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ABSENCE OF THE EFIMOV EFFECT FOR A SYSTEM OF CONFINED

PARTICLES

MARVIN R. SCHULZ, SYLVAIN ZALCZER

Abstract. We consider a system a three particles interacting via short-range potentials,
such that two of the particles are on parallel lines in a plane and the third one is on a line
perpendicular to this plane. We prove that the corresponding Schrödinger operator only has
a finite number of discrete eigenvalues which disproves a recent prediction made in physics
literature [11].

1. Introduction

The Efimov e↵ect can be described as follows: The three-body Schrödinger operator of a
system of three three-dimensional particles that interact via short-range potentials has an infinite
number of negative eigenvalues, if the Hamiltonians of the two-body subsystems have no negative
eigenvalues and at least two of them have a zero-energy resonance. Moreover, the eigenvalues
form a geometric sequence whose common ratio is independent from the nature of the potentials.
Such an curious phenomenon was first predicted by the physicist Vitaly Efimov in 1970 [5]. In
1974, Yafaev gave the first rigorous mathematical proof of it in [24]. The Efimov e↵ect was
considered by physicists as a purely theoretical curiosity, until it was observed experimentally
in the early 2000’s in an ultracold gas of caesium atoms [9]. Efimov’s e↵ect has since then be
studied both by the physics and mathematics community, see for example the review [11], the
PhD thesis [3] or the lecture notes [4] for further references.

One particularly interesting question was whether a similar e↵ect could occur in configurations
di↵erent from the classical situation of three particles in dimension three. It was proven in [21]
that the Efimov e↵ect does not exists for a system of three one- or two-dimensional bosons.
Advances in experiments with ultra-cold Fermi-Fermi mixtures such as in [16] make it possible
to study situations where di↵erent species of particles are confined to distinct subspaces of R3,
see for example [10]. Nishida and Tan discussed the possible existence of a so called confinement-
induced Efimov e↵ect in [12] and [13]. In [11][p. 44, Table 1] the existence of the confinement-
induced Efimov e↵ect was predicted in various situations.

We consider the case where two particles can move along two parallel lines in a plane and the
third particle moves in a line perpendicular to this plane. In [11][p. 44, Table 1] the existence of
the confinement-induced Efimov e↵ect was predicted for this configuration. We prove that this
prediction is wrong. We show that the discrete spectrum of the operator describing this system
is always finite, even when the two-body subsystems have a zero-energy resonance.

Our analysis is based on [26] where Zhislin formulated a useful condition on the finiteness of the
discrete spectrum of many particle Schrödinger operators. His approach was further developed
and applied to show absence of Efimov’s e↵ect in various situations for example in [19],[18],[22]
and [23]. In [2] Barth, Bitter and Vugalter showed the absence of Efimov’s e↵ect in various
systems of one- and two-dimensional particles. Our proof uses the techniques in that paper.
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2 MARVIN R. SCHULZ, SYLVAIN ZALCZER

Our paper is organised as follows. In Section 2, we describe the model and state our theorem.
In Section 3, we give the proof of it in the case where the two-particle operators have no bound
states. In Appendix A, we recall some of the results of previous works that we use and in
Appendix B, we study the case where at least one of the two-particle systems has a bound state,
which is mainly a direct adaptation of [26].

2. The Model

Figure 1. The spatial configuration of the system.

Inspired by recent predictions from physics for the confinement-induced Efimov e↵ect we
consider a system of three particles with identical masses interacting via short-range two-body
potentials in R3. Two particles, called 2 and 3, are confined to parallel lines and the third
particle called 1 is confined to a line perpendicular to the plane spanned by the two lines on
which particles 2 and 3 are moving. Furthermore, the line on which particle 1 moves is assumed
to not intersect with the two lines for particles 2 and 3. Compare this to Figure 1.

For simplicity we assume that the parallel lines have distance 1. The configuration of such a
system is determined by three real numbers x = (x1, x2, x3) 2 R3. For any x 2 R3 we denote by
|x| the Euclidean norm of the vector. The particles have positions

r1 =

0

@
0
0
x1

1

A , r2 =

0

@
x2

1/2
0

1

A , r3 =

0

@
x3

�1/2
0

1

A . (2.1)

The particles interact pairwise. For i, j 2 {1, 2, 3} with i < j, we denote by Vij the potential
describing the interaction between particles at ri and rj . From physics we know that it is
reasonable to assume that the potential Vij solely depends on the distance between the particles
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i and j. We consider the case where all potentials are short-range, i.e. that there exist R0 > 0
and C, ⌫ > 0 such that for all i, j 2 {1, 2, 3} with i < j,

|Vij(r)| 
C

r2+⌫
, when r � R0. (2.2)

Note that |ri � rj | � 1/2 for i, j 2 {1, 2, 3} with i < j. That is, all three particles have a minimal
distance from each other. Thus we can, without loss of generality, assume that all potentials are
bounded. The corresponding operator is

H = �
3X

i=1

@
2

@x
2
i

+
X

1i<j3

Vij(|ri � rj |). (2.3)

Under this assumptions H is self-adjoint on the Sobolev space H
2(R3) and its form domain

is H
1(R3). Such a system of three particles can be decomposed into three subsystems of two

particles. For the pair of particles (1, j) with j 2 {2, 3} we consider the operator

h1j := � @
2

@x
2
1

� @
2

@x
2
j

+ V1j(|r1 � rj |). (2.4)

