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Abstract

High-frequency wave propagation is often modelled by nonlinear Friedrichs systems where both
the differential equation and the initial data contain the inverse of a small parameter €, which
causes oscillations with wavelengths proportional to € in time and space. A prominent example
is the Maxwell-Lorentz system, which is a well-established model for the propagation of light in
nonlinear media. In diffractive optics, such problems have to be solved on long time intervals
with length proportional to 1/e. Approximating the solution of such a problem numerically with a
standard method is hopeless, because traditional methods require an extremely fine resolution in
time and space, which entails unacceptable computational costs. A possible alternative is to replace
the original problem by a new system of PDEs which is more suitable for numerical computations
but still yields a sufficiently accurate approximation. Such models are often based on the slowly
varying envelope approximation or generalizations thereof. Results in the literature state that the
error of the slowly varying envelope approximation is of O(e). In this work, however, we prove that
the error is even proportional to €2, which is a substantial improvement, and which explains the
error behavior observed in numerical experiments. For a higher-order generalization of the slowly
varying envelope approximation we improve the error bound from 0(52) to 0(53). Both proofs
are based on a careful analysis of the nonlinear interaction between oscillatory and non-oscillatory
error terms, and on a priori bounds for certain “parts” of the approximations which are defined by
suitable projections. As an important technical tool we use an advantageous transformation of the
coefficient functions which appear in the approximations.

Keywords: High-frequency wave propagation, nonlinear wave equation, Maxwell-Lorentz sys-
tem, diffractive geometric optics, slowly varying envelope approximation, error bounds

1 Introduction

High-frequency wave propagation in nonlinear, dispersive media can be modeled by Friedrichs
systems of the form

Oru + A(d)u + éEu =T (u, u,u), t € (0,tea/e], = € RY, (1.1a)

u(0,z) = p(x)e!"D/E 4 cc., (1.1b)
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SFB 1173.

tKarlsruher Institut fiir Technologie, Fakultit fiir Mathematik, Institut fiir Angewandte und Numerische Mathematik,
Englerstr. 2, D-76131 Karlsruhe, julian.baumstark@gmx.de, tobias. jahnke@kit.edu



Version: February 20, 2024

with a trilinear nonlinearity 7 : R™ x R™ x R™ — R™ and a differential operator

d
A(0) = D Avdy (1.2)
=1

(d,n € N). We assume that the matrices A;,...,Aq € R™™™ in are symmetric, and that
E e R™™in is skew-symmetric. In the initial data a smooth and localized envelope function
p: R? — R" is multiplied by a phase with a given wave vector x € R%\{0}. Here and below, “X +
c.c” means X + X, where X is the complex conjugate of X. An important example in this class
of problems is the Maxwell-Lorentz system, which is a classical model for the propagation of light
in a Kerr medium; cf. 8] 10} 12} (13}, (15}, (19} 20].

The PDE , the initial data in (1.1b]), and the time interval involve a small positive pa-
rameter € < 1. Although the nonlinearit is multiplied by &, the problem is strongly
nonlinear, because the length of the time interval is proportional to e ~!. In fact, by rescaling 7 = et
and w(r, z) = u(t,x), we could convert into the equivalent form

1 1
Orw + gA(ﬁ)w + E—zEw =T(w,w,w), 7€ (0, tena], € RY,

where the nonlinear term and the time interval do not depend on £ anymore. However, we will
consider the original version , which is the representation considered, e.g., in [4H6l 8] [20].

The small parameter € accounts for different scales in time and space. The terms e*(5'#)/¢ in the
initial data cause spatial oscillations with wavelength of O(g), whereas p changes on a scale of O(1),
roughly speaking. As a consequence, the solution u(t,z) is a wave packet with a high-frequency
carrier wave modulated by a smooth envelope. Concerning the evolution in time, the initial value
problem is scaled in such a way that nonlinear and diffractive effects appear on long time
intervals of length t.,q/¢ for some t.,q > 0, whereas the envelope of the wave packet propagates
with speed O(1). The solution itself, however, evolves on a third scale, because the linear part
A(d)u+ LEu of the PDE causes rapid oscillations in time with wavelength of O(g). Because of the
highly oscillatory nature and the long time interval, an attempt to approximate the vector-valued
solution u : [0, tena/c] x R? — R™ of numerically with a traditional method is bound to fail,
because the time and space discretizations would require an extremely fine resolution and hence an
impracticable runtime.

A feasible approach is to replace by a different model which can be solved numerically
with significantly less efforts and at the same time provides a decent approximation to u. Such
models are often based on the slowly varying envelope approrimation (SVEA) or generalizations
thereof, which are derived as follows. For every 3 € R? the matrix

d
A(B) = ), BeAg e R
=1
is symmetric, and

L(e, B) = —al + A(B) —iE € C™*" (1.3)

is Hermitian for all « € R and 8 € R%. Let k € R%\{0} be the (given) wave vector which appears in

[CIH), and
let w = w(k) be an eigenvalue of A(k) —iE. (1.4)

Then, £(w, k) has a non-trivial kernel, and the pair (w, ) is said to fulfill the dispersion relation.
We assume the following.
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Assumption 1.1

(i) The kernel of L(w, k) is one-dimensional.
(i) The function p in (1.1b)) has the structure
D =po+ P with po(z) € ker(L(w,k)) a.e. (1.5)
and po, p1 € L*(R%,C™).

Assumption [(i)|is only made in order to keep the notation simple; cf. Remark below. Assump-
tion [(ii)|is a polarization condition, which was also imposed in a similar way in [8, Theorem 1], [20,
Theorem 2.15], [5], and other works.

As in [B] we seek an approximation of the form
u(t,z) ~ A (tz) = ) u_j =5 (1.6)
jej('rn)

for 7™ = {+1,43,...,+m}, where m € N is an odd integer. If we substitute into ,
then the trilinear nonlinearity generates higher harmonics, i.e. terms with prefactor eli(#z—wt)/e
for [j| > m. These terms appear only on the right-hand side of (L.1a]), because all terms on the
left-hand side are linear. Ignoring higher harmonics and then comparing terms on both sides yields
the PDE system

i, .
Oruj + gﬁ(jw,]n)uj + A(Q)u; =€ Z T(ujy, wjy, ujy) (1.7a)
J1tj2+iz=j
for j e ._7+(m) =J"™ AN, te (0,tena/e], x€RY,
with initial conditions
ul(ov ) =D Uj(O, ) =0forje jim)\{l} (17b)
The sum on the right-hand side of (|1.7a)) is to be taken over the set

{J = (1, J2, 43) € (T3 45T = g1 + jo + s :j}v

and T is now the trilinear extension of the real nonlinearity from (1.1a)) to 7': C* x C* x C™ — C".
It is sufficient to consider positive j € jJ(rm) = J) A N instead of j € 7™ in (1.7a)), because the

u;j with negative index j are obtained from the condition u_; = @;. For m = 1 and 71 = {—1,1},
we obtain the SVEA

u(t, z) ~ TN (t, ) = 2Dy (8 2) + c.c., (1.8)

with u; being the solution of

dur + L, Ryur + AQ@ui = Y Ty, wj,, uj,) (1.92)
€ Jitj2+iz=1
= 5(T(u1,u1,u_1) + T(uy,u_1,uy) + T(u_l,ul,ul)),
ur(0,-) =p (1.9b)

as a special case of and (1.7). Note that the initial data in are smooth, non-oscillatory
functions, in contrast to (1.1b)). Hence, solutions to (|1.7) can be discretized in space on a e-
independent grid, which is a significant advantage over (|1.1)). However, typical solutions of
do still oscillate in time due to the term 1L (jw,jr)u; in (1.7a)).
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For the error of the SVEA (1.8)—(1.9) the bound

sup Ju(t,-) = AW (t, )| Lo (racry < Ce (1.10)
te [Ovtend/s]

was shown in [8, Section 2.2]. Under additional assumptions, one can replace the PDE by
a nonlinear Schrodinger equation without spoiling the error bound ; cf. [8, Corollary 2] and
also |9, [T}, [T6], 18] (20} [22]. This nonlinear Schrédinger equation has the advantage that it does not
involve ¢ at all when considered in a co-moving coordinate system, and that it only has to be solved
on the e-independent time interval [0, t.q]. Hence, standard numerical methods can be used to
solve the nonlinear Schrodinger equation numerically, which then yields an O(e)-approximation to
2™ and, via , to the solution of .

In this paper, we consider the situation where an error of O(e) is yet too large. For the
approximation

u(t, ) ~ a®(t,x) = (ei(“'x_“t)/gul(t, z) + e3i(”'x_“t)/€u3(t7x)> + c.c.
we have already shown the error bound

sup [u(t,) = AP (t,)| o (re.cn) < O (1.11)
te[0,t /€]

for some ¢, € (0,tcna] in [5]. The proof is rather long and technical because of the complicated self-

interaction of the oscillatory solution via the nonlinearity. Moreover, the approximation % is more
complicated than (1.8) because of the additional coefficient function uz. Numerical experiments

show, however, that the estimates (1.10)) and (1.11)) are both not optimal; see Sections and

below. In this work, we will prove the improved error bounds

sup  Ju(t,-) — A (¢, )| e (racny < CE?, (1.12)
te [Oftcnd/a]
sup [u(t,-) = &P (t, )| e re,ony < Ce™. (1.13)
te[0,t4 /€]

The result explains the error behavior which appears in numerical examples where a reference
solution can be computed. Moreover, this inequality shows that the SVEA yields a significantly
higher accuracy than the classical nonlinear Schrodinger approximation, which has an error of
O(e). This fact was apparently not known until now. The second error bound states that
in applications where an error of O(e?) is still too large, the refined approximation a(®) offers the
possibility of reducing the error down to O(e?) at the cost of higher computational work.

In [12, 14, 17, 2T] and other contributions, asymptotic expansions of solutions to problems similar
to have been analyzed in the regime of geometric optics, i.e. for time intervals of length O(1).
This differs from the regime of diffractive geometric optics, where the PDE system has to be solved
on time intervals of length O(1/¢), which is the situation we consider here. Approximations in
diffractive geometric optics have been constructed in [II] and [I6] for semilinear and quasilinear
systems with a more general nonlinearity, but with ¢E instead of E/e in [I1] and with F = 0
in [16). Quasilinear systems with dispersion and dispersive problems with bilinear nonlinearity
are approximated in [I9] and [9], respectively, but without an explicit rate of convergence. The
book [22] provides an extensive analysis of the approximation of PDEs by nonlinear Schrodinger
equations and other modulation equations.

In [6] we have constructed modulated Fourier expansions for (1.1) with nonlinear polarization
of the initial data. This approach is likewise based on the ansatz and , but the nonlinear
polarization considered in [6] means that p; depends on pg in (1.5, which excludes, e.g., the case
p1 = 0. In the present work, p; and pg are completely independent.

In this paper, we consider wave packets where the wavelength of the oscillations is much shorter
than the scale on which the envelope varies. This assumption excludes short or chirped pulses.
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Since it is known that the nonlinear Schrédinger approximation does not provide a reasonable
approximation for such pulses, many improved models have been proposed and analyzed, e.g., in
[1-3, 17, [, (10, 20

In Section [2] we specify the analytical framework, we review results on local well-posedness of
(1.1) and , and we introduce a transformation of the coefficient functions u; which was already
employed in [5]. The proofs of the error bounds and rely on the fact that for a certain
projection P, the Fourier transform #; of the coefficient function u; can be decomposed into an
essentially non-oscillatory part P.4; and an oscillatory but “small” part (I — P.)u;. For the SVEA
(i.e. for m = 1) we compile the corresponding results in Section 3] Then, in Section [4} we prove
the error bound for the SVEA, and we corroborate this result by a numerical experiment.
In Section [5] we turn to the case m = 3. We show the error bound and we give reasons
why we observe an even better rate of convergence in a numerical example with a one-dimensional
Klein—Gordon system.

