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Abstract

We study scattering of time-harmonic plane waves by compactly supported inhomoge-
neous objects in a homogeneous background medium. The far field operator associated to
a fixed scatterer describes multi-static remote observations of scattered fields corresponding
to arbitrary superpositions of plane wave incident fields at a single frequency. In this work
we consider far field operators for systems of two well-separated scattering objects, and we
discuss the nonlinear inverse problem to recover the far field operators associated to each
of these two scatterers individually. This is closely related to the question whether the two
components of the scatterer can be distinguished by means of inverse medium scattering
in a stable way. We also study the restoration of missing or inaccurate components of an
observed far field operator and comment on the benefits of far field operator splitting in this
context. Both problems are ill-posed without further assumptions, but we give sufficient
conditions on the diameter of the supports of the scatterers, the distance between them,
and the size of the missing or corrupted data component to guarantee stable recovery when-
ever sufficient a priori information on the location of the unknown scatterers is available. We
provide algorithms, error estimates, a stability analysis, and we demonstrate our theoretical
predictions by numerical examples.

Mathematics subject classifications (MSC2010): 35R30 (65N21)
Keywords: Inverse medium scattering, Helmholtz equation, far field operator splitting, data completion
Short title: Far field operator splitting and completion

1 Introduction

The inverse medium scattering problem (see, e.g., [14, p. 439]) is to determine the shape and
the refractive index of a compactly supported inhomogeneous object from a knowledge of the
far field patterns of scattered waves corresponding to plane wave incident fields for all possible
incident and observation directions on the unit sphere. These input data can be described by
the far field operator, which maps densities of superpositions of plane wave incident fields to the
far field patterns of the corresponding scattered fields. The far field operator can be viewed as
an idealized measurement operator for the inverse medium scattering problem, and accordingly
it plays a central role in several reconstruction methods (see, e.g., [1, 11, 12, 15, 26, 35] and the
monographs [9, 10, 14, 38]). In this work we do not investigate the inverse scattering problem
itself, but we focus on two inverse problems for the far field operator that are of immediate
relevance to inverse medium scattering. We restrict the discussion to the two-dimensional case
and consider scatterers that consist of two well-separated components. Assuming that a possibly

∗Institut für Angewandte und Numerische Mathematik, Karlsruher Institut für Technologie, Englerstr. 2,
76131 Karlsruhe, Germany (roland.griesmaier@kit.edu, lisa.schaetzle@kit.edu).

1



noisy and incomplete version of the associated far field operator is available, we consider the
following two questions:

(a) Is it possible to reconstruct the far field operators associated to the two components of
the scatterer individually, if we have some a priori information on the location of these
components?

(b) Can we recover missing components of the far field operator and filter possible data errors,
and why can far field operator splitting be useful in this context?

Regarding problem (a), the uniqueness of solutions to the inverse medium scattering problem
(see [8, 42, 44, 46]) tells us that the shape and the refractive index of the scattering object are
uniquely determined by the far field operator. Accordingly, having some a priori information
about the location of the two components of the scattering object, one could first reconstruct
the scatterer, then split it into its two components, and finally calculate the far field operators
corresponding to these two components to solve problem (a). However, solving the inverse
medium scattering problem is time-consuming and severely ill-posed, and we will show that it is
actually not required to solve problem (a). Similarly, it is well-known that the far field pattern
depends analytically on both the incident and the observation direction (see, e.g., [14, 27]). Thus
recovering missing components of the far field operator in problem (b) is usually possible, if the
available data patch is not too small, but also severely ill-posed without further assumptions.

For both questions we will assume that we have access to an estimate of the location and
possibly the size of the (two components of) the unknown scatterer, and our goal is to solve
the inverse problems (a) and (b) without solving the inverse medium scattering problem itself.
The a priori information on the location of the (two components of the) scatterer is used to
develop sparse decompositions of the associated far field operators with respect to suitably
modulated Fourier representations of the Hilbert Schmidt kernels of these operators. These
sparse representations are the foundation of our reconstruction methods. Apart from that the
main theoretical contributions of this work are error estimates and a rigorous stability analysis
for our reconstruction algorithms. These results build on previous investigations of far field
splitting and data completion for the inverse source problem in [25, 28, 29, 30, 31]. There are
two main differences distinguishing the inverse source problem considered in these works and
the inverse medium scattering problem considered here. The first difference is that, while for
the inverse source problem one has access to just one far field pattern radiated by the unknown
source, infinitely many but correlated far field patterns corresponding to plane wave incident
fields for all possible incident directions are available for the inverse medium scattering problem.
We will show that, by working with whole far field operators instead of individual far field
patterns, correlations in this data set beyond simple reciprocity relations can be used to obtain
better stability estimates for reconstruction methods for problems (a) and (b) for the inverse
medium scattering problem, when compared to the corresponding stability estimates for the
inverse source problem in [25, 29]. The second difference is that the far field splitting problem
for inverse source problems is linear, while the far field operator splitting problem for the inverse
medium scattering problem is nonlinear due to multiple scattering effects. To untangle multiple
scattering we decompose far field operators corresponding to systems of two scatterers using
the Born series and consider sparse representations of the various parts in this decomposition.
These can then be distinguished by our splitting algorithm.

The (inverse) Born series has recently also been used directly in reconstruction methods for
the inverse medium scattering problem in [17, 33, 34]. In [6] (see also [21, 22]) the authors apply
a reduced order model to transform scattering data for a time-dependent scattering problem
including multiple scattering effects to observations expected in the Born approximation, i.e.,
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multiple scattering effects are removed. Both approaches are not directly related to the results in
this work. We also note that alternate methods for far field splitting for inverse source problems
have been proposed in [5, 45], and that splitting problems for time-dependent waves have more
recently been considered in [3, 24, 32]. Data completion for far field operators as in problem (b)
has recently also been discussed in [20, 41] (see also [2, 7] for related results for the Cauchy
problem for the Helmholtz equation). In contrast to our work, these authors do not use sparse
representations of far field patterns or far field operators with respect to modulated Fourier bases
to stabilize their algorithms, which so far also lack a rigorous stability analysis.

Being able to split and complete far field operators has important implications for the inverse
medium scattering problem. If one can stably split the far field operator corresponding to a
system of two scatterers, then these scatterers can also be distinguished in the reconstruction,
which tells something about resolution in the presence of noise. On the other hand incomplete
data sets are common in applications, while reconstruction methods usually work more stably
for complete data sets. Being able to reliably restore the full far field operator helps to reduce
the effect of this additional source of ill-posedness.

The outline of this paper is as follows. After providing some theoretical background on
inverse medium scattering, we develop sparse representations of far field operators based on the
Born series and modulated Fourier expansions in Section 2. In Section 3 we pursue far field
operator splitting, first using the Born approximation and neglecting multiple scattering, and
later including multiple scattering effects. Far field operator completion is the topic of Section 4.
In Section 5 we provide numerical examples to illustrate our theoretical findings, and we close
with some concluding remarks.

