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Abstract

The thermal radiative transfer equations model temperature evolution through a
background medium as a result of radiation. When a large number of particles are
absorbed in a short time scale, the dynamics tend to a non-linear diffusion-type equa-
tion called the Rosseland approximation. The main challenges for constructing nu-
merical schemes that exhibit the correct limiting behavior are posed by the solution’s
high-dimensional phase space and multi-scale effects. In this work, we propose an
asymptotic-preserving and rank-adaptive dynamical low-rank approximation scheme
based on the macro-micro decomposition of the particle density and a modified aug-
mented basis-update & Galerkin integrator. We show that this scheme, for linear
particle emission by the material, dissipates energy over time under a step size restric-
tion that captures the hyperbolic and parabolic CFL conditions. We demonstrate the
efficacy of the proposed method in a series of numerical experiments.

Keywords: thermal radiative transfer equations, energy stability, asymptotic-preserving scheme,
dynamical low-rank approximation, macro-micro decomposition

1 Introduction

The radiation of particles from a hot source into a cold medium and the corresponding formation of
a thermal heat front, known as a Marshak wave, is well modeled by the thermal radiative transfer
equations. They consist of a coupled system of partial differential equations governing the transport
of particles (represented by the particle density f) and the temperature evolution of the medium
(T ) [1] given by

1

c
∂tf + Ω · ∇xf = σa(B(T )− f),

cν∂tT =

∫
S2
σa(f −B(T )) dΩ.

The particle density f depends on time t, position x and direction of flight Ω ∈ S2 and the
temperature T on time and position. c and cν represent the speed of light and the specific heat of
the material, respectively. These two equations are coupled through the absorption and emission
of particles by the background material. Numerically simulating the thermal radiative transfer
equations poses several challenges. First, to evolve and store the particle density, high memory, and
computational resources are required. This is due to its high-dimensional phase space, consisting of
temporal, spatial, and angular variables, which can be up to six-dimensional for a three-dimensional
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spatial domain. Second, when a large number of these particles are absorbed in small time scales,
the dynamics of the system asymptotically converge to a diffusion-type non-linear partial differential
equation known as the Rosseland approximation [2] which reads

(cν + 4aT 3)∂tT = ∇x ·
(
4ac

3σa
T 3∇xT

)
,

where a is the radiation constant. Since the dynamics tend to a diffusion problem, the numerical
scheme should also capture this behavior without having to resolve prohibitively small time scales.
Numerical methods that do so while efficiently treating the stiffness arising from large absorption
terms are called asymptotic-preserving (AP) schemes [3]. Work on asymptotic-preserving schemes
for kinetic equations can, for example, be found in [3]–[6].

To address the computational challenges posed by a high-dimensional phase space, we use dy-
namical low-rank approximation (DLRA) [7], which is a model-order reduction strategy that has
recently gained popularity in solving kinetic equations. The fundamental idea behind dynamical
low-rank approximation is to evolve the solution on the manifold of rank r functions Mr by pro-
jecting the dynamics to the tangent space of Mr. The evolution equations thus obtained can be
interpreted as a Galerkin system, with 2r basis functions for the phase space variables, which evolves
the coefficients and basis functions according to the dynamics of the problem. Using standard time
integrators to evolve the coefficient and basis functions leads to unstable numerical schemes and
thus robust integrators, like the projector-splitting integrator (PSI) [8], and the basis-update &
Galerkin (BUG) integrators [9]–[12], have been developed.

DLRA has, for example, been shown to reduce computational costs in dose computation in
radiation therapy planning [13], in high-scattering problems [14] and neutron criticality problems
[15]. In recent works, DLRA was used for the thermal radiative transfer equations [16], [17] where
it was shown to significantly reduce computational time. The work in [17] proposes a low-rank
scheme based on the augmented BUG integrator of [10] for thermal radiative transfer. Though this
scheme is energy-stable and preserves mass locally, it does not include multiscale effects frequently
arising in thermal radiative transfer.

Since the thermal radiative transfer equations tend to a diffusion equation, for small time scales,
the dynamics are restricted to the manifold of low-rank functions [2] and thus can be accurately
represented by a low-rank approximation. Thus, a DLRA scheme combined with techniques to
preserve asymptotic behavior can be highly beneficial in tackling both numerical challenges simul-
taneously. This was investigated for the related problem of radiation transport in [18], where the
PSI, along with a macro-micro decomposition to construct an asymptotic-preserving scheme, is
used. A key challenge for such schemes is to prove stability and provide a CFL condition that takes
into account effects at long time scales (kinetic regime) and small time scales (diffusive regime). In
contrast to [18], the scheme constructed in [19] uses the fixed-rank BUG integrator and is energy
stable under a CFL restriction, which captures both the kinetic and diffusive regimes. In the kinetic
regime, a large number of particles stream in all directions, increasing the rank required to resolve
the solution. In contrast, in the diffusive regime, a large number of streaming particles are absorbed
and diffused, thus lowering the required rank of the solution [2]. This is well demonstrated in the
experiments from [18], [19]. Thus, using a fixed-rank integrator without prior knowledge of the re-
quired rank in the regime results in either higher computational costs (due to over-approximation)
or a poorly resolved solution (due to under-approximation). One of the ways to address this is by
using a DLRA scheme that appropriately chooses and evolves the rank of the solution according to
the regime.

This work proposes an asymptotic-preserving and rank-adaptive DLRA scheme for the thermal
radiative transfer equations in slab geometry and analyzes its properties. The novelty of this work
can be summarized in the following:

• An asymptotic-preserving, mass conservative and rank-adaptive DLRA integrator: We pro-
pose a new asymptotic-preserving BUG integrator for the thermal radiative transfer equa-
tions, based on the macro-micro decomposition [6], [20] of the particle density, the basis
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augmentation step from [10] and conservative truncation [21], [22], to capture the underlying
dynamics of the system. The proposed algorithm is locally mass conservative.

• A stability analysis for the proposed asymptotic-preserving DLRA scheme: We show that the
proposed integrator is stable in the energy norm under a CFL restriction that captures both
the kinetic and the diffusive regime under linear emission of particles by the background
material.

This paper is structured as follows: Following the introduction in Section 1, in Section 2 we review
background concepts that are used in this paper and build the modal macro-micro equations for
the thermal radiative transfer equations. In Section 3, we present a spatio-temporal discretization
for the modal macro-micro equations, which is asymptotic-preserving and stable under a CFL
restriction that captures the kinetic and diffusive regime. In Section 4 we present dynamical low-
rank integrators for the thermal radiative transfer equations and the stability results. Specifically,
in Section 4.1, we present the evolution equations for the modal macro-micro equations using the
fixed-rank BUG integrator [9] and prove its stability property. In Section 4.2, we present the
asymptotic-preserving BUG integrator and prove the stability of the scheme. Finally, numerical
experiments are presented in Section 5.

2 Background

In this section, we review the basic ideas and concepts that are used in this work. The first subsection
describes the thermal radiative transfer equations in slab geometry for the gray approximation, its
asymptotic limit, and the macro-micro decomposition [6] of the particle density and its angular
discretization. In the second subsection, we look at dynamical low-rank approximation [7], the
fixed-rank BUG integrator [9] and the augmented BUG integrator [10].

2.1 Thermal radiative transfer equations

In this paper, we consider the dimensionless form of the gray (i.e., frequency-averaged) thermal
radiative transfer equations in slab geometry,

ε2

c
∂tf + εµ∂xf = σa(B(T )− f), (2.1a)

ε2cν∂tT =

∫ 1

−1

σa(f −B(T )) dµ. (2.1b)

In the above equations, f(t, x, µ) represents the particle density (or angular flux) at time t ∈ R+,
position x ∈ D ⊂ R and direction of flight µ ∈ [−1, 1]. The temperature of the material is given
by T (t, x) and depends on time and position. These are supplemented with initial and boundary
conditions, which are later specified according to the problem. B(T ) describes the emission of
particles by the background material due to blackbody radiation at its current temperature. It is
given by the Stefan-Boltzmann law,

B(T ) = acT 4,

where a is the radiation constant and c is the speed of light. The rate of absorption and emission
of particles by the background material is specified by the absorption cross-section σa(x), where we
assume that σa(x) ≥ σ0 > 0. We denote the integral over µ as ⟨·⟩µ =

∫ 1

−1
· dµ and thus the scalar

flux of the particle density is defined as, ϕ(t, x) = 1
2 ⟨f⟩µ.

In (2.1) as ε tends to zero, absorption effects dominate the dynamics. A Hilbert expansion of
the particle density f yields that, as ε → 0, the particles are distributed as B(T ), i.e., f = B(T ),
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while the evolution of temperature is given by a diffusion-type non-linear equation known as the
Rosseland approximation [2]:

cν∂tT =
2

3
∂x

(
1

σa
B′(T )∂xT

)
− 2

c
B′(T )∂tT, (2.2)

where B′(T ) = d
dT B(T ).

2.1.1 Macro-micro decomposition

The asymptotic analysis of the thermal radiative equations (2.1) shows that multiple time scales are
involved in the evolution of temperature and particles. In particular, effects occur at times scales of
order O(1), O(ε), and O(ε2) and must be correctly resolved to capture the underlying dynamics of
the system. One way to do this is by decomposing the particle density into variables that describe
the macroscopic and microscopic effects. This type of decomposition of the particle density is
called a macro-micro decomposition and was first proposed in [6]. Since the thermal radiative
transfer equations involve three time scales, the particle density is decomposed into macroscopic
(B), microscopic (g), and mesoscopic (h) variables. For the thermal radiative transfer equations,
this macro-micro ansatz was first proposed in [20]. To be precise, we make the following ansatz for
the particle density

f(t, x, µ) = B(T (t, x)) + εg(t, x, µ) + ε2h(t, x), (2.3)

where ⟨g⟩µ = 0. Note that since ⟨g⟩µ = 0, the total mass of the system is conserved and was used
in [23] to construct a numerical scheme that conserves mass in shallow water equations.

Remark 1. The rationale behind calling h the mesoscopic variable instead of the microscopic vari-
able, despite scaling as ε2 is that it arises as the leading scaled quantity in the decomposition of
the macroscopic quantity of radiation transport equation, the scalar flux, and does not depend on
the angular variable.

To obtain evolution equations for h, g and T we substitute the macro-micro ansatz (2.3) in the
radiative transfer equations (2.1) yielding the following evolution equations

ε2

c
∂th+

κ

c
σaB′(T )h+

1

2
∂x⟨µg⟩µ = −σah, (2.4a)

ε2

c
∂tg + ε

(
I − 1

2
⟨·⟩µ

)
(µ∂xg) +B′(T )µ∂xT + ε2µ∂xh = −σag, (2.4b)

∂tT = κσah, (2.4c)

where we set κ = 2
cν

for ease of presentation. Note that by comparing the O(ε0) terms in all three
equations of (2.4) we obtain the Rosseland approximation (2.2) [2], [20].

Initial and boundary conditions It remains to describe the initial and boundary condi-
tions for the macro-micro equations (2.4). Note that we can write the microscopic variable g and
mesoscopic variable h as

g(t, x, µ) =
1

ε

(
f(t, x, µ)− 1

2
⟨f(t, x, µ)⟩µ

)
, (2.5a)

h(t, x) =
1

ε2

(
1

2
⟨f(t, x, µ)⟩µ −B(T )(t, x)

)
. (2.5b)

Thus, for given initial and boundary conditions of the radiative transfer equations (2.1), we use the
above relations to derive the initial and boundary conditions for the macro-micro equations (2.4).
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2.1.2 Angular discretization of microscopic variable

The microscopic variable g depends on the direction of flight, µ, and must be discretized in the
angular domain. In this work, we use the method of moments or the PN method [24] to discretize
in µ. To obtain the moment equations, let {P̃k}k∈N∪{0} be orthogonal Legendre polynomials with
standard L2([−1, 1]) norms γk, given by γ2

k = 2
2k+1 . Let Pk = P̃k/γk denote the kth orthonormal

Legendre polynomial satisfying the recurrence relation

µPk = ak−1Pk−1 + akPk+1, ak =
k + 1√

(2k + 1)(2k + 3)
.