Notation. Throughout the text, v-w = v*w is the Euclidean scalar product of vectors v, w € C",
and |v|q is the g—norm of v. The identity matrix and the identity operator are both denoted by I.
For space- and time-dependent functions f = f(t,x) we will often denote the mapping = — f(¢, z)

~

by f(t) instead of f(t,-). Likewise, we will omit the second argument of the Fourier transform f(¢, k)
of such a function. From now on, we will use the short-hand notation L' and L® for L'(R¢,C")
and L (R, C"), respectively. The symbol i = 4/—1 is the imaginary unit, whereas i appears as an
index in a few formulas.

2 Analytical setting

Wiener algebra and evolution equations in Fourier space. As in [4H6] 8] 20] we will
analyze the accuracy in the Wiener algebra

W= {fe (SR Fert), flw =1f10 = [1Fwae @)
Rd

of vector-valued functions. Here and below, f = F f denotes the Fourier transform

(FF)(k) = (2m) 92 j Fa)e*ods
Rd

of f. For s € Ny, we define

W= {feW:0°feW for all a e N3, |a|; < s},
[Flwe =25 1o*flw-

a1 <s

It is well-known that W* is a Banach algebra with continuous embedding W < L%, cf. [8, Propo-
sition 1] and [20] Proposition 3.2].
In order to work in the Wiener algebra, we apply the Fourier transform to the PDE system

(1.7a)). This yields

6tﬁj(t,k) + iﬁj(é‘k‘)aj(t,k‘) =£ Z T(ajl,@jz,ilh)(t,k), (22&)
¢ #J=j
je ™ te(0,tuma/e], keR?
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with initial conditions
1(0,-) = P, @;(0,) =0 for je J"\{1} (2.2b)
and the notation
£i(0) = L(jw,jr + 0) = £;(0) + A@©),  je T, (2:3)
T (U, Uy, j,) (k) = I(T(ujwujwujs)) (k)
= (2m) ¢ f JT(@-I (kM) 05, (K@), 8, (k — k® — k@) dk@ de®),
Rd Rd

cf. [5l, Section 2.2]. In ([2.3)) we have used that by definition the mapping 8 — A(f) is linear. With
the shorthand notation

K = (kW k@ k@) e R x R? x RY, #K = kD + 53 4+ k3 e R (2.4a)
and
[ 7@ 003,02, 2, (69 ax (2.40)
#K=k
= [ 2@ ) 5 2, KO — 12) @b 2k,
Rd Rd

the Fourier transform of the nonlinearity can be expressed as
T (g, Uy ) (k) = (2m) 7 f (i, (kM) @, (), 5, (k) A (2.5)
#K=k
Later we will often use that
[T(F o Pl < Crlfallee 1 Foleo | sl oo (2.6)
with a constant C7 which depends on 7 and on n. Via trilinearity, we obtain that
[T(Fr 2o Fo) = 731,82 0) o < C7 1 = Gl | Fo o | Fsllo (2.7)

+ Crlgilellfa = G2llor | f3) e
+ Crlgul e llg2l ol fs — gsl 2

We set u_; = u; throughout, which implies that @_;(t, k) = @;(¢, —k). The system ({2.2a]) can be
extended to j € 7™ (including negative indices) if we define

L_;(6)=—L;(—6) forje g™, (2.8)

Local well-posedness. The polarization condition (Assumption [L.1jii)) is not needed to prove
existence and uniqueness of solutions to the original problem (1.1)) and the PDE system (|1.7). For
the sake of consistency, however, we always allow for e-dependent initial data of the form

p=po+ept  with py,p; € W7 (2.9)

for some o € N. The value of o will be specified whenever we refer to (2.9).
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Lemma 2.1 (Local well-posedness of (1.1)) If po,p1 € W, then there is a to,q > 0 such that
for every e € (0,1] the original problem (L.1) with p = pg + ep1 has a unique mild solution u €
C([0, tena/€), W) which is uniformly bounded, i.e. there is a constant ¢ > 0 such that

sup  fu(t)|w <c¢  forallee (0,1].
te[ovtend/s]

We omit the proof, because Lemma [2.I] can be shown with the usual fixed-point argument. Other
proofs for well-posedness of (1.1]) via approximation by the SVEA are given in [§, Theorem 1] and
[20, Theorem 3.8].

Lemma 2.2 (Local well-posedness of (1.7)) Let m € N be an odd integer.

(i) If (2.9) holds with o = 0 and Cyo > |pollw + |lp1|w, then there is a t..q > 0 such that for
every ¢ € (0,1] the system (1.7) has a unique mild solution

(W 1 € C(0.tna/), W)
which is uniformly bounded, i.e.

sup  lu(B)|lw < Cuyo forall je jim) and all £ € (0,1].
te[0,tena/e]

(i) If (2.9) holds with o =1, then the mild solution on [0, t..q/€] is a classical solution with

uj € CH[0, tena/], W) A C([0, tena/e], W), jeg™,
sup u; (@) [wr < Cu.
t€[0,tena/e]
(iii) If (2.9) holds with o € {2,3}, then
uj € C77[0, tena/c], W) for every £ =0,...,0, je jﬁm),
supJu;(t)|we < Cuo- (2.10)

te [Ostend/s]

The constants Cy ., 0 € {0,1,2,3}, depend on the nonlinearity T and on t..q, |polwe, |p1llwe, but
not on € € (0,1].

For m = 3 a slightly different version of this result was shown in [5, Lemma 2.3]. The extension to
arbitrary odd m is straightforward. Wellposedness of the SVEA (m = 1) was proven in [8, Theorem
1] and [20, Theorem 3.8].

Although t.,4 does in general not have the same value in Lemma and Lemma [2.2] we
will henceforth assume that solutions to and exist on the same interval [0, tena/€], as
suggested by our notation. This is not a restriction as one can always consider the smaller one of
the two possibly different intervals.

Eigendecompositions. The highly oscillatory behavior of the coefficient functions u; origi-
nates from the linear part 1£;(ek)a;(t, k) in (2.2a). It is thus not surprising that the eigendecom-
position of £;(6) = L(jw, jk + 0) plays a crucial role in our analysis. As in [5], Assumption 2.2] we
assume the following.

Assumption 2.3

(i) The matriz L(0,5) = A(S) —iFE has a smooth eigendecomposition: if we(B) is an eigenvalue
of £(0,3) for some £ € {1,...,n}, then w, € C*(RN\{0},R), and there is a corresponding
eigenvector (B) with v, € C®(RN\{0},C"). With no loss of generality, we assume that
[e(B)|2 = 1 for all B and all ¢ = 1,...,n. The enumeration is chosen in such a way that

w =w (k) in (T4).
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(i) Every eigenvalue we(B) of L(0,8) is globally Lipschitz continuous, i.e. there is a constant C
such that

\W(E) —we(B)] < C|E—ﬁ|1 forall B,BeR and ¢ =1,...,n.

(iii) The eigenvalue w = wy(k) is bounded away from the other eigenvalues: There is a constant
C such that

lw—we(B)|=C  forall BeRYandl=2,... n.
Assumption corresponds to Assumption 2 in [§], whereas Assumption is a part of Assumption
3 in [§].

Remark 2.4 FExplicit formulas for the eigenvalues in case of the Maxwell-Lorentz system and the
Klein—Gordon system are given in [8, Example 3 and 4], and one can check that the assumptions
and on the eigenvalues are true. Assumption is true if we choose w to be the largest or

smallest eigenvalue in .
For j € j_&m) and every 6 € R? let
£,(6) = W, (0)A, ()W (6) (2.11a)
be the eigendecomposition of : the real diagonal matrix
A;(0) = diag(A\j1(8), ..., Ajn(0)) e R®*" (2.11b)
contains the eigenvalues \j¢(0) € R of £;(6), and
U;(0) = (¥32(0) |- | n(6)) € C" (2.11¢)

is unitary with the corresponding normalized eigenvectors 1;,(#) € C™ in its columns. By As-
sumption [1.1{i)| £1(0) = L(w, x) has a one-dimensional kernel, and we choose the enumeration of
the eigenvalues and eigenvectors in such a way that A11(0) = 0 and ker £1(0) = span{t11(0)}.
Equation implies that ¥_;() = ¥,;(—60) and A_;(0) = —A;(—0) = —A;(-0).

The matrices £(0, jk + 0) and L(jw, jk + 0) = —jwI + L(0, jx + 6) have the same eigenvectors,
and their eigenvalues w;(jr + 6) and Aj¢(0) = —jw + we(jr + 0) differ only by a shift. Hence, it
follows from Assumption [2.3|that A;, € C*(RN\{—jr},R) and ¢, € C*(R\{—jr},C") with

I\je(0) — Aje(9)
[A1e(6)

|<Clo -0 for all 6,6 € RY, (2.12)
|>C forall e R* and £ =2,...,n. (2.13)

Transformation of the coefficient functions. The strategy in the proofs of (1.12) and
(1.13) is, roughly speaking, to distinguish the oscillatory “parts” of the solution from the non-
oscillatory ones, and to carefully analyze how these parts interact in the nonlinearity. For this
purpose, the following transformation was introduced in [5].

Let U™ = {Qj}jej}rm be the solution of (2.2) for € € (0,1]. For every ¢t > 0 and k € R? we

define
2t k) = S; (bR (L k), 2 (k) =20 k), jeJ™ (2.14)
with transformation matrix

Sje(t,k) = exp (LA;(ek)) Wk (ck) = WE(ek) exp (LLi(ck)),  je T, (2.15a)
S_jelt,k) = Sje(t, —k). (2.15b)
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It follows from (2.14]) and (2.2a)) that

Orzj(t) = ¢ Z F (t, om, J) , Um) — {ﬁj}jejim), (2.16)
#J=j

where F' is given by
F(t, U™ ) = 8; ()T (@, 0y, 03 ) (1), J = (j1, 2, 73) € (T™)?,  j = #. (2.17)

By means of the inverse transform ;(t, k) = S7.(¢,k)z;(t, k) we could turn (2.16) into a closed
system of evolution equations for {z;};c7(m), but with a rather complicated right-hand side. The
initial conditions are

Wi (ck)p(k) if j =1,
0 if j e 71" \{1)

according to (2.2b)), (2.14]) and (2.15)).
The transformation (2.14]) and (2.15)) is motivated by the fact that in the linear case the exact
solution of (2.2) is

Zj (07 k) = Sj,s(ov k)a] (Oa k) = { (218)

u(t, k) =S¥ (t,k)z(0,k) for 7(-,-,+) =0,

because z;(t) = z;(0) is constant in time for 7(-,-,-) = 0 according to and (2.17). But even
in the nonlinear case 7 (-,-,-) $ 0 the right-hand side of is formally only O(e) instead of
O(1/e) in (2.2a)), because the linear part 1L;(ck)a;(t, k) is cancelled by the transformation. The
transformed functions z; do still oscillate in time, but the oscillations appear on a much smaller
scale, and in this sense, z; is smoother than ;.