2 Inhomogeneous medium scattering

We consider scattering of time-harmonic acoustic waves by compactly supported penetrable
scattering objects in the plane. Let D ⊆ R2 be bounded such that the boundary ∂D of D is of
Lipschitz class. Suppose that n2 = 1+q represents the index of refraction, where the real-valued
contrast function q ∈ L∞(D) satisfies q > −1 in D and is extended by q = 0 outside D.

Let k > 0 be the wave number, and let

ui(x; d) := eikx·d , x ∈ R2 , (2.1a)

be an incident plane wave with illumination direction d ∈ S1. The scattering problem is then
to determine the total field uq ∈ H1

loc(R2) with

∆uq + k2n2uq = 0 in R2 , (2.1b)

such that the scattered field usq = uq − ui satisfies the Sommerfeld radiation condition

lim
r→∞

√
r
(∂usq
∂r

(x; d)− ikusq(x; d)
)

= 0 , r = |x| , (2.1c)

uniformly with respect to all directions x/|x| ∈ S1. As for the incident field, we indicate the
dependence of the total and scattered fields on the incident direction by a second argument.

Remark 2.1. The Helmholtz equation (2.1b) has to be understood in the weak sense, i.e., uq ∈
H1

loc(R2) is a solution if and only if∫
R2

(∇uq · ∇v − k2n2uqv) dx = 0 for all v ∈ H1
0 (R2) .
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Standard regularity results yield smoothness of uq and usq in R2 \ BR(0), where BR(0) is a
sufficiently large ball containing the scatterer D. In particular, the Sommerfeld radiation con-
dition (2.1c) is well defined. ♦

The scattering problem (2.1) has a unique solution uq ∈ H1
loc(R2) (see, e.g., [37, Thm. 7.13]).

This solution satisfies the Lippmann-Schwinger integral equation

uq(x; d) = ui(x; d) + k2

∫
R2

q(y)Φk(x− y)uq(y; d) dy , x ∈ D , (2.2)

where Φk denotes the fundamental solution to the Helmholtz equation (cf., e.g., [37, Thm. 7.12]).
In fact, this integral equation is uniquely solvable in L2(D), and its solution can be extended
by the right hand side of (2.2) to a solution uq ∈ H1

loc(R2) of the scattering problem (2.1) (see,
e.g., [37, Thm. 7.12]).

The scattered field satisfies the far field expansion

usq(x; d) =
eiπ/4

√
8π

eik|x|√
k|x|

u∞q (x̂; d) +O
(
|x|−

3
2
)
, |x| → ∞ ,

uniformly in all directions x̂ := x/|x| ∈ S1. The far field pattern u∞q ∈ L2(S1) is given by

u∞q (x̂; d) = k2

∫
D
q(y)uq(y; d)e−ikx̂·y dy , x̂ ∈ S1 ,

(see, e.g., [37, Thm. 7.15]). It satisfies the reciprocity relation

u∞q (x̂; d) = u∞q (−d;−x̂) , x̂, d ∈ S1 , (2.3)

(see [14, Thm. 8.8]). The far field patterns u∞q (x̂; d) for all x̂, d ∈ S1 define our object of interest,
the far field operator

Fq : L2(S1)→ L2(S1) ,
(
Fqg
)
(x̂) :=

∫
S1

u∞q (x̂; d)g(d) ds(d), (2.4)

which maps densities of arbitrary superpositions of incident plane waves to the far field patterns
of the corresponding scattered fields. The far field operator is compact and normal (see, e.g.,
[37, Thm. 7.20]), and it is a trace class operator (see [13]). In particular, Fq ∈ HS(L2(S1)),
where HS(L2(S1)) denotes the space of Hilbert-Schmidt operators from L2(S1) to L2(S1).

2.1 Two inverse problems

In this work we are interested in the following two inverse problems.

(a) Far field operator splitting: Suppose that D = D1 ∪ D2 for some well-separated
bounded Lipschitz domains D1, D2 ⊆ R2, i.e., we assume that there exist balls BRj (cj),
j = 1, 2, with Dj ⊆ BRj (cj) and |c1 − c2| > R1 + R2. Accordingly, let q1 := q|D1 and
q2 := q|D2 denote the contrast functions of the two components of the scatterer. The
goal of far field operator splitting is then to recover the far field operators Fq1 and Fq2
corresponding to the two components of the scatterer from Fq. Since q = q1 + q2 is
uniquely determined by Fq (see [8, 42, 44, 46]), this inverse problem is uniquely solvable,
whenever sufficient a priori information on the locations of the scatterers D1 and D2 is
available to determine q1 and q2 from q. In this work we will assume that balls BR1(c1) and
BR2(c2) as above containing the scatterers are known a priori, and we use this information
to develop a stability estimate and a reconstruction algorithm.
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(b) Far field operator completion: Suppose that the far field pattern u∞q (x̂; d) cannot be
observed for all incident directions d ∈ S1 and for all observation directions x̂ ∈ S1 but
only observations of u∞q (x̂; d) for (x̂, d) ∈ (S1×S1)\Ω for some Ω ⊆ S1×S1 are available.
Accordingly, we define the restricted far field operator

Fq|S1×S1\Ω : L2(S1)→ L2(S1) ,(
Fq|S1×S1\Ωg

)
(x̂) :=

∫
S1

χ(S1×S1)\Ω(x̂, d)u∞q (x̂; d)g(d) ds(d) , (2.5)

The goal of far field operator completion is then to recover Fq from Fq|S1×S1\Ω. Since the
far field pattern is a real analytic function on S1 × S1 (see, e.g., [14, 27]), this inverse
problem has a unique solution as long as (S1 × S1) \ Ω has an interior point. We will
assume that a ball BR(c) with D ⊆ BR(c) is known a priori, and we use this information
to develop a stability estimate and a reconstruction algorithm.

2.2 Far field translation

Translating the scatterer by c ∈ R2 changes the incident field at the location of the scatterer
and thus also the scattered field as well as its far field pattern. To formalize this, we consider
the shifted contrast function

qc(x) := q(x+ c) , x ∈ R2 . (2.6)

We still consider an incident plane wave with illumination direction d ∈ S1. Then, the Lippmann-
Schwinger equation (2.2) for the associated solution uqc ∈ H1

loc(R2) of the scattering prob-
lem (2.1) with q replaced by qc reads

uqc(x− c; d) = e−ikc·dui(x; d) + k2

∫
R2

q(y)Φk(x− y)uqc(y − c; d) dy , x ∈ D .

