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TIME HARMONIC MAXWELL’S EQUATIONS IN AN OPEN
PERIODIC WAVEGUIDE: A LIMITING ABSORPTION
PRINCIPLE AND THE RADIATION CONDITION

ANDREAS KIRSCH

ABSTRACT. We study Maxwell’s equations in an open waveguide in R3. The elec-
tromagnetic parameters (permittivity, dielectricity, and conductivity) are periodic
with respect to x3 in an infinite cylinder along the x3—axis and constant outside
of the cylinder. The Floquet-Bloch transform is used to reduce the problem to a
family of quasi-periodic problems. The quasi-periodic Calderon operator for the
exterior of the cylinder reduces the problems to a bounded region. A general func-
tional analytic framework is applied to prove convergence of the solutions when
the conductivity tends to zero and allows the formulation of a proper radiation
condition. A particular difficuly is introduced because of the singular dependence
of the quasi-periodic Calderon operator on the Floquet-Bloch parameter at cut-off
values.

MSC: 35Q61
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1. INTRODUCTION

We define the infinite cylinders €2z and the bounded cylinders Wx by
Qp = {reR® 2] +25 < R*} and Wg = {2 €Qr:x3€(0,27)},

respectively, for R > 0. To be consistent we set W, = R? x (0,27) C R3. Let the
waveguide be given by the cylinder 24 for some R > 0. In this paper we use cylindri-
cal coordinates (7, ¢, v3) and denote by 7 = (cos ¢, sin ¢, 0) ", b= (—sing,cos¢,0) ",
and 2 = (0,0,1)" the coordinate unit vectors.

Let €, 1,0 € L®(R?) be real valued and 27 —periodic with respect to 3. Further-
more, we assume that e(z) = gy and pu(x) = po and o(z) = 0 for 22 + 22 > R
The constants pg > 0 and ¢y > 0 are the parameters of the background medium.
Furthermore, let ¢ > 0 in R?® and let € and u be positive and bounded below by
some positive constant. The wave number k > 0 is defined as k = w,/ggpo. We look
for vector fields E, H € Hy,.(curl, R?) with

curl E = iwpH + f, in R?,

(1.1) : 3
curl H = —iweE+oFE + f. inR”.

Here, f, fo € L*(R?, C?) are assumed to have support in Wj. The space H(curl, D)
{u € L*(D,C?) : curlu € L*(D,C?)} denotes the usual curl-space and H,.(curl, D)
the local space for any domain D C R3,

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) —
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Eliminating H from the system and renaming v = FE yields the variational formu-
lation

_ _ 1 _ _
(1.2) /@ curlu-curlw—k2(£+ii)u-wdx:/m/—fh-curlw+iwfe-wdx
FA ot €0 weop 0 W
R

for all ¢» € H(curl, R3) with compact support. We set ¢ := % +z’wiso for abbreviation
and note that ¢ = 1 for x ¢ Q.

In the absorbing case, i.e. when o > 0 on Qp, we expect the solution v to decay as
|z3| — oo, i.e. we look for a solution u € H,(curl, R?) where

(1.3) H,(curl,R?) := {u: R* = C*| ulq, € H(curl,Qg) for all R >0} .

With respect to 7 = /22 + 23 — oo this problem has to be complemented by
a suitable radiation condition. A popular one is the angular spectral radiation
condition, i.e. the Fourier transform

o0

1 .
’&(i‘7 5) = 2_ U’(ia 1'3) 6_2&3 d£E3 ) 5 S Ra
s
—0o0
with respect to 3 € R satisfies the two dimensional Sommerfeld radiation condition
in the form

(1.4) O, (z,8) — k(&) a9 (&,6) = OF?), r — o0,

for almost all £ € R (and every component) uniformly with respect to Z/r. Here,
T = (x1,29) and k(§) = \/k? — &2 where the square root function is chosen such
that Rek(£) > 0 and Im k(£) > 0.

The basic tool in proven existence for the case ¢ > 0 is the Floquet-Bloch transform
with respect to x3 which reduces the problem to a family of quasi-periodic problems
in the periodicity cell W, := R? x (0,27). One solves this problem for (almost) all
members of this family and applies the inverse Floquet-Bloch transform.

In the non-absorbing case, i.e. for ¢ = 0, we expect the existence of travelling
modes, i.e. non-trivial solutions ¢ of (1.2) for f, = f. = 0 which are quasi-periodic
(see below) with respect to x3 and decay as r = /2?2 + 22 — oo. The formulation
of a proper radiation condition for this case is more complicated and needs some
preparation. Essentially, it requires the splitting of the solution into right- and left
going modes when x3 — +00 or x3 — —o0, respectively, and a part which decays
as |x3| — oo and satisfies the angular spectral radiation condition from above.

The structure of this paper is as follows:

e Section 2: We investigate the quasi-periodic problems which are formulated
on the (still unbounded) domain Wy, := R? x (0,27). As usual we reduce
them to the bounded domain Wy for some R > R with the help of the
quasi- periodic Calderon operator. Floquet-parameters o which are cut-off
values (i.e. |n + o = k for some n € Z) or which are critical values (i.e.
non-uniqueness holds for the a-quasi-periodic problem) play an essential role
in the analysis. Properties of the Calderon operator are shown in Subsec-
tion 2.1, and the Fredholm property of the reduced quasi-periodic problems
is proven in Subsections 2.2 and 2.3.

e Section 3: For the application of the inverse Floquet-Bloch transform the
dependence on the Flochet parameter « is of essential importance. Therefore,

we study the behavior of the solution of the quasi-periodic problems for «
2



being in a neighborhood of cut-off values or critical values. If o > 0 it will
turn out (under Assumption 3.5) that the solution is continuous at all Floquet
parameters «, in particular at the cut-off values. Application of the inverse
Floquet-Bloch transform yields existence and uniqueness of a solution in
H,(curl, R?) (Theorem 3.10). To study the dependence on the conductivity
o we take some fixed 6 > 0 and set o = ¢ for ¢ > 0. Then the solution wu,,
of the a-quasi-periodic problem depends also on ¢. Application of a general
functional analytic result (as in [6, 2]) provides an explicit representation of
U, in the neighborhood of («,t) = (&, 0) where & is a critical value.

e Section 4: With this representation we prove convergence of the solution u;
of the problem (1.2), (1.4) with conductivity o = t6 as t tends to zero. We
formulate the corresponding open waveguide radiation condition and prove
that the limit u( satisfies this radiation condition. Surprisingly, it will turn
out that the radiation condition depends on the limiting function &.

e Section 5: The main convergence result requires an assumption (Assump-
tion 3.7) which we interpret in terms of a transmission-boundary condition
for the Maxwell system.

e In the final Section 6 we show that the radiation condition guarantees unique-
ness of the non-absorbing problem.

2. THE QUASI-PERIODIC PROBLEM

We recall that a function ¢ : R — C is a—quasi-periodic for some o € R if
P(z3 + 21) = ™) (x3) for all z3 € R. Obviously, if ¥ is a—quasi-periodic then
also a + p—quasi-periodic for all p € Z. Therefore, we can restrict ourselves to
a€[—-1/2,1/2].

Quasi-periodic solutions of (1.2) will be determined in the Sobolev space

ulwy, € H(curl, Wg) for all R >0, }

u(xy, T, ) is a-quasi-periodic

H, . (curl, W) = {u R — C3:

The space H, .(curl, W \Wg) is defined analogously. The a-quasi-periodic problem
corresponding to (1.2) is to determine u = u(-, ) € H, . (curl, Wy,) with

_ _ 1 _ _
(2.1) /%curlu-curlw—quu-wdQJ = uo/;fh-curlw—l—iwfe-wd:c
Weo

Wy

for all ¢ € H,.,(curl, W) which vanish for 22 4+ 22 > R? for some R > R. Further-
more, we assume that « is not a cut-off value and u satisfies the radiation condition
of Rayleigh type, both defined as follows.

Definition 2.1. (a) a € [—1/2,1/2] is called a cut-off value if there exists n € Z
with |n + a| = k.

(b) Let « not be a cut-off value, i.e. k, = ky(a) := /k*>—(n+a)? # 0 for all
n € Z. A solution u € Hg.(curl, Wy, \ Wg) of curl>u — k?u = 0 in W, \ W
(in the sense of (2.1)) for some R > R satisfies the radiation condition of Rayleigh
type if the Fourier coefficients u, (1, z2) = 5= fo% u(z) e TIP3 dns satisfy the two-
dimensional Sommerfeld radiation condition (for every component)

(2.2) 8“5—7@ — ikaun (%) = O(1/]2[*%), r=|i] = oo,

uniformly with respect to T/|x|. Again, T = (x1,x2) and k, = \/k?> — (n + a)?.
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Since this problem is still set up on the unbounded region W, we transform it to
a problem on the bounded region W for some R > R with the help of the quasi-
periodic Calderon operator which is the analog of the Dirichlet-Neumann operator
in the scalar case. Therefore, in the following subsection we consider the boundary
value problem in some exterior region R3 \ Q5.