Projectors. Recall that by Assumption[L.1[i)] the matrix £(w, x) = £1(0) has a one-dimensional
kernel spanned by 71(0). This is the reason why the first eigenspace of the matrix £;(ck) =
L£1(0) + €A(k) which appears in will play a special role in our analysis. We denote the
orthogonal projection onto this eigenspace by

W — P.w, P-(k) = 11(ek)yi, (ek) e C*" (2.19)

and the projector onto the orthogonal complement by P+ = I —P.. Assumptionis equivalent
to Pg-p = ePgp1, and for py,p1 € W1 it was shown in the proof of Lemma 3 in [8] that

IP=Blr < Cellpillw + [Vplw) < Cellpolw + Iprlw). (2.20)
For the transformed function we obtain from that
Pe(k)a1(t, k) = 111(ek)exp (— %All(ek))zu(t, k) = ST .(t,k)Pzi(t, k), (2.21)
where 211 (¢, k) is the first entry of z;(¢, k) € C" and
P:C"—>C" (wy,...,wy)" = (w1,0,...,0)" (2.22)

is the orthogonal projection of a vector w onto span{(1,0,...,0)"}. For P+ = (I — P) the estimate

yields
1P+21(0, )|z < Ce(lpollwr + Ipalwr), (2.23)
because with we obtain
PL21(0,) = 21(0,-) — Pz1(0,-) = S1.:(0, k)P (k)1 (0, k).
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Useful identities and inequalities. Throughout, we will frequently use the following facts.
Since we have chosen the Euclidean vector norm | - |5 to define | - |1 in (2.1)), the norm || f| 1 of
f e L' is invariant under multiplication of ]?(k:) € C" with a unitary matrix S(k) € C**™. This
means, in particular, that for the transformed functions z;(t, k) = S; - (¢, k)4;(t, k) from the
identities

|2;(t, k)2 = [u; (¢, k)2, lz; ()2 = [l ()L = u; (@)]w (2.24)
and, via 7 the equations
|Pz1(t, k)2 = [Pe(k)ur(t, k)2, 1Pz1(8)]| 2y = [Petin (t)] 11,

[PLzi(t k)2 = [P (B)a (¢, )2, [Pz () = [Pz (1)) o (2.25)
hold for all t > 0, k € R%, and ¢ € (0,1]. Moreover, we will use that for all w € C" and f € L' the
inequalities

|Pwlz < |wlz, 1P fllze < [z (2:26)
Pe(R)wlz < |wlz, 1Peflor <[ fler (2:27)

hold, as well as the same inequalities with P and P. replaced by P+ and PZX, respectively.

3 Why P.u, is smooth and P, is small in the slowly varying
envelope approximation

In this and the next section we analyze the SVEA ([1.8)—(1.9]), which corresponds to setting
j=m=1,  Jm=g®=({-11, JY={(1}

in (1.6)—(L.7) and in (2.2), respectively. Our main goal is to prove the error bound (1.12)), which
will be achieved in Section [d} cf. Theorem below. This proof is based on a number of auxiliary

results, which we compile now. We start by quoting two important inequalities from [g].

Lemma 3.1 Let m =1, let 0 =1 in (2.9), and let uy be the classical solution of (1.9) which was
established in Lemma |2.4(ii) Under Assumptions and|1.4(i), there is a constant C such that

sup [0y Petin (t)] 1 < C.
te [01tend/5]

The constant C depends on Cy 1 from (2.10) and thus also on t..q, but not on € € (0,1].
Proof: See [8, Lemma 2].

Proposition 3.2 Let m = 1 and let uy be the classical solution of (1.9) with initial data of the
form (2.9) with o = 1. Under the Assumptions and there is a constant C such that

sup  ||PLay (1)1 < Ce (3.1)
te [Ovtend/a]

for all e € (0,1].

Proof: See [8, Lemma 3]. In [4] a similar result was shown without Assumption but on a
possibly smaller interval [0, t./e] for some t, < tonqg-

These results can be interpreted as follows. The term 1L;(ek)t:(t,k) in (2.2a) suggests that
formally 0;u; = O(1/e). Lemma shows, however, that the time derivative of the projected part

10
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Py is bounded uniformly in . Hence, we can consider P.u; as “the non-oscillatory part of 41",
although strictly speaking this interpretation is not correct, because oscillations in P.u; can still
be detected on a very small scale; cf. Remark [3.6] at the end of this subsection.

For the time derivatives of the other part PXi; = 7, — P-i; a corresponding result does
not hold, which means that ¢,P1%; = O(1/e) in general. Proposition shows, however, that
|PLa1(t)|zr = O(e) even on the long time interval [0,%.q/c]. Hence, we can think of P,
as “small but oscillatory” in the sense that its time derivative is much larger than P itself.
Exploiting the different properties of P.7; and P, will be crucial in the proof of Theorem in
Section [d] Before that, we have to extend Lemma [3.1] and Proposition [3.2] to a stronger norm.

Let D,, denote the Fourier multiplier (D,®)(k) = ik, @(k) for pe {1,...,d}. We want to show
that under stronger regularity assumptions Proposition remains true when P21 (t) is replaced
by D, PXi:(t); cf. Proposition below. This corresponds to an extension of the inequality
from

[P (t)| 1 = [F~ 1P (1) w
to the stronger norm
d
[PZa ()0 + D) IDuPEa ()]s = [FH (P2 () wr-
p=1
As a first step, we prove the following counterpart of Lemma [3.1]

Lemma 3.3 Let m =1, let 0 = 2 in (2.9), and let uy be the classical solution of (1.9) which was
established in Lemma |2.4(%i) Under Assumptions and|1.4(i), there is a constant C' such that

sup  [0:D Pt (t)]p: < C.
te [Ovtend/e]

The constant C depends on Cy o from (2.10) and thus also on t..4, but not on € € (0,1].

Proof. The proof is similar to the proof of Lemma We choose p € {1,...,d} and apply
D, P.(k) to both sides of (2.2a) with j = m = 1. This yields

6tDM73€(k:)ﬁ1(t,k:)=—éDMPE(k)El(sk)al(t,k)+5DHP5(k) N T (@, g 5) (0 F) (32)
#J=1

for all t € (0,tena/c] and k € RY. The first term on the right-hand side is
i ~ i ~
—gDMPE(k)El(ak)ul(t, k) = —g)\n(ek)PE(k)Duul(t, k) (3.3)

because of (2.19) and (2.11)). The Lipschitz continuity (2.12)) of the eigenvalues and the fact that
/\11(0) =0 yield

|)\11(5k>| = |>\11(€k‘) — )\11(0)| < CE‘kh,

and together with (3.3) and (2.27)), this gives

i ~ ~
gDupgﬁl(E .)ul(t)HLl < C J |k|1‘PE(k)DNU1(t, k‘)‘g dk
Rd

<C J |k[T|d1(t, k)2 dk = C - Cy o (3.4)

Rd

11
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with Cy 2 from Lemma For the nonlinear term on the right-hand side of (3.2)), we have
DMT(ajl ’ ajz’ ajs) = T(Dﬂajl s a]é ) ajs) + T(aﬁ ) D/ﬂ’i]’zv aja) + T(ajl ’ ajz ) Dﬂajs)a (3~5)

which corresponds to the product rule. Since there are three multi-indices J € (J™M)? with #J = 1,
namely (1,1,-1),(1,-1,1),(—1,1,1), we obtain with (2.6)

6HDHPE Z T(ajl,@jz,ﬁjS)(t)||L1 < SEHDMT(ﬁjl,ﬂjz,ﬁjS)(t)\\Ll < 9607‘0371. (36)
#I=1

The assertion follows by combining (3.2)), (3.4), (3.6), and using that e < 1 by assumption. [ |

With Lemma [3.3] we can now show the following extension of Proposition [3.2}

Proposition 3.4 Let m = 1 and let uy be the classical solution of (1.9) with initial data of the
form (2.9) with o = 2. Under the assumptions of Proposition there is a constant C such that

sup D Pl (t)|1 < Ce (3.7)
tE[Ovtend/s]

for alle e (0,1] and all pe{1,...,d}.
Proof. Choose a fixed p € {1,...,d} and set
B(t, k) = (DuPriy) (1, k) = ik, P (k)i (¢, k). (3.8)
We apply D, P to with m = j = 1 and use that PX commutes with £;(¢k). This yields
~ i ~ oA A
O0(t) + —La(e)0(t) =& 1 D PIT (@, 1y, 15, ) (1),

#J=1
5(0) = D,PLp

with £4(e-) denoting k — L4(ek). Now we adapt the proof of Proposition With Duhamel’s
formula and the short-hand notation

T(aJ) = T(ajuajwajs) for J = (jlaj27j3>7

we obtain

<)

(t) = o (t) + & (1) + 313 (1)

with the three terms

ptl (t) = exp (—ltﬁl (e )) DMPELA,

We will show that

1M (t) 11 < cre + czajnﬁ(s)HLl ds for t € [0, tena/c] and n =1,2,3 (3.9)

0
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with constants ¢; = 0 and ¢z > 0 which do not depend on ¢ € (0, 1]. If is true, then applying
Gronwall’s lemma and using that et < fenq proves that supepo . /-1 [9(t)]lz1 < Ce which, via (-3),
is equivalent to .

For the first term oU'(¢), the inequality implies

[ @), = 1P Dbl < Cellpollw= + Ip1lw=),

which verifies ) for n =1 (with ¢ = O)
For the th1rd term 9l31(t) we infer with (2:27), (3.5), (2-7), and Proposition [3.2| that

PO < 3¢ [ [D,7(@:(5)) - DT (Pais(s) |, ds

(

- Csj (IP£a ()]0 + [os)],. ) as
0

t

< cie+ coe f [5(s)] . ds
0

Ce

N

[@i1(s) — Petia (s)],, + |Dpiia (s) — Duwgal(s)uy) ds

[

[=)
~+ o%w

with constants c1, co which depend on Cr, C,, 1, and in case of ¢; also on the constant from (3.1)).
Now we consider the second term 9!2/(t). Since there are three multi-indices J € (J™M)? with
#J =1, we obtain

512! \L1<3Eﬂ

Rd

e

d

exp ( t)ﬁl(ak)) (D PT (Piig)) (s, k) ds‘2 dk

exp ( t)ﬁl(ak)) PE(E)A(s. k) s b (3.10)

S ——,

py)

with the abbreviation
q(s, k) = (D, T(P-y))(s, k). (3.11)

The goal is now to integrate by parts to gain one additional factor e, which is then used to compen-
sate the long time interval. However, this requires some care, because the matrix £1(0) = L(w, k)

is singular; see (1.4) or Assumption What saves us here is the projector PX(k) in (3.10).
For every k € R? the restriction of £;(ck) to the subspace P*(k)R" is given by

L1(ek) : PH(E)R™ —» PL(K)R™,  Li(ck) = L1 (k)P (k) Z Me(ek)re(ek) s, (ek).
=2

By (2.13)), this mapping is regular with uniformly bounded inverse

n

(LH(eR) s PERR » PLRIR",  (LHER) T = ) 5 !