Accordingly,
uqc(x; d) = e−ikc·duq(x+ c; d) , x ∈ R2 ,

the associated scattered field satisfies

usqc(x; d) = e−ikc·dusq(x+ c; d) , x ∈ R2 ,

and its far field pattern is given by

u∞qc (x̂; d) = k2

∫
R2

qc(y)uqc(y; d)e−ikx̂·y dy = e−ikc·(d−x̂)u∞q (x̂; d) , x̂ ∈ S1 .

For the corresponding far field operator this means that

(Fqcg)(x̂) = k2

∫
S1

g(d)u∞qc (x̂; d) ds(d) = eikc·x̂
∫
S1

e−ikc·dg(d)u∞q (x̂; d) ds(d) , x̂ ∈ S1 .

Introducing the linear operators

Tc : L2(S1)→ L2(S1) , (Tcg)(x̂) := eikc·x̂g(x̂) , (2.7)

and
Tc : HS(L2(S1))→ HS(L2(S1)) , TcG := Tc ◦G ◦ T−c , (2.8)

we find that Fqc = TcFq. We call Tc and Tc far field translation operators.
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Lemma 2.2. Let c ∈ R2. The operator Tc ∈ L(HS(L2(S1))) is unitary with T ∗c = T−c.

Proof. We note that the adjoint of Tc from (2.7) is given by T ∗c = T−c. Therewith, the defini-
tion (2.8) implies that, for any G,H ∈ HS(L2(S1)),

〈TcG,H〉HS = tr
(
(TcGT−c)

∗H
)

= tr
(
T−cHTcG

∗) = tr
(
G∗T−cHTc

)
= 〈G, T−cH〉HS .

This shows that T ∗c = T−c, which is the same as T −1
c .

2.3 The Born series

For any d ∈ S1 the Lippmann-Schwinger equation (2.2) can be understood as a fixpoint equation

u( · ; d) = ui( · ; d) + Lq,ku( · ; d) in D

for the total field u( · ; d), where the linear operator Lq,k : L2(D)→ L2(D) is defined by

(Lq,kf) (x) := k2

∫
D
q(y)f(y)Φk(x− y) dy , x ∈ D . (2.9)

If the operator norm ‖Lq,k‖L2(D)→L2(D) is strictly less than one, then the solution to (2.2) can
be written as

uq( · ; d) = ui( · ; d) +
∞∑
l=1

Llq,ku
i( · ; d) in D . (2.10)

This series is often called the Born series. It converges in L2(D) and uniformly with respect to
the incident direction d ∈ S1. Sufficient conditions on k and q for this to hold have, e.g., been
discussed in [33, 36, 43, 49]. For instance, (2.9) immediately implies that

‖Lq,kf‖2L2(D) =

∫
D

∣∣∣k2

∫
D
q(y)f(y)Φk(x− y) dy

∣∣∣2 dx

≤ k4‖f‖2L2(D)

∫
D

∫
D

∣∣q(y)Φk(x− y)
∣∣2 dy dx

for all f ∈ L2(D), i.e.,

‖Lq,k‖2L2(D)→L2(D) ≤ k4

∫
D

∫
D

∣∣q(y)Φk(x− y)
∣∣2 dy dx = ‖Lq,k‖2HS (2.11)

(see [47, Thm. VI.23]). The asymptotic behavior of the fundamental solution Φk(x − y) as
|x− y| → 0 shows that the right hand side in (2.11) is finite. In particular, Lq,k is a Hilbert-
Schmidt operator, and the Born series converges when ‖Lq,k‖HS < 1, which we assume hence-
forth.

The Born series describes the different levels of multiple scattering of the incident wave
ui( · ; d) at the scatterer. Accordingly, we denote the lth summand of the Born series by

us,(l)q,...,q( · ; d) := Llq,ku
i( · ; d)

= k2l

∫
D
· · ·
∫
D
q(yl) · · · q(y1)eiky1·dΦk( · − yl)Φk(yl − yl−1) · · ·Φk(y2 − y1) dy1 · · · dyl ,

and refer to it as the scattered field component associated to scattering processes of order l ≥ 1
on q.
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Substituting (2.10) into (2.2) and extending the right hand side to all of R2, we find that
the far field pattern of usq( · ; d) satisfies

u∞q (x̂; d) = k2
∞∑
l=1

∫
D
q(y)e−ikx̂·y(Ll−1

q,k u
i( · ; d)

)
(y) dy , x̂ ∈ S1 . (2.12)

This series converges in L2(S1) and uniformly with respect to d ∈ S1. We write

u∞,(l)q,...,q(x̂; d) := k2l

∫
D
· · ·
∫
D
q(yl) · · · q(y1)Φk(yl − yl−1) · · ·Φk(y2 − y1)

eik(d·y1−x̂·yl) dy1 · · · dyl , x̂ ∈ S1 , (2.13)

for the lth summand in (2.12) associated to scattering processes of order l ≥ 1 on q. Then,

u∞q (x̂; d) =
∞∑
l=1

u∞,(l)q,...,q(x̂; d) , x̂ ∈ S1 , (2.14)

and we define the Born far field of order p ≥ 1 as the pth partial sum in (2.14), i.e., by

u∞,(pB)
q (x̂; d) :=

p∑
l=1

u∞,(l)q,...,q(x̂; d) , x̂ ∈ S1 .

For later reference, we note that (2.13) implies that each u∞,(l)q,...,q , l ≥ 1, satisfies the reciprocity
relation

u∞,(l)q,...,q(x̂; d) = u∞,(l)q,...,q(−d;−x̂) , x̂, d ∈ S1 . (2.15)

Recalling (2.4) we introduce far field operator components associated to scattering processes
of order l ≥ 1,

F (l)
q,...,q : L2(S1)→ L2(S1) ,

(
F (l)
q,...,qg

)
(x̂) :=

∫
S1

u∞,(l)q,...,q(x̂; d)g(d) ds(d) , (2.16)

and for any p ≥ 1 we define the Born far field operator of order p by

F (pB)
q : L2(S1)→ L2(S1),

(
F (pB)
q g

)
(x̂) :=

∫
S1

u∞,(pB)
q (x̂; d)g(d) ds(d) . (2.17)

Then (2.4) and (2.14) together with the realization of the Hilbert-Schmidt norm of an in-
tegral operator on L2(S1) by the L2-norm of its kernel (see [47, Thm. VI.23]) yields that
Fq =

∑∞
l=1 F

(l)
q,...,q = limp→∞ F

(pB)
q in HS(L2(S1)).

2.4 Sparse approximations of far field operators

Assuming that the support of the scatterer is contained in a ball BR(c) ⊆ R2 for some c ∈ R2

and R > 0, we show next that the components F (l)
q,...,q of the far field operator associated to

scattering processes of order l ≥ 1 in the Born series have sparse approximations with respect
to some suitably modulated Fourier bases.