While the full three-particle system is not invariant under any translation in R3 due to the
geometric constraints, the subsystem consisting of particles 2 and 3 is invariant under translations
in the e1-direction. Thus for the subsystem of particles 2 and 3 we need to study it in the center
of mass frame by introducing relative coordinates in R2. These are given by q, ⇠ 2 R with

q :=
1p
2
(x3 � x2), ⇠ :=

1p
2
(x3 + x2). (2.5)

Up to a factor of
p
2 the coordinate ⇠ describes the position of the center of mass of the two

particles 2 and 3, while the coordinate q describes the relative motion of these two particles in
the e1-direction.
Note that |r2 � r3| =

p
2q2 + 1. The operator
h
�@2q + V23

⇣p
2q2 + 1

⌘i
⌦ + ⌦ (�@2⇠ ) (2.6)

corresponds to the pair (2, 3). In the center of mass frame we have

h23 := �@2q + V23

⇣p
2q2 + 1

⌘
. (2.7)

Let

⌃ := min
i<j2{1,2,3}

inf �(hij). (2.8)

Similar to the HVZ-Theorem [8, 17, 25] (see also [14][Thm. XIII.17]), one sees that ⌃  0. It
follows from the same theorem that �ess(H) = [⌃,1). The goal of this paper is to study the
discrete spectrum of H. Our main result is

Theorem 2.1. The operator H has at most a finite number of discrete eigenvalues below ⌃.

Remark 2.2. The theorem above allows any of the two-particle operators to have a virtual level.
In [11] it was predicted that the system described by the operator H in equation (2.3) shows a
confinement-induced Efimov e↵ect. Our Theorem 2.1 disproves this claim, which was based on
heuristic arguments from physics.
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3. Proof of Theorem 2.1

According to the min-max principle, the spectrum of H below ⌃ is finite if there exists a finite
dimensional space M ⇢ L

2(R3) such that, for any  2 L
2(R3) orthogonal to M ,

h , H i � ⌃ k k2 . (3.1)

Due to [26] (see also Appendix A.1), such a space M exists whenever there exist b,� > 0 with

L[ ] :=

Z

R3

0

@
3X

i=1

|@xi |
2 +

X

i<j

Vij | |2
1

A dx�
Z

R3

| (x)|2

|x|�
dx � ⌃ k k2 (3.2)

for any  2 H
1(R3) with supp ⇢ {x 2 R3| |x| > b}.

In the following, we set � = 2+⌫, where ⌫ > 0 is the exponent corresponding to the short-range
property of the potentials as stated in equation (2.2). We first prove the theorem in the case
⌃ = 0. With a small modification, the case ⌃ < 0 is analogous to the one considered in [26]. For
the convenience of the reader we give the proof for ⌃ < 0 in Appendix B.

Heuristics from physics predicts that the three-particle system breaks up if (at least) one par-
ticle is far away from the others. So following ideas of [21], we want to define, for all i, j 2 {1, 2, 3}
with i < j, the set of geometric configurations where the particles i and j are close to each other
and the third particle is far away. Observe that

|r2 � r3|2 = 2q2 + 1, |r1 � rj |2 = x
2
1 + x

2
j + 1/4, j 2 {2, 3}. (3.3)

Given parameters b > 0 and � 2 (0, 1) we define the regions

K
b
23(�) :=

n
x = (x1, x2, x3) 2 R3 : |q|  �

q
⇠2 + x

2
1, |x| > b for q, ⇠ defined in (2.5)

o
,

K
b
1j(�) :=

n
x = (x1, x2, x3) 2 R3 : |(x1, xj)|  � |xi| , for i 2 {2, 3}, i 6= j, |x| > b

o
.

(3.4)

Here |(x1, xj)| is the Euclidean length of the vector (x1, xj) in the (1-j)-plane. Note that outside
of the ball Bb(0) the above sets describe conical regions in R3. For example, outside of Bb(0) the
region K

b
13(�) is a conical region around the x2-direction, where the particles 1 and 3 are close

to each other and particle 2 is far away. Compare this to Figure 2.
We also define the set ⌦0 of configurations where all three particles are far apart:

⌦0 := {x 2 R3| |x| > b} \

0

@
[

1i<j3

K
b
ij(�)

1

A . (3.5)

For a measurable set ⌦ ⇢ R3, we define

L[ ,⌦] :=

Z

⌦

0

@
3X

i=1

|@xi |
2 +

X

i<j

Vij | |2
1

A dx�
Z

⌦

| (x)|2

|x|2+⌫ dx. (3.6)

We prove the bound (3.2), by estimating L[ ,Kb
ij(�)] and L[ ,⌦0] from below. Notice that for �

small enough the sets Kb
ij(�) and ⌦0 are disjoint. In the following we shall assume that � < 1/4

is small enough.
We start with L[ ,Kb

1j(�)] for j 2 {2, 3}.

Lemma 3.1. For j 2 {2, 3}, there exist C, b0 > 0 such that for all b � b0 and for any  2 H
1(R3)

with supp ⇢ {x 2 R3| |x| > b}

L[ ,Kb
1j(�)] � �C

Z

@Kb
1j(�)

| |2

|x|1+⌫ d�. (3.7)
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b

t0

|(x1, x3)|

x2

Figure 2. A sketch of the set Kb
13(�) defined in equation (3.4). The other sets

look similar.

where ⌫ > 0 is defined in equation (2.2).

