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Abstract

We show convergence rates for a sparse grid approximation of the distribution of solutions of the stochastic
Landau-Lifshitz-Gilbert equation. Beyond being a frequently studied equation in engineering and physics,
the stochastic Landau-Lifshitz-Gilbert equation poses many interesting challenges that do not appear si-
multaneously in previous works on uncertainty quantification: The equation is strongly non-linear, time-
dependent, and has a non-convex side constraint. Moreover, the parametrization of the stochastic noise
features countably many unbounded parameters and low regularity compared to other elliptic and parabolic
problems studied in uncertainty quantification. We use a novel technique to establish uniform holomorphic
regularity of the parameter-to-solution map based on a Gronwall-type estimate and the implicit function
theorem. This method is very general and based on a set of abstract assumptions. Thus, it can be ap-
plied beyond the Landau-Lifshitz-Gilbert equation as well. We demonstrate numerically the feasibility of
approximating with sparse grid and show a clear advantage of a multi-level sparse grid scheme.

Keywords: Stochastic and parametric PDEs, stochastic Landau-Lifshitz-Gilbert problem, Doss-Sussmann
transform, Lévy-Ciesielski expansion, regularity of sample paths solution, curse of dimensionality, implicit
function theorem, holomorphy and sparsity of parameter-to-solution map, piecewise polynomials, sparse high-
dimensional approximation, sparse grid, stochastic collocation, dimension independent convergence, multilevel
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1 Introduction
While the methods developed in the present work are fairly general and apply to different model problems, we
focus on the specific task of approximating the stochastic Landau-Lifshitz-Gilbert equation as it contains many
of the difficulties one encounters in nonlinear and stochastic partial differential equations.

The Landau-Lifshitz-Gilbert (LLG) equation is a phenomenological model for the dynamic evolution of
the magnetization in ferromagnetic materials. In order to capture heat fluctuations of the magnetization one
considers a stochastic extension of the LLG equation driven by stochastic noise, see e.g., [10, 39] for some of
the first works devoted to the modelling of magnetic materials under thermal agitation. Following these early
works, great interest in the physics community lead to extensive research, see e.g., [9, 31, 37, 42, 52] to name a
few examples.

The present work gives a first efficient approximation of the probability distribution of the solution of the
stochastic LLG equation. To that end, we employ the Doss-Sussmann transform and discretize the resulting
Wiener process via a Lévy-Ciecierski expansion. This leads to a parametrized nonlinear time-dependent PDE
with infinite dimensional and unbounded parameter space which can be approximated by using sparse grid
techniques. We derive the following main results:

• The first rigorous convergence result for an approximation of a nonlinear and time-dependent parametric
coefficient PDE with unbounded parameter space. Precisely, we show convergence of piecewise quadratic
sparse grids for the stochastic LLG equation with order 1/2 and dimension dependent constant (see
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Theorem 27). The result assumes that the stochastic LLG equation has uniformly Hölder (in time
and space) regular solutions which is true for regular initial conditions which are sufficiently close to
constant. Under some reasonable assumptions and simplifications of the stochastic input, we show
dimension independent convergence with order 1/2 (see Theorem 31).

• The first result on uniform holomorphic regularity of the parameter-to-solution map for the Landau-
Lifshitz-Gilbert equation. To the best of our knowledge, this is also the first uniform holomorphic
regularity result for unbounded parameter spaces and strongly nonlinear and time-dependent problems.

• Improved convergence rate of a multi-level version of the stochastic collocation algorithm under natural
assumptions on the underlying finite element method.

To achieve the above-mentioned results, we have to overcome several challenges posed by the nonlinear nature
of the problem:

• Holomorphic parameter-to-solution map: This is well-understood for linear problems but turns out to
be technically challenging for nonlinear problems. While we apply the implicit function theorem as in
[18], in our case the parameter space is not compact. To overcome this problem, we control the growth of
the extension by means of a Gronwall-like estimate for small imaginary parts. The main challenge here
is that there is no canonical complex version of LLG which supports holomorphy. The main reason for
this is that any extension of the cross product is either not complex differentiable or loses orthogonality
properties which normally ensure L∞-boundedness of solutions of the LLG equation.

• Lack of parametric regularity: All mentioned works on uncertainty quantification require strong summa-
bility of the coefficients which arise in the expansion of the stochastic noise. Typically, `p-summability
with p < 1 is required. Even with the holomorphic regularity established, the present problem only
provides summability in `p for p > 2. We propose a simplification of the stochastic input which allows
us to consider the problem in an L1-setting in time. This increases the parametric regularity and results
in dimension independent estimates.

• Lack of sample path regularity: Regularity results for LLG are sparse even in the deterministic setting.
We refer to [16, 17, 19, 41, 44, 43, 45] for partial results in 2D and 3D. Sample path regularity directly
influences holomorphic regularity via the implicit function theorem. To that end, we rely on Hölder
space regularity results for the stochastic LLG equation (Theorem 8).

1.1 Related work on the numerics of the LLG equation
The nonlinear nature of LLG combined with the stochastic noise attracted a lot of interest in numerical analysis:
For the deterministic version of LLG, weak convergence of some time stepping schemes was known since at least
2008 (see, e.g., the midpoint scheme [7] and the tangent-plane scheme [2]). It took another ten years to obtain
strong a priori convergence of uniform time stepping schemes that obey physical energy bounds, which has first
been proved in [28] and was then extended to higher-order in [1]. The latter two works build on the tangent
plane idea first introduced in [2] in order to remove the nonlinear solver required in [7]. This is achieved by
solving for the time derivative of the magnetization instead of the magnetization itself.

To study the stochastic version of LLG (SLLG), [12, 13] formulate a rigorous definition of weak martingale
solution to the SLLG problem, prove existence by means of the Faedo-Galerkin method and discuss regularity
even with anisotropy in the effective field and for finite multi-dimensional noise in space. In [11, 14], the authors
study the 1D (in space) SLLG problem, which has applications in the manufacturing of nanowires. They prove
existence of weak martingale solutions for the problem for a larger class of coefficients compared to previous
works in 3D. The works also show pathwise existence and uniqueness of strong solutions and a large deviation
principle. This is then used to analyse the transitions between equilibria. The space and time approximation
of the SLLG problem was considered in [8]. The authors consider an implicit midpoint scheme that preserves
the unit modulus constraint on the magnetization and satisfies relevant discrete energy estimates. Then they
prove, by a compactness argument, that the method converges almost surely and weakly to the exact solution,
up to extraction of a subsequence. In the follow-up work [6], the scheme is applied to reproduce physically
relevant phenomena such as finite-time blow-up of the solution and thermally-activated switching. A different
approach is followed in [34], where the authors propose to discretize SLLG in space and time by first applying
the Doss-Sussmann transform [24, 54] to the SLLG problem to obtain a random coefficient LLG problem. They
then discretize this problem using the tangent-plane scheme [2] and prove convergence (again in the sense of
weak convergence of a subsequence), which in particular proves that the random coefficient LLG problem is well
posed. A tangent plane scheme is also considered in [3], where the sample paths of the SPDE in Ito form are
approximated and stability and convergence results are derived. For the approximation of multi-dimensional
(finite) noise, [33] generalizes the approach based on the Doss-Sussmann transform.
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1.2 Related work on the approximation of PDEs with random coefficients
Dimension independent approximation of PDEs with random coefficients has first been proposed in [20] and
the idea of using a holomorphic extension of the exact solution in order to obtain convergence rates for the
parametric approximation goes back to [21].

The works [57] and [4] begin the mathematical study of collocation-type schemes for random coefficient
PDEs. Several extensions and improvements of certain aspects of the theory can be found in, e.g., [49], which
uses sparse grids to improve the dependence on the number of parametric dimensions and [48], which employs
anisotropic sparse grids to achieve dimension independent convergence (under tractability assumptions on the
problem). In [46], the authors select the sparse grids with a profit-maximization principle, effectively recasting
the sparse grid selection problem into a Knapsack problem. They also prove an error bound with explicit
dependence on the number of approximated dimensions. In the present work, we use the same principle to build
sparse grids and apply the framework to prove dimension independent convergence.

In [58], the authors extend the methodology developed in [4] and the related papers to a linear parabolic
problem with random coefficients under the finite-dimensional noise assumption. They prove existence of a
holomorphic extension and, based on the ideas in [4], show that this leads to convergence of stochastic collocation
schemes for both a space semi-discrete and fully discrete approximations. In [47], the authors study a linear
parabolic problem with uncertain diffusion coefficient under the finite dimensional noise assumption. They prove
existence of a holomorphic extension by extending the problem to complex parameters and verifying the Cauchy-
Riemann equations. They study convergence of stochastic Galerkin and stochastic collocation approximation.
In [30], the authors consider a coupled Navier-Stokes and heat equation problem with uncertainty and developed
a heuristic adaptive sparse grid scheme based on [32].

In order to discretize the Wiener process in the stochastic LLG equation, one needs to deal with unbounded
parameter spaces. This has been done in, e.g., [5], where the authors study the Poisson problem with lognormal
diffusion and establish summability results for Hermite coefficients based on local-in-space summability of the
basis used to expand the logarithm of the diffusion. In [27], the authors approximate functions with this property
by means of sparse grids interpolation built using global polynomials with Gauss-Hermite interpolation nodes.
They prove algebraic and dimension independent convergence rates.

In the monograph [26], the authors study the regularity of a large class of problems depending on Gaussian
random field inputs as well as the convergence of several numerical schemes. Several examples of PDEs with
Gaussian random coefficients are given e.g. elliptic and parabolic PDEs with lognormal diffusion. The regularity
result implies estimates on the Hermite coefficients of the parameter-to-solution map. These, in turn, can be used
to study the convergence of Smolyak-Hermite interpolation and quadrature among other numerical methods.

Beyond linear problems, in [18] the authors deal with infinite-dimensional parametric problems with compact
coefficient spaces, but go beyond the setting of affine parametric dependence. They prove the existence of a
holomorphic extension of the coefficient-to-solution map without extending the problem to the complex domain
(as is usually done for the random Poisson problem). Rather, they employ the implicit function theorem. In
[22], the authors use similar techniques in the setting of the stationary Navier-Stokes equation with random
domain.

1.3 Structure of the work
In Section 2 we introduce a general framework for the study of the parametric regularity of solutions of SPDEs.
We first explain in Section 2.1 how to reduce a SPDE to a parametric coefficients PDE. Then, in Sections 2.2
and 2.3 we prove that the parameter-to-solution map admits a sparse holomorphic extension. The result is
based on four main assumptions that have to be proved for each concrete problem. Finally, we estimate the
derivatives of the parameter-to-solution map with Cauchy’s integral theorem.
We introduce the stochastic version of the LLG equation in Section 3, and, following the general strategy from
Section 2.1, transform it into a parametric nonlinear and time-dependent PDE in Section 4. In Section 4.1, we
prove that the solution’s sample paths are Hölder-continuous under regularity assumption on the problem data.
We also prove that they are uniformly bounded with respect to the Wiener process sample paths.
In Section 5, we apply the regularity analysis from Sections 2.2 and 2.3 to the parametric LLG problem and
prove that the parameter-to-solution map is holomorphic under the assumptions that sample paths of random
coefficients and solutions are Hölder continuous.
In Section 6, we do the same for a simplified version of the parametric LLG problem obtained with additional
modelling assumptions. This time, sample paths are assumed to be Lebesgue integrable in time.
The sparsity properties of the parameter-to-solution map in the Hölder setting are weaker than in the Lebesgue
setting. This is reflected by the convergence of sparse grid interpolation discussed in Section 7. The results are
confirmed by numerical experiments.
The final Section 8 derives the multi-level version of the stochastic collocation method and provides numerical
tests.
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2 General approach to deriving parametric regularity of an SPDE
In the present section, we outline a fairly general strategy to prove a regularity property of solutions of stochastic
partial differential equations (SPDE) driven by the Wiener process. The resulting regularity properties can be
used to tailor sparse grid approximation methods to the problem. The arguments presented in this section are
formal and need to be verified for each concrete problem. The most important assumptions are listed explicitly
below.

2.1 Reduction to a parametric problem
Consider a spatial domain D ⊂ Rd of dimension d ∈ N and a final time T > 0. Denote by ∂D the boundary and
by ∂n the unit exterior normal derivative. The space-time cylinder is denoted by DT := [0, T ]×D. Consider the
initial condition U0 : D → Rm for m ∈ N, a drift coefficient µ : Rm × [0, T ] ×D → Rm and a noise coefficient
σ : Rm×D → Rm. While a more general noise coefficient can be treated with analogous techniques, we consider
this simple case as it is sufficient for the examples below. Given the probability space (Ω,F ,P), we consider the
SPDE problem: Find a random field U : Ω×DT → Rm such that, P-a.s.

dU = µ(U, t,x)dt+ σ(U,x) ◦ dW (t) on DT

∂nU = 0 on [0, T ]× ∂D
U(·, 0, ·) = U0 on D,

where by ◦dW (t) we denote the Stratonovich differential applied to a Wiener process W .
The Doss-Sussmann transform [24, 54] of U is, by definition,

u = e−WσU, (1)

i.e. the exponential of the operator −Wσ applied to U . The result is a random field u : Ω× [0, T ]×D → Rm
that can be shown to satisfy the random coefficient partial differential equation (PDE)

R(W (ω), u(ω)) = 0 in R, P-a.e. ω ∈ Ω. (2)

The residual operator R : WR × UR → R is defined for Banach spaces WR,UR and R. In general, it is a
differential operator in time and space with respect to u ∈ UR while it does not contain Itô or Stratonovich
differentials of W .

In order to make the distribution of u amenable to approximation, we need to parametrize the Brownian
motion. It turns out that a local wavelet-type expansion of W is very beneficial as it reduces the number of
active basis function at any given moment in time. The Lévy-Ciesielski expansion (LCE) (see e.g. [35, Section
4.2]) of the Brownian motion W : Ω× [0, 1]→ R reads

W (ω, t) =

∞∑
`=0

d2`−1e∑
j=1

Y`,j(ω)η`,j(t),

where Y`,j are independent standard normal random variables and{
η`,j : ` ∈ N0, j = 1, . . . , d2`−1e

}
is the Faber-Schauder hat-function basis (see Figure 1) on [0, 1], i.e.,

η0,1(t) = t,

η(t) :=


t t ∈ [0, 1

2 ]

1− t t ∈ [ 1
2 , 1]

0 otherwise

,

η`,j(t) = 2−
`−1

2 η
(
2`−1t− j + 1

)
for all ` ∈ N, j = 1, . . . , 2`−1.

(3)

Observe that ‖η0,1‖L∞(0,1) = 1, supp η0,1 = (0, 1] and ‖η`,j‖L∞(0,1) = 2−(`+1)/2, supp η`,j =
(
j−1
2`−1 ,

j
2`−1

)
for

all ` ∈ N, j = 1, . . . , 2`−1. The LCE converges uniformly in t, almost surely to a continuous function which
coincides with the Brownian motion everywhere (see [53, Section 3.4]):

lim
L→∞

sup
t∈[0,1]

∣∣∣∣∣∣W (ω, t)−
L∑
`=0

d2`−1e∑
j=1

Y`,j(ω)η`,j(t)

∣∣∣∣∣∣ = 0 P-a.e. ω ∈ Ω.
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Figure 1: The first eight Faber-Schauder basis functions on [0, 1].

By equipping R with the Gaussian measure µ, we may parametrize W as W : RN × [0, 1]→ R so that

W (y, t) =

∞∑
`=0

d2`−1e∑
j=1

y`,jη`,j(t), (4)

where y`,j ∈ R for all ` ∈ N0, j = 1, . . . , d2`−1e. For L ∈ N0, we define the level-L truncation of W by
WL(y, t) =

∑L
`=0

∑d2`−1e
j=1 y`,jη`,j(t). We will sometimes also index the same sum as WL(y, t) =

∑N
n=0 ynηn(t).