To begin with, we suppose that D ⊆ BR(0), i.e., we have c = 0. We denote by (en)n :=
(ein arg( · )/

√
2π)n the Fourier basis of L2(S1). Substituting the Jacobi-Anger expansion (see,

e.g., [14, p. 75])

e±ikx̂·y =
∑
n∈Z

(±i)ne−in arg yJn(k|y|)ein arg x̂ , y ∈ R2 , x̂ ∈ S1 , (2.18)
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into (2.13) twice to replace the two plane wave terms shows that the far field component asso-
ciated to scattering processes of order l ≥ 1 satisfies

u∞,(l)q,...,q(x̂; d) =
∑
m∈Z

∑
n∈Z

a(l)
m,n em(x̂)en(d) , x̂, d ∈ S1 ,

with

a(l)
m,n = 2πk2l(−i)m−n

∫
D
· · ·
∫
D
q(yl) · · · q(y1)Φk(yl − yl−1) · · ·Φk(y2 − y1)

e−i(m arg yl−n arg y1)Jm(k|yl|)Jn(k|y1|) dy1 · · · dyl . (2.19)

Since (en)n is a complete orthonormal system in L2(S1), we obtain from (2.16), [47, Thm. VI.23],
and Parseval’s identity that

‖F (l)
q,...,q‖HS = ‖u∞,(l)q,...,q‖L2(S1×S1) = ‖(a(l)

m,n)m,n‖`2×`2 .

Furthermore, applying the Cauchy-Schwarz inequality l times shows that

|a(l)
m,n| ≤ 2πk2‖q‖L∞(D)‖Jm(k| · |)‖L2(D)‖Jn(k| · |)‖L2(D)‖Lq,k‖l−1

HS (2.20)

for all l ≥ 1, and for all m,n ∈ Z. We note that the last term on the right hand side of this
equation already appeared in (2.11) and is assumed to be less than one throughout this work.
Since D ⊆ BR(0), the estimate (2.20) implies that the coefficients (a

(l)
m,n)m,n are essentially

supported in the index range |m|, |n| . kR, and decay superlinearly as a function of m,n ∈ Z
for |m|, |n| & kR. In fact, we obtain from formula (3.8) in [29] that

k‖Jn(k| · |)‖L2(D) ≤ k‖Jn(k| · |)‖L2(BR(0)) = ‖Jn(| · |)‖L2(BkR(0))

≤ b0 n
1
3

(
1 +

1

2n

)n+1
2 kR

n

((kR
n

)2
e1−
(

kR
n

)2)n
2
, if |n| ≥ kR ,

(2.21)

where the constant b0 satisfies b0 ≈ 0.7928. In addition, it has been shown in [29] that

lim
kR→∞

‖JdνkRe(| · |)‖2L2(BkR(0))

2kR
=

{√
1− ν2 if ν ≤ 1 ,

0 else ,
(2.22)

where dνkRe denotes the smallest integer that is greater or equal to νkR. Numerical tests in [29]
confirm that the values ‖Jn(| · |)‖2L2(BkR(0)) approach the asymptote 2

√
(kR)2 − n2 already for

moderate values of kR and decay quickly for n & kR (see also Figure 2.1 below). Choosing
N & kR this means that we may approximate

u∞,(l)q,...,q(x̂; d) ≈
∑
|m|≤N

∑
|n|≤N

a(l)
m,nem(x̂)en(d) , x̂, d ∈ S1 . (2.23)

Substituting (2.23) into (2.16) yields that

(
F (l)
q,...,qg

)
(x̂) ≈

∑
|m|≤N

∑
|n|≤N

a(l)
m,n em(x̂)

∫
S1

g(d)en(d) ds(d) , x̂ ∈ S1 , (2.24)

is a reasonable approximation to the far field operator component associated to scattering pro-
cesses of order l ≥ 1.
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Example 2.3. To further illustrate this sparse approximation, we consider the example q =
χBR(0) for the contrast function, i.e., the refractive index n2 is piecewise constant with values
n2 = 2 in D = BR(0) and n2 = 1 in R2 \ BR(0). Then, the Fourier coefficients (a

(1)
m,n)m,n

from (2.19) with l = 1 satisfy

a(1)
m,n = 2πk2(−i)m−n

∫
BR(0)

e−i(m−n) arg yJm(k|y|)Jn(k|y|) dy

= 2πk2(−i)m−n
∫ R

0
Jm(kr)Jn(kr)r dr

∫ 2π

0
e−i(m−n)ϕ dϕ

=

{
2π‖Jn(| · |)‖2L2(BkR(0)) if n = m,

0 else .

Recalling (2.22), this shows that the cut-off parameter N in (2.24) cannot be chosen smaller
than kR. ♦

We define the finite dimensional subspace VN ⊆ HS(L2(S1)) by

VN :=
{
G ∈ HS(L2(S1))

∣∣∣ Gg =
∑
|m|≤N

∑
|n|≤N

am,n em
〈
g, en

〉
L2(S1)

}
. (2.25)

Still assuming that N & kR, we refer to VN as the subspace of non-evanescent far field operators
associated to scatterers supported in BR(0). Let PN : HS(L2(S1)) → HS(L2(S1)) denote
the orthonormal projection onto VN . Then the approximation error can be estimated using
Parseval’s identity and (2.20) by

‖F (l)
q,...,q − PNF (l)

q,...,q‖2HS =
∑
|m|>N

∑
|n|>N

|a(l)
m,n|2

≤
(

2π‖q‖L∞(D)‖Lq,k‖l−1
HS

∑
|n|>N

‖Jn(| · |)‖2L2(BkR(0))

)2

.

(2.26)

The last term on the right hand side can be further estimated by means of (2.21), or illustrated
by numerical approximation. We note that [18, (10.22.5)] shows that

‖Jn(| · |)‖2L2(BkR(0)) = π(kR)2
(
J2
n(kR)− Jn−1(kR)Jn+1(kR)

)
, n ∈ Z .

In Figure 2.1 we show plots of
∑1000
|n|=N+1 ‖Jn(| · |)‖2L2(BkR(0)) as a function of N ∈ N for kR = 10

(left) and for kR = 100 (right). The exponential decay for N & kR is clearly visible.

Remark 2.4. Recalling (2.14), we find that the Fourier coefficients (am,n)m,n of the full far field
pattern

u∞q (x̂; d) =
∑
m∈Z

∑
n∈Z

am,n em(x̂)en(d) , x̂, d ∈ S1 ,

satisfy am,n =
∑∞

l=1 a
(l)
m,n. The estimates for |a(l)

m,n| in (2.20) and (2.21) show that |am,n| is also
decaying superlinearly for |m|, |n| & kR. Thus also the full far field operator Fq has a sparse
approximation(

Fqg
)
(x̂) ≈

∑
|m|≤N

∑
|n|≤N

am,n em(x̂)

∫
S1

g(d)en(d) ds(d) , x̂ ∈ S1 , (2.27)

with N & kR. ♦
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Figure 2.1: Plots of the factor
∑
|n|>N ‖Jn(| · |)‖2L2(BkR(0)) in (2.26) as a function of N ∈ N for

kR = 10 (left) and for kR = 100 (right)

Remark 2.5. The reciprocity principle (2.15) gives that, for l ≥ 1 and x̂, d ∈ S1,∑
m∈Z

∑
n∈Z

a(l)
m,n em(x̂)en(d) =

∑
m∈Z

∑
n∈Z

a(l)
m,n em(−d)en(−x̂)

=
∑
m∈Z

∑
n∈Z

(−1)m−na
(l)
−n,−m em(x̂)en(d) .