Proof. We prove the estimate for j = 3. The proof for j = 2 is similar. For any x = (x1, x2, x3) 2 R3

let

⇣ := (x1, x3) 2 R2
. (3.8)

Then

K
b
13(�) = {(⇣, x2) 2 R3 : |⇣|  � |x2| , |(⇣, x2)| � b} . (3.9)

Given b > 0 and  2 H
1(R3) with supp ⇢ {x 2 R3| |x| > b}, we decompose

L[ ,Kb
13(�)] = L3[ ,K

b
13(�)] + L4[ ,K

b
13(�)] (3.10)
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where

L3[ ,K
b
13(�)] :=

Z

Kb
13(�)

 
|r⇣ |2 + V13

 r
|⇣|2 + 1

4

!
| |2

!
d(⇣, x2),

L4[ ,K
b
13(�)] :=

Z

Kb
13(�)

⇣
|@x2 |

2 + (V23 + V12) | |2
⌘
d(⇣, x2)�

Z

Kb
13(�)

| |2

|x|2+⌫ dx .

(3.11)

Let t0 := b/

p
1 + �2, as it appears in Figure 2. Then, for all (x2, ⇣) 2 K

b
13(�), |x2| � t0 and,

since  vanishes whenever |⇣|2 + x
2
2  b

2,

L3[ ,K
b
13(�)] =

Z

|x2|�t0

ZZ

|⇣|�|x2|
|r⇣ |2 + V13

 r
|⇣|2 + 1

4

!
| |2 d⇣dx2 . (3.12)

We remark that V13 solely depends on |⇣| and is short-range. By assumption��+ V13 = h13 � 0.
Thus, by Lemma A.2 which is a restatement of [1][Lemma 6.6], there exists some C0 > 0 such
that, when b is large enough so that �t0 � R0,

L3[ ,K
b
13(�)] � �C0

Z

|x2|�t0

R 2⇡
0 | (x2, � |x2| , ✓)|2 d✓

(� |x2|)⌫
dx2 . (3.13)

We remark that (
(�1,�t0] [ [t0,1)⇥ [0, 2⇡) ! R3

(x2, ✓) 7! (x2, � |x2| , ✓)
(3.14)

is a parametrization of the two components of the surface @Kb
13(�) outside of Bb(0). Since in ad-

dition  vanishes on Bb(0) and |x| =
p

1 + �2 |x2| on that surface, we can rewrite equation (3.13)
in

L3[ ,K
b
13(�)] � �C1

Z

@Kb
13(�)

| |2

|x|1+⌫ d�, (3.15)

for some constant C1 > 0. Here d� = |x| d |x| d✓ is the surface measure on the set @Kb
13(�),

which explains the additional factor of |x| in the denominator of equation (3.15).

Let us now bound L4[ ,Kb
13(�)]. Note that for any x 2 K

b
13(�)

|r1 � r2| � |(x1, x2)| � |x2| � t0,

|r2 � r3| � |x2 � x3| � (1� �) |x2| � (1� �)t0 .
(3.16)

Since t0 = b/

p
1 + �2, we can use the short-range property of the potentials V23, V12 to find that

there exists C2 > 0 such that for b � R0

p
1 + �2, we have for any x 2 K

b
13(�)

|(V23 + V12)(x)| 
C2

|x2|2+⌫ . (3.17)

Thus

L4[ ,K
b
13(�)] �

ZZ

R2

Z

|x2|�max{t0,|⇣|/�}

 
|@x2 |

2 � C2 + 1

|x2|2+⌫ | |2
!

dx2d⇣. (3.18)

For any fixed ⇣ 2 R2, we define a(⇣) := max{t0, |⇣| /�} and apply [2][Lemma 6.3] (see Appen-
dix A.5) to the innermost integral. Thus, there exists C3 > 0 such that

L4[ ,K
b
13(�)] � �C3

ZZ

R2

1

a(⇣)1+⌫

⇥
| (a(⇣), ⇣) |2 + | (�a(⇣), ⇣) |2

⇤
d⇣ . (3.19)
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By construction  (±a(⇣), ⇣) vanishes whenever |⇣|  �t0. Then

L4[ ,K
b
13(�)] � �C3�

1+⌫

ZZ

|⇣|��t0

1

|⇣|1+⌫

h
| (|⇣| /�, ⇣) |2 + | ̃ (� |⇣| /�, ⇣) |2

i
d⇣ . (3.20)

Note once more that ⇣ 7! (± |⇣| /�, ⇣) for ⇣ 2 R2 with |⇣| � �t0 is a parametrization of the two
components of the surface @Kb

13(�) outside of Bb(0). Similarly to what we did in order to get
from equation (3.13) to equation (3.15), we can rewrite equation (3.20) in

L4[ ,K
b
13(�)] � �C4

Z

@Kb
13(�)

| |2

|x|1+⌫ d�, (3.21)

for some C4 > 0. Inserting the bounds (3.15) and (3.21) into (3.10), we find

L[ ,Kb
13(�)] � �(C4 + C1)

Z

@Kb
13(�)

| |2

|x|1+⌫ d� . (3.22)

This proves the lemma. ⇤

Next we provide a lower bound for L[ ,Kb
23(�)]. The techniques used are similar to the ones

in the proof of Lemma 3.1 but the proof is slightly di↵erent due to the di↵erent geometry of
K

b
23(�). We show

Lemma 3.2. There exist C, b0 > 0 such that, for all b � b0 and for any  2 H
1(R3) with

supp ⇢ {x 2 R3| |x| > b}

L[ ,Kb
23(�)] � �C

Z

@Kb
23(�)

| |2

|x|1+⌫ d�. (3.23)