= W¢1€(Ek)¢fz(5k).
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The presence of PX(k) in ([3.10) allows us to replace £;(ck) by L1 (k) and to integrate by parts
in the inner integral of (3.10). This yields

3

tex i(s=t) 1 q(s s
\Of p (U aen)) P 0,

S
1

< [Seten) "t - o (-Loten) (cHen) 0.,

+ E Jexp (i(SE_ 2 /:f(sk)> (LE(ek)) " 2ud(s, k) dsL

0

t
< Ce(fa(t. Bz + (0. D)) + Ce [ 125, ds,
0

and substituting this into (3.10)) leads to

POl < € (12010 + 12021 ) + Cetens_ 510 105 (3.12)
s€[0,tenq/e

With , , and we obtain that
|Gz = (DT (Petig)) (1) 22 < 3C7C3 4, 1§(0) [+ < 3C7C3 4, (3.13)
and that
[0:3(s) | Lr = 0:Du T (Peiiy(s)) s
< 6070 Petis ()] 2 | D Petin(5)| 2 [Peia ()] 21 + 30T |0 Dy Petia () 12 | Petia ()7

Since [|0;P-u1(s)| 1 and | 0.D,P.1(s)| 1 are uniformly bounded by Lemmas [3.1f and respec-
tively, this shows that ||0;¢(s)|r: is uniformly bounded in s € [0, tona/c] and € € (0,1]. Combining

this with (3.13]) and (3.12]) yields (3.9)) for n = 2. This completes the proof. [ ]

Before closing this section we prove that even the second time derivative of P.u1(t) is uniformly
bounded. This somewhat simple observation will be crucial for showing the error bound for the
SVEA; cf. (4.28) in step 6 of the proof of Theorem below.

Lemma 3.5 Let m = 1, let 0 = 2 in (2.9)), and let uy be the classical solution of (L.9)). Under
Assumptions and|1.4(i), the second time derivative of Py (t) is uniformly bounded, i.e. there
is a constant C' such that

sup [ 0FPa (1)1 < C.
te[ovtend/s]

The constant C' depends on the constant Cy 2 from (2.10) and thus also on t..q, but not on €.
Proof. Applying P.(k)d; on both sides of (2.2a]) with j = m =1 gives

Ps(k)afﬁl(t,k)=—éPE(k)El(sk)ﬁtﬁl(t,k)+5P5(k:) N AT (@, s g, (8 K)
#J=1
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for t € (0,tena/c] and k € R%. By adapting the arguments from the proof of Lemma we arrive
at the bound

. d
EPsEl(sk)(?tﬁl(t, k)‘z < ClRly [P (t, k)], = C Y oD, Paan(t, )],

p=1
for the first term. For the nonlinear term, the product rule yields
ﬁtT(ﬁjl,ﬁjz,ﬂjs) = T(@tﬁjl,ﬁj2,ﬁj3) + T(ajl,ataj2, ﬁjg) + T(ajl,ajz,atajs),

and with (2.6) we obtain

d
|67Pa1 ()22 < C ) [0 DuPeaan(t)| 1 + 9eCT 00 ()] 2 [T (8)]7.1-
pn=1

Now the assertion follows from Lemma and the fact that ||0,4y ()| < Ce™ . [ |

Remark 3.6 By taking more derivatives of and proceeding as in the proof of Lemma
it can be shown that |0fPety(t)] 12 = O(e*7%) for £ = 3. Hence, higher-order time derivatives are
not uniformly bounded, which means that our interpretation of PeU1 as the non-oscillatory part of
Uy is only true to a certain extent.

4 Convergence analysis for the slowly varying envelope ap-
proximation

With the results from the previous section we are now in a position to prove the error bound (1.12]),
where %" is the SVEA (T.8)-(1.9). We assume that p has the form (2.9) with ¢ = 2. Then, by
Lemmas and there is a constant C,, such that

sup  sup |u(®)|w < C, and sup  sup [TV (#)|w < Ch. (4.1)
€€(0,1] te[0,tena/c] e€(0,1] te[0,tenqg/cl

The error bound requires the following assumption on the eigenvalues of £;(0) = L(jw, jk).

Assumption 4.1 (Non-resonance condition) The matriz L(3w,3k) is regular and has no com-
mon eigenvalues with £1(0) = L(w, k), i.e. A3;(0) # A1¢(0) for alli,l e {1,...,n}.

Remark 4.2 As mentioned earlier, explicit formulas for the eigenvalues in case of the Klein—
Gordon system and the Mazwell-Lorentz system can be found in [8, Example 3 and 4]. For these
applications, one can check that Assumption holds if the chosen eigenvalue w = w(k) is not
constant with respect to k.

4.1 Improved error bound for the SVEA

The following theorem is our first main result. It states that the SVEA converges with second order.

We recall that the SVEA (T.8)—(T.9) is identical to (T.6)(1.7) with m =1 and ) = {—1,1}.

Theorem 4.3 (Error bound for the SVEA) Suppose that (2.9) holds with o = 2, and let u be
the solution of (1.1). Let uy be the classical solution of (1.9)) established in part of Lemma
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and let 7Y be the approzimation defined in (1.8). Under Assumptions and there is a

constant such that

sup u(t) — @ (t)|w < Ce?, (4.2)
te[ortend/s]
sup  Ju(t) —aW ()| - < Ce2. (4.3)

te[0,tepnq/c]

Proof. The error bound (4.3) follows directly from (4.2]) via the embedding W < L®. The proof
of (4.2), however, is rather long. The strategy, notation and presentation is very similar to the
proof of Theorem 4.2 in [5], but there are some crucial differences which we point out below.

Step 1. In the first step, we derive an evolution equation for the difference § = u — %)) between
the exact solution and its approximation. Let

1
R =eT@®,am, g0y — <6tﬁ(1)(t, )+ ATV + gEml))
be the residual of the approximation %("). Hence, § = u — &) solves the problem
1
06 = —A(@)0 — ~Eb +< [T(u, wyu) — T(ED, 7O, a“))] +R, (4.4a)
§(0) = 0. (4.4b)

Next, we investigate the structure of the residual. By (|1.8)), the approximation %M can be expressed
as

M (t,x) = o= eD/ey, (t,x) + e e wb/ey_ (t,2) = Z elilme=wh/ey (¢, x).
jeg®

Substituting this into the left-hand side of (|1.1)) and using (|1.9a)) yields
1
iV (t, ) + AO)a ™M (¢, ) + gEa<1>(t,x)

= Y e (B, @) + LG, jR)us(t ) + A@)u; (1))

jej(l)
=¢ Z Z eij(ﬂ‘x—wt)/ET(Ujl7sz,U/]‘S)(t,ﬁL'>7 (45)
JeTM #J=j

whereas on the right-hand side of (1.1)) we obtain

eT (@M, oM aMy(t,z) = Z eI wae=wh/ep (g, ug, ) (L @)
Je(FW)s
—e D0 D T g gy, g, ) (8 ) (4.6)

j odd #J=j
li]<3

The only difference between (4.5) and (4.6) is that the terms with j = +3 are missing in (4.5]).
These terms are exactly the higher harmonics which were omitted in the derivation of (1.7) and
hence of the SVEA. The equations (4.5) and (4.6]) yield the representation

R(t, SC) . Z Z eij(wx—wt)/aT(ujl Uy, Ujg)(t, .T)
je{£3} #J=j

of the residual.

16
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Since (4.2)) is equivalent to

sup  3(t)] 1 < Ce?, (4.7)
t€[0,tena /el

we need an evolution equation for 8§ = F5. Tn Fourier space, reads
0:0(t, k) = —(1A(k) + LE)3(t, k) + eG (Fu, FaW) (¢, k) + R(t, k) (4.8)
with
G(Fu, FaW) = T(Fu, Fu, Fu) - T (Fa®, Fa», 7)),

E(tv k) =€ Z Z F (T(ujuuh’ uj3)eijﬁlz/s) (ta k)e_ijwt/s
je{£3} #J=j

= > D Ty, Gy, A, ) (8, k — LE)eTHw0e, (4.9)
je{£3} #J=3

and with 7 defined in (2.5).

Step 2. In this step, we identify the most challenging part of the proof of (4.2]). For this purpose,
we apply Duhamel’s formula to (4.8) and use that 6(0, k) = 0 to obtain

t

~

ot k) = EJexp ((s —t)(1A(Kk) + %E))g(}'u(s),fﬂ(l)(s))(k) ds
°, (4.10)
+ jexp ((s —t)(1A(k) + éE))ﬁf(s, k) ds.

0

Our goal is to prove via Gronwall’s lemma, which requires suitable bounds for the two terms
on the right-hand side of (4.10). For every k € R? the matrix iA(k) + E/e is skew-Hermitian, and
hence exp (t (1A(k) + E/e)) is unitary for every ¢ € R. The first term on the right-hand side of
can thus be bounded in L' by

t

ef J lexp ((s — t) (1A(k) + LE))G(Fu(s), FaV) (s)) (k)|, dk ds
0 Rd

= sJ f |G (Fu(s), FaV(s)) (k)|, dk ds

0 Rd

t
< 3C7C? SJHS(S)HLI ds. (4.11)
0

The last step follows from (2.7) and (4.1). Now suppose that for the second term of (4.10) the
inequality

sup
t€[0,tena/e]

< Ce? (4.12)

Jexp ((s —t)(1A() + éE))}A%(s) ds

17



Version: February 20, 2024
holds. Then it follows from (4.10)), , and (4.12)) that
15t)] < CC2 afuﬁ(s)uy ds + Ce,
0

and applying Gronwall’s lemma yields the desired inequality (4.7)) with a constant which depends
on C, and t.nq.

The central task is thus to prove (4.12). Equation (4.9) shows that HI?L’(S)HL1 = O(e), but
straightforward estimates yield only
¢ ¢
f (5= 0GA0) + 2E)RE) a5, < sup [|R(s)] . ds
0 tenae] L telotena/e]
ten D
<2 gp HR(S)”L1 <C.

€ te[0,tena /el

Compared to this simple bound, we have to gain a factor of 2. This is where the real work starts.

Step 3. In this step, we express the integral term from (4.12) in an appropriate way. We use
(11.3), (2.3), and (4.9) to obtain

t

Jexp ((s — ) (iA(k) + LE)) R(s, k) ds

0

t
zsfexp((s—t)( Z Z T (w5, Uj,, w5,) (s, k — ) —ijws/e qg
0

]E{+3} #J=j

= cemwtE N 2 exp (L(s — t)L(jw, ek)) T (@, , Tjy, s, ) (5, k — L2) ds
je{£3} #J= ]O

= ge_u""t/e 2 Z Jexp é s — t (Ekl)) T(ﬁjlvajwajg)(sv k,) ds

je{£3} #J=j 0

with the shifted variable k€ = k—Z£. In order to keep the notation simple, we write again k instead
of k' in the following. Since later we integrate over k, the difference between k and k' does not
really matter.

With and we can represent the integrand as

€xXp (é(s - t)‘cj (Ek)) T(ﬁ’jl ) aj27aj3)(sv k) = exp (é(S - t)[’j (Ek)) S;‘k,s(sa k)F(S? ’171, J)<k)
— exp (— 1L, (eh) W, (eh) (s, 1, J) k)
— % (t,k)F(s, @, J) (k).

Since S]* (t) is unltary and does not depend on s, it follows that the term which appears on the
left-hand side of can be bounded by

t

erxp ((s—t)(i1A() + %E)) dsH <e Z Z HJF s, Uy, J ds” (4.13)

0 je{3} #J=

18
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Step 4. The goal in this and the following steps is to prove that

sup H fF (s,a1,J dsH (4.14)
t€[0 tend/e jE{+3} #J=j

If - ) holds, then the crumal inequality (4.12] - ) follows V13E| -, which then completes the
proof of (£.2). The sum in is taken over multi-indices J € ()3 = {1, —1}3 with #J =
j € {3,—3}. There are only two possibilities, namely J = (1,1,1), 7 = 3 and J = —(1,1,1),
j = —3. Since both cases can be treated mutatis mutandis, we will only consider the first one, i.e.
J=1(1,1,1), j = 3, and thus

F(S,ah J) = S375(3)T(ﬁ1, @1,61)(3).