The two indexing systems, hierarchical and linear, are related via

η`,j = ηn ⇐⇒ n = b2`−1c+ j − 1. (5)

We note that the total number of parameters is N =
∑L
`=0d2`−1e = 1 +

∑L
`=1 2`−1 = 2L.

The fact that the parameter domain is unbounded requires the use of appropriate collocation nodes, a topic
we treat in Section 7, below.

We denote by XR an appropriate space of real sequences such that if y ∈ XR, then W (y, ·) belongs to a
desired Banach space of functions. Denote by µ the Gaussian measure on XR.

Example 1. Consider the Banach space of sequences:

XR :=
{
y = (yn)n∈N ⊂ R : ‖y‖XR

<∞
}
, ‖y‖XR

:= |y0,1| +
∑
`∈N

max
j=1,...,2`−1

|y`,j | 2−(`+1)/2.

Simple computations show that if y ∈ XR, then ‖W (y)‖L∞(0,T ) ≤ ‖y‖XR
, thus W ⊂ L∞(0, T ).

Assume without loss of generality that T = 1. By substituting the random field W (ω, t) in the random
coefficient PDE (2) with the parametric expansion (4), we obtain a parametric coefficient PDE : Find u :
XR ×DT → Rm such that

R(W (y), u(y)) = 0 in R, µ-a.e. y ∈ XR. (6)

2.2 Holomorphic regularity of the solution operator
While holomorphic parameter regularity of random elliptic equations is well-known by now (see, e.g., [4, Section
3], for the case of bounded or unbounded parameter spaces under the finite dimensional noise assumption,
[21] for countably-many parameters taking values on tensor product of bounded intervals, [5], for a discussion
of the Poisson problem with lognormal coefficients, in which the authors study countably many unbounded
parameters), the literature is much sparser for nonlinear and time-dependent problems. In this section, we
follow an approach from [18] which uses the implicit function theorem to obtain analyticity. While the authors
in [18] can rely on a compact parameter domain to ensure a non-trivial domain of extension, we have to use
intricate bounds on the parametric gradient of the solution. A recent result on the implicit function theorem
for Gevrey regularity [36] could also be used to achieve similar results in a less explicit fashion.

We require some assumptions to work in a more general setting.

Assumption 1. For any y ∈ XR there exists u(y) ∈ UR such that R(W (y), u(y)) = 0 in R. Moreover, there
exists Cr > 0 such that, for any y ∈ XR, ‖u(y)‖UR

≤ Cr.

Assumption 2. The residual operator R : WR × UR → R admits an extension to complex Banach spaces
W ⊃WR and U ⊃ UR. The extended map R : W× U→ R satisfies the following properties:
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(i) R is continuously differentiable;

(ii) ∂uR(W,u) : U→ R is a homeomorphism for all (W,u) ∈WR × UR such that R(W,u) = 0.

With this complex extension in mind, in the following for any W0 ∈WR and u0 ∈ UR we denote, for % > 0,

B%(W0) :=
{
W ∈W : ‖W −W0‖W < %

}
,

B%(u0) :=
{
u ∈ U : ‖u− u0‖U < %

}
.

(7)

Let us recall the implicit function theorem for maps between Banach spaces (see, e.g., [23, Theorem 10.2.1]).

Theorem 2 (Implicit function). Let E,F,G be Banach spaces, A ⊂ E × F and f : A → G be a continuously
differentiable function. Let (x∗, y∗) ∈ A be such that f(x∗, y∗) = 0 and the partial derivative D2f(x∗, y∗) is a
linear homeomorphism from F onto G. Then, there exists a neighbourhood U∗ of x∗ in E such that, for every
open connected neighbourhood U of x∗ in U∗, there exists a unique continuous mapping U : U → F such that
U(x∗) = y∗, (x,U(x)) ∈ A and f(x,U(x)) = 0 for any x in U . Moreover, U is continuously differentiable in U
and its derivative is given by

U ′(x) = − (D2f(x,U(x)))
−1 ◦ (D1f(x,U(x))) for all x ∈ U. (8)

Invoking Theorem 2 for the operatorR : W×U→ R, with y ∈ XR and u(y) ∈ UR satisfyingR(W (y), u(y)) =
0, there exists ε(y) > 0 and a holomorphic map U : Bε(y)(W (y)) → U such that U(W (y)) = u(y) and
R(W,U(W )) = 0 for all W ∈ Bε(y)(W (y)) (cf. (7)).

For any W ∈ Bε(y)(W (y)), the differential U ′(W ) belongs to L(W,U), the set of linear bounded operator
from W into U equipped with the usual norm.

Recalling definition (7), we make additional assumptions on the regularity of the derivatives of the residual
operator R.

Assumption 3. There exist εW , εu > 0 such that for any y ∈ XR and any W ∈ BεW (W (y)) with U(W ) ∈
Bεu(U(W (y))), the operator ∂WR(W,U(W )) is well-defined and ∂uR(W,U(W )) is homeomorphic with

‖∂WR(W,U(W ))‖L(W,R) ≤ G1(‖U(W )‖U),∥∥∂uR(W,U(W ))−1
∥∥
L(R,U)

≤ G2(‖U(W )‖U),

where the functions G1,G2 are continuous and may depend on problem coefficients and εu, εW but depend on
W and U(W ) only through ‖U(W )‖U and are independent of y.

Together with (8) from Theorem 2, this assumption implies the existence of a continuous increasing function
G = G(‖U(W )‖U) > 0 such that

‖U ′(W )‖L(W,U) ≤ G(‖U(W )‖U) for all W ∈ Bmin(ε(y),εW )(W (y)). (9)

2.3 Uniform holomorphic extension of solution operator
Since we cannot rely on a compact parameter domain, we show existence of a uniformly bounded holomorphic
extension through the application of a generalized version of Gronwall’s lemma.

As in the previous section, fix y ∈ XR. We can assume, without loss of generality, that ε(y) ≤ εW .

Definition 3. We consider an open set H(y) ⊆ BεW (W (y)) with the following properties:

• Bε(y)(W (y)) ⊆ H(y),

• U(W ) ∈ Bεu(U(W (y))) for all W ∈ H(y),

• the solution operator U : Bε(y)(W (y))→ U extends holomorphically to H(y),

• for all W ∈ H(y) we have σW + (1− σ)W (y) ∈ H(y) for all 0 ≤ σ ≤ 1.

In contrast to [18], this domain of real parametersWR may not be compact. Therefore, ε(y) can be arbitrarily
small and hence H(y) might become very small for certain parameters y. The goal of the arguments below is
to show that there exists ε > 0 such that for all y ∈ XR H(y) = Bε(W (y)) is a valid choice. Instead of relying
on compactness, we exploit estimate (9) through the following nonlinear generalization of Gronwall’s lemma:
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Lemma 4 ([25], Theorem 27). Let 0 ≤ c ≤ d < ∞, ϕ : [c, d] → R and k : [c, d] → R be positive continuous
functions on [c, d] and let a, b be non-negative constants. Further, let G : [0,∞)→ R be a positive non-decreasing
function. If

ϕ(t) ≤ a+ b

∫ t

c

k(s)G(ϕ(s))ds for all t ∈ [c, d],

then

ϕ(t) ≤ G−1

(
G(a) + b

∫ t

c

k(s)ds

)
for all c ≤ t ≤ d1 ≤ d

where for 0 < ξ < λ,

G(λ) :=

∫ λ

ξ

ds

G(s)
(10)

and d1 is defined such that G(a) + b
∫ t
c
k(s)ds belongs to the domain of G−1 for t ∈ [c, d1].

Theorem 5. Assume the validity of Assumptions 1, 2, and 3. With Cr > 0 given in Assumption 1, choose
0 < ε < εW such that G (Cr)+ε belongs to the domain of G−1 (where G is defined in (10) with the corresponding
G given in (9)). Then, ε is independent of y and H(y) from Definition 3 can be chosen as H(y) = Bε(W (y))
for all y ∈ XR. Moreover, U is uniformly bounded on Bε(W (y)) by a constant Cε > 0 that depends only on ε.

Proof. Fix y ∈ XR.
Step 1: We first show that U is uniformly bounded on H(y) ∩ Bε(W (y)). To that end, fix W ∈ H(y) ∩

Bε(W (y)) and let Wσ := σW + (1 − σ)W (y) for any 0 ≤ σ ≤ 1. We define ϕ : [0, 1] → U by ϕ(σ) = U(Wσ).
Since by definition U is differentiable in H(y), we may apply the fundamental theorem of calculus to obtain

ϕ(t)− ϕ(s) =

∫ t

s

U ′(Wσ)[W −W (y)]dσ for all s, t ∈ [0, 1]. (11)

In particular, with s = 0, the triangle inequality yields, recalling that W ∈ Bε(W (y)),

‖ϕ(t)‖U ≤ ‖ϕ(0)‖U + ε

∫ t

0

‖U ′(Wσ)‖L(W,U) dσ for all 0 ≤ t ≤ 1.

Assumption 1 and estimate (9) (consequence of Assumption 3) imply the estimate

‖ϕ(t)‖U ≤ Cr + ε

∫ t

0

G (‖ϕ(σ)‖U) dσ for all 0 ≤ t ≤ 1.

Apply Lemma 4 to conclude (note that, in the notation of Lemma 4, we have d1 = d = 1 because of the
definition of ε as well as k(s) = 1)

‖ϕ(t)‖U ≤ G
−1(G(Cr) + εt) ≤ G−1(G(Cr) + ε) for all 0 ≤ t ≤ 1. (12)

Since ‖U(W )‖U = ‖ϕ(1)‖U ≤ Cε, where Cε := G−1(G(Cr) + ε), we derive the uniform boundedness of U on
H(y). Note that this bound is independent of y and H(y).

Step 2: We next show that ϕ defined in Step 1 is Lipschitz on [0, 1]. Equation (11) implies, for 0 ≤ s < t ≤ 1,

‖ϕ(t)− ϕ(s)‖U ≤
∫ t

s

‖U ′(Wσ)‖L(W,U) ‖W −W (y)‖W dσ

≤
∫ t

s

G (‖ϕ(σ)‖U) ‖W −W (y)‖W dσ.

The desired results then follows from (12).
Step 3: We can without loss of generality assume that 0 < ε ≤ εW is such that W ∈ B2ε(W (y)) implies

U(W ) ∈ Bεu(U(W (y)). This is possible due to the Lipschitz continuity of ϕ proved in the previous step and by
possibly making the ε chosen in Step 1 smaller. We now show that H(y) can be chosen to be Bε(W (y)). Assume
by contradiction that themaximal H(y) (in the sense as there is no superset ofH(y) with the properties specified
in Definition 3) is a proper subset of Bε(W (y)), i.e. H(y) ( Bε(W (y)). Let W ∈ ∂H(y) ∩ Bε(W (y)) 6= ∅.
Lipschitz continuity of ϕ in Step 2 shows that U can be extended continuously to H(y). Consequently, U(W )
is well-defined and equals limσ→1− U(σW + (1 − σ)W (y)) ∈ U. Since R is continuous, R(W,U(W )) = 0. By
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Assumption 3, ∂uR(W,U(W )) is a homeomorphism for anyW in a neighbourhood ofW inW. We may therefore
apply the implicit function theorem in W to show that the domain of existence of a holomorphic extension of
U can be further extended to an open neighbourhood B % H(y) of W in W. Clearly, the neighbourhood can
be chosen such that U(W ) ∈ Bεu(U(W (y))) for all W ∈ B. Since B can be chosen star shaped with respect to
W (y), this contradicts the maximality of H(y). Thus, we proved that Bε(W (y)) = H(y). The argument used
in Step 1 immediately implies the uniform boundedness.

Theorem 5 provides all the tools to estimate parametric regularity through Cauchy’s integral theorem. The
Lévy-Ciesielski expansion (4) can be (formally) extended to the complex parameters z ∈ CN. Thus, in view of
Theorem 5, z 7→ U(W (z)) is a holomorphic extension of the parameter-to-solution map in y for all z such that
W (z) belongs to the domain of holomorphy of U , which in Theorem 5 was proved to contain Bε(W (y)) (recall
that ε is independent of y). Such a set of parameters can be defined as follows: Let ρ = (ρn)n∈N be a sequence
of non-negative real numbers, and consider the polydisk

Bρ(y) := {z ∈ X : |zn − yn| < ρn for all n ∈ N} . (13)

Assumption 4. For ε > 0, y ∈ XR, there exists a real positive sequence ρ = ρ(ε) = (ρn)n∈N such that,

z ∈ Bρ(y)⇒W (z) ∈ Bε(W (y)),

In conclusion, for any y ∈ XR, U ◦W : Bρ(y)→ U is holomorphic because it is a composition of holomorphic
functions. Moreover, U ◦W is uniformly bounded by Cε (see Theorem 5) independently of y.

Consider a multi-index ν = (ν1, . . . , νn) ∈ Nn0 and denote by ∂ν the mixed derivative ∂ν1
1 . . . ∂νnn where ∂νjj

denotes the partial derivative of order νj with respect to yj (if νj = 0, the j-th partial derivative is omitted).
Cauchy’s integral theorem implies:

Theorem 6. Consider u : XR → U, the parameter-to-solution map that solves the parametric PDE (6). Let
Assumptions 1, 2, 3 hold and fix ε > 0 as in Theorem 5. Finally, consider a real positive sequence ρ = (ρn)n∈N
as in Assumption 4. Then, for any n ∈ N, ν = (νi)

n
i=1 ∈ Nn0 , it holds that

‖∂νu(y)‖U ≤
n∏
j=1

νj !ρ
−νj
j Cε for all y ∈ XR, (14)

where Cε > 0 from Theorem 5 is independent of ν or y. The same bound holds for ‖∂νu‖L2
µ(XR;U), where µ

denotes a probability measure on XR.

Note that Theorem 6 contains the crucial bound on the derivatives which justifies many high-dimensional
approximation (and quadrature) methods such as, e.g., sparse grids, polynomial chaos, quasi-Monte Carlo.

3 The Stochastic Landau–Lifshitz–Gilbert equation
In the present section, we introduce the stochastic Landau-Lifshitz-Gilbert problem and we show that it fits the
general theory described in the previous section. We consider a bounded Lipschitz domain D ⊂ R3 representing
a ferromagnetic body in the time interval [0, T ]. By DT := [0, T ] × D we denote the space-time cylinder and
by ∂n the outward pointing normal derivative on ∂D. Given M0 : D → S2 :=

{
x ∈ R3 : x2

1 + x2
2 + x2

3 = 1
}

(the magnetization of the magnetic body at initial time), λ > 0 (called the Gilbert damping parameter), the
deterministic version of the problem (the LLG equation) consists of determining the time evolution of the
magnetization: Find M(t,x) : DT → S2 such that

∂tM = λ1M ×∆M − λ2M × (M ×∆M) in DT ,

∂nM = 0 on ∂D × [0, T ],

M(0) = M0 on D,

(15)

where λ1 = 1
1+λ2 , λ2 = λ

1+λ2 . The solution has constant magnitude in space and time (this follows immediately
from scalar multiplication of (15) withM). This implies that, assuming a normalized initial condition |M0| ≡ 1
on D, that

|M(t,x)| = 1 for all (t,x) ∈ DT .

In (15), the exchange term ∆M can be substituted by a more general effective field Heff(M) containing
∆M and additional lower order contributions modelling additional physical effects like material anisotropy,
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magnetostatic energy, external magnetic fields or the more involved Dzyaloshinskii-Moriya interaction (DMI)
(see e.g. [50, Section 1.2]).