Proof. Let ⌘ := (⇠, x1) 2 R2. Then the set Kb
23(�) is

K
b
23(�) =

⇢
(⌘, q) 2 R3 : |q|  � |⌘| ,

q
|⌘|2 + q2 � b

�
. (3.24)

Similar to Lemma 3.1, for some b > 0, let  2 H
1(R3) with supp ⇢ {x 2 R3| |x| > b} and

define

L1[ ,K
b
23(�)] :=

Z

Kb
23(�)

⇣
|@q |2 + V23

⇣p
2q2 + 1

⌘
| |2

⌘
d(q, ⌘),

L2[ ,K
b
23(�)] :=

Z

Kb
23(�)

0

@|r⌘ |2 +
3X

j=2

V1j | |2
1

A d(q, ⌘)�
Z

Kb
23(�)

| |2

|x|2+⌫ dx.

(3.25)

We decompose
L[ ,Kb

23(�)] = L1[ ,K
b
23(�)] + L2[ ,K

b
23(�)]. (3.26)

Recall that t0 = b/

p
1 + �2, then

L1[ ,K
b
23(�)] =

ZZ

|⌘|�t0

Z �|⌘|

��|⌘|
|@q |2 + V23 | |2 dq d⌘ (3.27)

since  vanishes whenever |⌘|2 + q
2  b

2. Recall that h23 � 0 and that V23 is short-range. Then
we can apply [2][Lemma 6.2] (see Appendix A.4) to conclude that there exists D0 > 0 such that
for all b with �t0 = �b/

p
1 + �2 � R0

L1[ ,K
b
23(�)] � �D0

ZZ

|⌘|�t0

| (� |⌘| , ⌘)|2 + | (�� |⌘| , ⌘)|2

(� |⌘|)1+⌫
. (3.28)
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Similarly as in the proof of Lemma 3.1, we can rewrite this in

L1[ ,K
b
23(�)] � �D1

Z

@Kb
23(�)

| |2

|x|1+⌫ d� (3.29)

for some D1 > 0.
Let us now bound L2[ ,Kb

23(�)]. On the set Kb
23(�)

|r1 � rj | �
p
1� 4� |⌘| �

p
1� 4�t0 (3.30)

for j 2 {2, 3} by the construction of the set Kb
23(�). Recall that � < 1/4 by assumption. Thus

we can use that the potentials V12, V13 are short-range. Then, there exists D2 > 0 such that, for
b large enough with t0 � R0,

L2[ ,K
b
23(�)] �

Z

R

ZZ

|⌘|�max{|q|/�,t0}
|r⌘ |2 �

D2

|⌘|2+⌫ | |2 d⌘dq . (3.31)

Going into spherical coordinate and applying [2][Lemma 6.7] (see Appendix A.3) to the innermost
integral above one can bound the above integral by a surface integral: there exists D3 > 0 such
that

L2[ ,K
b
23(�)] � �D3

Z

|q|��t0

R 2⇡
0 | (q, |q| /�, ✓)|2 d✓

|q|⌫
dq . (3.32)

Using that  vanishes inside the ball Bb(0) we conclude

L2[ ,K
b
23(�)] � �D3

Z

|q|��t0

R 2⇡
0 | (q, |q| /�, ✓)|2 d✓

|q|⌫
dq

� �D4

Z

@Kb
23(�)

| |2

|x|1+⌫ d�

(3.33)

for some D4 > 0, where in the last bound we used that |q| =
p

1 + ��2|x| on @Kb
23(�). Recall

that d� is the surface measure on @Kb
23(�) similar to equation (3.15).

For the first to second line we used the fact that the integral is taken over the part of the
surface of @Kb

23(�) where  does not vanish. Compare this to the previous case in the proof of
Lemma 3.1. Inserting the inequalities in equation (3.29), (3.33) into equation (3.26) concludes
the proof of the lemma. ⇤

In the next step, we prove that we can compensate the integrals over the surface of the sets
K

b
ij(�) in the equations (3.23), (3.7) by a small portion of the kinetic energy on ⌦0. We do so

with the help of the trace theorem and Hardy’s inequality on the half line.

Lemma 3.3. For 1  i < j  3 and �
0 2 (�, 1), we define ⌦b

ij(�, �
0) := K

b
ij(�

0)\Kb
ij(�).

For all " > 0, there exists b0 > 0 such that, for all b � b0 and for any  2 H
1(R3) with

supp ⇢ {x 2 R3| |x| > b}
Z

@Kb
ij(�)

| |2

|x|1+⌫ d�  "

Z

⌦b
ij(�,�

0)
|r |2 dx. (3.34)

Proof. Let us first prove the lemma for (i, j) = (1, 3). We introduce spherical coordinates
(r, ✓,') 2 R+ ⇥ [�⇡/2,⇡/2]⇥ [0, 2⇡):

(x1, x2, x3) = (r cos ✓ cos', r sin ✓, r cos ✓ sin') . (3.35)

Defining ✓0 := arctan(�), we see that the set Kb
13(�) takes in those coordinates a very simple

form: n
(r, ✓,') : ' 2 [0, 2⇡), |✓| � ⇡

2
� ✓0, r > b

o
. (3.36)
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Hence,

Z

@Kb
13(�)

| |2

|x|1+⌫ d� =

Z 1

b

R 2⇡
0

�� (r, ⇡
2 � ✓0,')