2.1. The Calderon Operator. We fix some R> R and set W+ = W, \WR and
define I' = {z € R¥: 22 + 22 = R?} and v = {z € T : 25 € (0,2n)}. Note that W+,
I', and v depend on R, but we do not indicate this dependence. It is the aim of this
subsection to find w € H, .(curl, W) with

(2.3) curl’w — k*w=0in W, 7#xw=hony

where h : I' — C3? is some given a-quasi-periodic tangential vector field on T'.
This boundary value problem has to be complemented by the radiation condition of
Definition 2.1, part (b). First we define the suitable Sobolev spaces on T

Definition 2.2. We define the space Hflﬂ(v) of scalar functions and the spaces
H;l/z(DiV,'y) and H;l/Q(Curl, v) of vector fields by

Z Prm € 'Lm¢+ (n+a)zs
Hil/Q — n,me7Z ,
o) Z P [1 4 0%+ m?F/? < oo
\ n,meL
( in z 21 ime+(nta)x )
h(,ws) = D [H &+ B 2] ot msedss
12 o n,me”L R ~
H,'/*(Div,y) = 5 (B 2 + |12,/ B2 + |02, + mhg [ RI?
) ) J : < 00
N Er
\ n,meZ /
h(¢, .1'3) _ Z [hzym (5 + h;m 2} eim¢+(n+a)x3 : 3\
s L nmeZ . .
H?(Curl,y) o= > Bl Vi) B + |/ B = b
oo
NiFereEas
\ n,mez ’

It can be shown as in [5] that <H_1/ Div, ), H, 27 (Curl,7)) and
<H§/ *(v), Ha Y 2(7)> are dual pairs with duality forms

(hy f) = 47BN (WS o flm + B Tam]s € HyY3(Div,v), f € Hy'2(Curl, ),
nmez

(p.q) = 47°R > pumGum» p € HY?(7), ¢ € H'(v).

nmez

Furthermore, the trace operators u — 7 x ul, and u — 7 x (u X )|, are bounded and
surjective from H,(curl, Wg) into H;l/z(Div, ) and H;l/z(Curl, 7), respectively, for
every R > R which can be shown as, e.g., in [5], Section 5.1.

The Calderon-operator is defined as the mapping which maps h € Hy Y 2(Div, v) to
the trace 7 x curlw on v where w € H,.(curl, W) solves the exterior boundary
value problem (2.3) and the radiation condition of Definition 2.1. The following two
theorems have been proven in [4] (see Theorems 3.1, 3.2, and 3.3).



Theorem 2.3. Let h € H;l/Q(Div,v) be given by
(24) h’(¢7 .1'3) = Z [hz,m gg + h‘fb,m 2] eim¢+(n+a)x3 ) ¢7 T3 € [07 27T] )
n,meZ

and let o be no cut-off value; i.e. k, # 0 for alln € Z. Then the unique solution
w € H, . (curl, W) of the exterior boundary value problem (2.3), (2.2) is given in
cylindrical coordinates by

(25)  wrd,ms) = Y [wh ()P +wd, (1) ¢+ wi,, (r) 2] emotimtelss
n,me”Z

forr > R and ¢, x5 € (0,27) with

@6) ) = e o) e, T a0,
R TN R L U T N W C I N (O]
, , ; , m G,
where
1 [ m2?H,,(rk, rk,H) (rk,
(2.9) GO () = ﬁ[ /<A> - ( )}7
» LRk, H  (RE,)  H,,(Rk,)
(2.10) G? (r) = M
’ Rk, H;, (Rk)
(2.11) G (r) = M, GWY (r) = M,
’ H,(Rk,) ’ H' (Rk,)
1 [ Hy(rk,) rH! (rky) }
2.12 G® (r) = —{ - :
(212) () ki | Hn(RE,)  RH!, (Rk,)

Furthermore, for given coefficients b, ., h% .. € C with > ez % < oo where
a2, = |hz u* + |hS,./RI? + |nhi,, +mhg,, /R? and given & € [—1/2,1/2] with
In + &| # k for all n € Z there exists 6 > 0 such that the mapping o — w is
holomorphic' as a mapping from {a € C : |a — &| < 0} into H(curl, Wg) for every

R > 0.

Theorem 2.4. Let h € Hgl/Q(DiV, ) be given by (2.4) and let o be no cut-off value;
i.e. k, # 0 for alln € Z. Then A, is expressed as

(2.13) (Aah)(d,25) = D [N 2+ A, 0] emotitram

nme”Z
for h € H;l/Q(Div,v) where

2
(2.14) X\, = —hﬁkaG(l)
’ ™R

~

OuR) | 1 (0 )| G2,

n,m

(2.15) X%, = K*h:,, RGP (R)— (n+a) {%hi,m + (n+ oz)h;i,m} RGY (R).

A, has the following properties.

(a) Ay, defined by (2.14), (2.15) is well-defined and bounded from H;1/2(Div,fy)
into itself.

lin the sense of, e.g., [1], Section 8.5,



(b) Im(Agh, 7 X h) > 0 for all h € Hy"/*(Div, 7).
(¢) Im(Ayh,7 x h) = 0 implies that the corresponding solution w of (2.5) is
decaying exponentially, i.e. there exist §,c > 0 with

(2.16) max  |w(r, ¢, x3)] < ce”” forr>R.
¢,x3€(0,27)

Furthermore, hi . and hZ . vanish for all n,m € Z with |n + of < k.

(d) The Calderon operator A, can be decomposed as Ay, = A2 + AS where AP
and AS are bounded from H;lm(Div,'y) into itself and DivAPh = 0 and
Curl ACh = 0 for all h € Hy'/*(Div,~).

(e) The operator Div A, is bounded from H;l/z(DiV,'y) into H;l/z('y) and

(217)  [IASA oz, < c||Div AL, 12, for all h € H'?(Div,).

Divyy) — ()

(f) The operator AP has a decomposition into AP = AP + AKX where (h,1) —
(APh,px 7 is hermitian on HOTI/Q(DiV7 ) X Hofl/Q(DiV, ) and non-negative,
i.e. (APh,hx#) >0 for all h, and AX is compact.

(g) Ao depends holomorphically on o in the following sense. Let & € [—1/2,1/2]
not be a cut-off value. Then there exists 6 > 0 such that the mapping
o — A, is (strongly) holomorphic® from {a € C : |a — &| < 6} into
B(HZE/Q(DiV,fy)) where Hg@}p(Div,fy) denotes the space H;l/Q(Div,’y) for
a =0 and Ayv = e %7, (ve®™) forv e Hy'*(Div, ).

If & is a cut-off value, i.e. |0+ &| = k for some n € Ny then h —
> (nmygc (A2 2+ )\ﬁmgﬂ emetinta)es depends continuously on o in a neigh-
borhood of & where C := {(n,m) : |n+a| =k, |m| < 1}.

(h) Define the operator Dy from Ha'*(v) into Hy'/*(7) by Dap := Div Ay (7 X
Gradp). Then Im(Dy,p,p) > 0 for all p € Hé/2(7), and Im(D,p,p) = 0
implies that Re(Dap,p) > 0.

Furthermore, there is an operator Do from Hcly/Q(F) into H;l/Q(F) which is
hermetian and non-negative, i.e. (Dap,p) > 0 for all p € Hcl/Q(F), and
D, — [)a 18 compact.

Remarks 2.5. (a) The second part of (g) has not been proven in [4] but follows
directly from the arguments of Theorem 3.2 of [4].

(b) We note that (Aoh, 7 x h) = 4723 (N2 Wi — XS b2 ] with N XS
from (2.14), (2.15). In the proof of Theorem 3.2 (which refers to Theorem 2.4)

in [4] it has been shown that the imaginary part of every term in the series is
non-negative. This implies directly that also the operator h +— Z(n m)gC [/\flmé +

)\ﬁmqﬂ emetinta)es s non-negative in the sense of part (b) of the theorem.

2.2. The Reduced Quasi-Periodic Problem. In this subsection we show equiv-
alence of the quasi-periodic problem (2.1), (2.2) to the following problem set up in

W =W, ={zrcR:a}+a} <R z3 € (0,21)}. We recall that ¢ = =i
and allow the general case o > 0.

In this subsection we fix a € [—1/2,1/2] and assume again that « is not a cut-
off value i.e. |n+ a| # k for all n € Z. We consider the problem to determine

2in the sense of, e.g., [1], Section 8.5,



@ € H,(curl, W) such that

/@ curl @ - curly — K2qa - dx + <Aa(f X ﬂ),z/z>
o
(2.18) v .
= po/—fh -curly +iwf, - pdr  for all p € H,(curl, W)
i
W

where A, : Ha_l/z(Div,v) —> Ha_l/z(DiV,’y) denotes the Calderon operator. Again,
q = Z+izZ-, and we wrote (and do this also in the following) ¢ instead of 7 x (¢ x 7)
in the sesqui-linear form (-,-) of (2.18). The space H,(curl, W) is the subspace of
H (curl, W) consisting of a-quasi-periodic functions equipped with the inner product
<', '>H(cur1,W) of H(curl, W)

We rewrite (2.18) as

1 — _
bo (1, 0) = po / — fncurlyy +iwf. - dx  for all ¥ € H,y(curl, W)
i
W

where the sesqui-linear form b, : H,(curl, W) x H,(curl, W) — C is defined by

(2.19) bo(u, ) = /% curlw - curly — k*qu - de + <Aa(f><u),@/)>.
W

We have the following equivalence.

Theorem 2.6. Let o not be a cut-off value.

(a) Let u € H,.(curl, W) be a solution of (2.1), (2.2). Then @ := ulw €
H,(curl, W) is a solution of (2.18).
(b) Let u € Hy(curl, W) be a solution of (2.18). Set u =@ in W and u = @
in Weo \ W where @ is the (unique) solution of (2.3) for h := 7 x @, i.e.
(compare with (2.5) for h%, = —aZ . and hi, =0l )
(2.20) u(r g, zy) = Y [t (1) P uf (1) 6+ () 2] €m0

n,meL

forr >R and ¢, x5 € (0,27) with

. _. iln+a) _, imR
unm<7n) - T Yam r G’szlzn(/r) U’zm r Gg?m(r)’
wr) = iz, PO GO (1) 4 a2, GO0,
' r
u(r) = 0, G (r).

Then u € H, .(curl, W) is a solution of (2.1), (2.2).

We omit the proof (which is quite standard). Properties of b, are collected in the
following lemma.

Lemma 2.7. (a) The sequi-linear form b, is bounded on H,(curl, W), i.e.

|ba(u>w)’ < c HUHH(CUI‘I,W) ”wHH(curl,W) fOT all U»@D € Ha<CUI‘1, W) .