The effect of heat fluctuations on the systems is described with a random model. Denote by (Ω,F ,P) a
probability space and let dW : Ω ×DT → R3 be a suitable space-time noise (note that the exact form of this
noise is subject of research and below we consider a simple one-dimensional model). Consider the following
formal equation for M : Ω×DT → S2:

∂tM = λ1M × (∆M + dW )− λ2M × (M ×∆M) in DT ,P-a.s.

with the same initial and boundary conditions as in (15). It is customary not to include a noise in the second term
of the right-hand-side because of the smallness of λ2 compared to λ1 (see, e.g., [12, page 3]). For simplicity,
we additionally assume one-dimensional noise W (ω, t,x) = g(x)W (ω, t) for all ω ∈ Ω, (t,x) ∈ DT , where
g : D → R3 is given and W : Ω× [0, T ]→ R denotes a (scalar) Wiener process.

The previous formal equation corresponds to the following stochastic partial differential equation called the
stochastic LLG problem: Find M : Ω×DT → S2 such that

dM = (λ1M ×∆M − λ2M × (M ×∆M)) dt+ (λ1M × g) ◦ dW in DT , P-a.s. (16)

again with initial and boundary conditions as in (15). By ◦dW we denote the Stratonovich differential. We
define a weak solution of this problem following [34].

Definition 7. A weak martingale solution of (16) is a tuple
(

Ω,F , (Ft)t∈[0,T ] ,P,W,M
)
where

•
(

Ω,F , (Ft)t∈[0,T ] ,P
)
is a filtered probability space;

• W : Ω× [0, T ]→ R is a scalar Wiener process adapted to (Ft)t∈[0,T ];

• M : Ω× [0, T ]→ L2(D)3 is a progressively measurable stochastic process;

such that the following properties hold:

• M(ω, ·) ∈ C0([0, T ], H−1(D)) P-a.e. ω ∈ Ω;

• E
(

esssupt∈[0,T ] ‖∇M‖
2
L2(D)

)
<∞;

• |M(ω, t,x)| = 1 P-a.e. ω ∈ Ω, for all t ∈ [0, T ], for a.e. x ∈ D;

• For all t ∈ [0, T ] and all φ ∈ C∞0 (D)3, P-a.s. there holds

〈M(t),φ〉 − 〈M0,φ〉 = −λ1

∫ t

0

〈M × ∇M ,∇φ〉ds− λ2

∫ t

0

〈M ×∇M ,∇ (M × φ)〉ds

+ λ1

∫ t

0

〈M × g,φ〉 ◦ dW (s),

where 〈·, ·〉 denotes the L2(D)3 scalar product.

Existence of solutions to (16) in this sense was first established in [12], while uniqueness of weak solutions is
still an open question. An alternative existence proof was given in [34]. Here the authors use the Doss-Sussman
transform to obtain a PDE with random coefficients instead of the stochastic differential as explained in the
previous section.

4 Random LLG equation by Doss-Sussmann transform and paramet-
ric LLG equation by Lévy-Ciesielski expansion

In the present section, we apply the strategy outlined in Section 2.1 to the SLLG problem (16) in order to
obtain a random coefficient PDE. While this was done in [34] for technical reasons, we are mainly interested in
obtaining an equivalent problem that is more amenable to collocation-type approximation. Another advantage
is (formally) gaining a full order of differentiability of the solution. Given g : D → R3, s ∈ R and v : D → R3

with suitable regularity, consider the following operators:

Gv = v × g
Cv = v ×∆g + 2∇v ×∇g
esGv = v + sin(s)Gv + (1− cos s)G2v

E(s,v) = sin(s)Cv + (1− cos(s))(CG+GC)v
Ĉ(s,v) = e−sGE(s,v) = E(s,v)− sin(s)GE(s,v) + (1− cos(s))G2E(s,v),

(17)
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where we define ∇v × ∇g :=
∑3
j=1

∂v
∂xj
× ∂g

∂xj
. Note that esG is the exponential of the operator sG. The fact

G ◦G ◦Gv = −v simplifies the expression. Expanding some of the definitions, the last operator can be written
as

Ĉ(s,v) = sin(s)Cv + (1− cos(s)) (CG+GC)u− sin(s)2GCu+

− sin(s)(1− cos(s))G (CG+GC)u+ (1− cos(s)) sin(s)G2Cu+

+ (1− cos(s))2G2 (CG+GC)u

or, in compact form, as

Ĉ(s,v) =

6∑
i=1

bi(s)Fi(v), (18)

where bi are uniformly bounded with bounded derivatives (let 0 < β < ∞ be a uniform bound for both,
which depends only on g) and the Fi are linear and globally Lipschitz with the Lipschitz constant 0 < L <∞
depending only on g, i.e., for any I = 1, . . . , 6,

‖bi(W )‖L∞(R) ≤ β, ‖b′i(W )‖L∞(R) ≤ β for all W ∈ C0([0, T ]),

‖Fi(u)− Fi(v)‖L2(D) ≤ L ‖u− v‖H1(D) for all u,v ∈ H1(D)3.

In the present setting, the Doss-Sussmann transform (1) reads

m = e−WGM .

We obtain the random coefficients LLG problem: Given M0 : D → S2, find m : Ω × DT → S2 such that for
P-a.e. ω ∈ Ω 

∂tm(ω) = λ1m(ω)×
(

∆m(ω) + Ĉ(W (ω),m(ω))
)

−λ2m(ω)×
(
m(ω)×

(
∆m(ω) + Ĉ(W (ω),m(ω))

))
in DT ,

∂nm(ω) = 0 on [0, T ]× ∂D,
m(ω, 0, ·) = M0 on D.

(19)

It is shown in [34, Lemma 4.6] that any weak solution m of (19) corresponds to a weak martingale solution
M = eWGm of (16) through the inverse Doss-Sussmann transform. Existence of solutions to (19) is shown
in [34], but again uniqueness is open.

Following Section 2.1, we derive a parametric PDE problem using the Lévy-Ciesielski expansion of the
Wiener process. The parametric LLG problem reads: Given M0 : D → S2, find m : XR ×DT → S2 such that
for a.a. y ∈ XR 

∂tm(y) = m(y)×
(

∆m(y) + Ĉ(W (y),m(y))
)

−m(y)×
(
m(y)×

(
∆m(y) + Ĉ(W (y),m(y))

))
in DT ,

∂nm(y) = 0 on [0, T ]× ∂D,
m(y, 0, ·) = M0 on D,

(20)

where we set λ1 = λ2 = 1 for simplicity. The precise definition of XR will be given below in (33).
Applying the triple cross-product formula a× (b× c) = b(a · c)− c(a · b) on m(y) × (m(y)× (∆m(y))),

together with the fact that |m| ≡ 1, gives an equivalent equation valid again for a.a. y ∈ XR:

∂tm(y) = ∆m(y) +m(y)×∆m(y)− (∇m(y) : ∇m(y))m(y)+ (21)

+m(y)× Ĉ(W,m(y))−m(y)×
(
m(y)× Ĉ(W,m(y))

)
in DT . (22)

4.1 Space and time Hölder regularity of sample paths of the random LLG problem
In the present section, we prove that the sample paths of solutions of the random LLG problem (19) are Hölder
regular.

We recall basic definitions and important facts about Hölder spaces. Let n ∈ N, D ⊂ Rn, α ∈ (0, 1),
v : D → C. The Hölder-seminorm reads |v|Cα(D) := supx,y∈D,x 6=y

|v(x)−v(y)|
|x−y|α and by Cα(D), we denote the

Banach space of functions with finite Hölder-norm ‖v‖Cα(D) := ‖v‖C0(D) + |v|Cα(D). Clearly, u, v ∈ Cα(D)
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implies uv ∈ Cα(D). Higher Hölder regularity of order k ∈ N is characterized via the seminorm |v|Ck+α(D) :=∑k
j=1 |Djv|Cα(D) and the corresponding Banach space Ck+α(D) :=

{
v : D → C : Djv ∈ Cα(D) for all j = 0, . . . , k

}
with the norm ‖v‖Ck+α(D) :=

∑k
j=0

∥∥Djv
∥∥
Cα(D)

. Again u, v ∈ Ck+α(D) immediately implies uv ∈ Ck+α(D).
In the parabolic setting, it is useful to define the parabolic distance between P = (t,x), Q = (s,y) ∈ DT by

d(P,Q) :=
(
|t− s|+ |x− y|2

)1/2
.

For a function v : DT → C, define the seminorm |v|Cα/2,α(DT ) := supP,Q∈DT
P 6=Q

|v(P )−v(Q)|
d(P,Q)α . Define the Banach

spaces Cα/2,α(DT ) :=
{
v : DT → C : v ∈ C0(DT ) and |v|Cα/2,α(D) <∞

}
with the norm (see [56, Section 1.2.3]

for details) ‖v‖Cα/2,α(DT ) := ‖v‖C0(DT ) + |v|Cα/2,α(DT ). Finally,

C1+α/2,2+α(DT ) :=
{
v : DT → C : ∂tv and Djv ∈ Cα/2,α(DT ), j = 0, 1, 2

}
(23)

is a Banach space when endowed with the norm

‖v‖C1+α/2,2+α(DT ) :=

2∑
j=0

∥∥Djv
∥∥
Cα/2,α(DT )

+ ‖∂tv‖Cα/2,α(DT ) .

In what follows, we work with the Hölder seminorm

|v|C1+α/2,2+α(DT ) := |v|Cα/2,α(DT ) +

2∑
j=1

∥∥Djv
∥∥
Cα/2,α(DT )

+ ‖∂tv‖Cα/2,α(DT ) . (24)

As above, if u, v ∈ C1+α/2,2+α(DT ) then also uv ∈ C1+α/2,2+α(DT ). In particular, it can be proved that
‖uv‖Cα/2,α(DT ) ≤ ‖u‖Cα/2,α(DT ) ‖v‖Cα/2,α(DT ).

Definitions generalize to vector fields in the usual way. We use the same symbols for scalar and vector spaces.
In the remainder of this section, we adopt the short notation ‖·‖α = ‖·‖Cα(D), ‖·‖1+α/2,2+α = ‖·‖C1+α/2,2+α(DT ),
and analogously for all other norms and seminorms.

To prove Hölder regularity of sample paths, we work with the following equivalent form of (19), obtained
using algebraic manipulations including the triple product expansion and the fact that |m| = 1 for all t ∈ [0, T ]
and a.a. x ∈ D:

λ∂tm+m× ∂tm = ∆m+ |∇m|2m−m×
(
m× Ĉ(W,m)

)
, (25)

where we recall that λ > 0 is the Gilbert damping parameter and Ĉ was defined in (17).
The main result of this section is summarized in the following theorem.

Theorem 8. Let 0 < α < 1. Assume that W ∈ Cα/2([0, T ]), M0 ∈ C2+α(D) and g ∈ C2+α(D). There exists
ε > 0 such that if ‖M0‖2+α ≤ ε, ‖∆g‖α ≤ ε, and ‖∇g‖α ≤ ε, then the solution m of equation (25) with initial
condition m(0) = M0 and homogeneous Neumann boundary conditions belongs to C1+α/2,2+α(DT ). Moreover,

‖m‖1+α/2,2+α ≤ Cr, (26)

where Cr > 0 depends on ‖g‖2+α, ‖M0‖2+α, λ, D and T but is independent of W .

The proof of the theorem is inspired by [29]. The proofs in the mentioned work require higher temporal
regularity than is available for stochastic LLG, which we circumvent by the use of Hölder spaces instead of
Sobolev spaces. In the following, we will require some notation:

H(u,v,w) := u× (v × Ĉ(W,w)) for all u,v ∈ Cα/2,α(DT ),w ∈ Cα/2,1+α(DT ),

Ra(v) := λ∂tv + v × ∂tv − |v|2∆v − |∇v|2v +H(v,v,v) for all v ∈ C1+α/2,2+α(DT ),

Lv := Lx0
v := λv +M0(x0)× v for all x0 ∈ D,v ∈ Cα/2,α(DT ).

We note that Ra is the residual defined from the alternative form (25) of the LLG equation; confer (6).
We will require a couple of technical results.

Lemma 9 (Continuity of the trilinear form H and of the LLG residual Ra). If u, v ∈ Cα/2,α(DT ) and
w ∈ Cα/2,1+α(DT ), then H(u,v,w) ∈ Cα/2,α(DT ) and

‖H(u,v,w)‖α/2,α ≤ Cg ‖u‖α/2,α ‖v‖α/2,α ‖w‖α/2,1+α , (27)
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where Cg :=
(
1 + ‖g‖1+α

)3
(‖∇g‖α + ‖∆g‖α). Moreover, if v ∈ C1+α/2,2+α(DT ), then

Ra(v) ∈ Cα/2,α(DT ) and

‖Ra(v)‖α/2,α ≤
(
|v|1+α/2,2+α + |v|21+α/2,2+α

)(
λ+ ‖v‖1+α/2,2+α

)2

+ Cg ‖v‖2α/2,α ‖v‖α/2,1+α . (28)

In particular, ‖Ra(v)‖α/2,α vanishes when |v|1+α/2,2+α and ‖∇g‖α/2,α + ‖∆g‖α/2,α all vanish.

Proof. To prove (27), note the following elementary estimates

‖Cv‖α/2,α ≤ 2 ‖∇v‖α/2,α ‖∇g‖α + ‖v‖α/2,α ‖∆g‖α ,

‖CGv‖α/2,α ≤ ‖v‖α/2,α ‖g‖α ‖∆g‖α + 2(‖∇v‖α/2,α ‖g‖α + ‖v‖α/2,α ‖∇g‖α) ‖∇g‖α ,

‖E(s,v)‖α/2,α ≤ ‖Cv‖α/2,α + ‖CGv‖α/2,α + ‖g‖α ‖Cv‖α/2,α ,∥∥∥Ĉ(s,v)
∥∥∥
α/2,α

≤
(

1 + ‖g‖α + ‖g‖2α
)
‖E(s,v)‖α/2,α ,

‖H(u,v,w‖α/2,α) ≤ ‖u‖α/2,α ‖v‖α/2,α
∥∥∥Ĉ(W,w)

∥∥∥
α/2,α

.

Putting these facts together, one obtains (27). To get the second inequality (28), estimate

‖Ra(v)‖α/2,α ≤ λ |v|1+α/2,2+α + ‖v‖1+α/2,2+α |v|1+α/2,2+α

+ ‖v‖21+α/2,2+α |v|1+α/2,2+α + |v|21+α/2,2+α ‖v‖1+α/2,2+α + ‖H(v,v,v)‖α/2,α

≤
(
|v|1+α/2,2+α + |v|21+α/2,2+α

)(
λ+ ‖v‖1+α/2,2+α

)2

+ ‖H(v,v,v)‖α/2,α .

Using (27) to estimate the last term yields (28).

Additionally, we need some finer control over the boundedness of Ra. The point of the following result is
that all terms apart from the first one on the right-hand side of the estimate in Lemma 10 below are either at
least quadratic in w or can be made small by choosing v close to a constant function. This will allow us to
treat the nonlinear parts as perturbations of the heat equation.

Lemma 10. For v,w ∈ C1+α/2,2+α(DT ) and x0 ∈ D, there holds

‖Ra(v −w)‖α/2,α ≤ ‖Ra(v)− (L∂t −∆)w‖α/2,α + ‖v −M0(x0)‖α/2,α ‖w‖1+α/2,2+α +

+
∥∥(1− |v|2)∆w

∥∥
α/2,α

+

+ ‖w‖1+α/2,2+α

(
|v|1+α/2,2+α + Cg

)(
1 + ‖v‖1+α/2,2+α

)2

+

+ ‖w‖21+α/2,2+α

(
1 + (1 + Cg) ‖v‖1+α/2,2+α

)
+ ‖w‖31+α/2,2+α (1 + Cg),

where Cg > 0 is defined in Lemma 9.