The PN ansatz for g then reads

g(t, x, µ) ≈ gPN
(t, x, µ) =

N∑
k=0

gk(t, x)Pk(µ),

where gk is called the kth moment of the system. Since Pk is orthonormal the kth moment is given
by gk = ⟨gPk⟩µ. To obtain evolution equations for the moments gk, k = 0, 1, . . . , N , we multiply
(2.4b) by Pk and integrate over µ ∈ [−1, 1] . The evolution equation for the kth moment is then
given by

ε2

c
∂tgk + ε∂x (ak−1gk−1 + akgk+1)− ε

γ0γ1
2

∂xg1δk0 + γ1
(
B′(T )∂xT + ε2∂xh

)
δk1 = −σagk.

Note that since ⟨g⟩µ = 0, we get g0 = 0 and we obtain the following system of modal macro-micro
equations

ε2

c
∂th+

κ

c
σaB′(T )h+

γ1
2
∂xg1 = −σah, (2.6a)

ε2

c
∂tg + εA∂xg + b

(
B′(T )∂xT + ε2∂xh

)
= −σag , (2.6b)

∂tT = κσah, (2.6c)

where

g = (g1, . . . , gN )⊤ ∈ RN , A =



0 a1

a1 0
. . .

. . . . . .
aN−1

aN−1 0

 ∈ RN×N and b = (γ1, 0, . . . , 0)
⊤ ∈ RN .

2.2 Dynamical low-rank approximation

In this subsection, we give an overview of the DLRA put forth in [7]. The fundamental motivation
behind DLRA is to evolve a solution on a low-rank manifold of a given rank. To make this more
concrete, let gik = gk(t, xi) be the evaluation of the kth moment of the microscopic variable gk at
spatial point xi. The goal is then to evolve g such that it stays on the manifold of rank r matrices,
Mr. In DLRA, a low-rank approximation is computed by projecting the dynamics of the problem
onto the tangent space of the manifold [7].

For any matrix gr ∈ Mr ⊂ RNx×N we have the factorization

gr(t) = X(t)S(t)V(t)⊤. (2.7)

This means that the solution matrix is spanned by the spatial basis X : R+ → RNx×r, the moment
basis V : R+ → RN×r, and the coefficient matrix S : R+ → Rr×r. In DLRA, the basis and
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coefficient matrices are evolved on the low-rank manifold such that, for gr(t) ∈ Mr and a given
right-hand side F : RNx×N → RNx×N , the following minimization problem is satisfied at all times t

min
ġr(t)∈Tgr(t)Mr

∥ġr(t)− F(gr(t))∥F .

Here Tgr(t)
Mr denotes the tangent space of Mr at gr. A reformulation of this minimization problem

[7, Lemma 4.1] projects the right-hand side onto the tangent space and requires solving

ġr(t) = P(gr(t))F(gr(t))

where
P(gr)Z = XX⊤Z − XX⊤ZVV⊤ + ZVV⊤

is the projection onto the tangent space Tgr(t)
Mr.

Following [7], evolution equations can be derived for the factorized solution from the above
equations as

Ṡ(t) = X(t)⊤F(gr(t))V(t),

Ẋ(t) = (I − X(t)X(t)⊤)F(gr(t))V(t)S(t)−1,

V̇(t) = (I − V(t)V(t)⊤)F(gr(t))
⊤X(t)S(t)−⊤.

In case of over-approximation of the rank, the coefficient matrix S becomes nearly singular which
is a source of instabilities. Thus, robust integrators that do not invert the coefficient matrix have
been developed [8]–[11]. In this work, we use the fixed-rank BUG [9] and the augmented BUG
integrator [10], which we describe here in brief.

For a given factorized initial solution, g0
r = X0S0V0,⊤, one step of the fixed-rank BUG inte-

grator updates the factors X,S,V from time t0 to t1 by the following sub-steps

K-step Update X0 to X1 by solving

K̇(t) = F(K(t)V0,⊤)V0, K(t0) = X0S0.

Compute K(t1) = X1SK , e.g. by using QR decomposition, and store M = X1,⊤X0.

L-step Update V0 to V1 by solving

L̇(t) = X0,⊤F(X0L(t)), L(t0) = S0V0,⊤.

Compute L(t1)⊤ = V1SL,⊤, e.g. by using QR decomposition, and store N = V1,⊤V0.

S-step Update the coefficient matrix S0 to S1 by performing Galerkin step in the updated basis

Ṡ(t) = X1,⊤F(X1S(t)V1,⊤)V1, S(t0) = MS0N⊤

and set S1 = S(t1).

Then the approximation at the next time step is set as gr(t1) = X1S1V1,⊤.
Using a fixed-rank integrator comes with several challenges. First, since the rank of the solution

is not known beforehand, it is usually over-approximated, which leads to increased computational
costs. Second, the rank of the solution may vary over time [10], [13], [17]; thus, a fixed-rank
integrator may not capture the solution correctly. Moreover, the fixed-rank BUG integrator does
not preserve solution invariances. To overcome these, a rank-adaptive extension of the fixed-rank
BUG integrator, known as the augmented BUG integrator, was presented in [10] that appends extra
spatial and angular basis vectors by reusing the old basis and truncates the rank to a prescribed
tolerance ϑ.

To present the algorithm, we denote all quantities of rank 2r with hats and those of rank r
without. Then, one step of the augmented BUG integrator updates the solution, g0

r = X0S0V0,⊤

of rank r (note that gr represents low-rank approximation and not an approximation of rank r),
from time t0 to t1 through the following steps

6



1. Update and expand the spatial and angular basis in parallel.

K-step Solve
K̇(t) = F(K(t)V0,⊤)V0, K(t0) = X0S0,

and compute the updated basis matrix X̂ ∈ RNx×2r as an orthonormal basis of
[
K(t1),X0

]
and store M̂ = X̂

⊤
X0 ∈ R2r×r.

L-step Solve
L̇(t) = X0,⊤F(X0L(t)), L(t0) = S0V0,⊤,

and compute the updated basis matrix V̂ ∈ RN×2r as an orthonormal basis of
[
L(t1)⊤,V0

]
and store N̂ = V̂

⊤
V0 ∈ R2r×r.

2. Update the coefficient matrix S0 to Ŝ by performing Galerkin step in the updated and
expanded basis

˙̂S(t) = X̂
1,⊤

F(X̂Ŝ(t)V̂
⊤
)V̂, Ŝ(t0) = M̂S0N̂

⊤
.

3. Truncation to new rank r1.
Compute the SVD decomposition of Ŝ

Ŝ = PΣQ⊤,

where P,Q ∈ R2r×2r are orthogonal matrices and Σ ∈ R2r×2r is a diagonal matrix with
singular values, σ̂1, . . . , σ̂2r. The new rank r1 is chosen as 1 ≤ r1 ≤ 2r such that, for some
user-defined ϑ, the following is satisfied:(

2r∑
i=r1+1

σ̂2
i

)1/2

≤ ϑ.

To set the updated factors, we define Pr1 and Qr1 to be the matrices containing the first r1
columns of P and Q, respectively. Σr1×r1 is set as the diagonal matrix containing the first
r1 singular values of Ŝ. Then the updated factors are set as X1 = X̂Pr1 , V1 = V̂Qr1 and
S1 = Σr1×r1 and, the approximation at time t1 is then g1

r = X1S1V1,⊤.

Remark 2. Note that often in practice, to truncate the rank, a relative tolerance of the form ϑ·∥Σ∥2
is used.

3 Energy stability of modal macro-micro equations

Having discretized the macro-micro equations in angle (2.6), in this section, we present an asymptotic-
preserving spatio-temporal discretization and investigate its energy stability.

3.1 Spatio-temporal discretization

We start by noting that for i, j ∈ {1, . . . , N}, we can represent the (i, j)th term of the flux matrix
A by a quadrature rule. That is,

Aij = ⟨µPiPj⟩µ =

∫ 1

−1

µPi(µ)Pj(µ) dµ ≈
N+1∑
k=1

wkµkPi(µk)Pj(µk),

where (µk)k=1,...,N+1 and (wk)k=1,...,N+1 are quadrature points and weights given by the Gauss-
Legendre quadrature rule. If we define the matrices T ∈ RN×(N+1), with Tik =

√
wkPi(µk),

7



and M ∈ R(N+1)×(N+1), with Mij = µiδij , then we can write the flux matrix as A = TMT⊤.
Given (|M|)ij = |Mij | we can define a stabilization matrix for a finite volume discretization as
|A| = T |M|T⊤ and A± = 1

2T(M ± |M|)T⊤.

Remark 3. The choice of the stabilization matrix used here is not the standard Roe matrix T̃
∣∣∣M̃∣∣∣ T̃⊤

where A = T̃M̃T̃
⊤

is the eigendecomposition of the flux matrix. That is, the columns of T̃ ∈ RN×N

consist of orthogonal eigenvectors of A and M̃ ∈ RN×N has the corresponding eigenvalues on
the diagonal. The factorization of the flux matrix used, consisting of transformation matrices in
RN×(N+1), is needed for the diagonalization of the modal scheme for showing stability in the energy
norm. This choice of stabilization matrix was first presented in [19] for the radiative transport
equation.

We discretize in space using an equidistant staggered grid, with ∆x = 1/Nx, for a given number
of Nx ∈ N spatial cells. The cell interfaces are given by x1/2, . . . , xNx+1/2 and the midpoints by xi

for i ∈ {1, . . . , Nx}. The temperature (T ) and mesoscopic variable (h) are resolved at the full grid
points xi whereas the microscopic variable (g) is evaluated at the cell interfaces xi+1/2.
Since B(T ) = acT 4 we get B′(T ) = 4acT 3 and thus, to simplify the presentation of the algorithm,
we define

Ψ(t, x) = 4(T (t, x))3.

The values of Ψ at xi and xi+1/2 are given by Ψn
i = Ψ(tn, xi) and Ψn

i+1/2 =
Ψn

i+1+Ψn
i

2 , respectively.
Finally, to discretize in time we employ a forward-backward Euler scheme and obtain the following
modal macro-micro scheme

ε2

c

(
hn+1
i − hn

i

∆t

)
+ aκσa

i Ψ
n
i h

n+1
i +

γ1
2
D0gn+1

1,i = −σa
i h

n+1
i , (3.1a)

ε2

c

(
gn+1
i+1/2 − gn

i+1/2

∆t

)
+ εLgn

i+1/2 + bδ0
(
acΨn

i+1/2T
n
i+1/2 + ε2hn

i+1/2

)
= −σa

i+1/2g
n+1
i+1/2, (3.1b)

Tn+1
i − Tn

i

∆t
= κσa

i h
n+1
i , (3.1c)

where,

D−g i+1/2 =
g i+1/2 − g i−1/2

∆x
, D+g i+1/2 =

g i+3/2 − g i+1/2

∆x
,

D0g i =
g i+1/2 − g i−1/2

∆x
(= D−g i+1/2), δ0Ti+1/2 =

Ti+1 − Ti

∆x
,

Lg i+1/2 = (A+D− + A−D+)g i+1/2.

