . . . ,mj and j ∈ J ; that is, for every j ∈ J
and every φ̂ ∈ X̂j there exists ψ ∈ X̂j such that

∫
Q∞

∂φ̂
∂x1

ψ dx 6= 0.

We note from the second form that this assumption is independent of of the chosen inner
product. Application of Theorem 3.2 yields the fundamental representation

(17) uε,α(x) = u(1)
ε,α(x) −

mj∑
`=1

f`,j
iε− λ`,j(α− α̂j)

φ̂`,j(x) e−iα̂jx1

for (ε, α) ∈ (0, ε0) × (α̂j − α0, α̂j + α0), and ‖u(1)
ε,α‖H1

per(Qh0 ) is uniformly bounded with

respect to ε and α. Here, f`,j =
(
Pf(0, 0), φ`,j

)
∗ =

∫
Qh0

f φ̂`,j dx.

Remark 3.4. In the case that X̂j is one-dimensional; that is, mj = 1, the eigenvalue

problems reduce to the same problem. The eigenvalue λ and eigenfunction φ̂ are in each

case scaled such that −2i
∫
Q∞

∂φ̂
∂x1

φ̂ dx = λ.
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4. The Limiting Absorption Principle

We continue with the unperturbed periodic case; that is, ñ = n. For the representation

of uε one has to integrate uε,α with respect to α, see (12). Since u
(1)
ε,α converges to u

(1)
0,α in

H1(Qh0) for every α 6= α̂j and is uniformly bounded Lebesgue’s theorem on dominated

convergence shows that
∫ α̂j+δ
α̂j−δ u

(1)
ε,α eiαx1dα converges to

∫ α̂j+δ
α̂j−δ u

(1)
0,α e

iαx1dα in H1(WR,h0) for

every R > 0. Again, WR,h0 := (−R,R) × (0, h0) for R > 0. Furthermore, elementary
calculations show that

α̂j+δ∫
α̂j−δ

1

iε− λ`,j(α− α̂j)
ei(α−α̂j)x1 dα =

δ∫
−δ

1

iε− λ`,jα
eiαx1 dα

= − 2i

|λ`,j|

|λ`,j |δ/ε∫
0

cos(εβx1/|λ`,j|)
1 + β2

dβ − 2iλ`,j

δx1∫
0

β sin β

x2
1ε

2 + λ2
`,jβ

2
dβ

which converges to

− 2i

|λ`,j|

∞∫
0

1

1 + β2
dβ − 2i

λ`,j

δx1∫
0

sin β

β
dβ = − iπ

|λ`,j|

[
1 + (signλ`,j)

2

π

δx1∫
0

sin β

β
dβ

]

as ε tends to zero uniformly with respect to x1 from compact sets. Therefore,

α̂j+δ∫
α̂j−δ

uε,α e
iαx1dα −→

α̂j+δ∫
α̂j−δ

u
(1)
0,α e

iαx1 dα + πi

mj∑
`=1

f`,j
|λ`,j|

[
1 + (signλ`,j)

2

π

δx1∫
0

sin β

β
dβ

]
φ̂`,j , ε→ 0 ,(18)

in H1(WR,h0) for every R > 0. Since the function α 7→ u
(1)
0,α for |α − α̂j| < δ and zero for

|α − α̂j| > δ is in L2
(
(−1/2, 1/2), H1

α(Qh0)
)

the inverse Floquet-Bloch transform yields
that the first integral on the right hand side of (18) is in H1(Wh0).

We choose any σ0 > 2π + 1 and functions ψ+, ψ− ∈ C∞(R) with ψ+(x1) = 1 for x1 ≥ σ0

and ψ+(x1) = 0 for x1 ≤ σ0−1 and, analogously, ψ−(x1) = 1 for x1 ≤ −σ0 and ψ−(x1) = 0
9



for x1 ≥ −σ0 + 1. Then we decompose the second term on the right hand side of (18) as

πi

mj∑
`=1

f`,j
|λ`,j|

[
1 + (signλ`,j)

2

π

δx1∫
0

sin β

β
dβ

]
φ̂`,j

= πi

[
1 +

2

π

δx1∫
0

sin β

β
dβ − 2ψ+(x1)