Proof. All but the last term in the definition of Ra are estimated as in [29]. As for the last term, observe that

H(v −w,v −w,v −w) = H(v,v,v)−H(w,w,w)

−H(w,v,v)−H(v,w,v)−H(v,v,w)

+H(v,w,w) +H(w,v,w) +H(w,w,v).

The term H(v,v,v) is absorbed in Ra(v). Then, by the previous lemma:

‖−H(w,v,v)−H(v,w,v)−H(v,v,w)‖α/2,α . Cg ‖w‖α/2,1+α ‖v‖
2
α/2,1+α ,

‖H(v,w,w) +H(w,v,w) +H(w,w,v)‖α/2,α . Cg ‖w‖2α/2,1+α ‖v‖α/2,1+α ,

‖−H(w,w,w)‖α/2,α . Cg ‖w‖3α/2,1+α .

Altogether, we obtain the required result.

To prove Theorem 8, we use a fixed point iteration.

Proof of Theorem 8. Consider the initial guess m0(t,x) = M0(x) for all t ∈ [0, T ], x ∈ D, and fix one x0 ∈ D
(for the definition of L = Lx0

). Define the sequence (m`)` as follows: For ` = 0, 1, . . .
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1. Define r` := Ra(m`)

2. Solve 
L∂tR` −∆R` = r` in DT ,

∂nR` = 0 on ∂D × [0, T ],

R`(0) = 0 on D.

3. Update m`+1 := m` −R`.

Step 1 (Well-posedness): By definition, we have m0 ∈ C1+α/2,2+α(DT ) as well as ∂nm0 = 0. Assume that
m` ∈ C1+α/2,2+α(DT ) and ∂nm` = 0. Then, Lemma 9 implies that r` ∈ Cα/2,α(DT ). The parabolic regularity
result [40, Theorem 10.4,§10, VII] yields R` ∈ C1+α/2,2+α(DT ).

Step 2 (Convergence): We show the Cauchy property of the sequence (m`)`: Fix 0 ≤ `′ < ` < ∞ and
observe that ‖m` −m`′‖1+α/2,2+α ≤

∑`−1
j=`′ ‖Rj‖1+α/2,2+α . By the previous lemmata, we have

‖Rj+1‖1+α/2,2+α ≤ Cs ‖rj+1‖α/2,α = Cs ‖Ra(mj+1)‖α/2,α = Cs ‖Ra(mj −Rj)‖α/2,α , (29)

where Cs > 0 is the stability constant from [40, Theorem 10.4,§10, VII], which only depends on DT and L
(particularly, it is independent of `). We invoke Lemma 10 with v = mj and w = Rj . By construction,
Ra(mj)− (L∂t −∆)Rj = 0. What remains is estimated as

‖Ra(mj −Rj)‖α/2,α ≤ ‖mj −M0(x0)‖α/2,α ‖Rj‖1+α/2,2+α +
∥∥(1− |mj |2

)
∆Rj

∥∥
α/2,α

+ ‖Rj‖1+α/2,2+α

(
|mj |1+α/2,2+α + Cg

)(
1 + ‖mj‖1+α/2,2+α

)2

+ ‖Rj‖21+α/2,2+α

(
1 + (1 + Cg) |mj |1+α/2,2+α

)
+

+ ‖Rj‖31+α/2,2+α (1 + Cg).

(30)

Let us estimate the first term in (30). For any (t,x) ∈ DT , the fundamental theorem of calculus yields
|mj(x, t)−M0(x0)| . ‖(∂t,∇)mj‖C0(DT ) ≤ |mj |1+α/2,2+α. Analogously, we get

‖mj −M0(x0)‖α/2,α ≤ 2 |mj |1+α/2,2+α .

Let us estimate the second term in (30). Since mj = m0 +
∑j−1
i=0 Ri and |m0| = 1 a.e., we have |mj |2 =

1 + 2m0 ·
∑j−1
i=0 Ri +

(∑j−1
i=0 Ri

)2

. Thus, the fact that Hölder spaces are closed under multiplication and the
triangle inequality imply

∥∥1− |mj |2
∥∥
α/2,α

≤ 2 ‖m0‖α/2,α

∥∥∥∥∥
j−1∑
i=0

Ri

∥∥∥∥∥
α/2,α

+

(
j−1∑
i=0

‖Ri‖α/2,α

)2

.

All in all, we obtain

‖Rj+1‖1+α/2,2+α ≤ C̃Qj ‖Rj‖1+α/2,2+α , (31)

where C̃ > 0 is independent of j and

Qj := |mj |1+α/2,2+α + ‖m0‖α/2,α

∥∥∥∥∥
j−1∑
i=0

Ri

∥∥∥∥∥
α/2,α

+

(
j−1∑
i=0

‖Ri‖α/2,α

)2

+
(
|mj |1+α/2,2+α + Cg

)(
1 + ‖mj‖1+α/2,2+α

)2

+ ‖Rj‖1+α/2,2+α (1 + (1 + Cg) |mj |1+α/2,2+α) + ‖Rj‖21+α/2,2+α (1 + Cg).

It can be proved that for any q ∈ (0, 1) there exists ε > 0 such that C̃Qj < q for all j ∈ N. One proceeds
by induction, as done in [29], using additionally the assumption on the smallness of ∇g and ∆g. Therefore,
‖Rj+1‖1+α/2,2+α ≤ q ‖Rj‖1+α/2,2+α, which implies that (m`)` is a Cauchy sequence in C1+α/2,2+α(DT ). Hence,
we find a limit m ∈ C1+α/2,2+α(DT ) and the arguments above already imply the estimate in Theorem 8.
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Step 3 (m solves (25)): m fulfils the initial condition m(0) = M0 (and thus |m(0)| = 1) and boundary
condition ∂nm = 0 on [0, T ] × ∂D by the continuity of the trace operator. The continuity of Ra and the
contraction (31) imply

‖Ra(m)‖α/2,α = lim
`
‖Ra(m`)‖α/2,α . lim

`
‖R`‖1+α/2,2+α ≤ lim

`
q` ‖R0‖1+α/2,2+α = 0

The arguments of the proof of [29, Lemma 4.8] show that Ra(m) = 0 implies that m solves (25) and hence
concludes the proof.

5 Holomorphic regularity of parameter-to-solution map with Hölder
sample paths

In this section we frequently work with complex-valued functions. If not mentioned otherwise, Banach spaces of
functions such as L2(D) are understood to contain complex valued functions. To denote the codomain explicitly,
we write e.g. L2(D;C) or L2(D;R).

We specify a possible choice of Banach spaces used in Section 2 for the case of the SLLG problem. Fix
0 < α < 1 and consider the parameter set

X = X (α) :=
{
z ∈ CN : ‖z‖X ,α <∞

}
, where ‖z‖X ,α :=

∑
`∈N0

max
j=1,...,d2`−1e

|z`,j | 2−(1−α)`/2. (32)

where we used the hierarchical indexing (5). For real parameters consider

XR := X ∩ RN. (33)

The definition of W, WR follows from the Lévy-Ciesielski expansion (4). It is however interesting to identify
classical spaces to which they belong.

Remark 11. In the regularity results used below, we have to work in Hölder spaces with α ∈ (0, 1). For the
Faber-Schauder basis functions on [0, 1] (see Section 2.1) we have

‖η`,j‖L∞([0,1]) ≤ 2−`/2, |η`,j |C1([0,1]) ≤ 2`/2, and ‖η`,j‖Cα([0,1]) ≤ 2 · 2−(1/2−α)`.

Only for α � 1, we obtain a decay of ‖η`,j‖Cα([0,1]) close to 2−`/2, which is what we expect for a truncated
Brownian motion. Hence, in the following we will assume that α > 0 is arbitrarily small.

It can be proved that

WR ⊂ Cα/2([0, T ];R) (34)

W ⊂ Cα/2([0, T ]) (35)

with the same techniques used in the proof of Lemma 15 below. This choice of parameter space is motivated
by the fact that the sample paths of the Wiener process belong to C1/2−ε([0, T ]) almost surely for any ε > 0.
To define the space of solutions U, write the magnetizations as

m(ω, t,x) = M0(x) + u(ω, t,x) for a.a. ω ∈ Ω, (t,x) ∈ DT ,

where we recall M0 is the given initial condition, which we assume to belong to C2+α(D). Consider then

u ∈ U = C
1+α/2,2+α
0 (DT ) :=

{
v ∈ C1+α/2,2+α(DT ) : v(0) = 0 in D, ∂nv = 0 on ∂D

}
, (36)

UR =
{
v : DT → S2 : v ∈ U

}
, (37)

where S2 is the unit sphere in R3. See Section 4.1 for the definition of the relevant Hölder spaces. Given a noise
coefficient g ∈ C2+α(D), we define the residual as:

R(W,u) := R̃(W,M0 + u), where

R̃(W,m) := ∂tm−∆m−m×∆m+ (∇m : ∇m)m−m× Ĉ(W,m)+

+m×
(
m× Ĉ(W,m)

)
.

(38)

Here, the cross product × is defined as in the real setting by

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) for all a, b ∈ C3.
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Note that due to the sesquilinear complex scalar product this implies that 〈a× b,a〉 might not vanish for
complex valued vector fields a, b. Finally, the space of residuals is

R = Cα/2,α(DT ),

so that R is understood as a function between Banach spaces:

R : W× U→ R, (W,m) 7→ R(W,m). (39)

Observe that we already proved Assumption 1 in Theorem 8.

5.1 Proof of Assumptions 2 and 3
In order to apply the general strategy outlined in Section 2, we need to prove Assumption 2 and 3 for the
problem defined by (38).

To this end, we apply the following lemma found in much more general form, e.g., in [40, Chapter VII, § 10,
Theorem 10.3].

Lemma 12 (Well posedness of linear parabolic systems with Hölder coefficients). Consider d ∈ N, 0 < α < 1,
D ⊂ Rd bounded with ∂D ∈ C2+α/2, T > 0 and define DT := [0, T ]×D. Denote by aij, ai, a for i, j = 1, . . . , d

real scalar functions in C1+α/2,2+α(DT ). Let L =
∑3
i,j=1 ai,jDiDj +

∑3
i=1 aiDi + aid denote a vector-valued,

linear second-order operator. Assume moreover that the system ∂t + L is strongly parabolic in the usual sense
(see, e.g., [40, Chapter VII, § 8, Definition 7]). Consider f ∈ Cα/2,α(DT ). Then, the problem

∂tu+ Lu = f in DT ,

u(0, ·) = 0 on D,
∂nu = 0 on [0, T ]× ∂D

has a unique solution u ∈ C1+α/2,2+α(DT ) with ‖u‖1+α/2,2+α ≤ Cstab ‖f‖α/2,α. The constant Cstab depends on
the respective norms of the coefficients aij , ai, a as well as on the ellipticity constant.

Remark 13. Note that the compatibility conditions in [40, Chapter VII, § 10, Theorem 10.3] of order zero
(α < 1) are automatically satisfied in our case. This also takes care of the fact that [40, Chapter VII, § 10,
Theorem 10.3] only works for small end times 0 < T̃ ≤ T as we can restart the estimate at any time T̃ and
get the estimate for the full time interval. Moreover, while not stated explicitly, analysing the proof of [40,
Chapter VII, § 10, Theorem 10.3] gives the dependence of Cstab on the coefficients of the problem.

Lemma 14. Let α ∈ (0, 1), g ∈ C2+α(D) and M0 ∈ C2+α(D). Consider the spaces W,WR,U,UR, R defined
at the beginning of the present section. Then, the residual R (cf. (38), (39)) is a well-defined function and
Assumptions 2 holds true. More generally, it can be proved that ∂uR(W,u) is a homeomorphism between U and
R if

W ∈W and u ∈ U satisfies ‖Im (u)‖L∞(DT ) ≤
1

4
. (40)

Finally, Assumption 3 also holds true with εW > 0, εu = 1
4 , and

G1(s) = (1 + eεW (1 + εW ))
2
(

1 + ‖g‖C2+α(D)

)4 (
1 + ‖M0‖C2+α(D) + s

)3

,

G2(s) = Cstab(s) for all s ≥ 0,

and Cstab = Cstab(‖u‖U) > 0 is as in Lemma 12, i.e. it guarantees that∥∥∥(∂uR(W,u))
−1
f
∥∥∥
U
≤ Cstab(‖u‖U) ‖f‖R for any f ∈ R, W ∈W, u ∈ U.

Proof that R is well-defined. Let us first show that the residual R is a well-defined function. Clearly,M0 +u ∈
C1+α/2,2+α(DT ) if u ∈ C1+α/2,2+α

0 (DT ). Observe that

G : C1+α/2,2+α(DT )→ C1+α/2,2+α(DT ) and C : Cα/2,1+α(DT )→ Cα/2,α(DT ),

so Ĉ(W,m) ∈ Cα/2,α(DT ). Thus, R(W,u) is a sum of functions belonging to Cα/2,α(DT ). The fact that R is
continuous can be easily verified by checking that each term (cf. (38)) is continuous.
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Proof of (i) in Assumption 2. The residual R is differentiable because it is a linear combination of differentiable
functions. We now prove that each partial derivative is continuous. For ω ∈ Cα/2([0, T ]),

∂WE(W,m)[ω] = (cos(W )Cm+ sin(W )(GC + CG)m)ω, (41)

∂W Ĉ(W,m)[ω] = eWG∂1E(W,m)[ω] +
(
cos(W )GE(W,m) + sin(W )G2E(W,m)

)
ω, (42)

∂W R̃(W,m)[ω] = −m× ∂Ĉ(W,m)[ω] +m×
(
m× ∂Ĉ(W,m)[ω]

)
. (43)

Formally estimating the linear operator ∂WR(W,u) gives that for all ω ∈ Cα/2([0, T ])

‖∂WR(W,u)[ω]‖Cα/2,α(DT ) ≤
(

1 +
∥∥∥eIm(W )

∥∥∥
Cα/2([0,T ])

)2 (
1 + ‖g‖C2+α(D)

)4

(
1 + ‖M0 + u‖Cα/2,1+α(DT )

)3

‖ω‖Cα/2([0,T ]) .

(44)

The exponential dependence on Im (W ) comes from the exponential behaviour of sine and cosine in imaginary
direction. The right-hand-side is finite because ‖Im (W )‖W ≤ ε implies

∥∥eIm(W )
∥∥
Cα/2([0,T ])

. eε(1+ε) . Indeed,∥∥eIm(W )
∥∥
L∞([0,T ])

= e‖W‖L∞([0,T ]) ≤ eε and

∣∣∣eIm(W )
∣∣∣
Cα/2([0,T ])

= sup
s,t∈[0,T ]
s6=t

∣∣eIm(W (s)) − eIm(W (t))
∣∣

|s− t|α/2

≤ sup
s,t∈[0,T ]
s6=t

∣∣eIm(W (s)) − eIm(W (t))
∣∣

|Im (W (s))− Im (W (t))|
sup

s,t∈[0,T ]
s6=t

|Im (W (s))− Im (W (t))|
|s− t|α/2

.