‘We have to show that

t

f S (s)T (g, iy, @iy ) (5) ds‘

sup
te [Ovtend/s]

< Ce. 4.1
o Ce (4.15)

In order to use Proposition [3.2] we decompose the nonlinearity into eight parts

T (1,1, 11) = T (Pety, Peliy, Potir) + T(’PEiZhPEahPEJ-{Zl) + 7‘(738@177361@1’738131)
+ T (P, Petiy, Peiin) + T (Petiy, Py, o) + T (P, Petiy, Py )
+ T(PLan, PRy, Petn) + T (PHan, PRy, PEan).

The last four terms are those where P2, appears in at least two of the three arguments of 7(-, -, -).
These terms are 0(82) because of Proposition and their contribution to the left-hand side of
(4.14) can be estimated in a straightforward way, for example

t

| J S ()T (P, Py, Pein)(5) ds|

<oy f (1P (5) s [P0 (5) s [Peit(3)]22 ) s < Ct? < Ce
0
For the first four parts of 7 (41, @1, 41) the analysis is much more involved. We have to prove that

H J S5 ()T (P, Putin, Pefi) () ds| | < Ce, (4.16)

| Jsg,a(s)T(Pgal,Paal,nal)@) as| | < o=, (4.17)

because bounds for the two terms involving T(Psﬁl,PEJ-ﬁl,Psﬂl) and T(Psﬁl,Psﬁl,Pjﬁl) can
be shown in the same way as (4.16]).

!Note that the right-hand side of (4.13) contains a factor e, which was omitted on the left-hand side of (&.14]).

19
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Step 5. In this step we prove (4.16)). To accomplish this, we have to identify the oscillatory
“parts” of the integrand. We use that (2.21), (2.14]), and (2.15)) yield the representation

Pran(t,k) = SF.(t, k) Pz (t, k) Z exp (— EXio(ck)) z10(t, k)re(ek), (4.18)

where again )\u(sk) is the ¢-th elgenvalue of L’l(ek) and wlg(ek) is the corresponding eigenvector,

as defined in . Combining (4.18)) with ( and (| results in
t
J Ss.e(s, k)T (PLtiy, Petiy, Petiy ) (s, k) ds
0

1
(2m)¢

t
Jexp(i—sAg(sk))‘Il*(sk) f T (Pjal(s,k<1>),735a1(s,k@)),nal(s,k(i‘))) dK ds
#K=k

Il
I M:

t
f (2 [As(ek) — Me(ek™)I]) foo(s, K) ds dK
kO

#K=Fk

with the shorthand notation from (2.4)), and with

Jert(s, K) = 2 WS (ER)T (105, kO ne(ek ™), Puia (s, k), Puiia (s, D) ), #K = k.

1
(2m)?

Taking the norm yields

H f Sa.(8)T (P, ey, P ) (5) ds|

_“JS:SE (s k)T(P Ty, Py, Pl (s, k) ds‘ dk

Rd
<)) J J Uexp (2[As(ck) — Aie(ckM)]) foe(s, K) ds‘z dK dk. (4.19)
{=2Ra 4K=k 0

Now we focus on the inner integral. The exponential function s — exp (2[Az(ck) — Aio(ekM)I])

in ([4.19) oscillates if all diagonal entries of the diagonal matrix As(ek) — A1¢(ek(M)I are bounded
away from zero, but we cannot expect this to be true for all k, k(1) € R, For this reason, we define

Ar(0,00) = Az(0) — A (0)  for 0,0 e RY,
ge0(s, K) = exp (f[Ag(Ek,E/{Z(l)) — A(0, 0)]> feo(s, K)

and reformulate the inner integral in (4.19) as

X (%A(k)—/\l(k( V) fee(s, K) ds X Ag(0,0) ) gee(s, K)ds| . (4.20)
’!ep [As(e (k")) fere )!ep< ¢ )gz ‘2

By Assumption 1] the diagonal matrix

Ag(0,0) = Az(0) — A\ (0)] = diag(Agl(O) “A(0), . Aan(0) — AM(O))
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is regular for all /. Hence, we can now integrate by parts to obtain
t
is

1E: <EA2(0,0)) gou(s K) s

0

€ 1 it

= [5800.0)7" (exp (£24(0,0) ) go(t K) = 9o (0.5 ) |

Y f exp (fAe<o,0>> 0i9e.e(5, K) ds|_
0

t

< Ce(lgerlt. Kl + 19040, K)12) + Ce [ ougeats )| d. (4:21)
0

By definition of g, ¢, we have
O1gee(s, K) = é[Az(Ek,sk(l)) — Az(070)]g€’g(S,K)
+ exp <i;[Ag(sk, ekM) — A, (0, 0)]> Oifeu(s, K),
and since |ge ¢(s, K)|2 = | fee(s, K)|2 this yields
|01920(5, K)|, < —|Ae (ek, ek ™) = 20(0,0)|,] fee (5, K)o + [0 feo(5, K)o

With , and we infer that
| f S32(9) T (PL0, Pl P ) 5) ds| < Ce(Xa(1,6) + Xalt, ) + Xs(t,))

with

I
—~
i\"
2
Il
1=
%
_
N
o
~
—
\‘@F
=
S~—"
IH
+
o
m
~
=
>
~—
o
=
o
>

t
= 1
Xo(t,e) = )] j f fjAg(@k,ak(l)) — Ag(0,0),f-e(s, K)|2 ds K dk,
0

Xg(t,s):ZJ J J|6tfggsK)|2ddedk
2Rd #K=k 0

In order to complete the proof of (4.16]) we have to show that X;(t,€), Xo(t,€), and X3(t,¢€) are
uniformly bounded in e € (0,1] and t € [0, tena/c]. For Xa(t,e) and X3(t,¢), this is not obvious
because of the integration over the possibly long time interval [0,¢] with ¢ < t.,q/e. We use that

Z |fee(s, K)| C’Z ‘T(zu 5, kMYp1p(ek™), Py (s, k), Potiy (s, kG ))>)

2

< C‘”Pj‘ul s,k(l) ‘ !73 U1 (s, k2 ’ ’73 Uy (s, kG ))|
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holds, because of the normalization [1,(ck(M))|o = 1 and the fact that
Z l21e(s, k)| = |P21(s, kW)L < C|PH21(s, kM) |2 = C|PFaa (s, kD)),

by (2.25). With |ge ¢(s, K)|2 = | fe,¢(s, K)|2 this implies that

Z |ge.e(s, K)|o dK dE
=2Rd #K—k
< CJ J (1Pt (s kD) Pt (s, k) [Peis (5, £, ) Ak
Rd #K=k

= cf |PLa (s, k)], dk) J Py (s, k)], d&@ f [Py (s, k)], dk®
d Rd d

= C| P (s) |1 [Petin ()] 2
< Ce
for all s € [0,twa/e] due to Proposition This shows in particular that X;(¢,¢) is uniformly
boundedﬂ in €€ (0,1] and t € [0, tena/c]-
For X5(t,e) we use that the Lipschitz continuity (2.12)) of the eigenvalues yields
|A(ek, k™) — Ag(0,0)], < |As(ek) — A3(0)], + [Me(ek ™) = Are(0)]
< Ce(lkly + kM),

and the ¢ in the second line compensates the factor 1/e in Xo(t,¢). For K = (kM k®) k(®)) with
E=#K=kY + k@ + kO we have that |k, < [EM|; + [E@|; + |E®)|,. Hence, it follows that

Xa(tye) ZJ J J |Ag(ek, ek ™) — A(0,0)],] fo.e(s, K)|2 ds A dk

2Rd #K=k 0
t

Zf f f DI+ 6]y + [3))1)| fe(s, K)o ds A dk
=2Rd #K=k 0

and proceeding as before yields

Xof <C

=~

Il
—

t
f\D Pt (s)] o [P (3)]21
=10

+ 2| Pt ()] 22 | Dy Paﬁl(S)llLl\\7’5@1(8)\\L1) ds

<C

M&

jHD Pl ||L1ds+cj P25 d.
0

Il
—

m

Since both integrands are O(e) according to Propositions and respectively, the right-hand
side is uniformly bounded for ¢ € [0, fena/€]-

?In fact, we have even shown that X (t,&) < Ce for all € € (0,1] and ¢ € [0, tena/<].
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In a similar way, one can show that

n

Zf J JwterSK)dedek

2Ra #K kO
CZf (1P 21 1P (5)
5:20

+ 2| P21 (s) ] 1 |0 Petia (s) | o \\?aal(S)HLl) ds.

Since |Ptz1(s)|lpr = |Pa1(s)|zr < Ce by Proposition since [|0;P:U1(s)|Lr is uniformly
bounded by Lemma and since

0P ()| < () <& Y 1T (@, s ) ()12 < Ce
#J=1

by (2.16) and ([2.17)), we conclude that X35(¢, ) is uniformly bounded, too. We have thus shown the
1nequahty (14.16]).

Step 6. In this step, we prove . For the proof of (4.16) in the previous step, it was crucial
that PJ-ul appears in one of the arguments of T, because thls allowed us to use Proposmons .
and 3.4} In , however, this is not possible, because all three arguments of 7 are P.u; instead
of P ﬁl. Hence7 we have to proceed in a different way. The crucial observation is that P.4; and
thus also T(Pgal, 735@1,735@1) are non-oscillatory in the sense that the first two time derivatives of
P.1y are uniformly bounded according to Lemmas and The only oscillatory function
on the left-hand side of is S3.(s). The strategy is now to integrate by parts twice, which
generates a factor € each time. One of these factors is then used to compensate the long time
interval.

We set As(ek) = Az(ek) — A3(0) and
fe(t, k) = exp (L As(ek)) V3 (ek)T (Peliy, Petiy, Petir) (£, k).

With (2.15) we obtain the representation

t

t
H JS&E(s)T(Pgﬁl, Peiiy, Poiiy) (s) dsHLl - H Jexp (2A5(0)) £-(s) dsHLl
0

of the left-hand side of (4.17). By Assumption the matrix £3(0) = £(3w,3x) and thus also
A3(0) is invertible. Hence, we can integrate by parts twice and obtain

t

| [[exp (2a0000) 2.05) 0], < Cs[u;(om 01+ | [ e (Eas0)aso) ds\Ll]
0 0
< 06[|f5(0) s + 1£@llps + €100 fe(0) |z + elaufe(B)] o

o

Now we have to show that all terms inside the big bracket [ ... ] are uniformly bounded in
t € [0, tena/e] and € € (0, 1].