(b) Imby(u,u) <0 for all u € Hy(cur, W). If Img > 0 on Qp, i.e. 0 >0 on
Qp, then Im b, (u, uw) < 0 for all u # 0.
7



(c) Define the closed subspace N := {u € Hy(curl, W) : by (u, ) =0 for all ¢ €
Ho(cur, W)}, IfImq > 0 on W then N' = {0}. For u € N the Fourier
coefficients ul, , of ulr vanish for all n,m € Z with |n + o < k and j =

1,2,3. Furthermore, N = {u € Hy(cur,l W) : by(v,u) = 0 forallyp €
Hg(curl, W)}

Proof. (a) This follows directly from the Cauchy-Schwarz inequality for the volume
integral, the boundedness of the trace operators u — 7 X u|, from H,(curl, W) into
Hy'?(Div,W) and @ — (7 x ) x 7|, from Hy(curl, W) into Hy'/?(Curl, ), and
the boundedness of A, from Hg "/ *(Div, ~) into itself.

(b) We conclude from part (b) of Theorem 2.4 that Im b, (u, u) = —k? [}, Im ¢ |u|? dz+
Im(Aq (7 x u),u) <0. If Img > 0 on Q4 then Im b, (u, w) implies that u = 0 on Q.

By the previous theorem we conclude that u vanishes everywhere.

(c) The fact that N = {0} for o > 0 follows directly from part (b). For arbitrary

q and u € N we conclude that 0 = Im b, (u, u) = —k* [}, (Im g)|u|*dz + Im(A (7 %

u),u) < 0 and thus, by part (c) of Theorem 2.4, that (Img)u = 0 in W and

uf ., = ug,, = 0 forall |n+a <k Forn € Z with |[n + a| > k we note that

n,m

knHy, (knR) _ |[kn|K], ([kn|R) - ;
e = Kol S real valued. With the form (2.13), (2.14), (2.15) of A,

for h = 7 x 1 we note that (A, (7 X ¥),u) has the form

MalF x vy = 30 [UpAnm + E 0+ ) B0

m,n:|nta|>k

+ 00 o + %(n + ) By )] uf]

for some coefficients A,, ., By m, and C,, ,,, which are real valued. Therefore,

(Ao (P x ), u) = (Ao (F x w), 1) and thus by (1, u) = by (u, 1)) + 2k> fW(Im q)|ul’dx =
0 for all ¥ € Hy(curl, W). This shows that N' = {u € H(curl, W) : by (¥, u) =
0 for all ¢ € Hy(curl, W)}. O

2.3. The Helmholtz decomposition. It is the aim to show the Fredholm prop-
erty of b, (see next subsection). As a standard tool we need a suitable Helmholtz
decomposition of the solution space. We fix some o € [—1/2,1/2] which is not a

cut-off value, define W = {z € R? : 22 + 23 < R?}, and b, as before, and define the
spaces VH} (W) and D,, by
VH,(W) = {Vp:pe Hy (W)},
D, = {veHy(cur,W):by(v,V¢)=0foral ¢ € H.(W)}.
If @ = 0 we understand the space VHL(W) as {Vp:p e HL(W), [, pdz=0}.

First we note that VH! (W) and D, are closed subspaces of H,(curl, W). The space
D, corresponds to the usual space of functions with vanishing divergence. How-
ever, it contains a non-local boundary condition on v which involves the Calderon

operator. We refer to [9], Section 10.3, for a related situation in the exterior of a
ball.

Lemma 2.8. The space H,(curl, W) has the decomposition into the direct sum
H,(cur, W) = VHL{(W) @ D,.

The projections onto VHL(W) and D, along this direct sum are bounded.
8



Proof. Let uw € H,(curl,W). We consider the variational problem to determine
p € HL (W) with

ba(Vp, Vo) = by(u, Vo) forall p € HL(W).

Once we have solved this problem we have the decomposition v = Vp + (u — Vp)
and u — Vp € D,. The variational equation takes the form

k? /qu Vo dr — (Aa(? x Gradp), Grad ¢) = (u, Vo) for all p € HL (W),
W
ie. k> / qVp-Vodr+ (Dap, ¢) = (u, Vo) for all ¢ € H:(W)
W

with the operator D, from part (h) of Theorem 2.4. From k? [, Req|Vp|*dzx +
Re([)ap,p> > cHVpH%Q(W) and the compactness of D, — D,, we conclude that this
variational equation is of Fredholm type. To show uniqueness let p € H:(W) with
k* [, aVp-Vodz+(Dap, ¢) = 0forall ¢ € HL(W). Taking ¢ = p and the imaginary
part yields k? [;;, Im ¢ |Vp|* dz + Im(Dap, p) = 0 and thus Im(Dap, p) = 0 because
both terms on the left hand side are non-negative by Theorem 2.4. By the same
theorem we conclude that Re(D,p, p> > (. Taking the real part of k? fW q|Vp|* do+

<Dap,p> = 0 we conclude that Vp = 0 (because Re ¢ > 0) and thus p = 0.

Boundedness of the projections follows from the continuous dependence of p from
u. The sum is direct because Vp € D,, for some p € H! (W) implies b, (Vp, Vo) =0
for all ¢ € H:(W) and thus p = 0 by the previous arguments. O

Lemma 2.9. The space D, is compactly imbedded in L*(W,C3).

Proof. Let (v;) be a bounded sequence in D,. Extend v; into H, .(curl, W) by
(2.5) for h =7 x v;|— on . Then (v;) is bounded in H,(curl, W) for every R > R.
Let now ¢ € H!(W,,) vanish for 27 + 22 > R? for some R > R. Then, because
Vj € Da,

k:2/qvj-ng_5dm = kQ/qvj-ngdx + k:Q/ v; - Vo dx

Woo W Woo\W
= (Au(7 X v;),Grad ¢) — / [curlv; - curl Vo —k*v; - V@l da
Woo\W =0

= /(f x curlv;|, ) - Grad ¢ ds

Y

— / [curlv; - curl Vo — k*v; - V@l dz = 0

Woo\W

by the definition of A,, Green’s formula applied in W, \ W, the a-quasi-periodic
boundary conditions, and curl® v; — k?v; = 0 in W, \W We choose a (real valued)
cut-off function ¢ € C=(R?) with ¢ (x1, 22) = 1 for 22 + 22 < R? and Y(1,22) =0
for 22 + 23 > (R + 1)% and set 0;(z) = v;(x)(x1,22). Let R > R+ 1. Then

0; € Hy(curl, Wg) is bounded in H (curl, Wg). Let ¢ € HL(Wg) be arbitrary. Then,
9



using the previous identity for ¢ = Y,

k? / qv; - Vodr = k? / quj - V(@) dr — k? / quj -V pdr = k* / [i-@dx
Wr Whr Wr Wr
with f; := —qv; - Vi which is bounded in L*(Wg, C?). Now we apply the improved
compactness result of Lemma A.2 (choice (d) of (X,Y)) of [8] which holds also

for complex ¢. This yields the existence of a convergent subsequence of (9;) in
L*(Wg,C?) and thus also of (v;) in L*(W, C3). O

The following result is needed for proving the Fredholm property of the form b,,.

Lemma 2.10. There ezists ¢ > 0 such that || Div A, (7 X v)||H;1/2(7) < c[|v||L2wy
for all v € D,.

Proof. Let ¢ € Hol/z('y). We extend ¢ to ¢ € HY(W) such that ||¢]lmwy <
el|@l] /2 () Where ¢ is independent of ¢. Then

|(Div AL (F x v),0)| = [(Aa(F X v),Grad ¢)]|
= ‘b(v,v¢)+k2/qv~vadx = k2/qv'vadx
W W
< clllezon l1ollawy < céllollzwy 19l 2., -
Here we used that b(v, V¢) = 0. This yields the estimate. |

By the theorem of Riesz there exists r, € H,(curl, W) and a bounded operator B,
from H,(curl, W) into itself such that

<Bauaw>H(curl,W) = ba(uaw)

(2.21) = / {% curlw - curly) — k?qu - E] dr + <Aa(f’ X u),w> ,
W

<Tom¢>H(curl,W) = MOV[[ |:%fh'cur1E+iwfe'E:| dx

for all u,v € H,(curl, W). We define a second operator B, from H,(curl, W) into
itself by

A~

(Batt, V) g(cun,w) = /@ curlu - curl ) +u - dr + <A£(f X u), 1)
0
W

with the operator Ag from Theorem 2.4, part (f). As a consequence of Lemma 2.7
we have

~

Lemma 2.11. (a) B, is selfadjoint and coercive, i.e. (Bau, W) H (curl, W) > c||u||§{(curl w)
for all w € H,(curl, W).

(b) By — B, is compact from D, into H,(curl, W).
Proof. (a) is obvious by part (f) of Theorem 2.4.
(b) Introducing the compact operator K from H,(curl, W) into itself by

<Ku7 1/J>H(cur1,W) - <A§<f X u)v Q/}> ) TP S Ha(CUI‘l, W) ’
10



with the compact operator AKX = AP — AP from Theorem 2.4, part (f), we note that
B, — B, — K is represented as

(By — B, — K)u, V) meaiwy = — /(k2q + 1) u-pdr + <A§(f X u),w>
W

for u,¢ € Hy(curl, W). For u € D, and ¢ € H,(curl, W) we estimate

[((Ba = Ba = K)u, ¥) pr(eurtw)|
< cfllulzzon 19l + IASE X W)l 18122 )
< e fllullzon 1llzovy + 1DV Aa(F X )l 170, 190172 o )
< cfllulzzam 192y + Tulzzon 19152 o)
< CHUHLQ(W) ||¢||H(cur1,vv)

where we used the estimate (2.17), Lemma 2.10, and the trace theorem. Therefore,
|(Ba — Ba — K)u|| g(car,wy < ¢ ||u||L2gw) which proves compactness of B, — B, — K
by the compact imbedding of D, in L*(W,C3). OJ

Lemma 2.12. The operator B, is a Fredholm operator with index zero and Riesz
number one. The latter means that N (B?) = N'(B,).