Because of the assumption on Im (W ), we have that |Im (W (t))| ≤ ε for all t ∈ [0, T ] and sups,t∈[0,T ]
s6=t

|Im(W (s))−Im(W (t))|
|s−t|α/2 ≤

ε. Thus,

sup
s,t∈[0,T ],s6=t

∣∣eIm(W (s)) − eIm(W (t))
∣∣

|Im (W (s))− Im (W (t))|
= sup
−ε≤a,b≤ε

a 6=b

∣∣ea − eb∣∣
|a− b|

. eb,

where the last inequality is a consequence of the Taylor expansion ea = eb + eb(a− b) +O(|a− b|2). All in all,
we obtain

∣∣eIm(W )
∣∣
Cα/2([0,T ])

. eεε and∥∥∥eIm(W )
∥∥∥
Cα/2([0,T ])

. eε(1 + ε). (45)

For v ∈ C1+α/2,2+α(DT ), we get

∂mR̃(W,m)[v] = ∂tv −∆v − v ×∆m−m×∆v + 2(∇v : ∇m)m+ (∇m : ∇m)v

−
(
v × Ĉ(W,m) +m× Ĉ(W,v)

)
−
(
v ×

(
m× Ĉ(W,m)

)
+m×

(
v × Ĉ(W,m) +m× Ĉ(W,v)

))
,

(46)

and continuity of ∂uR(W,u) = ∂mR̃(W,M0 + u) follows by the same arguments used for ∂WR(W,m).

Proof of (ii) in Assumption 2. While we are only interested in the caseW ∈WR, u ∈ UR such thatR(W,u) = 0,
let us consider the more general case (40) for future use. Consider f ∈ R (the residuals space) and the problem

∂uR(W∗, u∗)[v] = f in DT ,

∂nv = 0 on [0, T ]× ∂D,
v(0, ·) = 0 on D.

With the aim of applying Lemma 12, we note that the principal part of ∂2R(W,u)[v] is −∆v − u ×∆v. We
now show that for any (t,x) ∈ DT and w ∈ C3,

Re (〈w + u(t,x)×w,w〉) ≥ 1

2
‖w‖2 , (47)
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where here ‖·‖ and 〈·, ·〉 denote respectively the standard norm and scalar product on C3. Indeed,

Re (〈w + u(t,x)×w,w〉) = ‖w‖2 + Re (〈u(t,x)×w,w〉)

and algebraic manipulations lead to the identity

Re (〈u(t,x)×w,w〉) = 2 〈Im (w)×Re (w) , Im (u(t,x))〉 ,

which implies the estimate

|Re (〈u(t,x)×w,w〉)| ≤ 2 ‖Im (u(t,x))‖L∞(DT ) ‖w‖
2
.

Thus, by virtue of Assumption (40), we obtain (47). This shows that ∂2R(W,u) is parabolic in the sense of
Lemma 12 and hence, we obtain that ∂2R(W,u) admits a continuous inverse. Together with its continuity, this
implies that it is a homeomorphism. The norm of the inverse can be estimated as∥∥∂uR(W,u)−1 [f ]

∥∥
C1+α/2,2+α(DT )

≤ Cstab(W,u) ‖f‖Cα/2,α(DT ) , (48)

where Cstab(W,u) > 0 is independent of f (but depends on W and u).

Proof of Assumption 3. The continuity bound for ∂WR(W,u) follows from (44) and (45) with

G1(s) = (1 + eεW (1 + εW ))
2
(

1 + ‖g‖C2+α(D)

)4 (
1 + ‖M0‖C2+α(D) + s

)3

.

where εW > 0. The bound on (∂uR(W,u))
−1 is already proved in (48) with εu = 1

4 and G2 = Cstab. The fact
that Cstab depends on U(W ) only through ‖U(W )‖U is implied by the sufficient condition for well posedness in
(40).

We recall that, as shown in Section 2.2, the implicit function theorem and Theorem 5 prove the existence of
ε > 0 such that for any y ∈ XR there exists a holomorphic map U : Bε(W (y)→ U such that R(W,U(W )) = 0
for all W ∈ Bε(W (y)). The function U is bounded by a constant Cε > 0 again independent of y.

Moreover, Assumption 3 implies the bound (9) on the differential U ′(W ) as a function of U(W ) through
‖U(W )‖U under the assumption that W ∈ Bε(W (y)) in W.

5.2 Proof of Assumption 4 and estimates of derivatives of parameter-to-solution
map

Let us now estimate the derivatives of the parameter-to-solution map. While this is a standard technique
established already in [21], it turns out this will not be quite sharp enough to obtain dimension independent
convergence of the sparse grid approximation. In Section 6, we present a possible way to resolve this in the
future.

Let us show that Assumption 4 holds for the present problem. Recall the definitions of parameter spaces
in (32) and (33).

Lemma 15. Assumption 4 holds in the present setting. In particular, it is sufficient to choose ρ = (ρn)n∈N
such that

‖ρ‖X ≤
ε

2
(49)

.

Proof. Fix y ∈ XR and z ∈ Bρ(y) (i.e.|zn − yn| < ρn for all n ∈ N). Let us prove that W (z) ∈ Bε(W (y)).
By linearity, W (z, ·)−W (y, ·) =

∑
n∈N(zn− yn)ηn(·). Recalling the hierarchical indexing (5) and by a triangle

inequality, we obtain

‖W (z, ·)−W (y, ·)‖Cα/2([0,T ]) ≤
∑
`∈N0

∥∥∥∥∥∥
d2`−1e∑
j=1

(z`,j − y`,j)η`,j

∥∥∥∥∥∥
Cα/2([0,T ])

.

The terms on the right-hand side can be estimated by Banach space interpolation and the fact that all basis
functions η`,j on the same level have disjoint supports, i.e.,∥∥∥∥∥∥

∑
j

(z`,j − y`,j)η`,j

∥∥∥∥∥∥
Cα/2([0,T ])

≤

∥∥∥∥∥∥
∑
j

(z`,j − y`,j)η`,j

∥∥∥∥∥∥
1−α/2

C0([0,T ])

∥∥∥∥∥∥
∑
j

(z`,j − y`,j)η`,j

∥∥∥∥∥∥
α/2

C1([0,T ])

≤
(

max
j
|z`,j − y`,j | ‖η`,j‖C0([0,T ])

)1−α/2(
max
j
|z`,j − y`,j | ‖η`,j‖C0([0,T ]) + max

j
|z`,j − y`,j | |η`,j |C1([0,T ])

)α/2
.
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Recalling that
∥∥ηi(`)∥∥C0([0,T ])

≤ 2−`/2 and
∣∣ηi(`)∣∣C1([0,T ])

≤ 2`/2 (see Remark 11), we find∥∥∥∥∥∥
∑
j

(z`,j − y`,j)η`,j

∥∥∥∥∥∥
Cα/2([0,T ])

≤ max
j
|z`,j − y`,j | (2−`/2 + 2−(1−α)`/2).

With z ∈ Bρ(y), we obtain ‖W (z, ·)−W (y, ·)‖Cα/2([0,T ]) < ε, which gives the statement.

An example of valid sequence of holomorphy radii is

ρn = ε2
(1−α)dlog2(n)e

2 for all n ∈ N. (50)

Having so concluded that for any y ∈ XR the parameter-to-solution mapM◦W : Bρ(y)→ U is holomorphic
and uniformly bounded, we can estimate its derivatives as done in Theorem 6.

Proposition 16. Consider m = M0 + u : XR → C1+α/2,2+α(DT ), the parameter-to-solution map of the
parametric LLG problem with Hölder spaces (XR and C1+α/2,2+α(DT ) defined in (33) and (23) respectively).
Fix ε > 0 as in Theorem 5 and let ρ = (ρn)n∈N a positive sequence that satisfies (49). Then, for any n ∈ N,
ν = (νi)

n
i=1 ⊂ Nn, it holds that

‖∂νm(y)‖C1+α/2,2+α(DT ) ≤
n∏
j=1

νj !ρ
−νj
j Cε for all y ∈ XR, (51)

where Cε > 0 from Theorem 5 is independent of ν or y.

Remark 17. Note that we essentially proved “(b, ξ, δ,X)-holomorphy” [26, Definition 4.1] for the Stochastic
LLG problem in the case of a Hölder-valued parameter-to-solution map. However, this regularity is not sufficient
to apply the theory in [26], as the summability coefficient is p = 2, which lies out of the range (0, 2

3 ) considered
in [26]. This fact is analogous to what happens in our analysis.

6 Holomorphy of a simplified parameter-to-solution map with Lebesgue
sample paths

In the present section, we aim at proving stronger regularity and sparsity properties of the random LLG
parameter-to-solution map again based on the general strategy outlined in Section 2. A key observation is that
these properties depend on the Banach spaces chosen for the sample paths of the random coefficients (in our
case, the Wiener process) and the sample paths of the solutions (in our case, the magnetizations). In this case,
we show that using Lebesgue spaces for the time variable is superior to using Hölder spaces.

Because of the nonlinear nature of the random LLG problem, the results hold only for a simplified version
of the stochastic input. We make the following modelling assumptions:

• The sample paths of the Wiener process W are “small”. This is justified e.g. for small final times T � 1
with high probability;

• The gradient ∇g is “small”, meaning that the stochastic noise is spatially uniform. This is justified for
small domain sizes (samples in real-world applications are often in the nano- and micrometer range).

This leads to the following simplifications in the random LLG residual (defined in (38)):

∇m×∇g ≈ 0,

sin(W ) ≈W,

1− cos(W ) ≈ W 2

2
≈ 0.

Consequently, we approximate Ĉ(W,m) defined in (17) with the first order expansion

C̃(W,m) := Wm×∆g,

where g ∈ C2+α(D). This term appears in the simplified random LLG residual

Rs(W,u) := R̃s(W,M0 + u), where

R̃s(W,m) := ∂tm−∆m−m×∆m+ (∇m : ∇m)m−m× C̃(W,m)+

+m×
(
m× C̃(W,m)

)
.

(52)
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Observe that the magnetization corresponding to W (ω, ·) is m(ω) = M0 + u(ω) for any ω ∈ Ω.
In order to define the space for the coefficients, we again start from the parameters: Define, for 1 < q <∞,

X = X q :=
{
z ∈ CN : ‖z‖X q <∞

}
, where ‖z‖X q :=

∑
`∈N0

|y`|`q 2−`(1/2+1/q).

and we denoted y` = (y`,1, . . . , y`,d2`−1e). We then define the space of (complex) coefficients through the Lévy-
Ciesielski expansion (4): W = {W (z, ·) : [0, T ]→ C : z ∈ X}. For real parameters, we fix θ > 0 and let

XR = X (α, θ) :=
{
y ∈ RN : ‖y‖X (α) < θ

}
, (53)

where X (α) was defined in (32).

Lemma 18. For fixed 1 < q <∞ and θ > 0, there holds,

W ⊂ Lq([0, T ]) and WR ⊂
{
W ∈ Cα([0, T ];R) : ‖W‖Cα([0,T ]) < θ

}
.

Proof. To prove the first inclusion, fix z ∈ X and estimate

‖W (z)‖Lq([0,T ]) =

∥∥∥∥∥∥
∑
`∈N0

d2`−1e∑
j=1

z`,jη`,j

∥∥∥∥∥∥
Lq([0,T ])

≤
∑
`∈N0

∥∥∥∥∥∥
d2`−1e∑
j=1

z`,jη`,j

∥∥∥∥∥∥
Lq([0,T ])

.

Examine one summand at a time to get, using the fact that Faber-Schauder basis functions of same level have
disjoint supports,∥∥∥∥∥∥

d2`−1e∑
j=1

y`,jη`,j

∥∥∥∥∥∥
q

Lq([0,T ])

=

∫ T

0

d2`−1e∑
j=1

yq`,jη
q
`,j =

d2`−1e∑
j=1

yq`,j

∫ T

0

ηq`,j = |y`|q`q ‖η`,1‖
q
Lq([0,T ]) .

Finally, simple computations reveal that (cf. (3)) ‖η`,j‖Lq([0,T ]) = 2−`(1/2+1/q)2−1/2
(

2
q+1

)1/q

, so we get
‖W (z)‖Lq([0,T ]) ≤ ‖z‖X q , which implies the first inclusion. The second inclusion follows with the methods
of the proof of Lemma 15.

Intuitively, WR can be understood as the set of “small” real valued Wiener processes.
The space of solutions is chosen as

U =
{
u : DT → C3 : u ∈ Lq([0, T ], C2+α(D)), ∂tu ∈ Lq([0, T ], Cα(D)), (54)

u(0, ·) = 0 on D, ∂nu = 0 on [0, T ]× ∂D} , (55)

UR =
{
u : DT → S2 : u ∈ U

}
. (56)

Finally the space of residuals is chosen as R := Lq([0, T ], Cα(D)). The map Rs is understood as a function
between Banach spaces:

Rs : W× U→ R, (57)

Observe that if u ∈ U for q > 1, then ‖u(t)‖Cα(D) ≤ ‖∂tu‖L1([0,T ],Cα(D)) for all t ∈ [0, T ]. This implies
that u ∈ C0([0, T ], Cα(D)) and ‖u‖C0([0,T ],Cα(D)) ≤ ‖u‖U. In particular, interpolation shows that for any
U ∈ U, ‖u‖L∞(DT ) + ‖u‖L2([0,T ],C1(D)) ≤ ‖u‖U. Note that C̃ is bounded and linear in both arguments: For all
W ∈W,m ∈ C0([0, T ], Cα(D)) it holds∥∥∥C̃(W,m)

∥∥∥
Lq([0,T ],Cα(D))

≤‖W‖Lq([0,T ]) ‖m‖C0([0,T ],Cα(D)) ‖g‖C2+α(D) . (58)

The proof of Theorem 8 can be transferred to this simplified version of LLG and hence we have that there
exists Cr = Cr(θ) > 0 such that

‖U(W )‖U ≤ Cr for all W ∈WR. (59)

This gives the validity of Assumption 1 with Cr = Cr for the present problem.
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6.1 Proof of Assumptions 2 and 3
In order to apply the general strategy outlined in Section 2.2, we need to prove Assumptions 2 and 3 for the
spaces and residual chosen at the beginning of this section.

Remark 19. The proof of ii. in Assumption 2 requires the use of a Lq-regularity result for the linear parabolic
problem given by the operator ∂uRs(W,u) : U → R which coincides with (46) but Ĉ replaced by C̃. For scalar
problems, this can be found in [51, Section 4]. Strictly speaking, however, Lemma 20 only holds under the
assumption that [51] can be generalized to the vector valued case.

We can prove, analogously to Lemma 14, the following result:

Lemma 20. Let α ∈ (0, 1), g ∈ C2+α(D), M0 ∈ C2+α(D) and 0 < θ <∞. Consider the spaces W,WR,U,UR
defined at the beginning of the present section. Then, the residual Rs (cf. (52), (57)) is a well-defined function
and Assumption 2 holds true. More generally, it can be proved that ∂uRs(W,u) is a homeomorphism between
U and R if

W ∈W, u ∈ U : ‖Im (u)‖L∞(DT ) ≤
1

4
. (60)

Finally, Assumption 3 holds true with εW > 0 and εu = 1
4 and

G1(s) = ‖g‖C2+α(D) (1 + ‖M0‖U + s)
3

G2(s) = Cstab(ε+ θ, s) for all s ≥ 0,

where Cstab(‖W‖W , ‖u‖U) > 0 is as cp in [51, Theorem 2.5], i.e. it guarantees that∥∥∥(∂uR(W,u))
−1
f
∥∥∥
U
≤ Cstab(‖W‖W , ‖u‖U) ‖f‖R for any f ∈ R, W ∈W, u ∈ U.