] ∑
`:λ`,j>0

f`,j
|λ`,j|

φ̂`,j

+ πi

[
1− 2

π

δx1∫
0

sin β

β
dβ − 2ψ−(x1)

] ∑
`:λ`,j<0

f`,j
|λ`,j|

φ̂`,j

+ 2πi ψ+(x1)
∑

`:λ`,j>0

f`,j
|λ`,j|

φ̂`,j + 2πi ψ−(x1)
∑

`:λ`,j<0

f`,j
|λ`,j|

φ̂`,j

which gives a splitting of the propagating modes in X̂j into those traveling to the right

and the left, respectively. The functions x1 7→ 1 + 2
π

∫ δx1
0

sinβ
β
dβ − 2ψ+(x1) and x1 7→

1 − 2
π

∫ δx1
0

sinβ
β
dβ − 2ψ−(x1) are in H1(R). (Note that

∫ t
0

sinβ
β
dβ = ±π

2
+ O(1/|t|) as

t→ ±∞.) Therefore, the right hand side of (18) has a splitting in the form

urad,j(x) + 2πi ψ+(x1)
∑

`:λ`,j>0

f`,j
|λ`,j|

φ̂`,j(x) + 2πi ψ−(x1)
∑

`:λ`,j<0

f`,j
|λ`,j|

φ̂`,j(x)

with urad,j ∈ H1(Wh0).

Finally, we do this for all propagating wave numbers α̂j. The integral
∫
I
uε,α e

iαx1dα over
the region I := (−1/2, 1/2) \ ∪j(α̂j − δ, α̂j + δ) converges to

∫
I
u0,α e

iαx1dα in H1(Qh0)
which is also in H1(Wh0) because the integrand is continuous with respect to α. Before
we formulate the main convergence result we formulate the open waveguide radiation
condition.

Definition 4.1. Let ψ+, ψ− ∈ C∞(R) be any functions with ψ±(x1) = 1 for ±x1 ≥ σ0

(for some σ0 > 2π + 1) and ψ±(x1) = 0 for ±x1 ≤ σ0 − 1.

A solution u ∈ H1
loc(R2

+) of (1) satisfies the open waveguide radiation condition with respect

to given inner products (·, ·)X̂j in X̂j if u has a decomposition into u = urad + uprop into

a radiating part urad ∈ H1
∗ (R2

+) and a propagating part uprop which satisfies the following
conditions.

(a) The propagating part uprop has the form

(19) uprop(x) =
∑
j∈J

[
ψ+(x1)

∑
`:λ`,j>0

a`,j φ̂`,j(x) + ψ−(x1)
∑

`:λ`,j<0

a`,j φ̂`,j(x)

]
for x ∈ R2

+ and some a`,j ∈ C. Here, for every j ∈ J the scalars λ`,j ∈ R
and φ̂`,j ∈ X̂j for ` = 1, . . . ,mj are given by the eigenvalues and corresponding
eigenfunctions, respectively, of the self adjoint eigenvalue problem

(20a) −2i

∫
Q∞

∂φ̂`,j
∂x1

ψ dx = λ`,j
(
φ̂`,j , ψ

)
X̂j

for all ψ ∈ X̂j ,
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with normalization

(20b)
(
φ̂`,j , φ̂`′,j

)
X̂j

= δ`,`′ .

(b) urad satisfies the generalized angular spectrum radiation condition

(21)

∞∫
−∞

∣∣∣∣∂(Furad)(ω, x2)

∂x2

− i
√
k2 − ω2 (Furad)(ω, x2)

∣∣∣∣2 dω −→ 0

as x2 tends to infinity where the Fourier transform is defined as

(Fφ)(ω) :=
1√
2π

∞∫
−∞

φ(s) e−isω ds , ω ∈ R ,

considered as an unitary operator from L2(R) onto itself.

We note that the radiation condition depends on the chosen inner product in X̂j provided

the dimension mj of X̂j is larger than one. By obvious modifications of the proofs in [?]
uniqueness and existence can be shown under this open waveguide radiation condition for
any inner product in X̂j.

Noting that the width h0 of the layer is arbitrary and can be replaced by any larger value
h we have shown the following convergence result.