Theorem 1. In the limit ε → 0, the modal macro-micro scheme (3.1) gives a consistent discretiza-
tion of the diffusion equation

(1 +
2aΨ

cν
)∂tT =

2ac

3cν
∂x

(
1

σa
Ψ∂xT

)
.

Proof. The O(ε0) term in (3.1b) is given by

−σa
i+1/2g

n+1
1,i+1/2 = γ1acΨ

n
i+1/2δ

0Tn
i+1/2. (3.2)

Similarly, the O(ε0) term in (3.1a) is

−σa
i h

n+1
i = aκσa

i Ψ
n
i h

n+1
i +

γ1
2
D0gn+1

1,i

8



which on substituting gn+1
1,i+1/2 from (3.2) and collecting hn+1

i terms on the left hand side yields

(1 + aκΨn
i )σ

a
i h

n+1
i =

γ2
1

2
ac

 Ψn
i+1/2

σa
i+1/2

(Tn
i+1 − Tn

i )−
Ψn

i−1/2

σa
i−1/2

(Tn
i − Tn

i−1)

(∆x)2

 .

Thus, substituting σa
i h

n+1
i in (3.1c)

(1 +
2aΨn

i

cν
)

(
Tn+1
i − Tn

i

∆t

)
=

2ac

3cν

 Ψn
i+1/2

σa
i+1/2

(Tn
i+1 − Tn

i )−
Ψn

i−1/2

σa
i−1/2

(Tn
i − Tn

i−1)

(∆x)2

 ,

where we re-substitute κ = 2
cν

. This is a discretization of the limiting diffusion equation with an
explicit Euler discretization in time and centered differences for spatial derivatives.

3.2 Stability analysis

Next, we investigate the stability of the modal macro-micro scheme (3.1) in energy norm for a
linearized version of the problem as described in [25]. The linearization assumes that the particles
are emitted from the background material proportional to the temperature (instead of the 4th power
of temperature as given by the Stefan-Boltzmann law). That is, we set B(T ) = acT and thus Ψ = 1.
Other strategies to linearize the problem include the Su-Olsen closure [26] in which the specific heat,
cν , is assumed to be proportional to T 3.

Substituting the value of Ψ in (3.1) we get the following modal macro-micro scheme with linear
emission of particles:

ε2

c

(
hn+1
i − hn

i

∆t

)
+ aκσa

i h
n+1
i +

γ1
2
D0gn+1

1,i = −σa
i h

n+1
i , (3.3a)

ε2

c

(
gn+1
i+1/2 − gn

i+1/2

∆t

)
+ εLgn

i+1/2 + bδ0
(
acTn

i+1/2 + ε2hn
i+1/2

)
= −σa

i+1/2g
n+1
i+1/2, (3.3b)

Tn+1
i − Tn

i

∆t
= κσa

i h
n+1
i . (3.3c)

The following norms are defined for the scalar- and vector-valued functions

∥u∥2 =
∑
i

u2
i∆x, ∥ϕ∥2 =

∑
i

(ϕ⊤
i+1/2ϕi+1/2)∆x.

Then, for the linearized modal macro-micro scheme, we have the following stability result:

Theorem 2. Assume that the time step ∆t fulfills the CFL condition for all k, such that µk ̸= 0,

∆t ≤ 1

5cβN

(
2ε∆x

|µk|
+

σ0∆x2

µ2
k

)
, (3.4)

where βN = max
k

wk(N + 1) and c is the speed of light. Then, the scheme (3.3) is energy stable,
that is,

en+1 ≤ en,

where the energy is defined as

en =

∥∥∥∥aTn +
ε2

c
hn

∥∥∥∥2 + ∥∥∥∥ ε

γ0c
gn

∥∥∥∥2 + ∥∥∥∥√acν
2

Tn

∥∥∥∥2 .
9



Remark 4. For the sake of compactness, the proof of this theorem, along with all the required
lemmas, are presented in Appendix A. The proof follows the energy stability result in [25] and
combines it with the results obtained for the modal macro-micro scheme for radiation transport from

[19]. It is roughly divided into three parts; the first part bounds
∥∥∥aTn+1 + ε2

c h
n+1
∥∥∥2 +∥∥∥ ε

γ0c
gn+1

∥∥∥2
from above using (3.3a) and (3.3b). In the second part we derive an upper bound for

∥∥√acν
2 Tn+1

∥∥2
from (3.3c). Combining the bounds obtained in the first and the second part, we show energy
stability subject to step size restriction given by the CFL condition (3.4) in the third part of the
proof.

4 Dynamical low-rank approximation for the modal macro-micro equa-
tions

The macro-micro decomposition [6], [20] allows us to construct an asymptotic-preserving and
energy-stable numerical algorithm for the thermal radiative transfer equations. However, the micro-
scopic variable g is still a high-dimensional quantity since it depends on time, space, and direction
of flight. Thus, to reduce computational costs, we use dynamical low-rank approximation [7] to
approximate the solution of g by a low-rank factorization. This section is divided into two subsec-
tions; in the first subsection, we derive evolution equations for the low-rank factorization of g for the
fixed-rank BUG integrator [9]. We present an asymptotic-preserving spatio-temporal discretization
and show that the numerical scheme is energy stable for the linearization presented in Section 3.
In the second subsection, we extend the scheme to the augmented BUG integrator [10].

Consider the microscopic equation (2.6b) given by

ε2

c
∂tg + εA∂xg + b

(
acΨ∂xT + ε2∂xh

)
= −σag . (4.1)

The low-rank ansatz for the microscopic variable g reads:

g(t, x) ≈
r∑

p,q=1

Xp(t, x)Spq(t)Vq(t)
⊤,

where r ∈ N is some given rank and Vq = (V1,q, . . . , VN,q)
⊤ ∈ RN . Thus, we can write the above

sum as
g(t, x) = X (t, x)⊤S(t)V(t)⊤,

where

X = (X1, . . . , Xr)
⊤ ∈ Rr, S = (Spq)

r
p,q=1 ∈ Rr×r, V =

[
V1 . . . Vr

]
∈ RN×r.

4.1 Fixed-rank modal macro-micro BUG integrator

With this low-rank ansatz for g we can now write down the individual steps of the fixed-rank BUG
integrator [9] for updating the microscopic variable. To this end let the solution at time tn be given
by gn(x) = X n(x)⊤SnVn,⊤, then the evolution equations for updating X ,S,V are as follows:

K-step For K (t, x)⊤ = X (t, x)⊤S(t) solve

ε2

c
∂tK (t, x) = −ε

[
Vn,⊤AVn

]
∂xK (t, x)− Vn,⊤b(acΨ∂xT + ε2∂xh)− σaK (t, x),

with the initial condition K (tn, x) = X n(x)⊤Sn. We denote the updated spatial basis vectors
by X n+1(x) which is obtained as the orthonormal basis of K (tn+1, x).
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L-step For L(t) = V(t)S(t)⊤ solve

ε2

c
L̇(t) = −εA⊤L(t)⟨∂xX n,X n,⊤⟩x − b⟨acΨ∂xT + ε2∂xh,X n,⊤⟩x.

where ⟨·, ·⟩x denotes the L2 - inner product over the spatial domain, and we have the initial
condition given by L(tn) = VnSn,⊤. We denote the updated angular basis matrix by Vn+1,
which is obtained as the orthonormal basis of L(tn+1).

S-step Perform a Galerkin step in the updated spatial and angular basis according to

ε2

c
Ṡ(t) = −ε⟨X n+1, ∂xX n+1,⊤⟩xS(t)Vn+1,⊤AVn+1 − ⟨X n+1, acΨ∂xT + ε2∂xh⟩xb⊤Vn+1

− ⟨σaX n+1,X n+1,⊤⟩xS(t),

with the initial condition S(tn) = ⟨X n+1,X n,⊤⟩xSnVn,⊤Vn+1.

4.1.1 Spatio-temporal discretization

The update equations for T and h from Section 2.1.2 along with the evolution equations for the low-
rank factors of g give the fixed-rank modal macro-micro BUG equations for the thermal radiative
transfer equations. Similar to Section 3, we discretize the fixed-rank modal macro-micro BUG
equations in space and time. First, we define

X n
i+1/2 =

1

∆x

∫ xi+1

xi

X (tn, x) dx

and K i+1/2(t) = X i+1/2(t)
⊤S(t) ∈ Rr. Then, for the prescribed data X n,Vn,Sn, hn, Tn at time

tn the fixed-rank modal macro-micro BUG scheme updates the solution at time tn through the
following steps,

K-step Update

ε2

c

[
Kn+1

i+1/2 −Kn
i+1/2

∆t

]
= −εLKKn

i+1/2−Vn,⊤bδ0(acΨn
i+1/2T

n
i+1/2+ε2hn

i+1/2)−σa
i+1/2K

n+1
i+1/2,

(4.2)
where Kn,⊤

i+1/2 = X n,⊤
i+1/2S

n and

LKKn
i+1/2 =

[
Vn,⊤A+Vn

]
D−Kn

i+1/2 +
[
Vn,⊤A−Vn

]
D+Kn

i+1/2.

Compute X n+1
i+1/2 as the orthonormal basis of Kn+1

i+1/2.

L-step Update

ε2

c

[
Ln+1 − Ln

∆t

]
= −εLLLn − b

∑
i

X n,⊤
i+1/2δ

0(acΨn
i+1/2T

n
i+1/2 + ε2hn

i+1/2)

− Ln+1
∑
i

σa
i+1/2X

n
i+1/2X

n,⊤
i+1/2

(4.3)

where Ln = VnSn,⊤ and

LLLn = A+Ln
∑
i

D−X n
i+1/2X

n,⊤
i+1/2 + A−Ln

∑
i

D+X n
i+1/2X

n,⊤
i+1/2.

Compute Vn+1 as the orthonormal basis of Ln+1.

11



S-step Update

ε2

c

[
Sn+1 − S̃

n

∆t

]
= −εLSS̃

n
−
∑
i

X n+1
i+1/2δ

0(acΨn
i+1/2T

n
i+1/2 + ε2hn

i+1/2)b
⊤Vn+1

−
∑
i

σa
i+1/2X

n+1
i+1/2X

n+1,⊤
i+1/2 Sn+1

(4.4)

where S̃
n
=
∑

j X
n+1
j+1/2X

n,⊤
j+1/2S

nVn,⊤Vn+1 and

LSSn =
∑
i

X n+1
i+1/2D

−X n+1,⊤
i+1/2 SnVn+1,⊤A+Vn+1

+
∑
i

X n+1
i+1/2D

+X n+1,⊤
i+1/2 SnVn+1,⊤A−Vn+1,

Update T, h:

ε2

c

(
hn+1
i − hn

i

∆t

)
+ aκσa

i Ψ
n
i h

n+1
i +

γ1
2
D0X n+1,⊤

i+1/2 Sn+1Vn+1,⊤e1 = −σa
i h

n+1
i , (4.5)

Tn+1
i − Tn

i

∆t
= κσa

i h
n+1
i . (4.6)

Theorem 3. In the limit ε → 0, the fixed-rank modal macro-micro BUG scheme given by eqs. (4.2)
to (4.6) gives a consistent discretization of the diffusion equation(

1 +
2aΨ

cν

)
∂tT =

2ac

3cν
∂x

(
1

σa
∂xT

)
.