��2 +
�� (r,�⇡

2 + ✓0,')
��2 d'

r⌫
sin ✓0dr, (3.37)

where we did not write the part of the integral which is in Bb(0) since  vanishes there.
For �0 2 (�, 1), we define ✓1 := arctan(�0) > ✓0. Then K

b
23(�

0) � K
b
23(�). We will use the well

known trace theorem. For each r 2 [b,1), we apply [6][Theorem 1, p. 272] to the function

✓ 7!
Z 2⇡

0
| (r, ✓,')|2 d' (3.38)

on the interval ✓ 2 (⇡/2�✓1,⇡/2�✓0) =: I(✓0, ✓1). We find that there exists a constant C4(�, �0)
such that

Z 2⇡

0

��� (r,
⇡

2
� ✓0,')

���
2
d'  C4(�, �

0)

Z ⇡/2�✓0

⇡/2�✓1

Z 2⇡

0
| |2 + |@✓ |2 d'd✓. (3.39)

A similar inequality holds in the interval (�⇡/2 + ✓0,�⇡/2 + ✓1). Inserting (3.39) into (3.37),
we find

Z

@Kb
13(�)

| |2

|x|1+⌫ d�  C4(�, �
0) sin ✓0

Z 1

b

Z

|✓|2I(✓0,✓1)

Z 2⇡

0

| |2 + |@✓ |2

r⌫
d'd✓dr

 C4(�, �0) sin ✓0
b⌫

Z 1

b

Z

|✓|2I(✓0,✓1)

Z 2⇡

0

⇣
| |2 + |@✓ |2

⌘
d'd✓dr.

(3.40)

We remark that the domain of integration in the equation (3.40) is exactly ⌦b
13(�, �

0) as defined
in the statement of Lemma 3.3. In order to conclude the proof, we transform the right-hand side
of equation (3.34) to spherical coordinates:

Z

⌦b
13(�,�

0)
|r |2 dx �

Z 1

b

Z

|✓|2I(✓0,✓1)

Z 2⇡

0

⇣
|@r |2 + r

�2 |@✓ |2
⌘
r
2 cos(✓)d(r, ✓,'). (3.41)

For fixed (✓,') we want to apply Hardy’s inequality on the half-line to the function  (·, ✓,').
Note that lim inf

r!1
| (r, ✓,')| = 0 since  2 H

1(R3). Thus, we can apply [7][Theorem 2.65] to find

Z

⌦b
13(�,�

0)
|r |2 dx � sin ✓0

4

Z 1

⇢0

Z

|✓|2I(✓0,✓1)

Z 2⇡

0

⇣
| |2 + |@✓ |2

⌘
d(r, ✓,'). (3.42)

Combining the inequalities in equations (3.40) and (3.42), we see that, for all " > 0, equa-
tion (3.34) holds for (i, j) = (1, 3) for all b large enough. The proof in the case (i, j) = (1, 2) is
similar, the only di↵erence being that we exchange x2 and x3 in the definition of the spherical
coordinates.
Concerning the case (i, j) = (2, 3), we recall the coordinates q and ⇠ introduced in (2.5). We
define spherical coordinates by

(x1, q, ⇠) = (r cos ✓ cos', r sin ✓, r cos ✓ sin'). (3.43)

In this set of coordinates the set Kb
23(�) reads

{(r, ✓,') : ' 2 [0, 2⇡), |✓|  ✓0, r > b} (3.44)

and Z

@Kb
23(�)

| |2

|x|1+⌫ d� =

Z 1

b

R 2⇡
0 | (r, ✓0,')|2 + | (r,�✓0,')|2 d'

r⌫
cos ✓0dr. (3.45)
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From this point, one can follow the proof in the case (i, j) = (1, 3). In this case we apply the
trace theorem to the function

✓ 7!
Z 2⇡

0
| (r, ✓,')|2 d' (3.46)

on the intervals (✓0, ✓1) and (�✓1,�✓0) to conclude the statement of this lemma. ⇤

We now complete the proof of Theorem 2.1 by proving that inequality (3.2) holds. We fix �0

in (1, �) such that the sets ⌦b
ij(�, �

0) do not intersect. Combining the results of Lemmas 3.1, 3.2
and 3.3 (for " = 1/2), we find that there exists a b0 > 0 such that, for any b > b0 and  2 H

1(R3)
with supp ⇢ {x 2 R3| |x| > b},

L[ ] � L[ ,⌦0]�
1

2

X

1i<j3

Z

⌦b
ij(�,�

0)
|r |2 dx. (3.47)

Let us fix some b � b0. Remember the definition of r1, r2, r3 in terms of (x1, x2, x3) 2 R3 in (2.1).
By construction of the set ⌦0, we have that for all x 2 ⌦0 and all 1  i < j  3

|ri � rj | �
�p

1 + �2
|x| � �p

1 + �2
b. (3.48)

Hence we can use that the short-range property of the potentials Vij in ⌦0 and write for some
C > 0 that

L[ ] �
Z

⌦0

|r |2 � C

|x|2+⌫ dx� 1

2

X

i<j

kr k2L2(⌦b
ij(�,�

0))

=

Z

⌦0

1

2
|r |2 � C

|x|2+⌫ dx+
1

2
kr k2L2(⌦0)

� 1

2

X

i<j

kr k2L2(⌦b
ij(�,�

0)) .