We recall that, as shown in Section 2.2, the implicit function theorem and Theorem 5 prove the existence of
ε > 0 such that for any y ∈ XR there exists a holomorphic map U : Bε(W (y))→ U such that R(W,U(W )) = 0
for all W ∈ Bε(W (y)). The function U is bounded by a constant Cε > 0 again independent of y. Moreover,
Assumption 3 implies the bound (9) on the differential U ′(W ) as a function of U(W ) through ‖U(W )‖U for all
those W ∈ Bε(W (y)) in W.

6.2 Proof of Assumption 4 and estimates of derivatives of parameter-to-solution
map

Let us now estimate the derivatives of the parameter-to-solution map. To this end, let us find a real positive
sequence ρ = (ρn)n that verifies Assumption 4. Contrary to Section 5.2, here ρ depends on which mixed
derivative ∂ν is considered: Given a multi-index ν = (ν1, . . . , νn) ∈ Nn0 , 0 < δ < 1

2 and 0 < γ < 1 consider a
sequence of positive numbers ρ = ρ(ν, δ, γ) defined as follows:

ρ`,j := γ


1 if ν`,j = 0

2( 3
2−δ)` 1

r`(ν) if ν`,j = 1

2( 1
2−δ)` otherwise

for all ` ∈ N0, j = 1, . . . , d2`−1e, (61)

where we used the hierarchical indexing (5) and r`(ν) := #
{
j ∈ 1, . . . , d2`−1e : ν`,j = 1

}
.

Lemma 21. Consider a multi-index ν = (ν1, . . . , νn) ∈ Nn0 , δ > 0 and 1 < q < 1
1−δ/2 . There exists 0 < γ < 1

such that defining ρ = ρ(ν, δ, γ) as in (61) verifies Assumption 4.

Proof. Let y ∈ XR and z ∈ Bρ(y). (i.e. |zn − yn| ≤ ρn for all n ∈ N). A triangle inequality yields:
‖W (z)−W (y)‖Lq(0,T ) ≤

∑
`∈N0

∑d2`−1e
j=1 |z`,j − y`,j | ‖η`,j‖Lq(0,T ) . For the Faber-Schauder basis functions (3),

‖η`,j‖Lq([0,T ]) ≤ 2−(1/q+1/2)` for any ` ∈ N0 and j = 1, . . . , d2`−1e. Together with the fact that z ∈ Bρ(y), this
gives

‖W (z)−W (y)‖Lq([0,T ]) ≤
∑
`∈N0

2−(1/q+1/2)`

d2`−1e∑
j=1

ρ`,j . (62)

By the definition of ρ, we may write

d2`−1e∑
j=1

ρ`,j = γ

(
# {i : ν`,i = 0}+ 2( 3

2−δ)` 1

r`(ν)
r`(ν) + 2( 1

2−δ)`# {i : ν`,i > 1}
)
. (63)
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Trivially, # {i : ν`,i = 0} ≤ 2` and # {i : ν`,i > 1} ≤ 2`. This, together with (62) and (63) yields

‖W (z)−W (y)‖Lq([0,T ]) ≤ γ
∑
`∈N0

(
2−(1/q−1/2)` + 2−δ`/2 + 2−δ`/2

)
.

Which is finite as long as 1 < q < 1
1−δ/2 . This implies that there exists γ > 0 such that W (z) ∈ Bε(W (y)).

Having so concluded that for any y ∈ XR the parameter-to-solution mapM◦W : Bρ(y)→ U is holomorphic
and uniformly bounded, we can estimate its derivatives as done in Theorem 6.

Proposition 22. Consider m = M0 + u : XR →M0 + UR, the parameter-to-solution map of the parametric
LLG problem defined in the beginning of this section, where XR and UR are defined in (53), (56) respectively.
Fix ε > 0 as in Theorem 5, let δ > 0, 1 < q < 1

1−δ/2 . Fix a multi-index ν = (νi)
n
i=1 ∈ Nn0 for n ∈ N. Define the

positive sequence ρ = (ρn)n∈N as in (61) and choose 0 < γ < 1 such that Assumption 4 holds. Then, it holds
that

‖∂νm(y)‖U ≤
n∏
j=1

νj !ρ
−νj
j Cε for all y ∈ XR, (64)

where Cε > 0 from Theorem 5 is independent of ν or y.

7 Sparse grid approximation of the parameter-to-solution map
We briefly recall the sparse grid construction. A more complete discussion can be found e.g. in [15] or [48].
Consider the family of distinct nodes Ym = (ymi )

m
i=1 ⊂ R for any m ∈ N such that y1

1 = 0 (the reason for this
requirement will be clarified below). We shall write yi rather than ymi when the context makes it unambiguous.
Let Im : C0(R) → Pm denote an interpolation operator over Ym into a suitable m dimensional space Pm, i.e.,
Im[u](y) = u(y) for all y ∈ Ym and any u ∈ C0(R).

Consider a level-to-knot function m : N0 → N, i.e. a strictly increasing function such that m(0) = 1. For
any i ∈ N0, the detail operator is by definition

∆i : C0(R)→ Pm(i)

∆iu = Im(i)u− Im(i−1)u for all u ∈ C0(R),

where Im(−1) ≡ 0 so that ∆0u = I1u ≡ u(0), the constant interpolant in the origin.
In order to discuss interpolation schemes in more than one dimension, denote by F the set of integer-valued

sequences (also called multi-indices) with finite support, i.e. ν ∈ F if and only if supp(ν) := {i ∈ N : νi 6= 0}
is finite.

Given ν ∈ F , the corresponding hierarchical surplus operator is ∆ν :=
⊗

n∈N ∆νn , where the tensor product
is finite as ν ∈ F and ∆0u ≡ u(0). In particular, ∆ν =

⊗
n∈supp(ν) ∆νn . The hierarchical surplus operator can

be applied to any function u ∈ C0(RN), i.e. a continuous function defined on the space of real valued sequences,
by considering only the components of the independent variable in supp (ν) and fixing the remaining ones to 0.
Clearly, ∆νu ∈ Pν :=

⊗
n∈supp(ν) Pm(νn). Consider now Λ ⊂ F downward-closed, i.e.

ν ∈ Λ ⇒ ν − en ∈ Λ for all n ∈ supp(ν),

where en is the n-th coordinate unit vector. The sparse grid interpolant is by definition

IΛ :=
∑
ν∈Λ

∆ν : C0(RN)→ PΛ, (65)

where PΛ :=
⊕
ν∈Λ Pν . It can be proved that the fact that Λ is downward-closed implies that there exists a

finite set HΛ ⊂ RN, the sparse grid, such that IΛu(y) = u(y) for any u ∈ C0(RN) and y ∈ HΛ and IΛu is
the unique element of PΛ with this property. Equivalently, there exists a Lagrange basis (Ly)y∈HΛ

of PΛ, i.e.
Ly(z) = δy,z for any y, z ∈ HΛ. As a consequence, IΛu(z) =

∑
y∈HΛ

u(y)Ly(z) for any u ∈ C0(RN) and all
z ∈ RN.

An important question is the one of (quasi) optimal approximation: Assume that u ∈ C0(RN) belongs to
a given function class and given a computational budget Q ∈ N, we look for Λ ⊂ F downward-closed with
#HΛ ≤ Q such that

‖u− IΛu‖L2
µ(RN) . min

{
‖u− IΛ̃u‖L2

µ(RN)
: Λ̃ ⊂ F downward closed such that #HΛ̃ ≤ Q

}
, (66)
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where the hidden constant is independent of Λ. Following [46], we reformulate the problem of selecting Λ as
a (linear programming relaxation of a) knapsack problem. For a generic multi-index ν ∈ F , consider a value
vν ≥ 0 and work wν > 0 that satisfy

‖∆νu‖L2
µ(RN) . vν for all ν ∈ F ,

#HΛ .
∑
ν∈Λ

wν for all Λ ⊂ F downward-closed.

The optimal multi-index set selection problem (66) is substituted by the following knapsack problem:

max

{∑
ν∈Λ

vν : Λ ⊂ F downward-closed and
∑
ν∈Λ

wν ≤ Q

}
.

The solution to (the linear relaxation of) this problem can be found as follows: Define the profit

Pν :=
vν
wν

for all ν ∈ F .

Induce a partial ordering on F as:

ν1 � ν2 ⇔ Pν1
≥ Pν2

for all ν1,ν2 ∈ F

and sort its elements accordingly as ν1,ν2, . . . In case Pν1 = Pν2 sort the two multi-indices in lexicographic
order. Define for any n ∈ N the n-elements quasi-optimal multi-index set

Λn := {ν1, . . . ,νn} ⊂ F . (67)

We assume that value and work are monotone, i.e. vν+en ≤ vν , wν+en ≥ wν for all ν ∈ F , n ∈ N. This implies
that Λn is downward-closed for any n ∈ N.

The approximation error of the corresponding sparse grid interpolation is estimated as follows.

Theorem 23. [46, Theorem 1] If there exists τ ∈ (0, 1] such that

Cτ :=

(∑
ν∈F
Pτνwν

)1/τ

<∞,

then

‖u− IΛnu‖L2
µ(RN) ≤ Cτ#H1−1/τ

Λn
.

In the next two sections we discuss the sparse grid methods defined using piecewise polynomial interpolation.

7.1 1D piecewise polynomial interpolation on R
Let µ(x;σ2) = 1√

2πσ2
e−x

2/2σ2

denote the normal density with mean zero and variance σ2 > 0. Let µ(x) = µ(x; 1)

and µ̃(x) = µ(x;σ2) for some fixed σ2 > 1. Consider the error function erf(x) = 2√
π

∫ x
0
e−t

2

dt.
For m ∈ N odd, define Ym = {y1, . . . , ym} ⊂ R by

yi = φ

(
−1 +

i

m+ 1

)
i = 1, . . . ,m, (68)

where

φ(x) := α erf−1(x) for all x ∈ (−1, 1), (69)

α = α(p, σ2) :=

√
4p

1− 1
σ2

. (70)

The m nodes define m+ 1 intervals (the first and last are unbounded). See Figure 2.
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−4 −3 −2 −1 0 1 2 3 4
m = 1

−4 −3 −2 −1 0 1 2 3 4
m = 3

−4 −3 −2 −1 0 1 2 3 4
m = 7

−4 −3 −2 −1 0 1 2 3 4
m = 15

Figure 2: Examples of nodes (68) for p = 2 on R. It can be seen that the nodes span a wider and wider portion
of the real line and, at the same time, become denser. If the number of nodes is suitably increased (for example
using (72)), the nodes family is nested.

We define a 1D piecewise polynomial interpolation operator as follows. When m = 1, let for any u ∈ C0(R)
and any p ≥ 2

Ip1 [u] = I1[u] ≡ u(0),

i.e. the constant interpolation. When m ≥ 3, Ipm[u] is the piecewise polynomial function of degree p − 1 over
the intervals defined by Ym. More precisely, for any u ∈ C0(R),

Ipm[u](yi) = u(yi) for all i = 1, . . . ,m,

Ipm[u]|[yi,yi+1] ∈ Pp−1 for all i = 1, . . . ,m− 1,

Ipm[u](y) polynomial extension of Ipm[u]|[y1,y2] if y ≤ y1,

Ipm[u](y) polynomial extension of Ipm[u]|[ym−1,ym] if y ≥ ym.

We assume that for each i = 1, . . . ,m− 1, the interval (yi, yi+1) contains additional p− 2 distinct interpolation
nodes so that Ipm[u] is uniquely defined.

The function φ is such that (φ′(x))
2p
µ̃−1(φ(x))µ(φ(x)) is constant and equals

Cφ =
√
σ2

(
α
√
π

2

)2p

, (71)

where α was defined in (70).
The following result is a standard interpolation error estimate on weighted spaces which, in this precise form,

we could not find in the literature.

Lemma 24. Consider u : R→ R with ∂u ∈ L2
µ̃(R). Then,

‖u− I1[u]‖L2
µ(R) ≤ C̃1 ‖∂u‖L2

µ̃(R) ,

where C̃1 =
√∫

R |y| µ̃−1(y)dµ(y). If additionally, ∂pu ∈ L2
µ̃(R) for p ≥ 2, then

‖u− Ipm[u]‖L2
µ(R) ≤ C̃2(m+ 1)−p

‖∂pu‖L2
µ̃(R)

p!
for all m ≥ 3 odd,

where C̃2 =
√
Cφ

p
2 (m− 1 + 22p+1) and Cφ was defined in (71).

Proof. For the first estimate, the fundamental theorem of calculus and Cauchy-Schwarz inequality yield u(y)−
u(0) =

∫ y
0
∂u ≤ ‖∂u‖L2

µ̃(R)

√∫ y
0
µ̃−1. Substitute this in ‖u− u(0)‖L2

µ(R) to obtain the first estimate.
For the second estimate, let i ∈ {2, . . . ,m− 2}. Apply the fundamental theorem of calculus p times and

recall that Ipm[u] ∈ Pp−1([yi, yi+1]) to obtain: (u− Ipm[u]) (y) =
∫ y
yi

∫ z1
ξ1
· · ·
∫ zp−1

ξp−1
∂pu, for all y ∈ [yi, yi+1], where

ξi ∈ [yi, yi+1] is such that ∂i(u − Ipm[u])(ξi) = 0. The Cauchy-Schwarz inequality applied to the last integral
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gives
∫ zp−1

ξp−1
∂pu ≤ ‖∂pu‖L2

µ̃([yi,yi+1])

√∫ yi+1

yi
µ̃−1. We can then estimate with elementary facts

(u− Ipm[u]) (y) ≤ ‖∂pu‖L2
µ̃([yi,yi+1])

∫ y

yi

∫ z1

yi

· · ·
∫ zp−2

yi

√∫ yi+1

yi

µ̃−1

≤ ‖∂pu‖L2
µ̃([yi,yi+1]) µ̃

−1/2(y)

∫ z1

yi

· · ·
∫ zp−2

yi

√
|zp−1 − yi|

≤ ‖∂pu‖L2
µ̃([yi,yi+1]) µ̃

−1/2(y)
|y − yi|p−1+ 1

2

(p− 1)!
.

Consider now only i ∈
{
m+1

2 , . . . ,m− 2
}
. Then,∫ yi+1

yi

|u− Ipm[u]|2 (y)dµ(y) ≤
‖∂pu‖2L2

µ̃([yi,yi+1])

(p− 1)!

∫ yi+1

yi

|y − yi|2p−1
µ̃−1(y)dµ(y).

In order to estimate the last integral, change variables using φ defined in (69). We get∫ yi+1

yi

|y − yi|2p−1
µ̃−1(y)dµ(y) ≤

∫ xi+1

xi

|φ(x)− φ(xi)|2p−1
µ̃−1(φ(x))µ(φ(x))φ′(x)dx.

A Taylor expansion and the fact that φ′ is increasing give φ(x)− φ(xi) ≤ φ′(x)(x− xi). So we get∫ yi+1

yi

|y − yi|2p−1
µ̃−1(y)dµ(y) ≤

∫ xi+1

xi

(x− xi)2p−1 (φ′(x))
2p
µ̃−1(φ(x))µ(φ(x))dx.

Recall now that (φ′(x))
2p
µ̃−1(φ(x))µ(φ(x)) ≡ Cφ. Integration yields∫ yi+1

yi

|y − yi|2p−1
µ̃−1(y)dµ(y) ≤ (m+ 1)−2p

2p
Cφ.

For the original quantity, we get∫ yi+1

yi

|u− Ipm[u]|2 (y)dµ(y) ≤ Cφ
p2

2p
(m+ 1)−2p

(
‖∂pu‖L2

µ̃([yi,yi+1])

p!

)2

.