Proof. By the definition of D, the restriction of b, to D, x VHL(W) vanishes.
The restrictions of b, to D, x D, and VH:(W) x D, and VHL(W) x VHL(W)
yvield bounded operators By : D, — D, and By, : VH(W) — D, and By :
VHY(W) — VH.(W), respectively, with (By1u, V) g(cur,w) = ba(u,v) and

<Bl 2V¢ > (curlLW) — ba(v¢7 U) and <BQ,2V¢7VP>H(Curl,W) = ba(v¢a VP) for all
u,v € D, and ¢, p € H-(W). Therefore, the operator B, has a decomposition into

B, = B Bia ) D, x VHL (W) — D, x VHLW).
0 32’2 o o
By the previous lemma the operator Bj; is of the form B;; = A + C where A
is invertible and C' is compact. Since the operator B, is invertible (see proof of
Lemma 2.8) we have a decomposition into

Biy Bip\ _ [ A Bip I C 0
0 B272 o 0 BQ,Q 0 0
0 glﬂ > is invertible and ( g 8 ) is compact. In particular, B, is a
2,2
Fredholm operator with index zero.
To show that N'(B2) C N(B,) let B>u = 0. With v = B,u we have b,(v,%) = 0
for all ¥ € H,(curl, W) and thus (Lemma 2.7, part (c)) b,(¢,v) = 0 for all ¢ €

Hg(curl, W). Therefore, 0 = bo(u,v) = (B, V) g(cur,w) = (U, V) H(curl,w) Which
implies Bou = v = 0. U

where

Corollary 2.13. For every a € [—1/2,1/2] the space H,(curl, W) has a decompo-
sition in the form

Hy(cur, W) = N(B,) & R(B.,).

If 0 =0, i.e. q = ¢/eg is real valued then the sum is orthogonal in H,(curl, W).

Therefore, the projections onto N'(B,,) and R(B,) are the orthogonal projections.
11



Proof. The decomposition follows from the Fredholm property and because the Riesz
number is one. To show the orthogonality let u € N'(B,). Part (¢) of Lemma 2.7
implies bo(1),u) = 0 for all ¢ € Hy(curl, W), ie. (Bat¥,w)Heuwiwy = 0 for all
Y € Hy(curl, W), i.e. u is orthogonal to R(B,). O

For ¢ > 0, i.e. Imqg > 0, we have uniqueness and existence of the quasi-periodic
problems.

Theorem 2.14. Let 0 € L®(W) with o > oo on Wy for some constant oo > 0,
and let o € [—1/2,1/2] not be a cut-off value. Then there exists a unique solution
u € Hy(curl, W) of (2.18). Furthermore, its extension as in Theorem 2.6 determines

the unique solution u € H, ,(curl, W) of (2.1), (2.2).

Proof. By the Fredholm property of B, it suffices to show injectivity of B,. Let
u € Hy(curl, W) with B, = 0, in particular b,(u, @) = 0. Taking the imaginary
part and using part (b) of Lemma 2.7 yields @ = 0. O

We note that if €, u, and o are sufficiently smooth such that the unique contin-
uation principle holds for (1.1) then o > 0 on some open subset of W}, suffices for
uniqueness and existence.

3. THE DEPENDENCE ON o AND o AND EXISTENCE IN THE CASE OF
ABSORPTION

In this section we study the behavior of the solution u = w, of (2.1), (2.2) in
neighborhoods of cut-off values (see Definition 2.1) and critical values. We recall

the sets Woo = {z € R®: 22 + 23 > R?} and W = {z € W, : 25 € (0,27)}.

Definition 3.1. A parameter o € (—1/2,1/2] which is not a cut-off value (that
is, |n + | # k for alln € Z) is called a critical value if there exists a non-trivial
a—quasi-periodic (with respect to x3) solution ¢ € H, .(curl, W) of

(3.1) /@curw.curl@—k?iqsﬂdx =0
o H €0

for all+p € H,(curl, W) with compact support in Wy, and satisfies also the radiation
condition (2.2). The function ¢ is called (propagating) mode. We denote the set of
all critical values by A and the space of all modes corresponding to o € A by M.

Remark 3.2. We note that by definition the set {a € [—1/2,1/2] : |n + a] =
k for some n € Z} of cut-off values is disjoint to the set A of critical values.

This is a standard assumption for treating open waveguide problems, see, e.g.,
[2, 3, 6]. We observe that Theorem 2.6 implies that the critical values are exactly
the parameters a for which the operators B, from (2.21) for ¢ = 0 fail to be
isomorphisms from H,(curl, W) onto itself. Furthermore, N'(B,) = {¢|lw : ¢ €
Me},

Lemma 3.3. Let a be a critical value. Then the space M of corresponding modes,

defined in Definition 3.1 s finite dimensional. The functions ¢ € M®* are decaying

exponentially, i.e. there exists c¢,0 > 0 with meax|gz5(x)| < ce ™ forr > R where
TEYr

Yr={r €R¥:2? + 25 =7r% 0<z3 <27}
Proof. First we note that « is not a cut-off value by Definition 3.1. From Theorem 2.6
we observe that {¢|w : ¢ € M} = ker(B,) with B, from (2.21). The kernel is finite

dimensional because of the Fredholm property of B,. Furthermore, from part (c) of

Theorem 2.4 we conclude that ¢ is decaying exponentially fast. 0
12



In the following we will study the dependence of u on o and o. So far, we allowed
q = = +i Z to be complex valued with arbitrary (periodic) conductivity o > 0.
In this subsection we assume that ¢ =t for some parameter ¢ > 0 and some fixed
periodic 6 € L>(IR?) which is strictly positive on 25 with some positive lower bound
and which vanishes in R* \ Q.
FThe operator B, : H,(curl, W) — H,(curl, W) depends now on two parameters «
and t, and we write B, ; to indicate this dependence. The corresponding sesqui linear
form is denoted by b, : Hy(curl, W) x H,(curl, W) — C. We set also ¢; :== = —I— i
to indicate the dependence on t.

It is convenient to transform the a—quasi-periodicity from the function space into
the sesqui-linear form. Therefore, we define the space of 2r—periodic (with respect
to x3) functions by

Hper(curl, W) = {u € H(curl, W) : z3 — u(z) is 2m-periodic }

equipped with the canonical inner product (-, ) g(cun,w) induced by the inner product
in H(curl, W).* Then (2.18) is equivalent to the determination of v, ; € Hp,(curl, W)
such that

/ l% curl (vg 4 (z)e’™™) ~curl(W> — k%4 Vg E] dx
W

(3.2) + <Aa(f X Vgp €73) 1) emx3>

_— VZ e carl @) + o, (@) | da

for all ¢ € Hp,,(curl, W). This is the basic equation which we study with respect
to the dependence on « and ¢. Substituting the form (2.13), (2.14), (2.15) of A, for
h =7 X vy €% we write the sesqui-linear form on the left hand side as

ant(v,7) = /@ curl(veiam) -curl(@/)ei‘“i*) —Kquv-dr

1
W
(3.3)  +4mK Y vr,, Vi, GUL(R) + ATEPR? DY 0 i, GO (R)
n,me”L n,me”Z
AT S GELR) [0 )t~ % k] | T — (ot ) i
n,mez 7 7 R , R
Here, the Fourier coefficients v/, , € C are given by
2w 27
1
v = —// (R, ¢, x3) - 27 ™12 4y s (n,m) € Z X 7,
k) 47T2
(34) 27 27
1
n,m :4—//UR¢,3:3 —imo=inzs do dxs,  (n,m) €L X 7.

Lemma 3.4. (a) Let & € [—1/2,1/2] not be a cut-off value and t > 0. Then there
exists a neighborhood I xT = (&—6, &+6) x (t—6,1+08) of (&, 1) such that there exists

3Apparently, it is Hper(curl, W) = Hg(curl, W) for o = 0 but we want to avoid the notion
Hy(curl, W) because this notation is reserved for the space of functions with v x v = 0 on the
boundary.
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a unique solution vy € Hper(curl, W) of (3.2) for (a,t) € I x T, and (a,t) — vay
is continuously differentiable from I x T into Hpe,(curl, W).

(b) Let & € [—1/2,1/2] be neither a cut-off value nor a critical value. Then there
exists a neighborhood I x T = (& —d,&+0) x (—0,9) of (&,0) such that there exists
a unique solution v, o € Hper(curl, W) of (3.2) for (a,t) € I x T, and (a,t) — vay
is continuously differentiable from I x T into Hpe,(curl, W).

Proof. Let Ayt : Hper(curl, W) — H,e,(curl, W) be the operator corresponding to
Aoy, 1€ (AatV, V) Hcunw) = Gayr(v, 1) for all v,9 € Hpe,(curl, W). Since & is not
a cut-off value apphcatlon of part (g) of Theorem 2.4 yields that o +— (A, (7 x
v €' 3) 1) e'*3) is holomorphic in {« € C: |a — &| < §} (for some & > 0) for every
v, € Hpep(curl, W). This means that the operator S, from H,,(curl, W) into
itself, defined as (S, ) geuw) = (Aa(F X ve"8) 1) €'**3) is weakly holomorphic
with respect to a in the sense of, e.g., [1], Section 8.5. By the same reference this
mapping is even strongly holomorphic and thus continuously differentiable. Since
the integral term depends also smoothly on (a,t) we observe that (o, t) — A, is
continuously differentiable. Since A, ; (where t = 0 in case(b)) is an isomorphism

we conclude that also the solution v, ; depends continuously differentiable on a and
t. O

In the following two subsections we study the dependence on « and t in the
neighborhoods of cut-off values and critical values.