Proof. As ε → 0, from the K-step (4.2) and L-step (4.3) we obtain

Vn,⊤bΨn
i+1/2δ

0(acTn
i+1/2) = −σa

i+1/2K
n+1
i+1/2

and
Ln+1

∑
i

σa
i+1/2X

n
i+1/2X

n,⊤
i+1/2 = −b

∑
i

X n,⊤
i+1/2Ψ

n
i+1/2δ

0(acTn
i+1/2).

If Kn+1
i+1/2 is factorized as Kn+1,⊤

i+1/2 = X n+1,⊤
i+1/2 SK then

Ψn
i+1/2

σa
i+1/2

δ0(acTn
i+1/2) lies in the range space of

X n+1
i+1/2. Similarly, if Ln+1 = Vn+1S⊤

L and
(
S⊤
L

∑
i σ

a
i+1/2X

n
i+1/2X

n,⊤
i+1/2

)
is invertible, then b lies

in the range space of Vn+1.
Now as ε → 0, from the S-step we obtain

−

(∑
i

Ψn
i+1/2δ

0(acTn
i+1/2)X

n+1
i+1/2

)(
b⊤Vn+1

)
=

(∑
i

σa
i+1/2X

n+1
i+1/2X

n+1,⊤
i+1/2

)
Sn+1. (4.7)

Note that since
Ψn

i+1/2

σa
i+1/2

δ0(acTn
i+1/2) =

[∑
j

Ψn
j+1/2

σa
j+1/2

δ0(acTn
j+1/2)X

n+1,⊤
j+1/2

]
X n+1

i+1/2 we have

∑
i

δ0(acΨn
i+1/2T

n
i+1/2)X

n+1
i+1/2 =

∑
i

σa
i+1/2

(
Ψn

i+1/2

σa
i+1/2

δ0(acTn
i+1/2)X

n+1
i+1/2

)

=

(∑
i

σa
i+1/2X

n+1
i+1/2X

n+1,⊤
i+1/2

)∑
j

Ψn
j+1/2

σa
j+1/2

δ0(acTn
j+1/2)X

n+1
j+1/2

 .
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Hence, (4.7) becomes

Sn+1 = −

∑
j

Ψn
j+1/2

σa
j+1/2

δ0(acTn
j+1/2)X

n+1
j+1/2

(b⊤Vn+1
)

and since
Ψn

i+1/2

σa
i+1/2

δ0(acTn
i+1/2) and b lie in the range of the updated spatial and angular basis, scalar

multiplication with X n+1,⊤
i+1/2 and Vn+1,⊤ from the left and right implies

gn+1
i+1/2 = −

Ψn
i+1/2

σa
i+1/2

δ0(acTn
i+1/2)b

⊤. (4.8)

The rest of the proof follows along the lines of Theorem 1.

4.1.2 Energy stability

Next, we investigate the stability of the fixed-rank modal macro-micro BUG scheme in energy norm
for the linearized problem (3.3). For the following decomposition of the micro variable

gn =

 gn
1/2

...
gn
Nx+1/2

 = XnSnVn,⊤,

the norm is defined as
∥gn∥2 =

∥∥∥XnSnVn,⊤
∥∥∥2
F
∆x

Additionally, we state the following property that we use in the proof of energy stability:

Property 1. For any {ci}i=1,...,Nx ∈ R and {di}i=1,...,Nx ∈ R we have∑
i

cidi =
1

2

∑
i

c2i +
1

2

∑
i

d2i −
1

2

∑
i

(ci − di)
2.

Theorem 4. Assume that the time step ∆t fulfills the CFL condition (3.4) from Theorem 2. Then,
the fixed-rank modal macro-micro BUG scheme given by eqs. (4.2) to (4.6) is energy stable for the
linearised problem (3.3), that is,

en+1 ≤ en,

where the energy is defined as

en =

∥∥∥∥aTn +
ε2

c
hn

∥∥∥∥2 + ∥∥∥∥ ε

γ0c
XnSnVn,⊤

∥∥∥∥2 + ∥∥∥∥√acν
2

Tn

∥∥∥∥2 .
Proof. Since the proof of the theorem follows along the lines of Theorem 2, to shorten the presen-
tation, we only present the parts of the proof that differ from Theorem 2. That is, we show that
the inequalities (A.6) and (A.5) hold for the low-rank scheme. We begin by rewriting the S-step
(4.4) of the fixed-rank modal macro-micro BUG scheme as

ε2

c∆t
Sn+1 =

ε2

c∆t
S̃
n
− εLSS̃

n
−
∑
j

X n+1
j+1/2δ

0(acTn
j+1/2 + ε2hn

j+1/2)b
⊤Vn+1

−
∑
j

σa
j+1/2X

n+1
j+1/2X

n+1,⊤
j+1/2 Sn+1
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and multiply X n+1,⊤
i+1/2 and Vn+1,⊤ from the left and the right, respectively. If we define g̃n

i+1/2 =

X n+1,⊤
i+1/2 S̃

n
Vn+1,⊤ and gn+1

i+1/2 = X n+1,⊤
i+1/2 Sn+1Vn+1,⊤, we obtain

ε2

c∆t
gn+1
i+1/2 =

ε2

c∆t
g̃n
i+1/2 − εX n+1,⊤

i+1/2 LSS̃
n
Vn+1,⊤

−
∑
j

X n+1,⊤
i+1/2 X n+1

j+1/2δ
0(acTn

j+1/2 + ε2hn
j+1/2)b

⊤Vn+1Vn+1,⊤

−
∑
j

σa
j+1/2X

n+1,⊤
i+1/2 X n+1

j+1/2g
n+1
j+1/2V

n+1Vn+1,⊤.

(4.9)

Defining the projection matrix onto the spatial basis as PX ∈ RNx×Nx with entries

PX
ij = X n+1,⊤

i+1/2 X n+1
j+1/2 =

∑
q

Xn+1
i+1/2,qX

n+1
j+1/2,q

and the projection matrix onto the angular basis as PV = Vn+1Vn+1,⊤ ∈ RN×N , (4.9) reads

ε2

c∆t
gn+1
i+1/2 =

ε2

c∆t
g̃n
i+1/2 − εX n+1,⊤

i+1/2 LSS̃
n
Vn+1,⊤

−
∑
j

PX
ij δ

0(acTn
j+1/2 + ε2hn

j+1/2)b
⊤PV −

∑
j

σa
j+1/2P

X
ij gn+1

j+1/2P
V .

Thus, if 1 ≤ k ≤ N , the evolution equation for the kth moment, gn+1
i+1/2,k, is given by

ε2

c∆t
gn+1
i+1/2,k =

ε2

c∆t
g̃ni+1/2,k − εX n+1,⊤

i+1/2 LSS̃
n
Vn+1,⊤ek

−
∑
j

PX
ij δ

0(acTn
j+1/2 + ε2hn

j+1/2)b
⊤PV ek −

∑
j

σa
j+1/2P

X
ij gn+1

j+1/2P
V ek,

(4.10)

where ek = (δik)i=1,...,N . First, we consider the second term on the right-hand side of (4.10) and
split it into two sub-equations

X n+1,⊤
i+1/2 LSS̃

n
Vn+1,⊤ek = X n+1,⊤

i+1/2

∑
j

X n+1
j+1/2D

−X n+1,⊤
j+1/2 S̃

n
Vn+1,⊤A+Vn+1

+
∑
j

X n+1
j+1/2D

+X n+1,⊤
j+1/2 S̃

n
Vn+1,⊤A−Vn+1

Vn+1,⊤ek

=
∑
j,ℓ,q

PX
ij D−g̃nj+1/2,ℓA

+
ℓqP

V
qk +

∑
j,ℓ,q

PX
ij D+g̃nj+1/2,ℓA

−
ℓqP

V
qk.

Similarly, expanding the third and the fourth term on the right-hand side of (4.10) we get

ε2

c∆t
gn+1
i+1/2,k =

ε2

c∆t
g̃ni+1/2,k − ε

∑
j,ℓ,q

PX
ij D−g̃nj+1/2,ℓA

+
ℓqP

V
qk − ε

∑
j,ℓ,q

PX
ij D+g̃nj+1/2,ℓA

−
ℓqP

V
qk

−
∑
j,q

PX
ij δ

0(acTn
j+1/2 + ε2hn

j+1/2)bqP
V
qk −

∑
j,q

PX
ij σ

a
j+1/2g

n+1
j+1/2,qP

V
qk.

(4.11)
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Multiplying (4.11) by gn+1
i+1/2,k∆x and summing over i, k we get

ε2

c∆t

∑
i,k

(gn+1
i+1/2,k)

2∆x =
ε2

c∆t

∑
i,k

g̃ni+1/2,kg
n+1
i+1/2,k∆x− ε

∑
j,ℓ,q

D−g̃nj+1/2,ℓA
+
ℓq

∑
i,k

PV
qkP

X
ij g

n+1
i+1/2,k∆x

− ε
∑
j,ℓ,q

D+g̃nj+1/2,ℓA
−
ℓq

∑
i,k

PV
qkP

X
ij g

n+1
i+1/2,k∆x

−
∑
j,q

δ0(acTn
j+1/2 + ε2hn

j+1/2)bq
∑
i,k

PV
qkP

X
ij g

n+1
i+1/2,k∆x

−
∑
j,q

σa
j+1/2g

n+1
j+1/2,q

∑
i,k

PV
qkP

X
ij g

n+1
i+1/2,k∆x.

(4.12)
Using ∑

i

PX
ij g

n+1
i+1/2,k = gn+1

j+1/2,k,
∑
k

PV
qkg

n+1
j+1/2,k = gn+1

j+1/2,q. (4.13)

and Property 1, (4.12) reduces to

ε2

2c∆t

(∥∥gn+1
∥∥2 − ∥g̃n∥2 +

∥∥gn+1 − g̃n
∥∥2) = −ε

∑
j,ℓ,q

D−g̃nj+1/2,ℓA
+
ℓqg

n+1
j+1/2,q∆x

− ε
∑
j,ℓ,q

D+g̃nj+1/2,ℓA
−
ℓqg

n+1
j+1/2,q∆x

−
∑
j,q

δ0(acTn
j+1/2 + ε2hn

j+1/2)bqg
n+1
j+1/2,q∆x

−
∑
j,q

σa
j+1/2g̃

n+1
j+1/2,qg

n+1
j+1/2,q∆x.

Collecting into a vector, we get

ε2

2c∆t

(∥∥gn+1
∥∥2 − ∥g̃n∥2 +

∥∥gn+1 − g̃n
∥∥2) = −ε

∑
j

(
L⊤g̃n

j+1/2

)
gn+1,⊤
j+1/2 ∆x

−
∑
j

b⊤δ0(acTn
j+1/2 + ε2hn

j+1/2)g
n+1,⊤
j+1/2 ∆x

−
∑
j

σa
j+1/2g

n+1
j+1/2g

n+1,⊤
j+1/2 ∆x.