(2.28)

In particular,
a(l)
m,n = (−1)m−na

(l)
−n,−m , m, n ∈ Z . (2.29)

It would be possible to include (2.29) in the definition of the subspace VN to obtain even sparser
representations of non-evanescent far field operators associated to scatterers supported in BR(0).
We will comment on this further in Remarks 3.10 and 3.16 below.

By (2.3) the formula (2.29) is also true for the Fourier coefficients am,n, m,n ∈ Z, of the full
far field pattern u∞q . ♦

If D ⊆ BR(c) for some c ∈ R2 with c 6= 0, then we can use the far field translation operator
Tc from (2.8) to shift the scatterer into the origin. Recalling (2.13), the kernel of the integral
representation of the shifted far field operator TcF (l)

q,...,q is given by

k2l

∫
D
· · ·
∫
D
q(yl) · · · q(y1)Φk(yl − yl−1) · · ·Φk(y2 − y1)eik(d·(y1−c)−x̂·(yl−c)) dy1 · · · dyl ,

which is the same as u∞,(l)qc,...,qc(x̂; d) (see also (2.6)). Now proceeding as in the special case c = 0,
we find that TcF (l)

q,...,q has a sparse approximation

(
TcF (l)

q,...,qg
)
(x̂) ≈

∑
|m|≤N

∑
|n|≤N

a(l)
m,n em

∫
S1

g(d)en(d) ds(d) , x̂ ∈ S1 ,

in VN from (2.25) with N & kR. Applying (2.8), we define the subspace VcN ⊆ HS(L2(S1)) of
non-evanescent far field operators associated to scatterers supported in BR(c) by

VcN :=
{
G ∈ HS(L2(S1))

∣∣∣ Gg =
∑
|m|≤N

∑
|n|≤N

am,n e
ikc·( · )em

〈
g, eikc·( · )en

〉
L2(S1)

}
, (2.30)
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Figure 2.2: Left: Support of scatterer D (solid) and ball BR(c) (dashed) of radius R = 2.2
centered at c = (4, 8) containing D. Right: Absolute values of modulated Fourier coefficients
(am,n)m,n of far field operator Fq at k = 5. Dashed square corresponds to expansion coefficients
used by sparse approximation of Fq in VcN with N = 13.

i.e., VcN = {G ∈ HS(L2(S1)) | TcG ∈ VN}. We call (eikc·( · )en)n a modulated Fourier basis of
L2(S1), and accordingly the coefficients (am,n)m,n in associated expansions as in (2.30) are called
modulated Fourier coefficients. Let PcN : HS(L2(S1)) → HS(L2(S1)) denote the orthonormal
projection onto VcN . Then the error estimate (2.26) carries over, and we obtain that

‖F (l)
q,...,q − PcNF (l)

q,...,q‖HS ≤ 2π‖q‖L∞(D)‖Lq,k‖l−1
HS

∑
|n|>N

‖Jn(| · |)‖2L2(BkR(0)) . (2.31)

The upper bound on the right hand side of (2.31) decays quickly for N & kR (see Figure 2.1).
The same reasoning that led to (2.27) shows that the Born far field operator F pBq of order

p ≥ 1 and also the full far field operator Fq have sparse approximations in VcN .

Example 2.6. We illustrate our findings by a numerical example with contrast function q = 2χD
for a kite-shaped scatterer D as shown in Figure 2.2 (left). For this example we use the wave
number k = 5 and we simulate far field patterns u∞(x̂m; dn) of solutions to the scattering
problem (2.1) for L = 256 observation and incident directions

x̂m, dn ∈ {(cosϕl, sinϕl) ∈ S1 | ϕl = (l − 1)2π/L , l = 1, . . . , L} , 1 ≤ m,n ≤ L , (2.32)

using a Nyström method for a boundary integral formulation of the scattering problem (see [14,
pp. 91–96]). Accordingly, the matrix

Fq =
2π

L
[u∞(x̂m; dn)]1≤m,n≤L ∈ CL×L ,

approximates the far field operator Fq from (2.4).
The scatterer D is contained in the ball BR(c) of radius R = 2.2 centered at c = (4, 8),

which is shown as a dashed circle in Figure 2.2 (left). A two-dimensional fast Fourier transform
of the shifted far field pattern (e−ikc·(dn−x̂m)u∞q (x̂m; dn))m,n ∈ CL×L yields an approximation of
the modulated Fourier coefficients (am,n)m,n of Fq with respect to the modulated Fourier basis
(eikc·( · )en)n of L2(S1). In Figure 2.2 (right) the absolute values of these expansion coefficients
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are plotted for −32 ≤ m,n ≤ 32 in a logarithmic scale. It is nicely confirmed that the Fourier
coefficients are essentially supported in a square [−N,N ]2 with N & kR = 11. The dashed
square in Figure 2.2 (right) corresponds to N = 13. ♦

3 Far field operator splitting

We consider the inverse problem (a) introduced in Section 2.1. Suppose that the scatterer
consists of two well-separated components, i.e., D = D1 ∪ D2 for some D1, D2 ⊆ R2 and
Dj ⊆ BRj (cj), j = 1, 2, with c1, c2 ∈ R2 and R1, R2 > 0 such that |c1 − c2| > R1 + R2.
Let q1 := q|D1 and q2 := q|D2 denote the contrast functions of these two components. Then,
each summand in the Born series (2.14) for the far field pattern can be further decomposed.
Recalling (2.13) we have for l ≥ 1 that

u∞,(l)q,...,q(x̂; d) =
2∑

jl=1

· · ·
2∑

j1=1

u∞,(l)qjl ,...,qj1
(x̂; d) , x̂, d ∈ S1 ,

with

u∞,(l)qjl ,...,qj1
(x̂; d)

:= k2l

∫
Djl

· · ·
∫
Dj1

qjl(yl) · · · qj1(y1)Φk(yl − yl−1) · · ·Φk(y2 − y1)eik(d·y1−x̂·yl) dy1 · · · dyl ,

x̂, d ∈ S1 , j1, . . . , jl ∈ {1, 2} . (3.1)

As indicated by our notation, the term u
∞,(l)
qjl ,...,qj1

describes the component of the far field pattern
associated to the part of the scattered wave that results from l scattering processes starting at
qj1 , followed by qj2 and so forth, until qjl . We note that these far field components satisfy the
reciprocity relation

u∞,(l)qjl ,...,qj1
(x̂; d) = u∞,(l)qj1 ,...,qjl

(−d;−x̂) , x̂, d ∈ S1 . (3.2)

Remark 3.1. Denoting the Fourier coefficients of u∞,(l)qjl ,...,qj1
and u∞,(l)qj1 ,...,qjl

by (a
(l)
m,n)m,n and (b

(l)
m,n)m,n,

respectively, the same calculation as in (2.28), using (3.2) instead of (2.15), shows that

a(l)
m,n = (−1)m−nb

(l)
−n,−m , m, n ∈ Z . (3.3)

♦

We define for l ≥ 1 the far field operator components

F (l)
qjl ,...,qj1

: L2(S1)→ L2(S1) ,
(
F (l)
qjl ,...,qj1

g
)
(x̂) :=

∫
S1

u∞,(l)qjl ,...,qj1
(x̂; d)g(d) ds(d) .