(4.22)

+ 5” Jexp (12A5(0))07 f-(s) ds‘
0
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As a preparatory step, we note that applying (2.6]), (2.27)), and the product rule yields

||7-(73€ﬁ1,775ﬁ17Pgﬁl)(t)HLl < C’TH@I(t)Hil, (4.23)
HDMT(Psalu ,Psala Peal) (t) HLI < 3CTHD/»L’&\'1 (t) ”L1 Hal (t) H%la (424)
HD,U,DVT(,P&‘ala ,Paalv Peal) (t) HLI < CT (6“D,U«a1 (t) HLI ”DVﬁl (t) ||L1 Hal (t) HLl (425)

+ 3| DD, (1), [ ()3,

for all p,v e {1,...,d}. The right-hand side of (4.23)), (4.24]), and (4.25) is uniformly bounded by
Lemma [2.2(iii)l In a similar way, we obtain the inequalities

[0eT (Petia, Petin, Petin) (1), < 3CT| 0Pt ()] 1 12 ()3, (4.26)

| Do T (Petiy, Petiy, Petia) (8)] . < Cr <6HDuﬁl(t)HL1 |0ePin (t)] 2 @1 (2)] o (4.27)
+3|DuaPan ()] )7, ),

|02 (P.tty, Petin, Pt ) (1), < SOT(HatPsal(t)Hil [ (8)] 1 (4.28)

+ 2P )] i (013

and applying Lemmas and yields uniform boundedness of the right-hand sides of (4.26]),
[E27), and (£25). .
Since the matrix exp (L£Agz(ck)) Vi (ek) is unitary, (4.23) implies that ||f-(¢)|1 is uniformly
bounded. Taking the time derivative of f.(t) gives
Oufe(t. k) = fEA(E k) + fE2 (2 B), (4.29)
D, k) = EAs(ek) fe(t B,
FI2(t, k) = exp (L A5(ck)) WS (k) 0, T (Petiy, Peotin, Poi ) (¢, k).

The fact that Aj is globally Lipschitz continuous by (2.12)) yields
|2As(ek)]2 = Z[As(ek) — A3(0)|2 < Clk[y

with a constant C' which does not depend on ¢ and k. Using again that exp (LA3z(ck))Uk(ck) is a
unitary matrix gives

|f5[171](t)|2 < C|k‘1|f€(tak‘)|2 < C|k‘1|7—(7)6alaPealapsal)(tak)|2

d
= C Y DT (P, P, Pet) (8 k),
p=1

|2 ()2 < |0 T (Petiy, Peiy, Peiin) (£, K) |2 (4.30)
and by combining this with (4.29)), , and (4.26]) we infer that |0 f-(t)|r < Ce. This O(e)

estimate is even better than the uniform boundedness which we require at this point. Finally, we
show uniform boundedness of the integral term in (4.22)). Since ¢ € [0, tena/c] we can use that

t
| [exp (2002 (5) ds] | <t swp |25
0

s€ [O)tend/s]
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with
021-(5) = 02 (exp (L2 (ek)) W (k) T (Peiin, Py, Pui) (s, k)
=/ ”(s k) + 2/122 (s, k) + [ (s, R),
F2U(s k) = (L0s(ek)” fo(s, ),
22, )— ARG ( )f[”](s k),
F123(s, k) = exp (LA3(ck)) WS (k)07 T (Potin, Petin, Petin ) (5, k).

Proceeding as before yields

|21 (s, K)o < ClRR| f(s, )2
_CW |T( LGy, Pelly, Pein) (s, k)

=CZZ’DDTPU17PU17P“1>Sk|2’
p1 =1

and hence uniform boundedness of || f5[2’1](s)|\ 11 follows from (4.25). In a similar way, we obtain

with (30)

|22 (s, k)2 < ClE[ |2 (s, E) 2
§ C’|k|1\(3t7'(7751?1, Pgal, 775171)(5, k)|2

d
= C Z |D‘uat7—(tpga17Psalapaal)(svk)|27

p=1

such that (4.27)) yields uniform boundedness of | fe [2:2] (s)|z:- Uniform boundedness of | fs[273] (8)| s
follows from (4.28). We have thus shown that all terms in the big bracket [ ... ] in are
uniformly bounded, which completes the proof of (4.17)).

According to step 4, the inequalities (4.16)) and (4.17)) imply the bound (4.14]), which is equiv-
alent to (4.12)). We have shown in step 2 that this concludes the proof of (4.2) and hence of
Theorem [£.3] [

The proof shows that in general the error of the SVEA cannot be expected to be smaller
than O(E ) We have seen in step 2 that the accuracy is determined by the right hand side of
(.12), and in order to improve this inequality, we have to replace (4.16 and 4.17) by some-
thmg betteIEl But this is impossible, which can be seen in the proof of in step 6. Since
SUPte[0,t0,q/c] | Petin (Bl = O(1) it follows that

If-()r = | T (Petiy, Petiy, Petin) ()] 12 = O(1), (4.31)

and as a consequence, the right-hand side of cannot be smaller than O(g). We would like
to point out that is not the only bottleneck in the proof, and that there are many terms for
which a better bound is not feasible. The only way to achieve a higher accuracy is thus to change
the approximation, i.e. to use and with m > 1. This is the topic of Section

3In addition, a number of terms which were estimated in a straightforward way in our proof would require a more
sophisticated analysis.
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Remark 4.4 We have assumed throughout that the kernel of L(w, k) is one-dimensional; see As-
sumption [1.4(i). In case of the Mazwell-Lorentz system, however, most of the eigenvalues of
L(0,k) = A(k) —iE occur with multiplicity 2, as pointed out in [{, Example 3.2.4], and if the
eigenvalue w chosen in has multiplicity 2, then L(w, k) = —wI+L(0, k) has a two-dimensional
kernel. For this reason, we would like to emphasize that the only purpose of Assumption 18
to keep the notation simple, and that all results and proofs in this work could be adapted to cases
where the dimension of the kernel is two or larger, as has been done in [{)]. If the kernel of L(w, k)
has dimension 2, then £ = 2,... ,n in Assumption [2.9(iii) has to be replaced by £ = 3,...,n, and
the definitions of the projectors (2.19) and (2.22) have to be modified in an obvious way. Likewise,

Yo has to be replaced by 2?23 ... in the proofs of Proposition and Theorem ,

4.2 Numerical experiment

We illustrate Theorem by a numerical example. As a model problem, we use a Klein—Gordon
system in one space dimension; cf. Example 2 in [8] and Example 1.5 in [20]. This system is a

special case of (|l.1a)) with

d=1, n=2 A(@@:(? é)ax A(R)z(g g) E=<3 _07>.

We set
tena = 1, k=12, v=0.7, T(f1, fo, f3) = (f1 - f2)Efs.

The eigenvalues of A(k) —iE € C?*2 are +4/k2 + 72 ~ +1.3892, and we select w = w(k) to be
the one with the positive sign. For the initial data in (T.1b) we choose p(z) = e~ (@05, with
v € ker(L(w, )), such that the polarization condition (Assumption [1.1{ii)) holds with p = py and
p1 = 0. The initial data and the values for x and v were chosen more or less arbitrarily. The
numerical results reported below remained qualitatively the same for other parametrizations we
have tested.

Since numerical approximations of and can only be computed on a bounded domain,
we switch to co-moving coordinates

5 =T — Cgt7 ’U(t, 5) = U(t,.’b), ’Ul(tvg) = 'U,1<t, (E)
with group velocity ¢, = Vw(k) = k/w(k). For d = 1 this turns (1.1)) into
1
Orv + A(Og)v — cg0cv + gEv =T (v,v,v), t € (0,tena/e], E€R, (4.32a)
v(0,€) = p(&)elO/F 4 e, (4.32b)

and 7 into

v(t,€) ~ TW(t, &) = el tnes—D ey, (1 €) 4 cc., (4.33)
i
Orv1 + gﬁ(w, K)v1 + A(O¢)u1 — cglcvy = € Z T(vj,, Vi, Vis),
Jitje+is=1
U1 (O, ) =Dp.

Then, we replace £ € R by £ € [—64, 64] with periodic boundary conditions and approximate v; with
a Strang splitting method with very small step-size (te,a/10°%) and mesh-width (128/214 = 277).
Inserting this numerical approximation of vy into yields a numerical approximation to (1),
which is then compared with a numerical approximation to the solution of . As we have
explained in the introduction, such an approximation can unfortunately not be obtained by applying

26



Version: February 20, 2024

a standard method to (4.32) in a straightforward way, because the highly oscillatory solution
behavior imposes a very fine discretization in time and space, which causes huge computational
costs even in one space dimension. As a remedy, we have used (1.6)) and (L.7) with m = 5 to

compute a reference solution in co-moving coordinates.
Figure [I] shows the numerical counterpart of

sup  [o(t, ) =3V (t, ) 2=
te [O’tcnd/e]

for different values of € (blue line) in logarithmic axes. Comparing with & — €2 (black dashed line)

shows that the error is proportional to 2, as predicted by Theorem

bl

102

1073

—e—crror of SVEA

e g2

—_
3
[N}
—_
3
—_

€

Figure 1: Accuracy of the SVEA for different values of €. See text for
details.

5 Convergence analysis for m = 3
In this section, we analyze the approximation (|L.6)) with

m =3 and J® = {+1,+3}.

As mentioned in the introduction, we have shown in [5] that %3 approximates the exact solution
u of (L.I) up to an error of O(e?); cf. (1.11)). In this section, we prove that actually the error is

only (9(53) if holds with o = 3.

By definition the approximation

A (t, ) = Z ra=—wt)/ey (¢ x) = (ei(“'zf‘*’t)/gul(t,m) + e3i(ﬁ'x7Wt)/EU3(t,x)> + c.c.
jeg®

is based on two functions u;,us and their complex conjugates u_; = u;. These functions u,us are
determined by the coupled system , and thus w; (which now depends on ug3) is not the same
as w1 in the case m = 1. As a consequence, we cannot readily use the auxiliary results concerning
uy which we have shown in Lemmas [3.1] [3:3] and [3.5] However, these results can be extended to

the case m = 3 with little effort. We summarize this in the following lemma.

Lemma 5.1 Let m =3, let 0 =1 in (2.9), and let {u1,us} be the classical solution of (1.7)).
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(i) Under Assumptions[2.3 and [1.4(Z), there is a constant C independent of € € (0,1] such that

sup [0y Petir ()2 < C, (5.1)
t€[07tﬁnd/5]
sup 0D, Py (8|11 < C. (5.2)

te[oatend/e]
(it) If in addition o = 2 in (2.9), then there is a constant C such that

sup  ||0ZP.ay (1) < C. (5.3)
t€[07tend/5]

(iii) If in addition o = 3 in (2.9)), then there is a constant C such that

sup | D, 0Py (t)| 1 < C. (5.4)

te [O)tend/E]

Proof. The bound was shown in [5 Lemma 3.5]. To show and , the proofs of
Lemma [3.3] and [3.5] carry over almost verbatim. The only difference is that for m = 3 the sum
Z#J:1 T (@, ,Uj,, W;,) contains more terms than for m = 1, for example 7T (U3, u_1,u_1), and thus
the constants in the very last inequality of each proof change a bit. The proof of (5.4) is more
complicated than the proof of , because new terms arise due to the presence of D,,, but these
terms do not cause any essential new difficulty. ]

5.1 Bounds on the coefficient functions

As a first step, we prove that for m = 3 it is still true that |P24;(¢)|: = O(e), and that in
addition ||5(t)| 1 = O(g?); cf. Corollary below. For this purpose, we define the scaled norm

I - |ll. of a pair Y®) = {y;,ys} of functions y; € L' by
) 2., 2
Yl = 21Pysler + 2 1Pyl + lys)er (5.5)

In [5, Equation (3.3)] we have used a similar definition, but with factor 2/¢ instead of 2/£2 in the last
term. This difference is important. The motivation for multiplying every term on the right-hand
side with 2 is that then Equation (5.9)) below holds true.

Proposition 5.2 Suppose that the initial data in have the form with o = 2. Let
UG = {uy,u3} be the classical solution of (L.7) with m =3 and let UG = {Uy,u3}. Let z; and z3
be the transformed functions defined in and set Z(3) = {21, 23}. For every sufficiently large
r > 0 there is a t, € (0,t.nq] such that under the Assumptions and

sup  [|ZO@)). <7 for all e € (0,1]. (5.6)
te[0,t4 /¢]

The constant t. depends on te.q, 7, Cy 2, C7, on the inverse of the nonzero eigenvalues of A1(0),
and on the Lipschitz constant in (2.12)), but not on €.