(3.49)

Remember that we constructed the ⌦b
ij(�, �

0) such that they are disjoint subsets of ⌦0. As a
consequence,

kr k2L2(⌦0)
�
X

i<j

kr k2L2(⌦b
ij(�,�

0)) � 0. (3.50)

By construction of ⌦0, there exists a set M ⇢ S
2 such that ⌦0 = (b,1)⇥M . Therefore,

Z

⌦0

1

2
|r |2 � C

|x|2+⌫ dx �
Z

M

Z 1

b

✓
1

2
|@r |2 �

C

r2+⌫

◆
r
2
drd! � 0 (3.51)

by Hardy’s inequality on the half-line (see [7][Theorem 2.65]). Inserting equation (3.51) and
equation (3.50) into equation (3.49) concludes the statement.
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Appendix A. Some Lemmas

For the convenience of the reader we repeat here some lemmas from other publications without
proofs.
In [26] Zhislin gave the following criterion for the finiteness of the discrete spectrum of a
Schrödinger operator. The following Lemma is a straight forward adaption of [2][Lemma C.1]
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Lemma A.1. Let H = �� + V in L
2(R3) with V bounded. Let ⌃  0 and assume there exist

�, b, " > 0 such, that
Z

R3

⇣
|r |2 + V | |2

⌘
dx� "

Z

R3

| (x)|2

|x|�
� ⌃ k k2 (A.1)

for any  2 H
1(R3) with supp ⇢ {x 2 R3| |x| > b}. Then the operator H has at most a finite

number of eigenvalues below ⌃.

In the proof of the main Theorem we make use of some Lemmas from [2]. For convenience we
repeat these Lemmas here. The following is a restatement of [1][Lemma 6.6]

Lemma A.2. Consider h = �� + V in L
2(R2) with V bounded and V short-range (see equa-

tion (2.2) ). Assume h � 0 and V radial symmetric then there exists a c0 > 0 such, that for any
b0 > R0 Z

|x|�b0

⇣
|r |2 + V | |2

⌘
dx � �c0b

�⌫
0

Z 2⇡

0
| (b0, ✓)|2 d✓ (A.2)

where R0, ⌫ are the constants from the short-range property of V .

The next Lemma is a restatement of [2][Lemma 6.7]

Lemma A.3. Let c0 > 0. Then for any su�ciently large b > 0 and for any  2 H
1(R2)

Z

|x|�b

⇣
|r (x)|2 � c0 |x|�2�⌫ | (x)|2

⌘
dx � �c0b

�⌫

⇡

Z 2⇡

0
| (b, ✓)|2 d✓ . (A.3)

The next Lemma is a restatement of [2][Lemma 6.2]

Lemma A.4. Consider h = �� + V in L
2(R) with V bounded and V short-range (see equa-

tion (2.2) ). Assume h � 0 then there exists c > 0, such that for any b0 � R0 and  2 H
1(R)

Z b0

b0

(| 0(t)|2 + V (t) | (t)|2)dt � �cb
�1�⌫
0 (| (b0)|2 + | (�b0)|2) (A.4)

where R0, ⌫ are the constants from the short-range property of V .

The next Lemma is a restatement of [2][Lemma 6.3]

Lemma A.5. Let c0 � 0. Then for any su�ciently large b > 0 and for any  2 H
1(R)

Z 1

b

⇣
| 0(t)|2 � c0t

�2�⌫ | (t)|2
⌘
dt � �2c0b

�1�⌫ | (b)|2 . (A.5)

We use several times Hardy’s inequality on the half-line. Let us copy here the version of
[7][Theorem 2.65]

Theorem A.6. Let ⇢ 2 R \ {1}. Let u be weakly di↵erentiable on R+ with u
0 2 L

2(R+, r
⇢
dr)

and assume that
lim inf
r!0

|u(r)| = 0 if ⇢ < 1, lim inf
r!1

|u(r)| = 0 if ⇢ > 1, (A.6)

Then Z 1

0
|u(r)|2 r�2+⇢

dr 
✓

2

⇢� 1

◆2 Z 1

0
|u0(r)|2 r⇢dr. (A.7)

The constant on the right side is optimal.

The following Lemma is a straight forward adaptation of [20][Lemma 5.1]. Recall the defini-
tions of Kb

ij(�) in equation (3.4), then
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Lemma A.7. Given ", � > 0 for all i, j 2 {1, 2, 3}, i < j there exist �̃ 2 (0, �) and continuous
functions uij , vij : R3 ! R with piecewiese continuous derivatives such that

u
2
ij + v

2
ij = 1, uij(x) =

(
1 x 2 K

0
ij(�̃)

0 x /2 K
0
ij(�)

, |ruij |2 + |rvij |2  "

 
v
2
ij

|x|2
+

u
2
ij

|qij |2

!
(A.8)

where q23 = q = 1p
2
(x2 � x3) 2 R and q1j = (x1, xj) 2 R2.