Theorem 4.2. Let Assumptions 2.2 and 3.3 hold. Let uε ∈ H1(R2
+) or uε ∈ H1

∗ (R2
+) be

the unique solution of (5) or (6), (7) or (8), (7), respectively, for ε > 0 and ñ = n. Then
uε converges for every R > 0 and h > 0 in H1(WR,h) to the unique solution u0 ∈ H1

loc(R2
+)

of (1) for ñ = n which satisfies the open waveguide radiation condition of Definition 4.1.
For Problems I, II, and III the inner products are given by (φ, ψ)X̂j =

∫
Q∞

nφψ dx and

(φ, ψ)X̂j = k2
∫
Qh0

p φψ dx and (φ, ψ)X̂j =
∫
S0
q φψ ds, respectively.

Therefore, in the case that the dimension of one of the mode-spaces X̂j is larger than
one the radiation conditions for equation (1) are different for the three types of Limiting
Absorption Principles.

5. The Case of a Local Perturbation

In this section we consider Problems I, II, and III for the local perturbation ñ instead of
n. We will prove the following extension of Theorem 4.2.

Theorem 5.1. Let Assumptions 2.2 and 3.3 hold.

(a) For every ε > 0 there exist unique solutions uε ∈ H1
∗ (R2

+) of (6), (7) and (8), (7).
(b) Assume that there exists no bound state of (1); that is, there is no non-trivial

solution u ∈ H1(R2
+) of (1). Then the assertion of Theorem 4.2 holds identically

with the perturbed index ñ instead of n.

Proof: We restrict ourselves to Problem II but note that the same arguments hold also
for Problems I and III.
First we introduce the solution operator Lε from L2(Qh0) to H1(Qh0), defined as Lεf =
uε|Qh0 , where uε ∈ H1

∗ (R2
+) denotes the unique solution of (6), (7) for n instead of ñ. It

exists by Lemma 3.1. Then equation (6) can be written in the form ∆uε+k
2 (n+iεp)uε =

11



−f − k2 (ñ− n)uε in R2
+ and ∂uε

∂x2
= 0 on Γ0. Considering the right hand side as a source

in L2(Qh0) we rewrite this equation as a fixpoint equation in the form

(22) uε − k2 Lε
(
(ñ− n)uε

)
= Lεf .

This fixpoint equation is equivalent to (6), (7). Indeed, if uε ∈ H1(Qh0) is a solution of
(22) then we solve (6), (7) for n instead of ñ with source f + k2(ñ − n)uε ∈ L2(Qh0).
The uniqueness result of Theorem 2.3 yields that the solution with this right hand side
solves (6), (7) for ñ. Therefore, it suffices to study (22) with respect to existence and
convergence as ε→ 0.
(a) The uniqueness result of Theorem 2.3 implies uniqueness for (22) in H1(Qh0). Since
H1(Qh0) is compactly embedded in L2(Qh0) and Lε is bounded from L2(Qh0) into H1(Qh0)
we note that the operator u 7→ Lε

(
(ñ−n)u

)
, is compact from H1(Qh0) into itself. There-

fore, the Fredholm theory implies existence of a solution of (22); that is, of (6), (7) for
every ε > 0.
(b) We note that Theorem 4.2 implies pointwise convergence of the solution operators
Lε to the solution operator L0 : L2(Qh0) → H1(Qh0), defined as L0f = u|Qh0 where

u ∈ H1
loc(R2

+) is the unique solution of (1) for ñ = n satisfying the open waveguide ra-
diation condition corresponding to Problem II. In other words, Lεf → L0f in H1(Qh0)
for every f ∈ L2(Qh0) as ε tends to zero. Since {u ∈ H1(Qh0) : ‖u‖H1(Qh0 ) = 1} is

relatively compact in L2(Qh0) this implies that Lε converges to L0 in the operator norm
of H1(Qh0), and standard perturbation arguments show convergence of uε to the solution
u0 ∈ H1(Qh0) of u0 = L0f + k2 L0

(
(ñ−n)u0

)
in H1(Qh0) as ε→ 0. Here we use that the

equation u0 = k2 L0

(
(ñ−n)u0

)
admits only the trivial solution u0 = 0 by the uniqueness

result of [?], Theorem 3.3. �
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