Remark 5.3 The proof yields an explicit formula for t.; cf. , Numerical computations in-
dicate that this formula is way too pessimistic in most cases, but for our goals it is sufficient that
for every r there is a t,. such that holds, and that t, does not depend on €. The number t,
obtained from is positive only if r > C,, where C,y is a constant which appears in the proof.
This is what we mean by “sufficiently large r”.
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Before we prove Proposition we note that the following corollary is an immediate consequence

of @29). £20). [£3). and ().

Corollary 5.4 Under the assumptions of Proposition[5.9 the bounds
sup |[PLay(t)|p = sup  [Plzi(t)|o: < Ce,
te[0,t, /c] te[0,t. /€]

sup |as(t)| e sup  |z3(t)|r < Ce?
te[0,t. /€] te[0,t./c]

hold with a constant independent of e € (0, 1].

Corollary reveals that Proposition [5.2] can be understood as an extension of Proposition [3.2
from m = 1 to the case m = 3. However, a substantial difference between the two cases is the fact
that the proof of Proposition (see [8, Lemma 3]) is based on Gronwall’s lemma, whereas the
proof of Proposition requires other techniques. The reason is, roughly speaking, that for m = 3
there are two functions, P2 (t) and 43(t), which we have to estimate simultaneously. This is also
the reason why Proposition [5.2| refers to a possibly smaller interval [0, ¢, /¢] instead of [0, tena/c].

Proof of Proposition We integrate (2.16]) for m = 3 from 0 to t € [0, tenq/e]. This yields

t t
129 @l <1zPol. +2 Y (¢ fPF(s,ﬁ(g),J) as|  +] JPLF(S, 0,7 s
#J=1 0 0

t
" i#JZ:B | Of F(s,0®),7) ds| (5.7)

with F' defined in (2.17)). Since 2z5(0) = 0 by (2.18)), it follows from (2.23]) that
2
12Dl = 21Pz1(0) ]z + Z1P+21(0) 22 < Cllpollwr + [P lw)-

Now, we define

1 1
ar1(t) = [Pz (t)|zr + gHPlZl(t)HLl and az3(t) = lzs(®)] e (5.8)
and note that

Y a(s) = 2ai(s) + 2a(s) = | 2% (s)]l. (5.9)
jeg®

by (5.5). Our goal is to prove that there are constants C, and C such that for all ¢ € [0,tena/€] the
inequality

t ¢ ¢
3

EH JPF(S, o® .7 dsHL1 + ” fplF(s,ﬁ(?’)7 J) dsHL1 <C,+ CA'EJ-Haji(s) ds (5.10)

0 0 0 =t

holds for every J = (j1, jo, j3) € (J®)3 with #J = 1, and that

t
1 ~
7H fF(s, 0®), 1) ds
g Lt
0

t
3
<C, + éajnaﬁ(s) ds (5.11)
b =1
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holds for every J = (j1,j2,73) € (J®)? with #J = 3. Substituting (5.10) and (5.11)) into (5.7)
yields

t o3
12O, <co+20: ¥ % f‘]_[aji(s) ds

je(1,3) #J=j p i=1

t
3
<Co+Ce Z 2 fnaji(s) ds
jeT® #J=jy i=1
L 3
=C, + é&f < Z aj(s)) ds
0

jeg®

t
=C, + éaf 123 ()2 ds (5.12)
0

by (5.9). The constant C, depends on ||po|w1, |p1]w1, Cs and the (finite) number of multi-indices
J with #J = 1 and #J = 3, respectively. Now let ¢, € (0,%.,4] be a number to be determined
below. Then, (5.12) implies that

NZP @), < Co+Cte sup  [|ZP()]I?  for all t € [0, /z]. (5.13)

s€[0,t4/¢]

If we choose t, in such a way that the right-hand side of this inequality is not larger than r for
some 7 > C,, then we can infer from (5.13) that ||Z®)(¢)||. < r for all £ € [0,%./c]. Hence, the
desired inequality (5.6 holds with

r—=C,
COr3
To prove the first inequality (5.10) we can adapt the arguments from [5, Section 3.2.2], because
the fact that as(t) was defined with a different prefactor in [5, Eq. (3.7)] does not matter for this
part. To complete the proof of Proposition we have to show (5.11)). In [B, Section 3.2.1] we

have proven such a bound, but without the factor 1/ on the left-hand side. Let #J = 3 and recall
that

te = (5.14)

F(Sa (7'(3)’ ']) = Sj,E(S)T(ajUa]é)ajg)(s)) .] = #'] =3

according to (2.17). We first consider the (easy) case where |J|; > #J = 3 and thus |J|; = 5
because |J|; is an odd integer. In this case, (2.6)) implies

[ #1s. 39070

ds
Ll

t
1 N o~ A
I = gf“T(ujl’ujzvuj3)(s)
0 0
3

t
Cr ~
< [T ) as
0

i=1
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Cr [+

.

= [T as
0 i=1

%.()]r) ds

L3
_ CT€‘J'1’4JH (51,%‘
0 i=1

¢
3
< CT&tJHaji (s) ds,
b =1

which is an estimate of the form (5.11)) with C, = 0. In the last step, we have used that |J|; —4 > 1
and e'7Vil|z;, (s)| L1 < aj,(s) by definition (5.8).
Now let |J|; = #J = 3, which is only true for J = (1,1,1). Since

F(s,0®,(1,1,1)) = S3..(s)T (1, i, 1) (),

we have to show that
t

[ Ssctorr G an e oo,

0

t
<C, +Ce f a3(s) ds. (5.15)
0

At this point, it seems that the inequality , which we have shown in steps 4—6 of the proof
of Theorem readily implies with C' = 0. This is not quite true, because refers to
the case m = 1, not m = 3, and we have pointed out at the beginning of this section that w; is
not the same function in these two cases. But the parts (i) and (ii) of Lemma ensure that for
m = 3 the function @, has still all the properties which were used to prove and this allows
us to use that proof verbatim. |

Before we proceed, we have to extend Corollary [5.4] to a stronger norm as in Section [3] The
following result is the counterpart of Proposition [3.4] in the case m = 3.

Proposition 5.5 Suppose that the assumptions of Pmposition hold, and that in addition (2.9))
is true with o = 3. Then, the bounds

sup | D P (1) 11 sup D, Ptz (t)|pr < Ce,
te[0,t, /€] te[0,t, /e]

sup [ D,as(t)|pr = sup [Dyza(t)|rr < Ce?
te[0,t4 /€] te[0,t4/e]

hold with a constant independent of € € (0, 1].
Proof. Using the higher regularity and in particular (5.4]), the bound

sup  [|DZP@)||.<C  forallee (0,1],pe{l,...,d}.
te[0,t./e]

can be shown with standard techniques. Then, the assertion follows from the definition (5.5). ™
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5.2 Improved error bound for m = 3

For the error analysis of %(®) we need a second non-resonance condition similar to Assumption

Assumption 5.6 (Non-resonance condition) The matriz £5(0) = L(5w, 5k) is reqular and has
no common eigenvalues with L3(0) = L(3w, 3k), i.e. As;(0) # A3¢(0) for all i,£=1,...,n

We are now in a position to formulate and prove our second main result.

Theorem 5.7 (Error bound for m = 3) Let p have the form (2.9)) with o = 3 and let u be the
solution of (1.1). Let 4B be the approzimation defined in (1.6) with m = 3. Under Assump-

tions (2.3, [{1, and[5.6 there is a constant such that

sup Ju(t) — 7@ (1) |w < C&*, (5.16)
te[0,t, /]

sup  Ju(t) — a® (t)||p» < Ce. (5.17)
te[0,t4 /¢]

Proof. We use the proofs of Theorem 4.2 in [5] and of Theorem in the present paper as a
blueprint and focus on what has to be changed. In [5, proof of Theorem 4.2] we have shown that

the Fourier transform 0 of § = u — @ is the solution of

0:0(t, k) = —(1A(k) + LE)3(t, k) + eG (Fu, Fa®) (¢, k) + R(t, k)
with

G(Fu, Fa®) = T(Fu, Fu, Fu) - T (Fa, Fi®, m@)) :

Rit.ky=e > > Ty, g, d,)(t k — L)e T,
|7l€{5,7,9} #J=3

and with 7 defined by (2.5). Our main task is to prove that

t

sup Jexp ((s—t)(1A(¢) + %E))ﬁ(s) ds| <cCé* (5.18)

te[0,t4 /<]

uniformly in € € (0, 1]. If (5.18]) holds, then the estimate ([5.16]) can be shown by applying Duhamel’s
formula as in the proof of Theorem and (5.17) follows from the embedding W «— L®.
In [5, proof of Theorem 4.2], we have already derived the inequality

) ZHJ (5,090 ds]

71€{5,7,9} #J=J

ot 00+ 18
0

—¢ 2 Z HJSJE ujl,ah,ﬁjs)(s) ds

71€{5,7,9} #J=J

Lt

In order to prove (5.18), we thus have to show that

< Cé? (5.19)

3 2 USN T ()., 05, 03,)(s) ds

|7l€{5,7,9} #J=3j

L1

with a constant C' which does not depend on € nor on ¢ € [0, ¢, /¢].
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As before, we consider several cases. First, suppose that |j| € {7,9}. If J = (j1, jo, j3) € (T®))3
with #J = j, then at least two of the three entries must have a modulus of 3, such that with
Corollary [5.4] we even obtain the bound

t n~ Ao~
) <= sup HT(ujlvujz’ujs)(s)HLl
€ sel0,t,/c]

| [[$5cT (@0080,25) ) 4]
0

< b 1 < 3. 2

e H @, (s) e < Ce (5.20)
If |[j| =5 and #J = j but |J|; > j (e.g. if j =5 and J = (3,—1,3)), we can proceed in the same
way. The difficult case is that |j| = 5 = #J = |J|;. We consider only j = 5 and J = (3,1,1),
because all other such combinations can be treated analogously. Now we cannot use , because
Corollaryyields only Hle |, ()| = |@s(s)| 1] @1(s)|2: < Ce?, which is not enough due to
the factor ¢, /s in (5.20).

Since 11 (t) = Py (t) + PL1(t) and since SUDye[o,t, /c] |PLa(t)] < Ce by Corollary H the

problem boils down to showing the bound

H f Ss.(s)T (i, Potiy, iy ) (s) dsHLl < e (5.21)
0

To prove this, we use similar techniques as in step 5 of the proof of Theorem [£.3] The strategy is
again to identify the oscillatory “parts” of the integrand.
We use the representation

Us(t,k) = S5 (t, k)zs(t, k) 2 exp (— LXz0(ck)) 23e(t, k)se(ek), (5.22)

which follows from (2.11]), . and - With ([2.15), ([2.4), and (2.5), this allows us to
(5.21]

reformulate the integral in

t
[ $5.)7 (@ Pt P} 5)
0

_ _ Jexp(§A5(sk))q/;<(sk) f T (u3(s KDY, Py (s, k@), Potin (s, k(3))) dK ds

(2m)
0 #K=Fk
t
=, Je (2 [As(ek) — Age(ek™)I]) fere(s, K) ds dK
=lyg_1k 0
with
feuls, K) = (Qi)d *(ek)T <23,(sk Nepse(ck® ),Psﬁl(s,k(z)),ﬂﬁl(s,k(?’))), 4K = k.