The above equation is equivalent to (A.6). Similarly, substituting the temperature update (4.6) in
(4.5) we get(

aTn+1
i + ε2

c h
n+1
i − aTn

i − ε2

c h
n+1
i

∆t

)
+

γ1
2
D0X n+1,⊤

i Sn+1Vn+1,⊤e1 = −σa
i h

n+1
i . (4.14)

Multiplying (4.14) by aTn+1
i + ε2

c h
n+1
i , summing over i and using Property 1 yields

1

2∆t

(∥∥∥∥aTn+1 +
ε2

c
hn+1

∥∥∥∥− ∥∥∥∥aTn +
ε2

c
hn+1

∥∥∥∥ +

∥∥∥∥aTn+1 +
ε2

c
hn+1 − aTn − ε2

c
hn+1

∥∥∥∥)
+
γ1
2

∑
i

(aTn+1
i +

ε2

c
hn+1
i )D0gn+1

i,1 = −
∑
i

σa
i (aT

n+1
i +

ε2

c
hn+1
i )hn+1

i

(4.15)

which is the same as (A.5). The rest of the proof follows along the lines of Theorem 2 (see Ap-
pendix A).
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4.1.3 Local mass conservation

Theorem 5. The fixed-rank modal macro-micro BUG scheme is locally conservative. I.e., if
the scalar flux at time tn is denoted by Φn

i = acTn
i + ε2hn

i , where n ∈ {0, 1} and gn+1
i+1/2,k =∑

ℓ,m Xn+1
i+1/2,ℓS

n+1
ℓm V n+1

km the scheme fulfills the discrete conservation law

Φn+1
i − Φn

i

∆t
+ c

γ1
2
D0gn+1

1,i = −cσa
i h

n+1
i , (4.16a)

cν
2

(
Tn+1
i − Tn

i

∆t

)
= σa

i h
n+1
i . (4.16b)

Proof. Since, for zero or periodic boundary conditions,
∑

i c
γ1

2 D0gn+1
1,i = 0, this means that the

total mass
∑

i

(
1
cΦ

n
i + cν

2 Tn
i

)
is conserved over all time steps n. This result is a direct consequence

of the macro-micro strategy as shown in [23] and follows from multiplying (4.6) with ac and adding
(4.5) for the linearized problem.

4.2 Asymptotic-preserving modification to augmented BUG integrator

We see from Theorem 3 that the updated spatial and angular basis span
Ψn

i+1/2

σa
i+1/2

δ0(acTn
i+1/2) and

b, respectively. Unlike the fixed-rank BUG integrator [9], naively using the augmented BUG inte-
grator [10] does not guarantee that this property is fulfilled since the truncation step may prune
away essential basis vectors. Thus, we propose the following modification to the augmented BUG
integrator, based on its basis-augmentation step and conservative truncation [22], to obtain an
asymptotic-preserving scheme. To ease the presentation of the integrator, we consider the spatially
and angularly discretized problem from Section 4.1 so that g ∈ RNx×N . Thus, the low-rank ansatz
takes the form

g(t) = X(t)S(t)V(t)⊤.

Then, one step of the modal macro-micro BUG scheme updates Xn,Vn,Sn, hn, Tn from time tn
to tn+1 by the following steps

1. Spatial and angular basis update

K-step: Update K(tn+1) ∈ RNx×r according to the K-step (4.2) of the fixed-rank modal
macro-micro BUG scheme. Then compute X̂

n+1
as an orthonormal basis of[

(σa)−1Ψnδ0(acTn) K(tn+1) Xn
]

and store M̂ = X̂
n+1,⊤

Xn ∈ R(2r+1)×r.
L-step: Update L(tn+1) ∈ RN×r according to the L-step (4.3) of the fixed-rank modal macro-
micro BUG scheme. Then compute V̂

n+1
as an orthonormal basis of

[
b L(tn+1) Vn

]
and

store N̂ = V̂
n+1,⊤

Vn ∈ R(2r+1)×r.

2. Perform a Galerkin update of the coefficient matrix Ŝ
n+1

similar to (2) with the initial

condition S̃
n
= M̂

⊤
SnN̂

⊤
and the right-hand side as described in (4.4) of the fixed-rank

modal macro-micro BUG scheme.

3. Asymptotic-preserving splitting of the basis matrices and truncation

Set K̂ = X̂
n+1

Ŝ
n+1

and split K̂ =
[
K̂

ap
K̂

rem
]

into basis vectors, where

K̂
ap

=
[
(σa)−1Ψnδ0(acTn)

]
∈ RNx×1 and the remaining basis vectors into K̂

rem
∈ RNx×2r.

Similarly, split the angular basis V̂ =
[
V̂

ap
V̂

rem
]
, where V̂

ap
=
[
b
]
∈ RN×1 and V̂

rem
∈

RN×2r.
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Next compute the QR decomposition of K̂
rem

K̂
rem

= X̂
rem

Ŝ
rem

.

and for truncating the rank compute the SVD of Ŝ
rem

as

Ŝ
rem

= UΣW⊤. (4.17)

We truncate the remaining basis vectors to 1 ≤ r∗ ≤ 2r such that if σ̂i, i = 1, . . . , 2r, are the
singular values of Ŝ

rem
then for some user defined tolerance ϑ the following is satisfied:(

2r∑
i=r∗+1

σ̂i

)1/2

≤ ϑ.

The new rank is set as r1 = r∗ + 1. Then let Û ∈ R2r×r∗ and Ŵ ∈ R2r×r∗ be the matrices
containing the first r∗ columns of U and W, respectively. Similarly, let Σ̂ be the first r∗× r∗

block of Σ; then we set

Xrem = X̂
rem

Û, Srem = Σ̂, Wn+1 = V̂
rem

Ŵ.

Then we get the updated angular basis Vn+1 ∈ RN×r1 by adding columns, i.e.

Vn+1 =
[
V̂

ap
Wn+1

]
.

For the updated spatial basis, we first compute the QR decomposition of K̂
ap

as

K̂
ap

= XapSap.

Then set X̂ =
[
Xap Xrem] and subsequently perform a QR decomposition to obtain the

updated spatial basis matrix Xn+1 ∈ RNx×r1 ,

Xn+1R2 = X̂. (4.18)

Finally we set the updated coefficient matrix Sn+1 ∈ Rr1×r1 to be

Sn+1 = R2

[
Sap 0
0 Srem

]
(4.19)

and the approximation at the next time step is set as gn+1 = Xn+1Sn+1Vn+1,⊤.

4. Update T, h:

ε2

c

(
hn+1
i − hn

i

∆t

)
+ aκσa

i Ψ
n
i h

n+1
i +

γ1
2
D0X n+1,⊤

i+1/2 Sn+1Vn+1,⊤e1 = −σa
i h

n+1
i , (4.20)

Tn+1
i − Tn

i

∆t
= κσa

i h
n+1
i . (4.21)

Lemma 1. For the proposed modal macro-micro BUG scheme, we have

R−⊤
2

[
(Sap)−⊤ 0

0 Û
⊤
(Ŝ

rem
)−⊤

]
Ŝ
n+1,⊤

Ŝ
n+1

[
Im 0
0 Ŵ

]
= Sn+1,

where the matrices are as defined above and Im is the m×m identity matrix.
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Proof. See Appendix B.

Theorem 6. The proposed modal macro-micro BUG scheme is asymptotic-preserving in the sense
of Theorem 3.

Proof. From the K- and L-step of the modal macro-micro BUG scheme we get (σa)−1Ψnδ0(acTn) ∈
Range (X̂

n+1
) and b ∈ Range (V̂

n+1
). Thus, along the lines of Theorem 3 for ε → 0 we get from

the S-step of the modal macro-micro BUG scheme

−
(
X̂

n+1,⊤
(σa)−1Ψnδ0(acTn)

)(
b⊤V̂

n+1
)
= Ŝ

n+1
. (4.22)

Now, to show that the proposed scheme is asymptotic-preserving, we need to show two things; first,
that (σa)−1Ψnδ0(acTn) ∈ Range(Xn+1) and b ∈ Range(Vn+1). Second, we need to show that
the above relation (4.22) also holds for the truncated factor matrices Xn+1,Vn+1 and Sn+1. The
first property follows directly from the construction of the scheme. For the latter, we can represent
Xn+1 as

Xn+1 =
[
Xap Xrem]R−1

2

=
[
K̂

ap
(Sap)−1 X̂

rem
Û
]
R−1

2

=
[
K̂

ap
(Sap)−1 K̂

rem
(Ŝ

rem
)−1Û

]
R−1

2

=
[
K̂

ap
K̂

rem
] [(Sap)−1 0

0 (Ŝ
rem

)−1Û

]
R−1

2

= X̂
n+1

Ŝ
n+1

[
(Sap)−1 0

0 (Ŝ
rem

)−1Û

]
R−1

2 .

Thus we get

Xn+1,⊤ = R−⊤
2

[
(Sap)−⊤ 0

0 Û
⊤
(Ŝ

rem
)−⊤

]
Ŝ
n+1,⊤

X̂
n+1,⊤

and similarly, we get the following relation for the updated angular basis

Vn+1 =
[
V̂

ap
Wn+1

]
=
[
V̂

ap
V̂

rem
] [Im 0

0 Ŵ

]
.

This yields the relation

Vn+1 = V̂
n+1

[
Im 0
0 Ŵ

]
,

where Im is the m×m identity matrix. Now we multiply (4.22) by R−⊤
2

[
(Sap)−⊤ 0

0 Û
⊤
(Ŝ

rem
)−⊤

]
Ŝ
n+1,⊤

from the left and by
[
Im 0
0 Ŵ

]
from the right and using Lemma 1 for the right-hand side gives

−
(
Xn+1,⊤(σa)−1Ψnδ0(acTn)

)(
b⊤Vn+1

)
= Sn+1.

Thus by multiplying by Xn+1 and Vn+1 from the left and the right and using the fact that
(σa)−1Ψnδ0(acTn) ∈ Range(Xn+1) and b ∈ Range(Vn+1) we can show that the proposed scheme
is asymptotic-preserving by following the steps from Theorem 3.
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4.2.1 Energy stability

Theorem 7. Assume that the CFL condition (3.4) from Theorem 2 holds. Then the modal macro-
micro BUG scheme is energy stable for the linearized problem (3.3), where the energy is the same
as defined in Theorem 4.

Proof. Similar to Theorem 4 we start by considering the S-step of the modal macro-micro BUG
scheme where,

ε2

c∆t
Ŝ
n+1

=
ε2

c∆t
S̃
n
− εLSS̃

n
−
∑
j

X̂
n+1

j+1/2δ
0(acTn

j+1/2 + ε2hn
j+1/2)b

⊤V̂
n+1

−
∑
j

σa
j+1/2X̂

n+1

j+1/2X̂
n+1,⊤
j+1/2 Ŝ

n+1
.

(4.23)

We note that
∑

i X̂
n+1,⊤
i+1/2 S̃

n
V̂

n+1,⊤
=
∑

i X
n,⊤
i+1/2S

nVn,⊤. Multiplying (4.23) by X̂
n+1,⊤
i+1/2 from the

left and V̂
n+1,⊤

from the right, then summing over i we get

ε2

c∆t

∑
i

X̂
n+1,⊤
i+1/2 Ŝ

n+1
V̂

n+1,⊤
∆x =

ε2

c∆t

∑
i

X n,⊤
i+1/2S

nVn,⊤∆x− ε
∑
i

X̂
n+1,⊤
i+1/2 LSS̃V̂

n+1,⊤
∆x

−
∑
i,j

X̂
n+1,⊤
i+1/2 X̂

n+1

j+1/2δ
0(acTn

j+1/2 + ε2hn
j+1/2)b

⊤V̂
n+1

V̂
n+1

∆x

−
∑
i,j

σa
j+1/2X̂

n+1,⊤
i+1/2 X̂

n+1

j+1/2X̂
n+1,⊤
j+1/2 Ŝ

n+1
V̂

n+1
∆x.

Since the truncation step of the integrator does not increase the norm of the solution∥∥∥Xn+1Sn+1Vn+1,⊤
∥∥∥ =

∥∥Sn+1
∥∥ ≤

∥∥∥Ŝn+1
∥∥∥ =

∥∥∥X̂n+1
Ŝ
n+1

V̂
n+1,⊤∥∥∥ .