Therewith, we can rewrite the Born far field operator of order p from (2.17) as

F (pB)
q =

p∑
l=1

F (l)
q,...,q =

p∑
l=1

( 2∑
jl=1

· · ·
2∑

j1=1

F (l)
qjl ,...,qj1

)

= F (pB)
q1 + F (pB)

q2 +

( p∑
l=1

∑
(j1,...,jl)∈{1,2}l\({1}l∪{2}l)

F (l)
qjl ,...,qj1

)
.

(3.4)

12



Remark 3.2. In the special case when p = 1 (i.e., Born approximation of order one, neglecting
multiple scattering) the expansion (3.4) reduces to

F (1B)
q = F (1B)

q1 + F (1B)
q2 , (3.5)

while for p = 2 (i.e., Born approximation of order two, including multiple scattering of order
one) we obtain that

F (2B)
q = F (2B)

q1 + F (2B)
q2 +

(
F (2)
q1,q2 + F (2)

q2,q1

)
, (3.6)

and for p = 3 (i.e., Born approximation of order three, including multiple scattering of order
two) the expansion (3.4) reads

F (3B)
q = F (3B)

q1 + F (3B)
q2 +

(
F (2)
q1,q2 + F (2)

q2,q1

+ F (3)
q1,q1,q2 + F (3)

q1,q2,q1 + F (3)
q1,q2,q2 + F (3)

q2,q1,q1 + F (3)
q2,q1,q2 + F (3)

q2,q2,q1

)
. (3.7)

The Born far field operators F (pB)
q , p = 1, 2, 3, on the left hand sides of (3.5)–(3.7) are in-

creasingly accurate approximations of the far field operator Fq corresponding to the system of
two scatterers, while the first two terms F (pB)

q1 and F
(pB)
q2 , p = 1, 2, 3, on the right hand sides

of (3.5)–(3.7) approximate the far field operators Fq1 and Fq2 corresponding to the two indi-
vidual scatterers in D1 and D2 increasingly well. On the other hand, the terms in brackets on
the right hand side of (3.6)–(3.7) approximate multiple scattering effects. The goal of far field
operator splitting is to recover approximations of Fq1 and Fq2 from Fq. To this end we will
split Fq into three components, two corresponding to the first two terms on the right hand side
of (3.4) (or (3.5)–(3.7)), and one corresponding to the terms in brackets on the right hand side
of these equations. ♦

We have already seen at the end of Section 2.4 that the far field operator components F (pB)
q1

and F (pB)
q2 in (3.4) have sparse approximations in the subspaces Vc1N1

and Vc2N2
of non-evanescent

far field operators associated to scatterers supported in BR1(c1) and BR2(c2) with N1 & kR1

and N2 & kR2, respectively. In fact the same reasoning shows that any term on the right hand
side of (3.4) that is of the form F

(l)
q1,qj2 ,...,qjl−1

,q1 or F (l)
q2,qj2 ,...,qjl−1

,q2 , i.e., the first and the last
interaction takes place at the same component of the scatterer, can be well approximated in
Vc1N1

or Vc2N2
, respectively. To obtain sparse approximations of the remaining terms on the right

hand side of (3.4), which are all of the form F
(l)
q1,qj2 ,...,qjl−1

,q2 or F (l)
q2,qj2 ,...,qjl−1

,q1 , we introduce for
M,N ∈ N the finite dimensional subspace VM,N ⊆ HS(L2(S1)) by

VM,N :=
{
G ∈ HS(L2(S1))

∣∣∣ Gg =
∑
|m|≤M

∑
|n|≤N

am,n em
〈
g, en

〉
L2(S1)

}
.

We note that VN,N = VN from (2.25). Furthermore, we define for b, c ∈ R2 the generalized far
field translation operator

Tb,c : HS(L2(S1))→ HS(L2(S1)) , Tb,cG := Tb ◦G ◦ T−c , (3.8)

where Tb and T−c are defined as in (2.7). Then Tc,c = Tc from (2.8).

Lemma 3.3. Let b, c ∈ R2. The operator Tb,c ∈ L(HS(L2(S1))) is unitary with T ∗b,c = T−b,−c.

Proof. For any G,H ∈ HS(L2(S1)) the definitions (3.8) and (2.7) imply that

〈Tb,cG,H〉HS = tr
(
(TbGT−c)

∗H
)

= tr
(
T−bHTcG

∗) = tr
(
G∗T−bHTc

)
= 〈G, T−b,−cH〉HS .

This shows that T ∗b,c = T−b,−c, which is the same as T −1
b,c .
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Substituting the Jacobi-Anger expansion (2.18) for the plane wave terms in (3.1) and proceed-
ing as in Section 2.4, we find that terms of the form Tc1,c2F

(l)
q1,qj2 ,...,qjl−1

,q2 and Tc2,c1F
(l)
q2,qj2 ,...,qjl−1

,q1

have sparse approximations in VN1,N2 and VN2,N1 with N1 & kR1 and N2 & kR2, respectively.
Accordingly, we define

Vb,cM,N :=
{
G ∈ HS(L2(S1))

∣∣∣ Gg =
∑
|m|≤M

∑
|n|≤N

am,ne
ikb·( · )em

〈
g, eikc·( · )en

〉
L2(S1)

, (3.9)

i.e., Vb,cM,N = {G ∈ HS(L2(S1))
∣∣ Tb,cG ∈ VM,N}. We note that Vc,cN,N = VcN from (2.30).

Then, F (l)
q1,qj2 ,...,qjl−1

,q2 and F
(l)
q2,qj2 ,...,qjl−1

,q1 have sparse approximations in Vc1,c2N1,N2
and Vc2,c1N2,N1

with

N1 & kR1 and N2 & kR2, respectively. Denoting by Pb,cM,N : HS(L2(S1)) → HS(L2(S1)) the
orthonormal projection onto Vb,cM,N , the approximation error can be estimated similar to (2.26)
and (2.31). We define Lq,k,Dj ,Dl

: L2(Dj)→ L2(Dl) by

(
Lq,k,Dj ,Dl

f
)

(x) := k2

∫
Dj

q(y)f(y)Φk(x− y) dy , x ∈ Dl .