Appendix B. Proof of Theorem 2.1 when ⌃ < 0

We now cover the case when ⌃ defined in equation (2.8) is negative. As in the previous case
we will prove that there exists a b > 0 such that

L[ ] :=

Z

R3

0

@
3X

i=1

|@xi |
2 +

X

i<j

Vij | |2
1

A dx�
Z

R3

| (x)|2

|x|2+⌫ dx � ⌃ k k (B.1)

for any  2 H
1(R3) with supp ⇢ {x 2 R3| |x| > b}. As in the case ⌃ = 0, we consider

the sets K
b
ij(�) and ⌦0 defined in (3.4) and (3.5). Contrary to the previous case, we cannot

apply the lemmas stated in Appendix A, since we would need to integrate a constant function
on a infinite-measure domain. For this reason, we localize the functional L with smooth cut-o↵
functions. For fixed " < 1/8 we consider the family of cut-o↵ functions uij defined in Lemma

A.7 together with V :=
q

1�
P

i<j2{1,2,3} u
2
ij . The family {V, uij for i, j 2 {1, 2, 3} with i < j}

forms a partition of unity by construction. According to the IMS localization formula,

L[ ] =
X

1i<j3

⇣
L[uij ]� h , |ruij |2  i

⌘
+ L[V ]� h , |rV|2  i. (B.2)

Recall the definition of ⌦b
ij(�̃, �) in the statement of Lemma 3.3. Note that, on each ⌦b

ij(�̃, �),

V = vij =
q
1� u

2
ij . Moreover, rV vanishes outside of

[

1i<j3

⌦b
ij(�̃, �)

by construction. Similarly, ruij vanishes outside of ⌦b
ij(�̃, �).

Consequently by Lemma A.8,
X

1i<j3

h , |ruij |2  i+ h , |rV|2  i =
X

1i<j3

Z

⌦b
ij(�̃,�)

(|ruij |2 + |rvij |2) | |2 dx

 "

X

1i<j3

Z

⌦b
ij(�̃,�)

 
v
2
ij

|x|2
+

u
2
ij

|qij |2

!
| |2 dx.

(B.3)

Therefore,

L[ ] �
X

1i<j3

 
L[uij ]� "

Z

⌦b
ij(�̃,�)

u
2
ij

|qij |2
| |2 dx

!
+ L[V ]� "

X

1i<j3

Z

⌦b
ij(�̃,�)

V2

|x|2
| |2 dx.

(B.4)
We show the following

Lemma B.1. There is a b0 > 0 such that for all b � b0 and for any  2 H
1(R3) with

supp ✓ {x 2 R3| |x| > b} with i, j 2 {1, 2, 3}, i 6= j ,

L[uij ]� "

Z

⌦b
ij(�̃,�)

u
2
ij

|qij |2
| |2 dx � ⌃ kuij k2 (B.5)
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where qij was defined in Lemma A.7.

Proof. Let

⇠ij :=

8
><

>:

(⇠, x1) 2 R2
, (ij) = (23)

x2 2 R, (ij) = (13)

x3 2 R, (ij) = (12)

,  ̃ :=  uij . (B.6)

We define

L̃1[ ̃] := h ̃, (��qij + Vij) ̃i ,

L̃2[ ̃] := h ̃, (��⇠ij +Wij) ̃i �
Z

R3

��� ̃(x)
���
2

|x|2+⌫ dx.

(B.7)

Here Wij :=
hP

1l<m3 Vlm

i
� Vij . Then

L[ ̃] = L̃1[ ̃] + L̃2[ ̃] . (B.8)

We distinguish between the cases inf �(hij) > ⌃ and inf �(hij) = ⌃. We start with the case
inf �(hij) > ⌃. Let  := inf �(hij)� ⌃ > 0. Then

L̃1[ ̃] � (⌃+ )
��� ̃
���
2
. (B.9)

Using the short-range property of Wij and the fact that, on ⌦b
ij(�̃, �), |qij | � �̃ |⇠ij |, we find that

there exists C > 0 and b0 > 0 such that for any b � b0

L̃2[ ̃]� "

Z

⌦b
ij(�̃,�)

u
2
1j

|qij |2
| |2 dx � �h ̃,�⇠ij  ̃i � C

Z

R3

��� ̃(x)
���
2

|⇠ij |2
dx . (B.10)

Since ��⇠ij � 0, and on K
b
ij(�), |⇠ij | � |x| /

p
1 + �2 � b/

p
1 + �2, we find

L̃2[ ̃]� "

Z

⌦b
ij(�̃,�)

u
2
1j

|qij |2
| |2 dx � �C

Z

R3

��� ̃(x)
���
2

|⇠ij |2
dx � �C1

b2

��� ̃
���
2

(B.11)

for some C1 > 0 independent of b. Choose b large enough such that  � C1/b
2. Then, combining

Equation (B.9) and Equation (B.11) concludes the statement in this case.
Next we consider the case inf �(hij) = ⌃. In this case ⌃ is an eigenvalue of hij and thus there

exists a '0 2 L
2(dqij) with k'0k = 1 such that h'0, hij'0i = ⌃. We define

f(⇠ij) := h'0,  ̃iL2(dqij), g(qij , ⇠ij) :=  ̃(qij , ⇠ij)� f(⇠ij)'0(qij). (B.12)

Note that '0 and g are orthogonal in the usual L2(dqij)-sense by construction. Since ⌃ is an
isolated nondegenerate eigenvalue of hij , there exists some 0 > 0 such that

L̃1[ ̃] = h ̃, hij ̃i � ⌃
��� ̃
���
2
+ 

0 kgk2 . (B.13)
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One can choose 0 as the distance of ⌃ and the remaining spectrum of hij . Using the short-range
property of Wij and Lemma A.7, there exists C > 0 such that for b > 0 large enough

L̃2[ ̃]� "

Z

⌦b
ij(�̃,�)

u
2
ij

|qij |2
| |2 dx � 1

2
h ̃,��⇠ij  ̃i � C

Z
��� ̃
���
2

|⇠ij |2+�
d(qij , ⇠ij)

+
1

2
h ̃,��⇠ij  ̃i � "

Z

⌦b
ij(�,�̃)

��� ̃
���
2

|qij |2
d(qij , ⇠ij) .