The rest of the proof follows along the lines of Theorem 4.

5 Numerical results

The following numerical results can be reproduced with the openly available source code [27].

5.1 Rectangular pulse test case

We consider gray thermal radiative transfer equations in slab geometry (2.1) on the spatial domain
D = [−10, 10]. The initial distribution of the temperature is given by the rectangular pulse

T (t = 0, x) =
100

σa(x)
· χ[−0.5,0.5](x).

The particle density is initially at an equilibrium with the temperature and is given by

f(t = 0, x, µ) = acT (t = 0, x).

Subsequently, as time progresses, the particles move into all directions µ ∈ [−1, 1] while undergoing
isotropic absorption at the rate σa(x) = 0.5. In this test case, we assume that no particles are
present at the boundary during the entire simulation, and the temperature remains zero at the
boundary as well. The initial and boundary conditions for g and h can be derived from those for
temperature and particle density by using the relations (2.5). We assume that constants are scaled
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to 1, i.e., we set the radiation constant a = 1, speed of light c = 1, and the specific heat is cν = 1.
The mass at time tn is defined as

mn =
∑
i

(
aTn

i +
ε2

c
hn
i +

cν
2
Tn
i

)
∆x. (5.1)

The spatial domain is divided into Nx = 501 spatial cells, and we use N = 100 Legendre
polynomials to represent the angular variable. The moment solutions (PN ) are computed using the
modal macro-micro scheme (3.3). For ε = 1, we choose a rank of r = 5, 15 for the fixed-rank modal
macro-micro BUG integrator (frBUG) and an initial rank of r = 1 for the modal macro-micro BUG
integrator (BUG). For rank truncation we set the tolerance parameter to ϑ = 5 ·10−2 ∥Σ∥2 and the
end time is set to tend = 1.5. The step size is chosen according to (3.4)

∆t = min
k

{
1

5cβN

(
2ε∆x

|µk|
+

σ0∆x2

µ2
k

)}
where, for N = 100 the step size is minimal for µk = −0.999719 which gives the step size ∆t ≈ 0.005.
We compare the low-rank approximations with the moment solutions P5, P15 and P100, and the
results are given in Figure 2. The relative mass error of all the low-rank solutions as well as the P100

solution is given in Figure 1a. Note that the chosen step size for the P5 and P15 solutions differs
from that of the rest of the solutions and is minimal for a different quadrature point, which we do
not specify here. From the plots of temperature and scalar flux, we see that the solution of the
fixed-rank modal macro-micro BUG integrator with r = 15 (BUG15) and the modal macro-micro
BUG integrator agree well with the full moment solution P100 and are different from the Rosseland
diffusion limit. Additionally, the BUG5 approximation performs much better than the P5 solution.
All the integrators dissipate energy over time, as we see from Figure 3.
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(b) ε = 10−5

Figure 1: Relative mass error for the rectangular pulse test case in the kinetic and diffusive
regime.
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(b) low-rank methods
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Figure 2: Numerical results of the rectangular pulse test case in the kinetic regime, i.e.,
ε = 1 at t = 1.5. In the first row, we present the temperature profile at end-time for the
moment and low-rank methods; in the second row, we have the corresponding scalar flux.
In the last row, we have the energy of the system over time for all the methods and the
rank evolution of the BUG integrator.

For ε = 10−5, we use a coarser spatial grid with Nx = 201 cells. The rank used for the fixed-
rank modal macro-micro BUG integrator is r = 1, and the modal macro-micro BUG integrator
starts with the same initial rank r = 1. The tolerance parameter and end time are the same as
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in the kinetic regime. We see from Figures 1 and 3 that the solutions from the full modal macro-
micro integrator, fixed-rank modal macro-micro BUG integrator, and modal macro-micro BUG
integrator agree well with the limiting Rosseland approximation. Additionally, all the methods
dissipate energy over time.
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Figure 3: Numerical results of the rectangular pulse test case in the diffusive regime, i.e.
ε = 10−5 at t = 1.5. Top left: Temperature profile, Top right: Scalar flux, Bottom left:
Energy of the system over time for all the methods, Bottom right: Rank evolution of rank-
adaptive integrator over time.

5.2 Absorber test case

To study the behavior of the methods in an inhomogeneous medium, we place an absorber in the
middle of the domain. That is, we set the absorption coefficient to

σa(x) =

{
5, if − 0.25 ≤ x ≤ 0.25,

0.5 else
.

The remaining parameters, along with the end time, are the same as in the rectangular pulse test
case. The temperature and scalar flux, along with other parameters, are depicted in Figure 4 for
ε = 1 and in Figure 5 for ε = 10−5.
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(b) low-rank methods
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Figure 4: Numerical results of the absorber test case in the kinetic regime, i.e., ε = 1 at
t = 1.5. In the first row, we present the temperature profile at end-time for the moment
and low-rank methods; in the second row, we have the corresponding scalar flux. In the last
row, we have the energy of the system over time for all the methods and the rank evolution
of the BUG integrator.
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Figure 5: Numerical results of the absorber test case in the diffusive regime, i.e., ε = 10−5

at t = 1.5. Top left: Temperature profile, Top right: Scalar flux, Bottom left: Energy of
the system over time for all the methods, Bottom right: Rank evolution of rank-adaptive
integrator over time.

6 Conclusion

In this work, we propose a modal macro-micro BUG integrator for the radiative heat transfer
equations. We show that this integrator is energy stable for the linearized problem under a CFL
condition that captures the kinetic regime and diffusive regime of the thermal radiative transfer
equations. Additionally, the full modal macro-micro scheme’s stability and the fixed-rank macro-
micro BUG scheme have been investigated.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

Acknowledgment

The work of Chinmay Patwardhan and Martin Frank was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – Project-ID 258734477 – SFB 1173.

24



References

[1] J. R. Howell, M. P. Menguc, and R. Siegel, Thermal Radiation Heat Transfer (5th ed.) CRC
Press, 2010. doi: https://doi.org/10.1201/9781439894552.

[2] S. Rosseland, Astrophysik auf atomtheoretischer Grundlage (Struktur der Materie in Einzeldarstel-
lungen ; 11). Berlin: Springer, 1931.

[3] S. Jin, “Asymptotic preserving (ap) schemes for multiscale kinetic and hyperbolic equations: A
review.,” Lecture Notes for Summer School on “Methods and Models of Kinetic Theory” (M&MKT),
Porto Ercole (Grosseto, Italy), pp. 177–216, 2010.

[4] J. Hu, S. Jin, and Q. Li, “Chapter 5 - asymptotic-preserving schemes for multiscale hyperbolic and
kinetic equations,” in Handbook of Numerical Methods for Hyperbolic Problems, ser. Handbook of
Numerical Analysis, R. Abgrall and C.-W. Shu, Eds., vol. 18, Elsevier, 2017, pp. 103–129. doi:
https://doi.org/10.1016/bs.hna.2016.09.001.

[5] A. Klar, “An asymptotic preserving numerical scheme for kinetic equations in the low Mach number
limit,” SIAM J. Numer. Anal., vol. 36, no. 5, pp. 1507–1527, 1999, issn: 0036-1429,1095-7170.

[6] M. Lemou and L. Mieussens, “A new asymptotic preserving scheme based on micro-macro for-
mulation for linear kinetic equations in the diffusion limit,” SIAM J. Sci. Comput., vol. 31, no. 1,
pp. 334–368, 2008, issn: 1064-8275,1095-7197. doi: 10.1137/07069479X.

[7] O. Koch and C. Lubich, “Dynamical low-rank approximation,” SIAM Journal on Matrix Analysis
and Applications, vol. 29, no. 2, pp. 434–454, 2007. doi: 10.1137/050639703.

[8] C. Lubich and I. V. Oseledets, “A projector-splitting integrator for dynamical low-rank approxi-
mation,” Bit Numer Math, vol. 54, pp. 171–188, 2014. doi: 10.1007/s10543-013-0454-0.

[9] G. Ceruti and C. Lubich, “An unconventional robust integrator for dynamical low-rank approxi-
mation,” Bit Numer Math, vol. 62, pp. 23–44, 2022. doi: 10.1007/s10543-021-00873-0.

[10] G. Ceruti, J. Kusch, and C. Lubich, “A rank-adaptive robust integrator for dynamical low-rank
approximation,” Bit Numer Math, vol. 62, pp. 1149–1174, 2022. doi: 10.1007/s10543-021-00907-7.

[11] G. Ceruti, J. Kusch, and C. Lubich, A parallel rank-adaptive integrator for dynamical low-rank
approximation, 2023. arXiv: 2304.05660 [math.NA].

[12] G. Ceruti, L. Einkemmer, J. Kusch, and C. Lubich, “A robust second-order low-rank bug inte-
grator based on the midpoint rule,” arXiv preprint arXiv:2402.08607, 2024.

[13] J. Kusch and P. Stammer, “A robust collision source method for rank adaptive dynamical low-
rank approximation in radiation therapy,” ESAIM: M2AN, vol. 57, no. 2, pp. 865–891, 2023. doi:
10.1051/m2an/2022090.

[14] L. Einkemmer, J. Hu, and Y. Wang, “An asymptotic-preserving dynamical low-rank method for the
multi-scale multi-dimensional linear transport equation,” Journal of Computational Physics, vol. 439,
p. 110 353, 2021, issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2021.110353.

[15] J. Kusch, B. Whewell, R. McClarren, and M. Frank, “A low-rank power iteration scheme for
neutron transport criticality problems,” Journal of Computational Physics, vol. 470, p. 111 587, Dec.
2022. doi: 10.1016/j.jcp.2022.111587.

[16] G. Ceruti, M. Frank, and J. Kusch, “Dynamical low-rank approximation for Marshak waves,”
Karlsruhe Institute of Technology, CRC 1173 Preprint 2022/76, Dec. 2022. doi: 10 . 5445 / IR /
1000154134.

[17] L. Baumann, L. Einkemmer, C. Klingenberg, and J. Kusch, Energy stable and conservative
dynamical low-rank approximation for the su-olson problem, 2023. arXiv: 2307.07538 [math.NA].

[18] L. Einkemmer, J. Hu, and Y. Wang, “An asymptotic-preserving dynamical low-rank method for
the multi-scale multi-dimensional linear transport equation,” J. Comput. Phys., vol. 439, Paper No.
110353, 21, 2021, issn: 0021-9991,1090-2716. doi: 10.1016/j.jcp.2021.110353.

[19] L. Einkemmer, J. Hu, and J. Kusch, “Asymptotic-preserving and energy stable dynamical low-
rank approximation,” SIAM Journal on Numerical Analysis, vol. 62, no. 1, pp. 73–92, 2024. doi:
10.1137/23M1547603.

25

https://doi.org/https://doi.org/10.1201/9781439894552
https://doi.org/https://doi.org/10.1016/bs.hna.2016.09.001
https://doi.org/10.1137/07069479X
https://doi.org/10.1137/050639703
https://doi.org/10.1007/s10543-013-0454-0
https://doi.org/10.1007/s10543-021-00873-0
https://doi.org/10.1007/s10543-021-00907-7
https://arxiv.org/abs/2304.05660
https://doi.org/10.1051/m2an/2022090
https://doi.org/https://doi.org/10.1016/j.jcp.2021.110353
https://doi.org/10.1016/j.jcp.2022.111587
https://doi.org/10.5445/IR/1000154134
https://doi.org/10.5445/IR/1000154134
https://arxiv.org/abs/2307.07538
https://doi.org/10.1016/j.jcp.2021.110353
https://doi.org/10.1137/23M1547603


[20] A. Klar and C. Schmeiser, “Numerical passage from radiative heat transfer to nonlinear diffusion
models,” Math. Models Methods Appl. Sci., vol. 11, no. 5, pp. 749–767, 2001, issn: 0218-2025,1793-
6314. doi: 10.1142/S0218202501001082.