For i = m− 1,m, recall that Ipm is defined in [ym,+∞) as the polynomial extension from the previous interval.
Analogous estimates give∫ +∞

ym−1

|u− Ipm[u]|2 (y)dµ(y) ≤ Cφ
p2

2p
22p(m+ 1)−2p

(
‖∂pu‖L2

µ̃([yi,yi+1])

p!

)2

.

Analogous estimates for i ≤ m+1
2 give the second estimates.

We define the following level-to-knots function:

m(ν) := 2ν+1 − 1 for all ν ∈ N0 (72)

and observe that
(
Ym(i)

)
i∈N0

are nested, i.e. Ym(i) ⊂ Ym(i+1) for all i ∈ N0. The level-to-knot function is used
to define detail operators ∆ν and hierarchical surpluses as explained in the beginning of the section. We now
apply the previous results to estimate 1D detail operators.

Lemma 25. Consider u : R→ R, a continuous function with ∂u ∈ L2
µ̃(R) and p ≥ 2. There holds

‖∆1[u]‖L2
µ(R) ≤ C1 ‖∂u‖L2

µ̃(R) ,

where C1 = 23/2C̃1

√∫∞
0

∑p
j=1

∣∣l′j∣∣2 dµ̃ 4

√∫ y3

0
µ̃−1, C̃1 > 0 was defined in the previous lemma, y1, y2, y3 delimit

the intervals of definition of the piecewise polynomial Ip3 [u] and (lj)
p
j=1 denote the Lagrange basis of Pp−1([y2, y3])

with respect to y2, y3 and other p− 2 district points in (y2, y3).
If additionally ∂pu ∈ L2

µ̃(R), then we have

‖∆ν [u]‖L2
µ(R) ≤ C22−pν

‖∂pu‖L2
µ̃(R)

p!
for all ν ≥ 1,

where C2 = C̃2(1 + 2−p) and C̃2 > 0 was defined in the previous lemma.

24



Proof. To prove the first estimate, recall that nodes are nested so I1[u] = I1 [Ip3 [u]]. This implies that

∆1[u] = Ip3 [u]− I1[u] = Ip3 [u]− I1 [Ip3 [u]] = (1− I1) [Ip3 [u]] .

The previous lemma gives

‖∆1[u]‖L2µ(R) ≤ C̃1 ‖∂Ip3 [u]‖L2
µ̃(R) .

To estimate the last integral, consider x1 = y2 < x2 < · · · < xp = y3 the interpolation nodes in the interval
[y2, y3]. Observe that ∂Ip[u] = ∂Ip[u− u(0)] and estimate

∫ ∞
0

|∂Ip[u]|2 dµ̃ =

∫ ∞
0

|∂Ip[u− u(0)]|2 dµ̃ =

∫ ∞
0

∣∣∣∣∣∣
p∑
j=1

(u(xj)− u(0))l′j

∣∣∣∣∣∣
2

dµ̃

≤ 2 max
j=1,...,n

|u(xj)− u(0)|2
∫ ∞

0

p∑
j=1

∣∣l′j∣∣2 dµ̃

Since the second term is bounded for fixed p, let us focus on the first one. Simple computations give

max
j=1,...,n

|u(xj)− u(0)| ≤
∫ y3

0

|∂u| ≤ ‖∂u‖L2
µ̃([0,y3])

√∫ y3

0

µ̃−1.

This, together with analogous computations on (−∞, 0], gives the first estimate.
To prove the second estimate, observe that

‖∆ν [u]‖L2
µ(R) =

∥∥∥Ipm(ν)[u]− Ipm(ν−1)[u]
∥∥∥
L2
µ(R)
≤
∥∥∥u− Ipm(ν)[u]

∥∥∥
L2
µ(R)

+
∥∥∥u− Ipm(ν−1)[u]

∥∥∥
L2
µ(R)

The previous lemma and simple computations imply the second estimate.

We can finally estimate hierarchical surpluses as follows.

Proposition 26. Let u : RN → R, p ≥ 2 and ν ∈ F . Then

‖∆ν [u]‖L2
µ(RN) ≤

( ∏
i:νi=1

C1

) ∏
i:νi>1

(
C22−pνi

p!

)∥∥∥∂{i:νi=1}∂
p
{i:νi>1}u

∥∥∥
L2
µ̃(RN)

,

where u is understood to be sufficiently regular for the right-hand-side to be well defined and C1, C2 > 0 are
constants defined in the previous lemma.

Proof. Assume without loss of generality that all components of ν are non-zero except the first N ∈ N. Then,

‖∆ν [u]‖2L2
µ(RN) =

∫
RN
|∆ν [u]|2 dµ =

∫
RN−1

∫
R
|∆1[y1 7→ ∆ν̂1

u]|2 dµ1dµ̂1,

where we denoted ν̂1 = (ν2, . . . , νN ) and µ̂1 the N − 1-dimensional Gaussian measure. We apply the previous
estimate (assume that ν1 = 1, the other case is analogous) to get

‖∆ν [u]‖2L2
µ(RN) ≤

∫
RN−1

C2
1

∫
R
|∂1∆ν̂1

[u]|2 dµ̃1dµ̂1.

We now exchange the integrals as well as the operators acting on u to get

‖∆ν [u]‖2L2
µ(RN) ≤ C

2
1

∫
R

∫
RN−1

|∆ν̂1
[∂1u]|2 dµ̂1dµ̃1.

We can iterate this procedure N − 1 additional times to obtain the statement.

7.2 Basic profits and dimension dependent convergence
In the present section, we discuss the convergence of sparse grid approximation when the sample paths of Wiener
processes and magnetizations are assumed to be Hölder-continuous. To this end, we apply the results found in
Section 5.
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Let us apply Proposition 6 to estimate the derivatives appearing in the estimate we found in Proposition
26. We find

‖∆ν [u]‖L2
µ(RN) ≤

∏
i∈supp(ν)

ṽνi , where ṽνi =

{
C1ρ

−1
i if νi = 1

C2 (2νiρi)
−p if νi > 1

and ρi = ε2
(1−α)dlog2(i)e

2 . Recall the framework presented at the beginning of Section 7. Given a multi-index
ν ∈ F , we define as its value and work respectively

ṽν =
∏

i∈supp(ν)

ṽνi , (73)

wν =
∏

i∈supp(ν)

p2νi . (74)

The definition of work is justified as follows: From the definition of 1D nodes (68) and level-to-knots function
(72), each time a multi-index is added to the multi-index set, the sparse grid gains (2νi+1 − 2)(p− 1) + 1 new
nodes in the i-th coordinate.

Recall that the profit is the ratio of value and work. In this case, it reads

P̃ν =
ṽν
wν

. (75)

We apply the convergence Theorem 23 to obtain a convergence rate that depends root-exponentially on the
number of approximated parameters. We skip the computations because they are a simplified version of the
ones presented in the next section.

Theorem 27. Let N ∈ N and denote by mN : RN → C1+α/2,2+α(DT ) the parameter-to-solution map of the
parametric LLG problem under assumption that W (y, t) =

∑
i∈N yiηi(t) =

∑N
i=1 yiηi(t) for all t ∈ [0, T ] and

all y ∈ RN. Let ΛN ⊂ NN denote the multi-index set (67) defined using P̃ν as in (75). Let IΛN denote the
corresponding piecewise polynomial sparse grids interpolant of degree p− 1 with nodes (68) and p ≥ 2. Denote
HΛn ⊂ RN the corresponding sparse grid. Under the assumptions of Theorem 8, for any 2

(1+α)p < τ < 1,

‖mN − IΛNmN‖L2
µ(RN ,C1+α/2,2+α(DT )) ≤ Cτ,p(N) (#HΛn)

1−1/τ
, (76)

where Cτ,p(N) is a function of τ , p, N . In particular,

Cτ,p(N) = (1 + P0)1/τ exp
1

τ

(
Cτ1 (2p)

1−τ

2

1−N (1−(1−α)τ/2)

1− 21−(1−α)τ/2
+
Cτ2 σ(p, τ)

2

1

1− 21−(1−α)pτ/2

)
,

where P0 = Cτ1 (2p)1−τ + Cτ2 p
1−τσ(p, τ), σ(p, τ) = 22(1−τ(p+1))

1−21−τ(p+1) and C1, C2 were defined in Lemma 25. In
particular, the bound grows root-exponentially in the number of dimensions.

7.3 Improved profits and dimension independent convergence
In the previous section, we could prove only a dimension-dependent convergence. This may be attributed to
the slow growth of the holomorphy radii ρi . 2

(1−α)`(i)
2 . Let us consider the setting from Section 6, in which we

assumed small Wiener processes and a coefficient g with small gradient. With these modelling assumptions, we
proved that the holomorphy radii can be chosen as (61). This will be sufficient to obtain dimension-independent
convergence.

Again we work within the framework described at the beginning of Section 7.
We need to define values that, for any ν ∈ F , bound ‖∆νu‖L2

µ(RN,U) from above. The estimates from
Proposition 26 and the estimate on the derivatives from Proposition 22 motivate the following choice of values:

vν =
∏

i∈supp(ν)

vνi , where vνi =

{
C1ρ

−1
i if νi = 1

C2 (2νiρi)
−p if νi > 1

and

ρi = ρ`,j := γ

{
2( 3

2−δ)` 1
r`(ν) if ν`,j = 1

2( 1
2−δ)` otherwise

.
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Here, i and (`, j) are related through the hierarchical indexing (5), δ > 0 is small and for any ` ∈ N0, ν ∈ F ,
r`(ν) = #

{
j ∈

{
1, . . . , d2`−1e

}
: ν`,j = 1

}
. With the work defined as in (74), the profits now read

Pν =
vν
wν

. (77)

Let us determine for which τ ∈ (0, 1) the sum
∑
ν∈F v

τ
νw

1−τ
ν is finite. This setting is more complex than the

one in the previous section because the factors vνi that define the values vν depend in general on ν rather than
νi alone. Define

F∗ := {ν ∈ F : νi 6= 1 for all i ∈ N}

and for any ν ∈ F∗

Kν := {ν̂ ∈ F : ν̂i = νi if νi > 1 and ν̂i ∈ {0, 1} if νi = 0} .

The family {Kν}ν∈F∗ is a partition of F . As a consequence,∑
ν∈F

vτνw
1−τ
ν =

∑
ν∈F∗

∑
ν̂∈Kν

vτν̂w
1−τ
ν̂

=
∑
ν∈F∗

∑
ν̂∈Kν

∏
i:ν̂i≤1

(
vτν̂iw

1−τ
ν̂i

) ∏
i:ν̂i>1

(
vτν̂iw

1−τ
ν̂i

)
=
∑
ν∈F∗

∏
i:νi>1

(
vτνiw

1−τ
νi

) ∑
ν̂∈Kν

∏
i:ν̂i≤1

(
vτν̂iw

1−τ
ν̂i

)
.

(78)

Consider the following subset of F :

F {0, 1} := K0 = {ν ∈ F : νi ∈ {0, 1} for all i ∈ N} .

Lemma 28. Let 0 < p < 1, p < q <∞, and the sequence a = (aj)j∈N ∈ `p(N). Then,

(|ν|1! aν)
ν∈F{0,1} ∈ `

q(F {0, 1}).

Proof. Choose ε > 0 such that 1
1+ε ≥ p and q > p(1 + ε). We consider α > |a|1/(1+ε) and write

∑
ν∈F{0,1}

(|ν|1! aν)
q

=
∑

ν∈F{0,1}

(
|ν|1! α|ν|1

(a
α

)ν)q
.

There exists Cε > 0 such that α|ν|1 ≤ Cε (|ν|1!)
ε for all ν ∈ F {0, 1}. Thus,∑

ν∈F{0,1}

(|ν|1! aν)
q .

∑
ν∈F{0,1}

(
(|ν|1!)

1+ε
(a
α

)ν)q
.

Factorizing out the 1 + ε yields

∑
ν∈F{0,1}

(|ν|1! aν)
q .

∑
ν∈F{0,1}

(
|ν|1!

(a
α

) 1
1+εν

)(1+ε)q

.

Since ν! = 1 for all ν ∈ F {0, 1}, we can write

∑
ν∈F{0,1}

(|ν|1! aν)
q .

∑
ν∈F{0,1}

(
|ν|1!

ν!

(a
α

) 1
1+εν

)(1+ε)q

. (79)

Observe that
∑
j(
aj
α )

1
1+ε < 1 because of the definition of α. Moreover, from the assumption on a we have(

a
α

) 1
1+ε ∈ `r(N) for any r ≥ p(1 + ε). Then, [21, Theorem 1] implies that the second sum in (79) is finite, thus

proving the statement.

Lemma 29. If τ > 1
3
2−δ

, there exists C > 0 such that for any ν ∈ F∗,∑
ν̂∈Kν

∏
i:ν̂i≤1

(
vτν̂iw

1−τ
ν̂i

)
≤ C.
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Proof. For this proof, we denote the level of i by `(i). First observe that, from the definitions of value and work,
we may write ∏

i:ν̂i≤1

(
vτν̂iw

1−τ
ν̂i

)
=
∏
i:ν̂i=1

(
C12−( 3

2−δ)`(i)r`(i)(ν)
)τ

(2p)
1−τ

.

The factors in the right-hand-side are independent of the components of ν for which νi 6= 1. Thus, we define

Dν =

{
d ∈ F :

{
di = 0 if νi > 1

di ∈ {0, 1} otherwise

}
⊂ F {0, 1}

and substitute∑
ν̂∈Kν

∏
i:ν̂i=1

(
C12−( 3

2−δ)`(i)r`(i)(ν̂)
)τ

(2p)
1−τ

=
∑
d∈Dν

∏
i:di=1

(
C12−( 3

2−δ)`(i)r`(i)(d)
)τ

(2p)
1−τ

.

From the definition of r`(i)(d), we estimate
∏
i:di=1 r`(i)(d) ≤

∏
`:∃j:d`,j=1 r`(d)r`(d). Stirling’s formula gives

r`(d)r`(d) ≤ r`(d)!er`(d). Denote d` =
(
d`,1, . . . , d`,d2`−1e

)
for any ` ∈ N0 and observe that r`(d) ≤ |d`|1.

Together with an elementary property of the factorial, this gives
∏
`:∃j:d`,j=1 (r`(d))! ≤

∏
`:∃j:d`,j=1 |d`|1! ≤(∑

`∈N |d`|1
)
! = |d|1!. To summarize, we have estimated∑

ν̂∈Kν

∏
i:ν̂i≤1

(
vτν̂iw

1−τ
ν̂i

)
≤
∑
d∈Dν

(|d|1!)τ
∏
i:di=1

(
Cτ1 2−( 3

2−δ)`(i)τ (2p)
1−τ

eτ
)
.

Define cj := C12−( 3
2−δ)`(j) (2p)

(1−τ)/τ
e for all j ∈ N to obtain

∑
ν̂∈Kν

∏
i:ν̂i≤1

(
vτν̂iw

1−τ
ν̂i

)
≤
∑
d∈Dν

(
|d|1!cd

)τ
.

Simple computations reveal that c = (cj)j ∈ `τ (N) for all τ > ( 3
2 − δ)

−1. We apply the previous lemma and
conclude the proof.

Going back to (78), we are left with determining for which parameters p ≥ 3, τ > 1
3
2−δ

the series
∑
ν∈F∗

∏
i:νi>1

(
vτνiw

1−τ
νi

)
is summable. By means of the product structure of the summands, we can write

∑
ν∈F∗

∏
i:νi>1

(
vτνiw

1−τ
νi

)
=
∏
i∈N

∑
νi∈N\{1}

vτνiw
1−τ
νi =

∏
i∈N

1 +
∑
νi≥2

(
C22−p((

1
2−δ)`(i)+νi)

)τ
(p2νi)

1−τ

 .