3.1. o in a neighborhood of a cut-off value. Let & be a cut off value, i.e. there
exist 1 € Z with |n + &| = k. The (non-empty) set C := {(n,m) € Z* : |n + &| =
k, |m| < 1} will play an essential role in the following analysis. If we decompose
k in the form k = n + k with k € (—=1/2,1/2] and 7 € Z>, then & = £k are
the cut-off values. The set C consists of 3 elements if k ¢ %N . Indeed, under this
assumption there are exactly two cut-off values £k in [—1/2,1/2], one in (—1/2,0)
and the other in (0, 1/2). To each of them there corresponds exactly one n € Z with
|n+ &| =k, namely n = +n if & = k. If k € Nor k € —1/2 + N then there exists
only one cut-off value & = 0 or & = 1/2, respectively, and C consists of 6 elements.

Assumption 3.5. Let k & %N.

As noted above the set C is now given by C = {(n,m) : |m| < 1} where n = £ if
& = +k. If this assumption is violated then one has to modify the analysis below.
We do not treat this case.

In this subsection we study the behavior of the solution v, of (3.2) if @« — & for
some cut-off value & € {+k, —k}, i.e., we have to study the singular behavior of A,
as @ — &. We decompose the Calderon operator from (2.13)—(2.15) (for h =7 X u)
into the form

(Aa(f X U))(¢,£L‘3) = Z [A;mé + )\iméﬂ eim¢+i(n+a)x3

(n,m)¢C
A 7 5 13
oty GUNR )2 4 2 = (i alu RGE)( ) pe e
b [ 4 A 8] e

|m|=1

14



where

Nom = uflm%j Gﬁ}}n(}?, a) + m {—% uy, o+ (n+ oz)ui,m fozn(}?i, a),
N = [ = (n+a)ug, RGE)(R,a) + m(n+a)u,, G2, (R, @)
We set
(3.5) Aa(F xw))(p,a5) = Y [N a2+ A, 0] emotitmras
(n,m)¢C
+ [k? Z up, mRG (R, a)qﬁ gimetilita)zs
Im|<1

and write A, (7 X u) as

~ 2 .
(Aa(”f’ XU))(¢7 l’3> = (Aa(f X U))(¢7x3) + UZ,O%GS())(R )A i(hta)zs

2 1 R .
s {{ ( D (Roa) - L 6@ (R, a>) i+ ) G2 (Roa)| 2
mi=1 R ’ ’

+ u% (n + a) G(Q) (R, )QE} pimé+i(ita)zs

= (Aa(f X U))(Qb, 133) -+ 90(05) uz’o éei(ﬁ-‘ra)ms
T Z {{gm (@) uf,, + hm(a) uﬁm}z + hm(a) Uim¢} pima-ti(ita)es

|m|=1
with

@ = Zeia),
90 R n,0

k: (1) A 1
gm(a) = —G,, (R,a)— = Ra m| =1,

ho(@) = m(n+ a) fo}n(R,a), Im| = 1.
The decomposition of A, implies a decomposition of the sesquilinear form a,; from
(3.3). Now we use the representation theorem by Riesz. There exist bounded
operators A,; and A,; from Hpe.(curl, W) into itself and elements wZ,, w?,y, €
Her(curl, W) for |m| < 1 such that

<Aa,tva¢)>H(curl,W) = Qq t(v 77D>

= /{‘Z) curl (v(z)e’*) - curl (¢ (z)eiows) —qutvﬂ dx

+ <Aa(f’ X U@iaz:”) ,¢eia$3> ,

<Aa,tv,w>H(CurLW) = / {% curl(v(z)e’™*?) - curl (¢ (x)ess) — kg v - ﬂ dx
W

+ </~\a(f X v e T3) ) ei"‘13> ,

<77Z)7 wzﬂ)H(curl,W) - 121 mo
<77Z)7 wfq,>H(curl,W) = ¢n m
1 izt . =t
Yo V) H(cun,w) = Mo/ [; fn - curl(geien) +iwf, - Ye 1] dx
W
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for all v,¢ € Hp,(curl, W) and |m| < 1. Therefore, (3.2) is written as an operator
equation in the form

(3.6) Aatas + 472 G0() (Vats W5) b (cur,w) WG

+ 4772 Z {[gm(a> <Uoz,t7 w;)H(curl,W) + hm<a) <Ua,t7 wﬁL>H(curl,W)}wfn

+ hm(a) <Uoc,t7wfn>H(curl,W)wﬁl} = Yo, QOFa,
in H(curl, W). We note that A,; and fla’t differ by an operator of rank 5.

Lemma 3.6. The operator flmt depends continuously on o in a neighborhood of &.

Furthermore, Im(Aq 10, 0) g(eunw) < —k? fW Im g; |v]*dz.

Proof. By part (g) of Theorem 2.4 and the fact that lim,_4[k*—(n+a)? szn(]%, a) =

0 for |m| < 1 (Lemma A.1 of [4], formulas (A.4e)) we conclude that the operator A,
depends continuously on « in a neighborhood of & and |g;(a)| — 0o as o — & (see
Lemma A.1 of [4], formulas (A.4b) and (A.4c)). Furthermore, Im(A, (7 x k), h) < 0
for all h (because of Remark 2.5). This implies that also A, depends continuously

on a and Im(A, v, ) geun,w) < —k [i;, Im g, |[v[*da. O

Assumption 3.7. Let fl@,t be an isomorphism from Hpe,(curl, W) onto itself and
let the 3 x 3-matriz with entries (A3 Wz, wZ) gewwy for m',;m € {=1,0,1} be

reqular.

Gt

Remark 3.8. Assumption 3.7 is satisfied for t > 0. Indeed, if fld,tv = 0 for some
v # 0 then Lemma 3.6 implies 0 = Im(Aa 0, 0) geunw) < —k [, Im gy [v[*dz < 0,
a contradiction. Thus v = 0, and the Fredholm property yields that As; is an
isomorphism. Analogously, let Z\mqgl sm/<A;;w§1,,win>H(cuﬂ,W) =0 foralljm| < 1.
With v := 3", smuzlgéw;il, we have <U~, W) H(ewl,wy = 0 for all |m| < 1 and thus
<U,Z‘m‘§1 Smwfn>H(curl,W) =0, i.e. (v, A4:V)HEeun,w)y = 0 which implies v = 0 by
the above arguments. The linear independence of wi, implies s,, =0 for all m.

It is the aim to prove the following convergence result.

Lemma 3.9. Lett > 0 and & be a cut-off value for which Assumption 3.7 holds.

(a) Fora sufficiently close to & there exists a unique solution vy € Hper(curl, W)
of (3.2), and v, converges to the unique solution vay € Hper(curl, W) of

(3.7) Asivar = Ya — Z Sm(@) wr,
jml<1
where the three coefficients s§(&), s7,(&) € C solve the system (3.14) below.
Furthermore, there exists ¢ = c(t) > 0 with

= Tgm(@)]

(b) Let upy € Hyu(curl, W) be the extension of v, e € H,(curl, W) as
constructed in (2.20) of Theorem 2.6. Then « +— u,,; has an extension
to a = &, and this extension is continuous from a meighborhood of & into
H(curl, Wg) for all R > R.

(38) ’(Ua,ta wfn>H(curl,W)‘ fO?” ’m‘ < 1 and all .
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Proof. (a) Under Assumption 3.7 also fla,t is invertible for « close to & since av — fla,t
is continuous. We obtain the solution of (3.6) in the standard way: Set B = B, ; :=
A;i and write v for v, for simplicity. Then v is given by

(3.9) v = By, — s{Bwj — Z 52, BwZ, + 5% Bw?,|
|m|=1

where s?, = 57 (o) and s?, = s? («) are given by

(3.10) sg = 4mgo(a) (v, W) Heunw) »

(311> an = 47T2 [gm(a) <U7 wfn>H(Curl,W) + hm<a> <U7 wﬁl)H(curl,W)] 9

(3.12) so = AR (@) (v, WE) H(eunw) -

Substituting the form of v into these equations yields a system of 5 equations for
the 5 unknowns s, s%,,5%,. With

M:Zim = <Bwf1/7 w7Zn>H(curl,W) ’ M:’;ffjm = <Bw7zn’7 wf;)1>H(curl,W) )

MZim = <Bwfn/a w;)H(Curl,W) ) M»:Z’(f)m = <Bw7(i/7 wf1>H(curl,W) )

all depending on « through B, we obtain the 5 X 5—system

1
472 SS = <Bya7 wg)H(curl,W) - 38 M(?;S - Z [an/M;;/Z’O + S?;L,Mifo] y
g0 |1
1
N k) k) ¢ ¢7
12 Sp = ABYa, W) Hewt,w) — 86 Mgm — Z [sfn,M;fm + s M
" gm =1
hm ¢ z Z7¢ z Zv(b ¢ ¢1¢
+— <Byom wm>H(cur1,W) — 50 MO,m - Z [Sm’Mm’,m + Sm’Mm’,m] )
" Im’|=1
1
12 sh = hm{<Bya7 We) H(eurl, W) — S5 M&’; - Z [S;’Mzim + S?n'Mf:L’/Z,m]}

|m/|=1
for |m| = 1. Now we use that |g,,(«)] = oo for |m| < 1 and Ay, () = hp(&) # 0

for |m| = 1 as @ — & and the continuous dependence of B and M7 | etc, on .

'm>

Therefore, as @ — & the system converges to the 5 x 5—system (where now a = &)
(3.13) (Bys, Wi mewiw) = 85 Mo+ > [sh M7, +s0,M7 ], |m| <1,

[m’|=1

o+ sg Mg + Z (st M7+ sfn,Mi’fm]

jm/|=1

B %) ; ur.
(BYa, wiy) H(cur, W) 12

for |m| = 1. From this we immediately observe that s?, = s? (&) = 0 for |m| = 1,
i.e. we arrive at the 3 x 3—system

(3.14) Z Sy (@) <A;,1w;z’awfn>H(curl,W) = <A;,}tyészz@>H(curl,W)a Im[ <1,

Im/[<1

for three unknowns s§(&), s2,(&) € C. Since the 3 x 3—matrix with entries M7 (&)
form/,m € {—1,0, 1} is invertible by Assumption 3.5 also the extended 5x5—matrix,
characterized by the right hand side of (3.13), is invertible as easily seen. By

the continuous dependence we conclude that s? (o) — sZ (&) for |m| < 1 and
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s? (a) — s (&) = 0 for |m| = 1 as @ — @&. The representation (3.9) yields conver-
gence
. _ _ A*l o z A~ Afl z ~
Vat — Var = U = Ay, Ya Z so (&) atWm as o —a,
Im|<1

where s?,(&), |m| < 1, solves the system (3.14). We observe that vs: solves (3.7)
and, furthermore, (3.10), (3.11) yields the estimate (3.8).