[21] L. Einkemmer, A. Ostermann, and C. Scalone, “A robust and conservative dynamical low-
rank algorithm,” Journal of Computational Physics, vol. 484, p. 112 060, 2023, issn: 0021-9991. doi:
https://doi.org/10.1016/j.jcp.2023.112060.

[22] L. Einkemmer, J. Kusch, and S. Schotthöfer, Conservation properties of the augmented basis
update & galerkin integrator for kinetic problems, 2023. arXiv: 2311.06399 [math.NA].

[23] J. Koellermeier, P. Krah, and J. Kusch, Macro-micro decomposition for consistent and conserva-
tive model order reduction of hyperbolic shallow water moment equations: A study using pod-galerkin
and dynamical low rank approximation, 2023. arXiv: 2302.01391 [math.NA].

[24] K. M. Case and P. F. Zweifel, Linear transport theory. Addison-Wesley, 1967.

[25] S. Jin and H. Lu, “An asymptotic-preserving stochastic galerkin method for the radiative heat
transfer equations with random inputs and diffusive scalings,” Journal of Computational Physics,
vol. 334, pp. 182–206, 2017, issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2016.12.033.

[26] B. Su and G. L. Olson, “An analytical benchmark for non-equilibrium radiative transfer in an
isotropically scattering medium,” Annals of Nuclear Energy, vol. 24, no. 13, pp. 1035–1055, 1997,
issn: 0306-4549. doi: https://doi.org/10.1016/S0306-4549(96)00100-4.

[27] C. Patwardhan, J. Kusch, and M. Frank, Numerical testcases for "asymptotic-preserving and
energy stable dynamical low-rank approximation for thermal radiative transfer equations", 2024. [On-
line]. Available: https://github.com/chinsp/publication-Asymptotic-preserving-and-energy-
stable-DLRA-for-thermal-radiative-transfer-equations.git.

A Proof of Theorem 2

We start by stating some lemmas and properties used to prove stability in energy norm (Theorem 2)
for the linearized modal macro-micro scheme (3.3).

Lemma 2 (Lemma 3.3 [19](Summation by parts)). For vectors ϕi+1/2, ζi+1/2 ∈ RN where i =
0, . . . , Nx, the equality ∑

i

ζ⊤
i+1/2D±ϕi+1/2 = −

∑
i

(D∓ζi+1/2)
⊤ϕi+1/2 (A.1)

holds for periodic or zero values at the boundary.

Lemma 3. Let ϕi+1/2 ∈ RN+1, for i = 0, . . . , Nx, then the following inequality holds∑
i

(
D+ϕi+1/2

)2
≤ 4

∆x2

∑
i

(ϕi+1/2)
2. (A.2)

Proof. Expanding the left-hand side using the definition of D+∑
i

(
D+ϕi+1/2

)2
=

1

∆x2

∑
i

(ϕi+3/2 − ϕi+1/2)
2

=
2

∆x2

∑
i

(ϕi+1/2)
2 − 2

∆x2

∑
i

ϕ⊤
i+3/2ϕi+1/2.

Using Young’s inequality for the last term on the right-hand side in the above equation we get∣∣∣∣∣ 2

∆x2

∑
i

ϕ⊤
i+3/2ϕi+1/2

∣∣∣∣∣ ≤ 1

∆x2

∑
i

(ϕi+1/2)
2 +

1

∆x2

∑
i

(ϕi+3/2)
2. (A.3)

A change in the index in the last term gives the desired result.
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The constructed macro-micro system (3.3) with the stabilization matrix |A| is related to the full

PN system through the flux matrix Af =
(
[Pi−1Pj−1µ]µ

)N+1

i,j=1
and Roe matrix |Af | = Tf |M|T⊤

f ,

where Tf =
(√

wkPi−1(µk)
)N+1

i,j=1
such that Af = TfMT⊤

f . We additionally define

1

γ0
b = a = (a0, 0, . . . , 0)

⊤ ∈ RN , af = (0, a0, 0, . . . , 0)
⊤ ∈ RN+1.

Lemma 4 (Lemma 3.4 [19] (PN preservation)). For a given vector g ∈ RN define its extension
v := (0, g1, . . . , gN )⊤ ∈ RN+1 as well as v̂i+1/2 := T⊤

f vi+1/2 ∈ RN+1. Then,

g⊤A2g = v̂⊤M2v̂, g⊤ |A| g = v̂⊤ |M| v̂, g⊤aa⊤g = v̂⊤T⊤
f afa⊤

f Tf v̂.

Two main properties of the advection operator, L, that are used in proving energy stability are

Lemma 5 (Lemma 3.5 [19] (Positivity)). For a given discrete function gni+1/2, the advection oper-
ator fulfills the properties∑

j

gn+1,⊤
i+1/2 Lgn+1

i+1/2 =
∑
i

∆x

2
D+gn+1,⊤

i+1/2 |A| D+gn+1
i+1/2 ≥ 0

and ∑
j

gn+1,⊤
i+1/2 Lgni+1/2 =

∑
i

∆x

2
D+gn+1,⊤

i+1/2 |A| D+gn+1
i+1/2

+
∑
i

(gni+1/2 − gn+1
i+1/2)

⊤(A+D+ +A−D−)gn+1
i+1/2.

Lemma 6 (Lemma 3.6 [19] (Boundedness)). For a given discrete function gni+1/2, the advection
operator fulfills the property∑

i

[
(A+D+ +A−D−)gn+1

i+1/2

]2
≤ 2βN

∑
i

D+gn+1,⊤
i+1/2 A2D+gn+1

i+1/2,

where βN = max
k

wk(N + 1) is bounded for all N .

With these lemma we now present the proof of theorem 2:

Proof. We start by plugging in the update equation of the macro variable, T , (3.3c) into the update
equation of the mesoscopic variable, h, (3.3a). This gives

(aTn+1
i + ε2

c h
n+1
i )− (aTn

i + ε2

c h
n
i )

∆t
+

γ1
2
D0gn+1

1,i = −σa
i h

n+1
i , (A.4a)

1

c

(
gn+1
i+1/2 − gn

i+1/2

∆t

)
+

1

ε
Lgn

i+1/2 = −
σa
i+1/2

ε2
gn+1
i+1/2 −

1

ε2
b δ0(acTn

i+1/2 + ε2hn
i+1/2). (A.4b)

Next we multiply the update equation for the micro equation (A.4a) by (aTn+1
i + ε2

c h
n+1
i )∆x, and

sum over i,

1

∆t

∑
i

(aTn+1
i +

ε2

c
hn+1
i )2∆x− 1

∆t

∑
i

(aTn+1
i +

ε2

c
hn+1
i )(aTn

i +
ε2

c
hn
i )∆x

+
γ1
2

∑
i

(aTn+1
i +

ε2

c
hn+1
i )D0gn+1

1,i ∆x = −
∑
i

(aTn+1
i +

ε2

c
hn+1
i )σa

i h
n+1
i ∆x.
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Using the summation of products property 1 we get

1

2∆t

(∥∥∥∥aTn+1 +
ε2

c
hn+1

∥∥∥∥2 − ∥∥∥∥aTn +
ε2

c
hn

∥∥∥∥2 + ∥∥∥∥aTn+1 +
ε2

c
hn+1 − aTn − ε2

c
hn

∥∥∥∥2
)
+

γ1
2

∑
i

(aTn+1
i +

ε2

c
hn+1
i )D0gn+1

1,i ∆x = −
∑
i

(aTn+1
i +

ε2

c
hn+1
i )σa

i h
n+1
i ∆x

(A.5)

Multiply (A.4b) by gn+1,⊤
i+1/2 ∆x, and sum over i, and using the summation property 1

1

2∆t

(
1

c

∥∥gn+1
∥∥2 − 1

c
∥gn∥2 + 1

c

∥∥gn+1 − gn
∥∥2)+

1

ε

∑
i

gn+1,⊤
i+1/2 Lgn

i+1/2∆x

≤ −σ0

ε2
∥∥gn+1

∥∥2 − γ1
ε2

∑
i

gn+1
1,i+1/2 δ

0(acTn
i+1/2 + ε2hn

i+1/2)∆x,
(A.6)

where we use σ0 ≤ σa
i+1/2,∀i, and gn+1,⊤

i+1/2 b = γ1g
n+1
1,i+1/2.

Then (A.5) + ε2

γ2
0c
× (A.6), where γ2

0 = 2 is the normalization factor of the zeroth order Legendre
polynomial, gives

1

2∆t

(∥∥∥∥aTn+1 +
ε2

c
hn+1

∥∥∥∥2 + ∥∥∥∥ ε

γ0c
gn+1

∥∥∥∥2 − ∥∥∥∥aTn +
ε2

c
hn

∥∥∥∥2 − ∥∥∥∥ ε

γ0c
gn

∥∥∥∥2
+

∥∥∥∥aTn+1 +
ε2

c
hn+1 − aTn − ε2

c
hn

∥∥∥∥2 + ∥∥∥∥ ε

γ0c
gn+1 − ε

γ0c
gn

∥∥∥∥2
)

+
γ1
2

∑
i

(aTn+1
i +

ε2

c
hn+1
i )D0gn+1

1,i ∆x+
ε

2c

∑
i

gn+1,⊤
i+1/2 Lgn

i+1/2∆x

≤ −
∑
i

(aTn+1
i +

ε2

c
hn+1
i )σa

i h
n+1
i ∆x− σ0

2c

∥∥gn+1
∥∥2 − γ1

γ2
0

∑
i

gn+1
1,i+1/2 δ

0(aTn
i+1/2 +

ε2

c
hn
i+1/2)∆x .

(A.7)
Using discrete integration by parts from Lemma 2 we get∑

i

gn+1
1,i+1/2 δ

0(aTn
i+1/2 +

ε2

c
hn
i+1/2)∆x = −

∑
i

D0gn+1
1,i (aTn

i +
ε2

c
hn
i )∆x. (A.8)

With the use of (A.8) we rewrite (A.7) as

1

2∆t

(∥∥∥∥aTn+1 +
ε2

c
hn+1

∥∥∥∥2 + ∥∥∥∥ ε

γ0c
gn+1

∥∥∥∥2 − ∥∥∥∥aTn +
ε2

c
hn

∥∥∥∥2 − ∥∥∥∥ ε

γ0c
gn

∥∥∥∥2
+

∥∥∥∥aTn+1 +
ε2

c
hn+1 − aTn − ε2

c
hn

∥∥∥∥2 + ∥∥∥∥ ε

γ0c
gn+1 − ε

γ0c
gn

∥∥∥∥2
)

+
ε

2c

∑
i

gn+1,⊤
i+1/2 Lgn

i+1/2∆x ≤ −σ0

2c

∥∥gn+1
∥∥2 −∑

i

(aTn+1
i +

ε2

c
hn+1
i )σa

i h
n+1
i ∆x

+
γ1
2

∑
i

D0gn+1
1,i (−aTn+1

i − ε2

c
hn+1
i +aTn

i +
ε2

c
hn
i )∆x.