Then,

‖F (l)
qj1 ,...,qjl

− Pcj1 ,cjlNj1
,Njl

F (l)
qj1 ,...,qjl

‖2HS

≤ 2π‖qjl‖L∞(Djl
)‖Lq,k,Dj1

,Dj2
‖HS · · · ‖Lq,k,Djl−1

,Djl
‖HS

×
( ∑
|n|>Nj1

‖Jn(| · |)‖2L2(BkRj1
(0))

∑
|n|>Njl

‖Jn(| · |)‖2L2(BkRjl
(0))

) 1
2

. (3.10)

Recalling (2.21)–(2.22) and Figure 2.1, the right hand side of (3.10) is small as long as we choose
Nj1 & kRj1 and Njl & kRjl .

Example 3.4. We consider a numerical example with contrast function q = −0.5χD1 + 2χD2

for a kite-shaped scatterer D1 and a nut-shaped scatterer D2 as shown in Figure 3.1 (left).
We choose k = 5 for the wave number and approximate the far field component u∞,(2)

q1,q2 (x̂m; dn)
(cf. (3.1)) for L = 256 observation and incident directions as in (2.32) using trigonometric
interpolation as described in [48, 50].

The scatterers D1 and D2 are contained in balls BR1(c1) and BR2(c2) of radius R1 = 2.2 and
R2 = 1.1 centered at c1 = (4, 8) and c2 = (8, 2), respectively. These are shown as dashed circles
in Figure 3.1 (left). A two-dimensional fast Fourier transform of the shifted far field pattern
(e−ik(c2·dn−c1·x̂m)u

∞,(2)
q1,q2 (x̂m; dn))m,n ∈ CL×L yields an approximation of the Fourier coefficients

(a
(2)
m,n)m,n of Tc1,c2F

∞,(2)
q1,q2 . In Figure 2.2 (right) the absolute values of these expansion coefficients

are plotted for −32 ≤ m,n ≤ 32 in a logarithmic scale. It is nicely confirmed that the Fourier
coefficients are essentially supported in a rectangle [−N1, N1]× [−N2, N2] with N1 & kR1 = 11
and N2 & kR2 = 5.5. The dashed rectangle in Figure 2.2 (right) corresponds to N1 = 13 and
N2 = 7. ♦

We will use the sparse representations of far field operator components ensured by (2.31)
and (3.10) to develop numerical algorithms for the inverse problem (a) introduced in Section 2.1
and to establish corresponding stability estimates. In Section 3.1 we first neglect multiple
scattering and use (3.5) as ansatz for far field operator splitting. This leads to concise stability
estimates that we compare with earlier results from [25, 29]. A more accurate method taking
into account multiple scattering is the subject of Section 3.2.
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Figure 3.1: Left: Supports of kite-shaped scatterer D1 and nut-shaped scatterer D2 (solid) and
balls BR1(c1) and BR2(c2) (dashed) of radius R1 = 2.2 and R2 = 1.1 centered at c1 = (4, 8)
and c2 = (8, 2) containing D1 and D2, respectively. Right: Absolute values of modulated
Fourier coefficients (a

(2)
m,n)m,n of far field operator component F (2)

q1,q2 at k = 5. Dashed rectangle
corresponds to expansion coefficients used by sparse approximation of F (2)

q1,q2 in Vc1,c2N1,N2
with

N1 = 13 and N2 = 7.

3.1 Far field operator splitting in Born approximation of order 1

Given the far field operator Fq associated to the two scattering objects with contrast functions
q1 and q2 as defined at the beginning of Section 3, we seek approximations F̃q1 ∈ V

c1
N1

and
F̃q2 ∈ V

c2
N2

of the far field operators Fq1 and Fq2 , corresponding to the two components of the
scatterer, satisfying the least squares problem

Fq
LS
= F̃q1 + F̃q2 in HS(L2(S1)) , (3.11)

or equivalently,

〈Fq, φ〉HS = 〈F̃q1 , φ〉HS + 〈F̃q2 , φ〉HS for all φ ∈ Vc1N1
⊕ Vc2N2

.

Using the explicit representations of Vc1N1
and Vc2N2

in (2.30) this linear least squares problem
can be solved straightforwardly using, e.g., conjugate gradients (see Section 5 below). In the
following we discuss the conditioning of (3.11). To this end, we derive an upper bound on the
cosine of the angle between Vc1N1

and Vc2N2
, which immediately implies a bound the condition

number of the splitting problem (3.11).1

Remark 3.5. In our stability analysis we will work with several different norms on HS(L2(S1)).
We recall that any Hilbert-Schmidt operator G ∈ HS(L2(S1)) has an integral representation

(Gf)(x̂) =

∫
S1

κG(x̂; d)f(d) ds(d) , x̂ ∈ S1 , (3.12)

for some κG ∈ L2(S1×S1) (see [47, Thm. VI.23]). The kernel κG can be expanded into a Fourier
series

κG(x̂; d) =
∑
m∈Z

∑
n∈Z

am,n em(x̂)en(d) , x̂, d ∈ S1 ,

1The stability analysis presented here and in Section 4 below has been motivated by similar results for the
discrete and continuous one-dimensional Fourier transform in [19].
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and we use the notations

‖G‖Lp := ‖κG‖Lp(S1×S1) and ‖G‖`p×`p := ‖(am,n)m,n‖`p×`p , 1 ≤ p ≤ ∞ .

We also observe that, for any G,H ∈ HS(L2(S1)),

〈G,H〉HS = 〈G,H〉L2 = 〈G,H〉`2×`2 (3.13)

(this can be seen as in the proof of [47, Thm. VI.23] and using Parseval’s identity). Furthermore,
we denote the area of the support of κG in S1×S1 by ‖G‖L0 , and the number of nonzero Fourier
coefficients of κG by ‖G‖`0×`0 . ♦

Lemma 3.6. Let c ∈ R2, c 6= 0, and let Tc : HS(L2(S1)) → HS(L2(S1)) be the far field
translation operator in (2.8). Then, for all 1 ≤ p ≤ ∞,

‖TcG‖Lp = ‖G‖Lp , G ∈ HS(L2(S1)) ∩ Lp(S1 × S1) , (3.14)

and
‖TcG‖`∞×`∞ ≤ (k|c|)−

2
3 ‖G‖`1×`1 , G ∈ HS(L2(S1)) ∩ `1 × `1 . (3.15)

If in addition k|c| > 2(M +N + 1) for some M,N ≥ 1, then

‖TcG‖`∞[−M,M ]×`∞[−M,M ] ≤ (k|c|)−1‖G‖`1[−N,N ]×`1[−N,N ] ,

G ∈ HS(L2(S1)) ∩ `1[−N,N ]× `1[−N,N ] . (3.16)

We also have that

‖TcG‖L∞ ≤
1

2π
‖TcG‖`1×`1 , G ∈ HS(L2(S1)) ∩ `1 × `1 . (3.17)

Proof. The isometry property (3.14) follows immediately from the definition of the far field
translation operator Tc in (2.8) and (2.7).