(b) Now we Consider the extension of uq, into W given by (2.5)-(2.8) for hf,, =

—VU5 ., and hy = nm, that is,
(3.15) u(r, ¢, x3) = Z [l o (7) 7 Ul (1) @+l (r) 2] emetitddm o s R
n,me”L
with
: R

(316) () = i, D g0 o) TG ),

’ ’ T ’ T
317)  wl(r) = i T GO (a) 4 ag, OB (r ),

9 9 /rn b b b
(3.18)  wi,.(r) = vi,,G¥ (ra).

We split this series again and write u,, as
uoz,t(ra ¢7 3:3) = QT[/OC t( ¢a 1'3)
n +a
— Z Vf (@ {ZG (r,a) 7 +mG ) (r,a) g eimotintai

Im|<1

forr > R and o in a neighborhood of k. Here we indicated the dependence on a.
The function @, (7, ¢, x3) depends continuously on « at &. Indeed, from Lemma Al
of [4]* we note that all components in the series for i, (r, ¢, 3) are continuous and
the series is uniformly convergent.

At this point we need the behavior of g,,(c) and G (r, @) for |m| < 1and j € {1,5}
as a — &. Formulas (A.4b), (A.4c), (A4.i), and (A4.j) of [4] yields

Gt (r,a) (r R
ka(a)? Inky(a) G -1, R =+~
@ k(@6 na) — -1, D (L),
€ r,Q . R
ki(a)? In kg () G(5) o(ra) — lnl, @ — B - ,
R In k; () R r
as @ — & uniformly with respect to r € []%, R] for every R > R. Therefore,
D (ra
G’;’:((a; LN c%)( ) for some e )( ) € R uniformly with respect to r.
D (ra
For j € {1,5} we now write v§7m(oz)G,(f2)(r a) = [Ugvm(a)gm(a)]G’;;”((a’) ) which con-
verges by (3.8) uniformly with respect to r. O

3.2. Existence in the case of Absorption. We can now prove the existence of a
solution in H,(curl, R?) of (1.2) in the case of ¢ > 0. We recall the definition of the
Floquet-Bloch transform. For smooth functions u with compact support, writing
xr = (x1,Z) for the argument, the transformation is defined by the formula

(3].9> (-FFBU) (Il, i‘, Oé) = Z u(xl + 27-‘-€7 i,) 6—i€27ra '

LETL

4Note that Gsf;)m(r, a) = G (r,n + «) with G%)(r, &) of [4].
18



The transformation is an (even unitary) isomorphism from L?*(Qg) onto L?(Wpg x I)
for every R > 0 and also an isomorphism from H (curl, Q) onto the space

w(a) € Hy(curl, Wg) for }

L*(I, Ho(curl, Wg)) := {w € L*(I, H(curl, Wg)) : almost all o €

where I = (—1/2,1/2). Recall the notions Qp = {z € R3 : 2? + 22 < R?} and
Wgr = {z € Qr : 13 € (0,27)}. The inverse Fpg is given by

1/2
(3.20) (Frgu)(z) = / u(z,a)da, € Qpg,
~1/2

for u € L? (I, H,(curl, WR)).

Theorem 3.10. Let t > 0 and let Assumption 3.5 be satisfied. Then there exists a
unique solution u € H,(curl, R®) of (1.2) for ¢ = t6 satisfying the angular spectral
radial radiation condition (1.4).

Proof. To show existence we note that by Theorem 2.14 there exists a unique solution
Unt € Hyi(curl, W) of (2.1), (2.2). Since Assumption 3.7 is satisfied by Remark 3.8
the solution depends continuously on a € [—1/2,1/2] by Lemma 3.9. Therefore, the
inverse Floquet-Bloch transform

1/2

u(z) = / Ugt(x)da, x€R?,
~1/2

is a solution of (1.2) in H,(curl,R?). We have to show that it satisfies the radiation
condition (1.4). Let £ = n+a € R be arbitrary such that n € Z and a € (—1/2,1/2]
is not a cut-off value. We compute the Fourier transform 4.(Z, -) of u:(Z,-) as

1 (7 L - T —i(n+a)z
Ut(xag) = % ut(x’x3)e ( + ) 3dﬂ?3
1 21 ‘
= / wy(#, w5 + 2m0)e M Eat2ml) g
2m AL
1 2 |
- o (fFBut<fi'7 ‘)) (1'37 Oé) efl(n‘i’a)mg d,’L’g
2m Jo
= un(£’,0&)

which are the Fourier coefficients of (Frpue)(Z,-)) (23, @) = ta.(Z, x3) with respect
to {e("+)73|pn € 7}, Therefore,

(3.21) Optn(Z, &) — ik(&) 1(Z,&) = Opun(Z, ) — tky()u,(z, o),
i.e. the radiation condition (1.4) for u; coincides with the radiation condition (2.2)
for uq . O

3.3. a in a neighborhood of a critical value. For arbitrary u, ¢ € H(curl, W)
we define

(3.22) Qlu,v) = 2/ % (feurlu x ) = (eurl @ x )] - 2 do

Note that Q(u,u) = 2wpo Re [, [ux (curlu/(iwp))]-2 de = 4wpo [, P-2dx where
P = Relu x (curlu/(iwp))] denotes the Poynting vector. Therefore, Q(u,u) is
directly related to the flux in the x3-direction.

Later we will apply @ to functions in M“ which are decaying fast. The form @ is
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hermitian since p is real. The sesquilinear form @ is closely related to the deriviative
of A, with respect to a as the following lemma shows.

Lemma 3.11. Let & be a critical value and u, € M® two corresponding modes
and set N := ker(Asy) for abbreviation. Set v(z) := u(z)e |y and ¢(z) =
Y(x)e 4|y, Then v, € N and

(323) <aaAd,0 v, <)0>H(curl,W) = Q(U, Ip) :

Furthermore,

(3.24) (OrAaov, 0)x = —iwig / ov-pdr.
4%

We note that & is not a cut-off value by definition of a critical value. By the proof
of Lemma 3.4 the operator A,; depends smoothly on o and ¢.
Proof. By definition we have

QT3

<A067tv> w>H(curl,W) = ba,t (U e ") eiaxg)

‘ S € 5
= / l@ curl(v ') . curl (p eiows) — k? <— + iti> v- @} dx
o H
+ <Aa(f X Ueiw3),g0€mw3> )
From this and k? = w?jueep, the derivative with respect to t follows immediately.

With respect to the derivative 0, A4 0 we consider both terms separately. By defini-
tion we have

<Aa<f X Ueiam’), SDeiozzt3> = /(f X curl wa) . (90 eiax3) ds

Y

where w, € H, . (curl, W) is the solution of (2.3) with # x w, = g = 7 X v €% on
7. We note that ws = u. We set v,(7) = we(z)e ™ in W and thus 7 X v, = 7 X v
on 7. We apply Green’s formula in W+ and note that ¢ decays fast as r — oo.
Therefore,

(Aa(F x ve™), peo®) = / [curl(vae™®®®) - curl(p ei#3) — kv, - @] dx
w+
and thus
Oa(Aa(f X 0 e72),pel) = / [curl (v, ™) - curl(p ee0) — k>0, - 7] dx
w+
+ 1 / [Curl(vaxgemx?’) -curl(ip eiers) — curl(v,e*?) - curl(Wﬂ dx
wH+

= / [curl(v),e’*®) - curl(p ei*®s) — k*v), - @] dx
w+

+ 14 / (006" x curl(yp e?0@s) — peiers x curl(v,e’™™)] - 2 da

W+
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where v/, = J,v,. For @ = & we obtain

8a<Ad(f x v '8, goei&x3> = / [curl( L el0rs) . curl(m) — k%), -@] dx

W+

+ 14 / [(curlu x ¢) — (curl Y x u)] - 2dx.
w+

Now we show that the first integral vanishes. Since 7 x v,|, = 7 X v|, is constant
with respect to o we conclude that 7 x v/, = 0 on . Now we observe that €/ = 1)
solves the differential equation (2.3) in W. Taking v}e’"* as a test function in its
variational formulation yields that the first integral vanishes.

This provides a formula for 9,(Aa(7 x v€™?3), pe*s). Now we differentiate the
volume integral in the form of (A, v, ) g (curn,w) With respect to a and obtain in
the same way that its derivative is given by i [, [(curlu x ) — (curl Y x w)] - 2 da.
Adding the results yields the assertion. 0

Assumption 3.12. With the set A of critical values and the corresponding space
M of modes for a € A (see Definition 3.1) we assume that, for every a € A and
0 # v € M?, the linear form Q(-,v) does not vanish identically on M®.

In particular, under this assumption the derivative Pd,Agso|n of the projection
of Ay at & onto N is one-to-one and thus invertible for every & € A.

Under Assumption 3.12 the family (A, +)a. has the following properties. Let & € A
be a fixed critical value.

(a) A, are Fredholm operators with index zero and Riesz number one for (a, t)
is a neighborhood of (&,0) (see Lemma 2.12). With N' = N(A4ap) and
R = R(Asp) we have Hpe(curl, W) = N & R.

(b) (a,t) — Aa, is continuously differentiable in some neighborhood of (&,0)
(see Lemma 3.11).

(c) Let P : X — N be the projection corresponding to X = N @ R. Then
M, := PO,Aap|n is selfadjoint and an isomorphism from A onto itself, and
M, := iP0;As o|n is selfadjoint and positive definite on N (see Lemma 3.11).