Observe that the sum is finite if τ ≥ 1
p+1 and in this case∑

νi≥2

(
C22−p((

1
2−δ)`(i)+νi)

)τ
(p2νi)

1−τ
= Cτ2 2−p(

1
2−δ)`(i)τp1−τσ,

where σ = σ(p, τ) = 22(−(p+1)τ+1)

1−2−(p+1)τ+1 . To summarize, denoting F` := Cτ2 2−p(
1
2−δ)`τp1−τσ, so far we have estimated∑

ν∈F∗
∏
i:νi>1

(
vτνiw

1−τ
νi

)
≤
∏
i∈N
(
1 + F`(i)

)
. We can further estimate, recalling the hierarchical indexing (5),

∏
i∈N

(
1 + F`(i)

)
≤ exp

(∑
i∈N

log
(
1 + F`(i)

))
≤ exp

(∑
`∈N0

2` log (1 + F`)

)
≤ exp

(∑
`∈N0

2`F`

)
.

The last sum can be written as
∑
`∈N0

2`F` = Cτ2 p
1−τσ

∑
`∈N0

2(1−( 1
2−δ)pτ)`, which is finite for τ > 1

p( 1
2−δ)

and

in this case equals Cτ2 p1−τσ
(

1− 21−( 1
2−δ)pτ

)−1

.

Remark 30. When p = 2 the condition τ > 1

p( 1
2−δ)

just above gives τ > 1 for any δ > 0. This means that

we are not able to show that piecewise linear sparse grids converges independently of the number of dimensions
(although we see it in the numerical experiments below). Conversely, if p ≥ 3 there exists 2

3 < τ < 1 that
satisfies all the conditions (remember that while δ cannot be 0, it can be chosen arbitrarily small).

Finally Theorem 23 implies the following convergence.

Theorem 31. Consider the parameter-to-solution map of the random LLG problem m = M0 +u as in Section
6. Recall thatM0 ∈ C2+α(D) is the initial condition and u : XR → UR with XR and UR defined in (53) and (56)
respectively. Let Λn ⊂ F denote the multi-index set (67) defined using the profits Pν (77). Let IΛn denote the
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corresponding piecewise polynomial sparse grids interpolant of degree p− 1 for p ≥ 3 with nodes (68). Assume
that the corresponding sparse grid satisfies HΛn ⊂ XR. Under the assumptions of Theorem 8, for any 2

3 < τ < 1,

‖m− IΛnm‖L2
µ(XR;U) ≤ Cτ,p (#HΛn)

1−1/τ
.

where Cτ,p is a function of τ , p but is dimension independent. In particular,

Cτ,p = C
1
τ exp

(
1

τ
Cτ2 p

1−τ 22(−(p+1)τ+1)

1− 2−(p+1)τ+1

1

1− 21−( 1
2−δ)pτ

)
,

where in turn C is defined in Lemma 29 and C2 is defined in Lemma 25.

Remark 32 (On optimality of the convergence rate − 1
2 ). The best convergence rate with respect to the number of

collocation nodes predicted by the theorem is − 1
2 and corresponds to τ = 2

3 . This is the same as the convergence
rate of the parametric truncation with respect to the number of parameters: Denoting m(y) the parametric
solution for y ∈ RN and by mN (y) := m((y1, . . . yN , 0, 0, . . . )), for any N ∈ N, its N -dimensional truncation,
one can show that

‖m−mN‖L2
µ(XR,L2([0,T ],H1(D))) . N−1/2.

Since it is not possible to have less than 1 collocation node per dimension, the sparse grid algorithm achieves
the optimal approximation rate.

In particular, piecewise quadratic approximation (p = 3) has optimal convergence rate and using p > 3
does not improve the convergence rate (but may improve the constant Cτ,p). For the same reason, sparse grid
interpolation based on other 1D interpolations schemes (e.g. global polynomials) cannot give a better convergence
rate (but may improve the constant).

Remark 33. Given an approximation mΛ(y) = IΛ[m](y) of the solution to the parametric LLG problem (20),
it is easy to sample an approximate random solution of the random LLG problem (19) too. One has to sample
i.i.d. standard normal random variables Y = (Yi)

NΛ
i=1 and evaluate mΛ(Y1, . . . , YNΛ

). Here NΛ ∈ N is the
support size of the multi-index set Λ: NΛ := min {n ∈ N : for all ν ∈ Λ supp(ν) ⊂ {1, . . . , n}}. Equivalently,
NΛ is the number of active parameters in the sparse grid interpolant IΛ. The root-mean-square error is naturally
the same as the one we estimated in the previous theorem√

EY ‖m(Y )−mΛ(Y )‖U = ‖m− IΛm‖L2
µ(XR,U) .

We can also draw approximate samples from the random solution of the stochastic PDE (16):

1. Sample a Wiener process W (ω, ·)

2. Compute the first NΛ coordinates Y = (Y1, . . . , YNΛ) ∈ RNΛ of its Lévy-Ciesielski expansion W (ω, ·) =∑∞
i=1 Yiηi(·)

3. Compute mΛ(Y ), the approximate solution to the random LLG problem (19)

4. Finally compute the inverse Doss-Sussmann transform MΛ := eWGmΛ. (Recall the convenient expres-
sion for eWG in the third line of (17)).

The approximation error is again comparable to the one found in the previous theorem. Indeed, denoting ‖·‖
the root-mean-square error, the Doss-Sussmann transform implies

√
EW ‖M −MΛ‖U =

∥∥eWG (m−mΛ)
∥∥.

The third line of (17) followed by a triangle inequality then give

‖M −MΛ‖ ≤
(

1 + ‖g‖L∞(D) + ‖g‖2L∞(D)

)
‖m−mΛ‖ .

7.4 Numerical tests
We numerically test the convergence of the sparse grid method defined above. Since no exact sample path of
the solution is available, we approximate them with the space and time approximation from [1]. This method
is based on the tangent plane scheme and has the advantage of solving one linear elliptic problem per time step
with finite elements. The time-stepping is based on a BDF formula. The method is high-order for both the
finite elements and BDF discretization.
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We consider the problem on the 2D domain D = [0, 1]2 with z = 0. The final time is T = 1. The noise
coefficient is defined as

g(x) =

−1

2
cos(πx1),−1

2
cos(πx2),

√
1−

(
1

2
cos(πx1)

)2

−
(

1

2
cos(πx2)

)2
 . (80)

Observe that ∂ng = 0 on ∂D and that |g| = 1 on D. The initial condition is M0 = (0, 0, 1).
The space discretization is order 1 on a structured triangular mesh with 2048 elements and mesh-size h > 0.

The time discretization is order 1 on 256 equispaced time steps of size τ > 0. We use piecewise affine sparse
grid, corresponding to p = 2. As for the multi-index selection, we compare two strategies:

• The basic profit from Section 7.2. We recall that

P̃ν =
∏
i:νi=1

2−
1
2 `(i)

∏
i:νi>1

(
2νi+

1
2 `(i)

)−p ∏
i:νi≥1

p2νi

−1

for all ν ∈ F ,

where `(i) = dlog2(i)e. Compared to (75), here we have set C1 = C2 = ε = 1 and α = 0 for simplicity.

• A modified version of the improved profit from Section 7.3, namely

Pν =
∏
i:νi=1

2−
3
2 `(i)

∏
i:νi>1

(
2νi+

1
2 `(i)

)−p ∏
i:νi≥1

p2νi

−1

for all ν ∈ F , (81)

where again `(i) = dlog2(i)e. Compared to Section 7.3, we have set C1 = C2 = γ = 1 and neglected the
factor r`(ν).

We estimate the approximation error of the sparse grid approximations with the following computable
quantity: 1

N

∑N
i=1 ‖mτh(yi)− IΛ[mτh](yi)‖L2([0,T ],H1(D)), where N = 1024, (yi)

N
i=1 are i.i.d. standard normal

samples of dimension 210 each and mhk(yi) denotes the corresponding space and time approximation of the
sample paths.

Observe that if the time step is τ = 2−n, then the parameter-to-finite element solution map depends only
on the first n + 1 levels of the Lévy-Ciesielski expansion. In our case, n = 8, so the maximum relevant level
is L = 9, i.e. 512 dimensions. In the following numerical examples we always approximate fewer dimensions,
which means that the time-discretization error is negligible compared to the parametric approximation error.

The results are displayed in Figure 3. In the top plot, we observe that using basic profits leads to a sub-
algebraic convergence rate which decreases as the number of approximated dimensions increases. Conversely,
improved profits leads to a robust algebraic convergence of order about 1

2 . Piecewise quadratic interpolation is
optimal as predicted in Section 7.3 and it delivers the same convergence rate as piecewise linear interpolation.
Hence, the restriction in Theorem 31 is possibly an artefact of the proof. In view of Remark 32, it seems
unnecessary to test higher polynomial degrees. In the bottom left plot, we observe that the number of active
dimensions (i.e., those dimension which are seen by the sparse-grid algorithm) grows similarly for all methods,
with the basic profit having a slightly higher value. Finally, we verify numerically that the approximation power
of the method does not degrade when space and time approximations are refined, see the bottom right plot in
Figure 3.

8 Multi-level sparse grid collocation
In the present section, we show how the sparse grid scheme defined and studied in this work can be combined
with a method for space and time approximation to define a fully discrete approximation scheme. Here we
employ again the linearly implicit BDF-finite element scheme from [1].

Given τ > 0, consider Nτ = T
τ equispaced time steps on [0, T ]. Given h > 0, define a quasi-uniform

triangulation Th of the domain D ∈ Rd for d ∈ N with mesh-spacing h. Denote, for any y ∈ XR, mτh(y) the
space and time approximation of m(y). Assume that there exists a constant CFE > 0 independent of h or τ
such that

‖m−mτ,h‖L2
µ(XR;U) ≤ CFE(τ + h).

Moreover, we assume that the computational cost (number of floating-point operations) of computing a single
mτh(y) is proportional to

Csample(τ, h) = τ−1h−d.
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Figure 3: Approximation of y 7→m(y). Top: Error vs. number of collocation nodes; Bottom left: Number of
effective dimensions vs. number of collocation nodes. Bottom right: Comparison of convergence of the sparse
grid approximation (p = 3, i.e. piecewise quadratic) for different space and time discretization parameters. In
all cases time step τ and mesh size h are related by h = 8τ .
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Indeed, the numerical scheme requires, at each time step, solving a linear system of size proportional to the
number of elements of Th, which in turn is proportional to h−d. The latter operation can be executed with
empirical linear complexity using GMRES with multigrid preconditioning. See [38], for a mathematically
rigorous preconditioning strategies for LLG.

Theorem 31 shows that there exists CSG > 0 and 0 < r < 1
2 such that, denoting IΛ the sparse grid interpolant

and HΛ the corresponding sparse grid,

‖m− IΛ[m]‖L2
µ(XR;U) ≤ CSG (#HΛ)

−r
.

A Single-Level approximation of m can be defined as

mSL
Λ,τ,h := IΛ [mτ,h] .

The cost of computing the single-level approximation is CSL
Λ,τ,h := #HΛCsample(τ, h). The approximation accu-

racy can be estimated as∥∥m−mSL
Λ,τ,h

∥∥
L2
µ(XR;U)

≤ ‖m− IΛ[m]‖L2
µ(XR;U) + ‖IΛ[m−mτ,h]‖L2

µ(XR;U)

≤ CSG (#HΛ)
−r

+ CstabCFE(h+ τ),

where Cstab = Cstab(p) > 0 is the stability constant of the sparse grid interpolation operator, which depends on
the degree p − 1 of piecewise interpolation. A quasi-optimal single-level approximation requires balancing the
three approximation parameters Λ, τ and h so that the summands in the previous estimate have similar values.
This choice leads to, as it can be proved with simple computations, the following error estimate with respect to
the cost CSL

Λ,τ,h ∥∥m−mSL
Λ,τ,h

∥∥
L2
µ(XR;U)

.
(
CSL

Λ,τ,h

)− 1
1
r

+(d+1) . (82)

A Multilevel approximation of m can be defined following [55], to which we refer to for further details.
Let K ≥ 0 and consider a sequence of approximation parameters (Λk)

K
k=0, (τk)

K
k=0 and (hk)

K
k=0. Denote

mk = mτk,hk for 0 ≤ k ≤ K and m−1 ≡ 0. Define the multilevel approximation as

mML
K :=

K∑
k=0

IΛk [mK−k −mK−k−1] .

The computational cost is proportional to CML
K =

∑K
k=0 #HΛkCsample(τK−k, hK−k). To guarantee approxima-

tion, we require the following assumption on the sparse grid approximation of differences: For any 0 ≤ k ≤ K,

‖mk −mk−1 − IΛ[mk −mk−1]‖L2
µ(XR;U) ≤ CSG (#HΛ)

−r
(hk + τk).

For the multilevel-approximation to be quasi-optimal, all terms in the multilevel expansion shall have similar
magnitude to the K-th (finest) time and space approximation. To this end, we choose the multi-index sets Λk
so that (

#HΛK−k

)−r ≤ CFE (CSG(K + 1))
−1 τK + hK

τk + hk
. (83)

As a consequence, the multilevel error with optimal sparse grids sizes (83) can be estimated as
∥∥m−mML

K

∥∥
L2
µ(XR;U)

≤
2CFE(τK + hK). The error can be related to the computational cost as done in [55]. We obtain the improved
error-to-cost relation ∥∥m−mML

K

∥∥
L2
µ(XR;U)

.
(
CML
K

)− 1
d+1 . (84)

We compare numerically single- and multilevel schemes on the following example of relaxation dynamics
with thermal noise. The domain is D = [0, 1]2 with z = 0. The final time is T = 1. The noise coefficient g is set
to one fifth of the coefficient defined in (80). The initial conditionM0 coincides with (80). The time and space
approximations are both of order 1. The sparse grid scheme is piecewise linear and the multi-index sets are
built using the improved profit (81) from the previous numerical experiments. Observe that, in the following
convergence tests, refinement leads automatically to an increase of the number of approximated parameters and
a reduction of the parametric truncation error. We consider 0 ≤ K ≤ 5 and define τk = 2−k−2, hk = 2−k, and
Λk using the same profit-maximization as in the previous section.
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Figure 4: Comparison of single- and multilevel approximations based on piecewise polynomial sparse grids for
the parametric approximation and the linearly implicit BDF-finite elements methods from [1] for time and space
approximation.

For the single-level approximation, we choose Λk minimal such that #HΛk > 22k. The last choice corresponds
to assuming that the sparse grid approximation converges with order r = 1

2 with respect to the number of
collocation nodes. We compute a sequence of single-level approximations mSL

Λk,τk,hk
for k = 0, . . .K and report

the results in Figure 4.
For the multilevel approximation, we follow formula (83). The constants CFE ≈ 0.7510, CSG ≈ 0.1721 and

r ≈ 0.4703 are determined with short sparse grid and finite element convergence tests. We obtain

K #HΛ0
#HΛ1

#HΛ2
#HΛ3

#HΛ4
#HΛ5

0 1
1 1 3
2 1 3 10
3 1 4 18 82
4 2 7 27 131 602
5 2 10 42 193 887 1500

The last figure 1500 is chosen smaller than the one required by the formula (4082) to guarantee reasonable
computational times. Again results are reported in Figure 4.

Since the solution in closed form is not available, we approximate it with a reference solution. We consider
128 Monte Carlo samples of W and approximate the corresponding sample paths in space and time with time
step τref = 2−9 and mesh size href = 2−7. Computing the error for the single- and multilevel approximation
requires first sampling the interpolants on the Monte Carlo sample parameters and then interpolating in the
reference space.

The convergence test confirms that the multilevel method is superior to the single-level method.
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