(B.14)

Note that the variable ⇠ij is either one- or two-dimensional. Depending on its dimension we
use Hardy’s inequality on the half line or the two-dimensional Hardy’s inequality (see [15]) to
estimate the first line on the right hand side in equation (B.14). The inequality is applicable
since  ̃ vanishes whenever |⇠ij | is small enough by construction. Thus

1

2
h ̃,��⇠ij  ̃i � C

Z
��� ̃
���
2

|⇠ij |2+�
d(qij , ⇠ij) � 0. (B.15)

It remains to prove the non negativity of the second line. Recall that '0 and g are orthogonal
in the L

2(dqij)-sense and thus

h ̃,��⇠ij  ̃i = h|'0|2 f,��⇠ijfi+ hg,��⇠ijgi � hf,��⇠ijfiL2(d⇠ij). (B.16)

We use (a+ b)2  2a2 + 2b2 to find that there exists C 0
> 0 such that for b large enough

Z

⌦b
ij(�̃,�)

��� ̃
���
2

|qij |2
d(qij , ⇠ij)  2

Z

⌦b
ij(�̃,�)

|'0|2 |f |2

|qij |2
d(qij , ⇠ij) + 2

Z

⌦b
ij(�̃,�)

|g|2

|qij |2
d(qij , ⇠ij)

 2

Z

⌦b
ij(�̃,�)

|qij |2 |'0|2 |f |2

|qij |4
d(qij , ⇠ij) +

C
0

b2
kgk2 ,

(B.17)

where in the last line, we used that, on ⌦b
ij(�̃, �),

|qij |2 � �̃
2

1 + �̃2
|x|2 � �̃

2

1 + �̃2
b
2
. (B.18)

Since '0 is an eigenfunction of hij associated with a discrete eigenvalue, it decays exponentially
at infinity (cf. for example [14], Theorem XIII.39). Hence for any �1 > 0 there exists q0 > 0
such that |qij |2 |'0(qij)|2  �1 for any |qij | � q0. Thus for b large enough

Z

⌦b
ij(�̃,�)

|qij |2 |'0|2 |f |2

|qij |4
d(qij , ⇠ij) 

�1

�̃4

Z

⌦b
ij(�̃,�)

|f |2

|⇠ij |4
d(qij , ⇠ij) . (B.19)

From equations (B.19) and (B.17), we find

1

2
h ̃,��⇠ij  ̃i�"

Z

⌦b
ij(�,�̃)

��� ̃
���
2

|qij |2
d(qij , ⇠ij)

� 1

2
hf,��⇠ijfiL2(d⇠ij) � "

�1

�̃4

Z

⌦b
ij(�,�̃)

|f |2

|⇠ij |4
d(qij , ⇠ij)� "

C
0

b2
kgk2 .

(B.20)
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As in the proof of equation (B.15) we can again use Hardy’s inequality depending on the dimen-
sion of the variable ⇠ij to find

1

2
hf,��⇠ijfiL2(d⇠ij) � "

�1

�̃4

Z

⌦b
ij(�,�̃)

|f |2

|⇠ij |4
d(qij , ⇠ij) � 0 (B.21)

for b > 0 large enough. Combining equations (B.14), (B.20) and (B.21), we find

L̃[ ̃]� "

Z

⌦b
ij(�,�̃)

u
2
ij

|qij |2
| |2 d(qij , ⇠ij) � ⌃

��� ̃
���
2
+ (0 � "

C
0

b2
) kgk2 . (B.22)

The statement in equation (B.5) follows by taking b large enough. ⇤
We have thus proved that

L[ ] �
X

1i<j3

kuij k2 ⌃+ L[V ]� "

X

1i<j3

Z

⌦b
ij(�̃,�)

V2

|x|2
| |2 dx. (B.23)

By construction V is supported in

⌦0(�̃) := R3 \
[

1i<j3

K
b
ij(�̃) . (B.24)

Therefore, by applying the short-range property to any of the potentials we can write

L[V ] �
Z

⌦0(�̃)
|rV |2 � C

|x|2+⌫ |V |2 dx. (B.25)

Hence we can estimate the remaining terms in equation (B.23). Combining the previous inequal-
ities shows that for b > 0 large enough

L[V ]� "

X

1i<j3

Z

⌦b
ij(�̃,�)

|V |2

|x|2
dx �

Z

R3

|rV |2 � 2"

|x|2
|V |2 dx � 0 (B.26)

by Hardy’s inequality. Thus we have shown

L[ ] �
X

1i<j3

kuij k2 ⌃ � k k2 ⌃ (B.27)

and hence the statement in equation (B.1).

References

[1] S. Barth, A. Bitter, and S. Vugalter. The absence of the Efimov e↵ect in systems of one- and two-dimensional
particles. http://arxiv.org/abs/2010.08452v3.

[2] S. Barth, A. Bitter, and S. Vugalter. The absence of the Efimov e↵ect in systems of one- and two-dimensional
particles. J. Math. Phys., 62(12):Paper No. 123502, 46, 2021.

[3] A. Bitter. Virtual levels of multi-particle quantum systems and their implications for the Efimov e↵ect. PhD
thesis, Universität Stuttgart, 2020.

[4] J. Dalibard. The three-body problem and the Efimov e↵ect. Lecture notes, Collège de France, 2023.
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