The following functional analytic theorem has been shown in [7].

Theorem 3.13. Let X be a Hilbert space and A, be a two-parameter family of
operators satisfying the conditions (a)—(c) from above for some & € [—1/2,1/2]. Let
a = Yo, € X be a family of right hand sides that depends Lipschitz continuously
on a € [—1/2,1/2]. Then there exists ¢ € (0,ty) such that A, is invertible for
(a,t) € (& —e,a+¢e) x[0,€), (o, 1) # (&0), and the solution va; = A, 1Yo has the
form

m

(Pya,
(3.25) Vay = oy + Z)\E Ya, o) x b4

a—a —@t

for (a,t) € (& —e,&+¢€) x[0,¢), (a,t) # (&,0). In this representation, ||U+|x
is uniformly bounded with respect to (a,t). The family {¢g =1,... ,m}, m =
dim N, is an orthonormal eigensystem with eigenvalues {/\g L=1,... ,m} of the
following generalized eigenvalue problem in the finite dimensional space N :

(3.26) Mogpe = N Mgy in N with normalization (Mg, do)x = Oow

for b ' =1,...,m
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Lemma 3.14. Let Assumptions 3.5, 3.7, and 3.12 be satisfied. Then there exists at
most a finite number of critical values a; € [—1/2,1/2] for 0 < j < J. These are
characterized by the fact that the kernel N'(Aq,0) = {¢ € Hper(cur, W) : Ay, 00 =
0} is not trivial. The kernels are finite dimensional.

Proof. Let & € [—1/2,1/2] be arbitrary and fixed. Three cases can occur:

Case 1: & is neither a cut-off value nor a critical value. Then A, depends continu-
ously on o and Ag g is invertible. Therefore, also A, is invertible in a neighborhood
U of &, i.e. no critical value exists in this neighborhood U.

Case 2: & is a critical value. By the previous theorem there exists a neighborhood
U of & such that & is the only critical value in U.

Case 3: & is a cut-off value. Then we know from Lemma 3.9 that A, is invertible
in a neighborhood U of &, i.e, there is no critical value in U.

By the compactness of [—1/2,1/2] finitely many open sets U of the cases 1, 2 or 3
suffice to cover [—1/2,1/2]. O

We denote, for every 0 < j < J, the space of a;-quasiperiodic propagating modes

g ¢ solves (3.1) for o = a; and
(3.27) M= MY = {¢ € Ha, »(ourl, Woo) - the radiation condition (2.1)

There holds N (A,,) = {¢p e |y : ¢ € M;}, we denote the dimension by m; :=
dim M; = dim N'(4,,).

In every space M; we choose a basis {¢1,...,¢m,;} C M; by considering the
self-adjoint eigenvalue problem (3.26) which has the form to determine A\ € R and
nontrivial ¢ € M; such that

Qo ¥) = Awuo/ & ¢ -1 dr for all 1 € M; .

w

We denote the eigenvalues by A, ;, £ = 1,...,m;, and the eigenfunctions by ¢ ;,
¢=1,...,m;, normalized such that

w,uo/ &Qﬁ&j'(ﬁgl}jdﬁ = (Sg’g/, 6,8/:1,...,771]'.
w

4. THE MAIN CONVERGENCE RESULT

In this section we will prove convergence of the solution u; corresponding to o = to
as t tends to zero. The limit u will satisfy the following radiation condition.

Definition 4.1. Let Assumptions 3.5, 3.7, and 3.12 be satisfied. A solution u €
Hipe(curl, R3?) of (1.2) satisfies the open waveguide radiation condition if, for given
R > 2m, the field w has a decomposition into u = Uped + Uprop Where Upqq €
H,(curl,R®) satisfies the angular spectral radiation condition (1.4), and upy.ep, is of
the form

J
(4.1) Uprop(T) = Z Z apj ¢oj(x) for £x3> R and some ap; € C.

7=1 veLs

Here, {¢p; € M; : £ =1,...,m;} are the eigenfunctions of the self-adjoint eigen-
value problem

(4.2) Q(Pej, V) = Aujwito / 6 dpj-wdr  for allp € M,

Why,
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normalized as wp fWh O¢pj- Qpjdr=odpp and
0

(4.3) Ej[ = {0e{l,....mj}: Q(dry, de;) 20} forj=1,....J.
The mode spaces M; and the sesqui-linear form @ are defined in (3.27) and (3.22),
respectively.

Before we show convergence we apply Theorem 3.13 to the equation (3.2), i
Ao Var = Yo in X = Hp,(curl, W). Recalling that ¢y ;(x)e "%*3 span the nullspaces
N(Aq,0) we have the existence of § > 0 such that for every j = 1,...,.J and
0 < |a — a;| < d the solution uat(a:) = v,4(x)e"**s is represented in the form

(4.4) Ui (T) = Tgs(z) + Z Fithay: G2 €") e w) L g, (z) gllrmos)es
“ “ Ajla—ay) —it 7

for z € W where P; : X — N (A aj,o) is the projection operator. By Corollary 2.13
it is the orthogonal projection operator. Therefore, we can replace

<‘Pjy0éj7 qbﬁ,j 67iajx3>H(curl,W) by <yaj7 ¢€,j eiiaj 3>H(cuerV We extend uat by Ua,t for
aé¢ U;.Izl(aj — 0,05 +0). Then ||t (e, w) is uniformly bounded with respect to
(a,t) € ([-1/2,1/2]\ A) x [0,4]. Furthermore, @, converges to some @ as t — 0
in H(curl, W) for every a ¢ A.

Now we apply the inverse Floquet-Bloch transform (3.20). Splitting the integral
yields

(4.5)

1/2 aj+te
/ J my ! ei(oz—ozj)arg,

n(a) = [ eslaydo e 323 oy [ ),

~1/2 j=1 ¢=1

Qj—¢&

By the theorem of dominated convergence we conclude that the first term converges
to u = f_lﬁz g0 da in H(curl,Qp) as t — 0. For the integral in the second term
we have (see [8], Appendix B)

aj+e 4 . . o

w0t [ sy = ey [ remoer [T o

uniformly Witl:l respect to |z3] < R for every R > 0. Now we set

(4.7) V() = % + %/0 SIT” dt, z3€R.

Then we can take the limit ¢ — 0 in (4.5) and arrive at

48wl = @) + 3 010 3 ansonsla) + ) X angons(o)].
J=1 teLt teL;

where a;; = %(y%, Poj € g w). The limit is taken in H(curl, Who.lt) for

every R > 0 where Who = (—R R) x (0,7) x (0, ho).
Therefore, we have almost shown the following main result.

Theorem 4.2. Let Assumptions 3.5, 3.7, and 3.12 be satisfied. Let o = to for
t > 0 and some fized periodic 6 € L*(R3) which vanishes for xz > ho and is
bounded below by some positice constant for x3 < hg. Let u; € H,(curl, R3) be the
corresponding solution of (1.2), (1.4) which is guaranteed by Theorem 3.10. Then

u; converges to a solution uy € Hje(curl,R3) of (1.2) for o = 0 locally on every
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bounded domain as t — 0. Furthermore, uy satisfies the open waveguide radiation
condition of Definition 4.1 with

Qej =

’Q((b@,ja (bf,j

forg=1,...,J.

2me 1 - _

TtHo — fhrcurlgp; +iwfe - Gpi|lde, (=1,...,m;,
)’ ILL sJ »J J
w

Proof. We consider (4.8). First we show the form of a,;. By the definition (3.6) of
Ya; We have

i 1 .
<yaj ) ¢z,j e 7 3>H(cur1,W) = ,UO/ {; fn - curl ¢e,j +iwfe - ¢E7j:| dx .
w

Furthermore, Q(¢s;, ¢ej) = Ae; by the definition of the eigenvalue problem (4.2).

Next we show that @ = ffﬁQ U0 da satisfies the radiation condition (1.4). By (3.21)
we have to show the radiation condition (2.2) for the Fourier coefficients @, (Z, ) of
(Frpt(Z, ) (23, @) = ia0(x) with respect to {e'"+*)s . n € Z} for every n € Z and
a. We fix n € Z and o € [—1/2,1/2] which is neither a cut-off value nor a critical
value.

We recall from (4.4) that @, is given by a0 = tap if o ¢ U}]=1(O‘j — 9,05 +6) and

1 > <ya i ¢€ 7 eiiajx;g)H(curl W) ;
4.9 Ua0(T) = Uno(x) — AR 20 by i(x) eMem )
(49 Taole) = o) ~ =3 - e

for 0 < |ao — ;] < 9.

Let u,(Z,0) = 5= 0% Ug,o(7) e F¥23d 35 be the Fourier coefficients of wu, €
H,(curl, W). By Theorem 2.6 the extension of u,o to R* satisfies the radiation
condition (2.2). Since the modes ¢, ; decay exponentially as |Z| — oo we note that

also the Fourier coefficients @, (%, ) of @ o(z) = (Frpt(Z,-))(z3, a) satisfy (2.2).
Finally, we note that in (4.8) the propagating part approaches Z}]=1 Y vert Qrj Do
J

only asymptotically. However, if we choose Y% € C™(R) such that ¢*(z3) = 1
for +x3 > R and ¢*(x3) = 0 for 23 < —R then we rewrite (4.8) in the form
Uy = Urad + Uprop With

traa®) = (x) + z[wxg)—wxg» S a0 ()

J=1 ZEcj

+ (¥ (23) — ¥ (a3)) Z aé,qué,j(l')} ,

el

tyrop() = Z{wug)Zamxw) + zz?<x3>2ae,j¢e,j<x>].