Using Young’s inequality,

γ1
2

∑
i

D0gn+1
1,i (−aTn+1

i − ε2

c
hn+1
i + aTn

i +
ε2

c
hn
i )∆x ≤ α

∥∥∥∥−aTn+1 − ε2

c
hn+1 + aTn +

ε2

c
hn

∥∥∥∥
+

1

4α

∑
i

γ2
1

4
(D0gn+1

1,i )2∆x.
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Thus, setting α = 1
2∆t we have

1

2∆t

(∥∥∥∥aTn+1 +
ε2

c
hn+1

∥∥∥∥2 + ∥∥∥∥ ε

γ0c
gn+1

∥∥∥∥2 − ∥∥∥∥aTn +
ε2

c
hn

∥∥∥∥2 − ∥∥∥∥ ε

γ0c
gn

∥∥∥∥2
+

∥∥∥∥ ε

γ0c
gn+1 − ε

γ0c
gn

∥∥∥∥2
)

+
ε

2c

∑
i

gn+1,⊤
i+1/2 Lgn

i+1/2∆x

≤ −σ0

2c

∥∥gn+1
∥∥2 −∑

i

(aTn+1
i +

ε2

c
hn+1
i )σa

i h
n+1
i ∆x+

∆t

2

γ2
1

4

∑
i

(D0gn+1
1,i )2∆x.

(A.9)

This gives an upper bound for the term
∥∥∥aTn+1 + ε2

c h
n+1
∥∥∥2 +

∥∥∥ ε
γ0c

gn+1
∥∥∥. Next, we derive an

upper bound for
∥∥√ a

κT
n+1
∥∥2. For that we multiply the temperature update (3.3c) by aTn+1

i ∆x
and sum over i

1

∆t

∑
i

aTn+1
i (Tn+1

i − Tn
i )∆x = κ

∑
i

aTn+1
i σa

i h
n+1
i ∆x.

Thus, we get using the summation of products property 1

1

2∆t

(∥∥∥∥√a

κ
Tn+1

∥∥∥∥2 − ∥∥∥∥√a

κ
Tn

∥∥∥∥2 + ∥∥∥∥√a

κ
Tn+1 −

√
a

κ
Tn

∥∥∥∥2
)

=
∑
i

aTn+1
i σa

i h
n+1
i ∆x. (A.10)

Adding (A.9) and (A.10) gives

1

2∆t

(
en+1 − en +

∥∥∥∥ ε

γ0c
gn+1 − ε

γ0c
gn

∥∥∥∥2
)

+
ε

2c

∑
i

gn+1,⊤
i+1/2 Lgn

i+1/2∆x

≤ −σ0

2c

∥∥gn+1
∥∥2 − σ0

c

∥∥εhn+1
∥∥2 + ∆t

2

γ2
1

4

∑
i

(D0gn+1
1,i )2∆x−

∥∥∥∥√a

κ
Tn+1 −

√
a

κ
Tn

∥∥∥∥2 .
(A.11)

Since −σ0

c

∥∥εhn+1
∥∥2 ≤ 0 and −

∥∥√ a
κT

n+1 −
√

a
κT

n
∥∥2 ≤ 0 we bound them from above by 0.

Then (A.11) becomes

1

2∆t

(
en+1 − en +

∥∥∥∥ ε

γ0c
gn+1 − ε

γ0c
gn

∥∥∥∥2
)

+
ε

2c

∑
i

gn+1,⊤
i+1/2 Lgn

i+1/2∆x

≤ −σ0

2c

∥∥gn+1
∥∥2 + ∆t

2

γ2
1

4

∑
i

(D0gn+1
1,i )2∆x.

(A.12)
Next, we split the last term on the left-hand side of (A.12) as∑

i

gn+1
i+1/2Lgn

i+1/2∆x = P +Q

where
P =

∑
i

gn+1
i+1/2Lgn+1

i+1/2∆x, Q =
∑
i

gn+1
i+1/2L(g

n
i+1/2 − gn+1

i+1/2)∆x.

Then, using Lemma 5 we have,

P =
∆x

2

∑
i

D+gn+1,⊤
i+1/2 |A| D+gn+1

i+1/2∆x,

Q = −
∑
i

(A+D+ + A−D−)gn+1,⊤
i+1/2 (gn

i+1/2 − gn+1
i+1/2).

(A.13)
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Thus, using Young’s inequality

|Q| ≤ α
∥∥gn+1 − gn

∥∥+ 1

4α

∑
i

[
(A+D+ + A−D−)gn+1

i+1/2

]2
∆x

and Lemma 5 we get

|Q| ≤ α
∥∥gn+1 − gn

∥∥+ 2βN

4α

∑
i

D+gn+1,⊤
i+1/2 A2D+gn+1

i+1/2∆x. (A.14)

We set α = ε
2c∆t , then

∥∥∥ ε
γ0c

gn+1 − ε
γ0c

gn
∥∥∥ gets canceled out and we get

1

2∆t

(
en+1 − en

)
+

ε∆x

4c

∑
i

D+gn+1,⊤
i+1/2 |A| D+gn+1

i+1/2∆x− βN
∆t

2

∑
i

D+gn+1,⊤
i+1/2 A2D+gn+1

i+1/2∆x

≤ −σ0

2c

∥∥gn+1
∥∥2 + ∆t

2

γ2
1

4

∑
i

(D0gn+1
1,i )2∆x

(A.15)
We rewrite the last term on the right-hand side of (A.15) as

γ2
1

4

∑
i

(D0gn+1
1,i )2∆x =

γ2
1

4

∑
i

(D+gn+1
1,i )2∆x =

1

2

∑
i

D+gn+1,⊤
i+1/2 aa⊤D+gn+1

i+1/2∆x

and we get

1

2∆t

(
en+1 − en

)
≤ −σ0

2c

∥∥gn+1
∥∥2

+
1

2

∑
i

D+gn+1,⊤
i+1/2

[
∆t

(
βNA2 +

1

2
aa⊤

)
− ε∆x

2c
|A|
]
D+gn+1

i+1/2∆x.
(A.16)

If we define v = (0, g1, . . . , gN )⊤ ∈ RN+1 and v̂ = T⊤
f v ∈ RN+1, then we have from Lemma 4

D+gn+1,⊤
i+1/2 A2D+gn+1

i+1/2 = D+v̂n+1,⊤
i+1/2 M2D+v̂n+1

i+1/2,

D+gn+1,⊤
i+1/2 |A| D+gn+1

i+1/2 = D+v̂n+1,⊤
i+1/2 |M| D+v̂n+1

i+1/2,

and
D+gn+1,⊤

i+1/2 aa⊤D+gn+1
i+1/2 = D+v̂n+1,⊤

i+1/2 T⊤
f afa⊤

f TfD+v̂n+1
i+1/2.

As given in [19, Thoerem 3.2], since T⊤
f af = 1√

3
T⊤

f e2 =
√

wk

3 P1(µk) =
√

wk

2 µk, we have

D+v̂n+1,⊤
i+1/2 T⊤

f afa⊤
f TfD+v̂n+1

i+1/2 =

(
N+1∑
k=1

D+v̂n+1
i+1/2,k

√
wk

2
µk

)2

=
1

2

N+1∑
k,ℓ

D+v̂n+1
i+1/2,k

√
wkµkD+v̂n+1

ℓ,i+1/2

√
wℓµℓ

Young
≤ 1

4

N+1∑
k,ℓ

(
D+v̂n+1

i+1/2,k

)2
wkµ

2
k

+
1

4

N+1∑
k,ℓ

(
D+v̂n+1

ℓ,i+1/2

)2
wℓµ

2
ℓ

=
N + 1

2

N+1∑
k

(
D+v̂n+1

i+1/2,k

)2
wkµ

2
k.
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Since we can write
∥∥gn+1

∥∥2 =
∥∥v̂n+1

∥∥2 =
∑

k,i(v̂
n+1
i+1/2,k)

2∆x we have that (A.16) becomes

1

2∆t

(
en+1 − en

)
≤ −σ0

2c

∑
k,i

(v̂n+1
i+1/2,k)

2∆x

+
1

2

∑
k,i

(D+v̂n+1
i+1/2,k)

2

[
∆t

(
βNµ2

k +
N + 1

4
wkµ

2
k

)
− ε∆x

2c
|µk|

]
∆x.

Using Lemma 3 we get
∑

i

(
D+v̂n+1

i+1/2

)2
≤ 4

∆x2

∑
i(v̂

n+1
i+1/2)

2, thus

1

2

(
en+1 − en

)
≤ 1

2

∆t

∆x

∑
k,i

(v̂n+1
i+1/2,k)

2

[
4∆t

∆x2

(
βNµ2

k +
1

4
βNµ2

k

)
− 4ε

2c∆x
|µk| −

σ0

c

]
.

Hence for ensuring stability we must have for all k, where µk ̸= 0,

∆t ≤ 1

5cβN

(
σ0∆x2

µ2
k

+
2ε∆x

|µk|

)
.

We note that βN remains bounded for all N .

B Proof of Lemma 1

Proof. As the SVD of Ŝ
rem

= UΣW⊤ (4.17) where U and W are orthogonal, we have

Û
⊤ (

Ŝ
rem)−⊤

= (Û
⊤
U)Σ−⊤W⊤ = (Srem)−⊤Ŵ

⊤
.

Consider

X̂
n+1

Ŝ
n+1

[
Im 0
0 Ŵ

]
= K̂

[
Im 0
0 Ŵ

]
=
[
XapSap X̂

rem
Ŝ

rem
] [Im 0

0 Ŵ

]
=
[
Xap X̂

rem
] [Sap 0

0 Ŝ
rem

Ŵ

]
=
[
Xap X̂

rem
] [Im 0

0 Û

] [
Sap 0
0 Srem

]
where we use that Ŝ

rem
Ŵ = ÛSrem. We have from (4.18) that the updated spatial basis matrix

has the form Xn+1R2 =
[
Xap Xrem] = [Xap X̂

rem
Û
]

and thus

X̂
n+1

Ŝ
n+1

[
Im 0
0 Ŵ

]
= Xn+1R2

[
Sap 0
0 Srem

]
.

Hence we get the following relation[
Im 0

0 Ŵ
⊤

]
Ŝ
n+1,⊤

Ŝ
n+1

[
Im 0
0 Ŵ

]
=

[
Im 0

0 Ŵ
⊤

]
Ŝ
n+1,⊤

X̂
n+1,⊤

X̂
n+1

Ŝ
n+1

[
Im 0
0 Ŵ

]
=

[
Sap,⊤ 0

0 Srem,⊤

]
R⊤

2 Xn+1,⊤Xn+1R2

[
Sap 0
0 Srem

]
=

[
Sap,⊤ 0

0 Srem,⊤

]
R⊤

2 R2

[
Sap 0
0 Srem

]
.
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Putting it all together we have

R−⊤
2

[
(Sap)−⊤ 0

0 Û
⊤
(Ŝ

rem
)−⊤

]
Ŝ
n+1,⊤

Ŝ
n+1

[
Im 0
0 Ŵ

]

= R−⊤
2

[
(Sap)−⊤ 0

0 (Srem)−⊤Ŵ
⊤

]
Ŝ
n+1,⊤

Ŝ
n+1

[
Im 0
0 Ŵ

]

= R−⊤
2

[
Sap 0
0 Srem

]−⊤
[
Im 0

0 Ŵ
⊤

]
Ŝ
n+1,⊤

Ŝ
n+1

[
Im 0
0 Ŵ

]

= R−⊤
2

[
Sap 0
0 Srem

]−⊤ [Sap,⊤ 0
0 Srem,⊤

]
R⊤

2 R2

[
Sap 0
0 Srem

]
= R2

[
Sap 0
0 Srem

]
= Sn+1.
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