The left-hand side of (5.21]) can thus be bounded by

| J S5, ()T (B, Pl Py ) (s) ds| |

‘ Jexp (2[As(ehk) = Ase(ek@)1]) fes(s, K) ds| dK . (5.23)
0
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After setting
Ag(0,0) = As(0) — A3e(0NI  for 0,00 e R, (5.24)

9575(57 K) = exp (f[Ag(Ek,gk(l)) — Ag(0,0)]) f57@(S,K),

the inner integral reads

t

’fexp As(ek) Agz(&k(l))I])fg’[(S,K) ds‘2 = )Jexp <I:Ag(070)> 9eu(s, K) ds 5
0

By Assumption the diagonal matrix A(0,0) = A5(0) — A3¢(0)] is regular such that we can
integrate by parts and obtain

t
is
’ J-eXp (eAé(Ov 0)) 9875(57 K) ds‘z < CE('QE,f(ta K)|2 + |g8,€(05 K)|2)
0

t

+ Ce' Jexp (fAA0,0)) 0rge.0(s, K) dsL. (5.25)
0

The term Ce(|g¢(t, K)|2 +]9gc,¢(0, K)|2) on the right-hand side leads to a contribution of O(£?) in

(5.23)), because

n
Z gsétK|2—Z|faz8K)|
=1 =1

an ’ (z3e s, k(1 )¢3l(5k(1))7paa1(57k(Q)),Pgal(s7k(3))> ‘
=1

2

Clza(s, kM) Peiiy (5, K)o Peiia (5, K@) 2
by Corollary For the other term on the right-hand side of (5.25), the product rule gives

t
Ca] Jexp (fm(o,@) 019e (s, K) ds‘z
0
¢ . .
< Ca‘ fexp (ng(0,0)) é[Ag(€k78k(l)) — A¢(0,0)]ge,o(s, K) ds‘2
0
¢ . .
+ Ca‘ fexp <1;Ag(0,0)) exp (j[Az(Ek,Ek(l)) - A4(070)]> Orfer(s, K) ds‘2
0
< Ca‘ J‘é[Ag(E]@Ek(l)) — £y(0,0)] exp (l:Ag(Ek,sk:(l))) feu(s, K) ds‘2 (5.26a)

t
+ CE‘ fexp <1;Ag(€k‘, ak(l))> Orfen(s, K) ds)Q. (5.26b)
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The Lipschitz continuity (2.12)) of the eigenvalues yields

’Ag(&kﬁk“ ) — A¢(0,0) ‘ ’A5 —A5(0 ‘ ‘)\35 5k( )) - )‘SK(O)|
< Ce(lkh + kM),

and together with Corollary it can be shown that (5.26a)) causes a contribution of O(e?) in

(15.23)).
Unfortunately, the term (5.26b)) requires a bit more efforts. By definition of f. ,, we formally
have
1 ~ ~
atfs,f(sv K) = (27T)d 5 (Ek‘) [T (atz?)@(& k(l))w?)f(gk(l))a Pf:‘ul(sv k(2))a Paul(sv k(S)))

T (z?,@(s, KO )hsg (ekD)Y, 0, P01 (5, kD), Pt (s, k(3)))

T (s, KO )k D), Pus (5, K2), 80P (5,5 |

B (2i)ﬂ§ (k)T (Puze(s, KO )oge (2R M), P (5, k), Pia (s, k) ) + O(e?)

because d; P is uniformly bounded by (5.1) and z3¢(s, k) = O(e?) due to Corollary Proving

the desired bound for the O (g?)-part of 0, f- ¢(s, K) in (5.26D) is straightforward because in (5.26b])
the factor e compensates the integral. The difficulty is that dyzs3e(s, k(l)) is not 0(82) in general.

We can only infer from , and Corollary that
a1&233 =£ Z 536 ujwajzvaj?,)(t)
= 65375 (t)T(’l’l\,l, Uy, ﬂl) (t) +0 (83)
= ESS,E(t)T(Paala Pealv PEal)(t) + 0(52) :

The ¢-th entry of the dominating part of d;z3(t, k(")) is thus

e Soc KO (Pat, Py, Pt (1K)

- E[exp (£ Ag (kM) WE (kM) T (P.iiy, Potin, Potin ) (¢, k<1>)]
= cexp (i;t)\gg(sk(l)))l/)g"e(ek(l))T(PE@l, Py, Py ) (t, kW)
= coxp (Lage(ek™)) e (1, kM)

14

with the abbreviation
be(t, k) = ¢, (k)T (Pain, Petin, Potin) (¢, k™V).
All in all, it follows that
Oufou(s, K) = cexp (23 (ck™M)) @ (s, K) + O(£?) (5.27)
with

O .(s,K) =

(zi)dqj;:(gk) <¢5(s k( ))wSZ(Ek ) Pe U1(S k 2)) P- ul(s k(3))>
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Substituting the right-hand side of (5.27)) into (|5.26b|) yields

t
Ce‘ JeXp (ng(sk,ek(l))> Oufer(s, K) ds]2

0
exp <1§Ag(ek,ek(1))> exp (2 A30(ek™)) D (s, K) ds‘2 +0(e%)

wp<fmgm)@4&KyuL+o@%

because by definition Ay(ek,ek™) = As(ck) — A3¢(ek™M)I; see (5.24). In order to show uniform
boundedness of

)
2

)jmp<f&¢k0@4&K)®L—‘jmp(ng@)mp(fpg@m-qgwﬂ)¢4&K)¢

we can use integration by parts again, because A5(0) is regular by Assumption and the time
derivative of exp (2[A5(ck) — A5(0)]) ®-(s, K) is uniformly bounded. This completes the proof of
Theorem [E.71 [ |

5.3 Numerical experiment and discussion

We have repeated the numerical experiment described in Section with m = 3 instead of m =1,
and with ¢, = t.,qa = 1. Figure 2] shows that in this example the numerical counterpart of the
eITOT SUPye(o 1, /e] [u(t) — ) (t)] 1= scales like e, which is better than what the error bound
in Theorem @ predicts. We believe, however, that this advantageous error behavior cannot be

| HHH‘M

1074

107°

1076

1077 —e—error of 43

!

FTTTTT

108
1072 1071
g

Figure 2: Accuracy of % for different values of e. Parameters, data and
discretizations are the same as in the numerical experiment described in

Section 4.2

expected in general, and we briefly sketch the reasons.
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If we want to improve (5.17) in such a way that 2 is replaced by &%, then instead of (5.19)) we
have to prove that

t

Z Hij’5<S)T(ajl’ajwajs)(s) ds‘

li1e{5,7,9} #J=7 §

. < Ce3.
L

As before, the critical indices are those where |j| = 5 = #J = |J|;, and we consider again j = 5
and J = (3,1,1) as an example. Now instead of (5.21]), we have to show that

t
H J 52T (B, P, Potia) (5) ds| | < €& (5.280)
0
t
and | f 5.0 (9)T (@5, Putia, Putia) (5) ds| | < <" (5.28D)
0

We will now explain why the first inequality cannot be true in general. Since U3 = O(e?)
and P, = O(e) by Corollary the integrand is formally O(e?), but since ¢ € [0, fena /2] we
need one more factor of € to compensate the long integration interval. By and the
integral in reads

t
J 5576(3)7-(@3, Psl’al, 'Psﬁl) (s) ds

0

t

1 .

- (27)d Jexp (12As5(ck)) U5 (k) J T (ﬁg(s,k(l)),Pjﬁl(s,k(2)),736a1(3,k(3))) dK ds.
0

H#K =k

After substituting (4.18)), (5.22), and P.11 (s, k) = 1/)11(516(3))e_i‘g)‘“(Ek(S))/gzu(s, ek®)) we obtain

with a smooth function f. ¢, ¢,. (Details do not matter at this point.) In order to generate an ¢ via
integration by parts, we need that the diagonal matrix

A5(0) — ()\341 (0) + /\152 (0) + )\11(0))1
is regular. Since A\11(0) = 0, this is equivalent to the condition
)\52(0) — )\3@1 (0) — )\122 (0) :+= 0 for all é, 61762 € {]., ey n}, 62 :+= 1. (529)

This is a non-resonance condition similar to what we have assumed in Assumptions and
but now with three terms. In contrast to those assumptions, however, is mot true in case of
the Klein—Gordon system with d > 1, nor for the Maxwell-Lorentz system, as we will show now.
In these applications, the eigenvalues we(5) of £(0,3) = A(S) — iE have the following properties:

(P1) The largest eigenvalue wq () is related to the smallest eigenvalue w, (8) by wy(8) = —w1(8).
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(P2) L(0,5) has at least one vanishing eigenvalue, i.e. there is an index ¢, with 1 £ ¢, + n and
we, (B8) = 0 for all 3.

Recall that w = w(k) is an eigenvalue of £(0,x) = A(k) —iE (cf. (1.4)), and suppose that we have
chosen w = wy (k). By definition, the eigenvalues of

L£;(0) = L(jw, jr) = —jwl + L(0, jr)
are A\;jo(0) = —jw + we(jk). If we choose £ = ¢ = ¢, and £ = n in (5.29), then we obtain

e, (0) = Aze, (0) = A1n(0) = (—5w + we, (5%)) — (—3w + we, (35)) — (—w + w (k)
= 5w+ 0+3w—0+w—(—wi (k)
= —Ww +W1(/‘i) = Oa

which shows that the non-resonance condition is not true. This is only one counterexample
among many others. The corresponding non-oscillatory terms in the integrand cause contributions
of O(t53 , which eventually leads to a contribution of (9(52) instead of O(e?) on the left-hand
side of h Similar resonance problems appear also in the integral in “, such that this
inequality cannot be true for the applications mentioned above.

A noteworthy exception is the Klein-Gordon system in one space dimension (d = 1, n =
2), which we have used in our numerical experiments. Here, the two eigenvalues of the matrix
L£(0,5) = A(rk) —iE € C¥*% are w = wi(k) = /K2 +72 and wa(k) = —wy(k), as we have
mentioned in Section These eigenvalues have property (P1), but not property (P2), such that
the counterexample does not apply. We conjecture that in this special case, one could indeed prove
that even holds with £ instead of €3 on the right-hand side, which is the behavior observed
in Figure [2|

This discussion raises the question if the convergence behavior predicted by Theorem [5.7] could
be observed in a numerical example with a two-dimensional Klein—-Gordon equation, because then
the eigenvalues have also the property (P2). The problem is that in order to test the accuracy of the
approximation u ~ %(®, the PDEs and have to be solved numerically with such a high
precision that the numerical error is negligible compared to the analytical error. But approximating
u with sufficiently high precision by applying a standard method to was already hopeless in
one space dimension (cf. Section , and computing a reference solution via and with
m = 5 was already extremely expensive in the one-dimensional case, because the functions u; still
oscillate in time. For these reasons, we were not able to produce a reliable numerical example in
two space dimensions.

The approach to approximate the solution u of via and has the advantage that
the coefficient functions u; do not oscillate in space. This gives us the possibility to use a space
discretization where the number of grid points depends only on the regularity of u;(t,-), but not on
1/e. To realize the full potential of this approach, however, it is important to develop tailor-made
time integrators for , which use non-standard techniques to handle the oscillations in time,
and which are far more efficient than traditional schemes such as the splitting method used in our
numerical examples. In a joint work with Johanna Modl (KIT), the second author has recently
constructed and analyzed such a tailor-made time integrator. This result will be reported elsewhere.
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