+ —
LeL] LeLl;

Since Y= (z3) = 1+ O(1/|x3|) as a3 — +00 and Y= (z3) = O(1/|x3|) as +x3 —
—oo and %(:3) = O(1/|z3|) as |xr3] — oo we conclude that wu,.q € H.(curl, ).
Furthermore, also the second part of u,. satisfies the radiation condition (1.4)

because of the exponential decay of ¢ ;(x) as 27 + 3 — co. O
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5. INTERPRETATION OF ASSUMPTION 3.7

Again we look at the cutoff value & with 7 € Z such that |n + &| = k. Let again

C={(n,m):meZ, |m| <1} and define ¢, ,, by
1 ) o
(5.1) Onm (G, 13) = _eimetilntdes g pa € (0,21), n,m € 7.
412 R

The investigation of Assumption 3.7 requires the study of the equations fla,ov =0
(for injectivity of Asz ) and A4 gv = w?, for some |m| < 1 where w?, had been defined
in Section 3.1. We consider both equations simultaneously and study Asov = pwZ,
for p € {0, 1}.

Consider a solution v € Hye(curl, W) of Asov = pw?, for some fixed || < 1.
Define u(z) = v(z)e®®s in W. Then u € Hg/(curl, W) solves

(5.2) / [@ curlu - curly) — k?qou - E] dx + </~\a(f X u), ) = p{@ams, )
W

i

for all 1 € Hg(curl, W) because 97 ; = (1, 0amz). This is the variational form of

(5.3) curl(— curl u) —Kqu =0 inW,
i
(5.4) M0« curlul- 4+ As(F xul-) = popms on~.
i
Let the tangential components u|_ - quS and u| - 2 have the Fourier coefficients
<u ‘* ¢<an>a nm <u ’f Z¢nm> n,mez.
In the exterior domain W+ = W, \ W we define u by
(5.5) u(r,¢,x3) = Z [y, (1) 7+ unm(r) qb +uy, (1) 2] gmetinta)zs o R
(n,m)¢C
where uj, . (r), uf, ,(r), and 7, , (r) are given by (3.15)-(3.18) with v}, = uf;?m(f%)
and v;, ,, = uflm(R) for o = & and n # n and
~ A\ |m|—-1
. R(n+ &) ~ [ R
5.6) u = ——uw: (R)| =
R +4) A
+1 SmU ,m( ) 2(1 _ |m|) ( ) r ) |m|
A A\ |m|—1
R(n+ &) ~ [ R
@ _ b S st
R+ &) 7)™
° (F Y e R (2 > 9
+ un,m(R) Sm 2(1 o |m|) nm(R) (T) ’ |m| )

L\ Iml
(5.8) ui,,(r) = ui,(R) <§> , m|>2,

where s,, = signm. We note that ] . (r), uf . (r), and u} . (r), given by (3.15)-

(3.18), exist for & = & and n # f because lim, .4 G,(f)m(r) exist for j € {1,...,5}
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and (n,m) ¢ C. This has been shown in Lemma A.1 of [4].

Furthermore, in Theorem 4.1 of [4] it has been shown that this u|y+ € Ha . (curl, W)
solves curl®>u — k?u = 0 in W+ and the Sommerfeld radiation condition (2.2) for
n # 0 and us,(r) = O(1/r) for n =7 and |m| > 2, and 7 x curlu|, = Ag(F x u).
Therefore, (5.4) turns into

(5.9) 7 x curlu|, = Ho 5 curlu|- + ppamz on 7.
i

The continuity with respect to the tangential components of v holds only for the coef-
ficients For (7, m) € C we have the boundary conditions uim(R)\Jr = u;m(é)|+ = 0.
We formulate also (5.9) in terms of the expansions coefficients of the curl. With
v := curlu (5.9) turns into

We have shown the following result.

Theorem 5.1. Let & be a cut-off value and v € Hpe(curl, W) be a solution of
Aaov = pw?, for p € {0,1}. Define u € Hg(curl, W) by u(z) = v(x)e™s and in
W by (5.5) with expansion coefficients u, (1), ug,.(r), and u} ,,(r). Analogously,
let vy, (r) == (curlu(r, -) - G, Pnm) and V5 (1) = (curlu(r,-) - 2, onm) be the expan-
sion coefficients of the tangential components of curlu for n,m € Z.

Then ulw+ € Ha . (curl, W), and u solves

(5.10) curl(ﬂ Curlu> —Kqu = 0 in W™\,
i

with transmission conditions

G110 ul (R =ul (R ul (R =i (R)- for (n,m) &C,
and
(512) Ug,m(R)h- - vg,m<R>|— ) UfL,WL(R)l-l- = UfL,m(RH— fOT’ <n7 m) ¢ Ca

and boundary conditions

(5:13)  ufl W (R)]+ = wf (R) |+ = 0], (R)|+ = 07 ()4 = O for (,m) €C,

and
(5.14) v (R)|- =0, %U? (R)|— = pdmum for (A,m) €C

n,m n,m
for the expansion coefficients.

Corollary 5.2. Let the system (5.10) — (5.14) with p = 0 admit only the trivial
solution. Then 121@70 1s invertible.

Let, in this case, u(m) be the unique solution of (5.10) — (5.14) for p =1 and every
|m| < 1. If the 3 x 3—matriz with entries (w(m) - 2, pam), m,m € {—1,0,+1} is
reqular then Assumption 3.7 is satisfied for t = 0.

Proof. The first assertion is clear. For the second we observe that A Lwz = u(r)

and thus <A(§})w§1, W) Eeurwy = w(m)g,, = (u(m) - 2, 0am). d
6. UNIQUENESS

Finally we show that the open waveguide radiation condition is strong enough to
ensure uniqueness.

Theorem 6.1. Let Assumptions 3.5, 3.7, and 3.12 hold, and let u € H,(curl, R?) be
a solution of 1.2 for f, = f. = 0 satisfying the open waveguide radiation condition

of Definition 4.1. Then u vanishes identically.
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Proof. Choose 1* € C*(R) such that ¢¥*(x3) = 1 for £23 > R and *(z3) = 0 for
+x3 < —R. Set ¢, ; = Y for ¢ € £L*. We write u in the form u = Uyqq + Uprop With

J m;

Uprop(T) = Z Zae,j Yo i(x3) o j(x) forz e R3

j=1 ¢=1

and Upqq = U — Uprop. Then ty,op and t,qq coincide with o, and u,4q, respectively,
for |x3| > R. The field @,qq satisfies

. curl | — curl t,qq| — iftmd = -
6.1 1 Ko 1 k2
M €o

where

_ c J  my
f = curl @curlﬁpmp] k? Oﬂpmp = Zzae,j prj and
L H j=1 =1
[ €
@wp; = curl @curl(wg,jm,j)] - k2_w€,j¢£,j
L H <o
= curl %ng,j X ¢Z,j] + % Vipy; x curl ¢ ;.

Here we used curl [a Curl(@/ng)] = 1 curl(a curl ¢) + curl [a(V@D X gb)} +a Vi x curl ¢
and the fact that ¢, ; satisfy the homogeneous differential equation. We consider
the terms ¢, ; separately and write ¢ and ¢ for v, ; and ¢ ;, respectively. Since
¢ is oj—quasi-periodic and 1’ has compact support we obtain F(¢'¢)(x,a) =
F (') (xs, @ — aj)¢p(z) and thus

Fo(r,a) = curl %f(w)(:vg, aj) Z % 4 + %}"(w/)(xg,a—aj)é‘ x curl ¢.

We consider a € (—1/2,1/2]\{e; : j=1,...,J}. Then 0 < |oo — ;| < 1 for all j.
Since F(¢')(-, B) is f—quasi-periodic we have a Fourier representation in the form

FW) (@ B) = 3 bulB) el

meZ

With

- b, .
U(x3, ) = Zzﬁe“mwm, x5 € (0,2m), 0<|B] <1,

we obtain F(¢)(zs, ) = ¢/ (3, ) and thus

Fo(r,a) = curl[ . (x5, 00 — ;) £ X )] 'L,;O U (25,00 — ;) £ x curl ¢(z)
= curl [z curl(zz(xg, )gb(x))} - k2;—0 P(xs, o0 — o)) .



We do this for ¢ = 1), ; and obtain ﬂg,j. Now we take the Floquet-Bloch transform
of (6.1). Then Fiiyaa(-, ) satisfies (6.1) with right hand side —F f(+, ) where

ff(‘,Oé)
J myj

= Z Z ag; (curl {— Curl(wj(xg, j)@,j)] — k2§0 ng’j(l'g, o — Oéj)(ﬁ&j)

7=1 /(=1

J m;
= curl {@ curl wa} - k*— wa with w,(z) = Z Z ag; V(3,00 — ) by () .

€
® 0 =1 r=1

Therefore, Fiiaq(:, ) — w, is a a—quasi-periodic solution of the homogeneous
Maxwell equation and satisfies the Rayleigh expansion. The uniqueness result for the
quasi-periodic problem yields Fiiyaq(+, ) = w, on Wy, for almost all « € (—1/2,1/2]
(actually, for all o ¢ {a; : 5 =1,...,J} by defintion of the critical values). Finally,
we use that & — Fligaa(-, @)|w, is in L?((—1/2,1/2), H(curl, Wg)) for any R > 0.
The function w,, however, is too Singular at a — «;. Indeed, for 8 =~ 0 we have

e (ws, ) = 2 b 430 g Z(mw eim+B)es and by(8) = Bo(0) as B — 0 and

1
bo( 271/ .7:1#@] x3, )dxg——Z/ ng x3+27rm)dx3—i2—

meZ

if ¢ e Ej[. We note that the series restricts to a finite sum. Therefore, 8 — by(5)/
is not in L%(—6,6), and we conclude that >, sy ;as; ¢y, has to vanish for every
J where s;; = £1 for ¢ € Ej:. The linear independence of ¢, ; yields a,; = 0 for
all ¢ and j, i.e. Upop = 0 and w, = 0 for almost all a. Therefore, Fu,qq(-, ) €
H, .(curl, W) solves the a—quasi-periodic homogeneous differential equation and
the Rayleigh expansion and thus vanishes for almost all «. Therefore, ;.4 vanishes
which ends the proof. 0J
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