To show (3.15), let G ∈ HS(L2(S1))∩ `1× `1 and denote the associated kernel in the integral
representation (3.12) by κG ∈ L2(S1×S1). The definitions (2.8) and (2.7) show that Tc acts on
κG as a multiplication operator,

(TcκG)(x̂; d) = eik(x̂−d)·cκG(x̂; d) , x̂, d ∈ S1 .

Accordingly, it operates on the Fourier coefficients (am,n)m,n ∈ `2 × `2 of κG as a convolution
operator, and using (2.18) we obtain that the Fourier coefficients (acm,n)m,n of TcκG satisfy

acm,n =
∑
m′∈Z

∑
n′∈Z

am−m′,n−n′
(
im
′−n′e−i(m′−n′) arg cJm′(k|c|)Jn′(k|c|)

)
, m, n ∈ Z .

Recalling that |Jn(t)| < b/|t|1/3 for any t 6= 0 with b ≈ 0.6749 (see [40, p. 199]) we find that

‖TcG‖`∞×`∞ ≤ ‖(Jn(k|c|))n‖2`∞‖(am,n)m,n‖`1×`1 ≤ (k|c|)−
2
3 ‖G‖`1×`1 . (3.18)

This shows (3.15).
Assuming that the support of (am,n)m,n is contained in [−N,N ]× [−N,N ] we obtain similar

to (3.18) that

‖TcG‖`∞[−M,M ]×`∞[−M,M ] ≤ ‖(Jn(k|c|))n‖2`∞[−M−N,M+N ]‖(am,n)m,n‖`1[−N,N ]×`1[−N,N ] .
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Using the assumption that k|c| > 2(M + N + 1) for some M,N ≥ 1 and proceeding as in the
proof of [31, Thm. 4.6] using [39, Thm. 2] gives

sup
|n|≤M+N

|Jn(k|c|)| ≤ b|c|−
1
2 with b ≈ 0.7595 .

Substituting this into (3.18) yields (3.16).
Finally, (3.17) follows from Hölder’s inequality, which gives

‖TcG‖L∞ = ‖TcκG‖L∞(S1×S1) =
∥∥∥∑
m∈Z

∑
n∈Z

acm,n emen

∥∥∥
L∞(S1×S1)

≤ 1

2π
‖TcG‖`1×`1 .

Therewith we can now derive upper bounds on the cosine of the angle between Vc1N1
and Vc2N2

.
This extends a corresponding uncertainty principle for far field patterns from [29, Thms. 4.3
and 4.6] to far field operators. A related result on the correlation between the near fields radiated
by due to two point sources located in c1 and c2, respectively, has recently been analyzed in the
high-frequency limit in [23, Thm. 2.1].

Proposition 3.7. Suppose that G ∈ Vc1N1
and H ∈ Vc2N2

for some c1, c2 ∈ R2 and N1, N2 ∈ N.
Then,

|〈G,H〉HS|
‖G‖HS‖H‖HS

≤
√
‖Tc1G‖`0×`0‖Tc2H‖`0×`0

(k|c2 − c1|)
2
3

≤ (2N1 + 1)(2N2 + 1)

(k|c1 − c2|)
2
3

. (3.19)

If in addition k|c1 − c2| > 2(N1 +N2 + 1) and N1, N2 ≥ 1, then

|〈G,H〉HS|
‖G‖HS‖H‖HS

≤
√
‖Tc1G‖`0×`0‖Tc2H‖`0×`0

k|c2 − c1|
≤ (2N1 + 1)(2N2 + 1)

k|c1 − c2|
. (3.20)

Proof. Using Lemma 2.2, Hölder’s inequality, and (3.15) gives

|〈G,H〉HS| = |〈Tc2G, Tc2H〉`2×`2 | ≤ ‖Tc2G‖`∞×`∞‖Tc2H‖`1×`1

= ‖Tc2−c1Tc1G‖`∞×`∞‖Tc2H‖`1×`1 ≤
1

(k|c2 − c1|)
2
3

‖Tc1G‖`1×`1‖Tc2H‖`1×`1

≤
√
‖Tc1G‖`0×`0‖Tc2H‖`0×`0

(k|c2 − c1|)
2
3

‖Tc1G‖`2×`2‖Tc2H‖`2×`2

≤ (2N1 + 1)(2N2 + 1)

(k|c2 − c1|)
2
3

‖G‖HS‖H‖HS .

If in addition k|c2− c1| > 2(N1 +N2 + 1) and N1, N2 ≥ 1, then using (3.16) instead of (3.15)
gives (3.20).

In the following theorem F δq denotes a noisy observation of a far field operator Fq corre-
sponding to a scatterer D = D1 ∪ D2 with two well-separated components D1 ⊆ BR1(c1) and
D2 ⊆ BR2(c2). We assume that a priori information on the approximate location of these com-
ponents is available, i.e., that the balls BR1(c1) and BR2(c2) are known. Accordingly, we choose
N1 & kR1 and N2 & kR2 in the least squares problem (3.11) and compare the results for exact
and noisy far field operators to establish a stability estimate. This generalizes the stability result
for far field patterns from [29, Thm 5.3] to far field operators.
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Theorem 3.8. Suppose that Fq, F δq ∈ HS(L2(S1)), and let c1, c2 ∈ R2 and N1, N2 ∈ N such that

Cc1,c2N1,N2
:=

(2N1 + 1)(2N2 + 1)

(k|c1 − c2|)
2
3

< 1 .

Denote by F̃q1 , F̃q2 and F̃ δq1 , F̃
δ
q2 the solutions to the least squares problems

Fq
LS
= F̃q1 + F̃q2 , F̃q1 ∈ V

c1
N1
, F̃q2 ∈ V

c2
N2
, (3.21a)

F δq
LS
= F̃ δq1 + F̃ δq2 , F̃ δq1 ∈ V

c1
N1
, F̃ δq2 ∈ V

c2
N2
, (3.21b)

respectively. Then, for j = 1, 2,

‖F̃qj − F̃ δqj‖
2
HS ≤

(
1− (Cc1,c2N1,N2

)2
)−1‖Fq − F δq ‖2HS . (3.22)

Remark 3.9. If N1, N2 ≥ 1, k|c1 − c2| > 2(N1 +N2 + 1) in Theorem 3.8, and

C̃c1,c2N1,N2
:=

(2N1 + 1)(2N2 + 1)

k|c1 − c2|
< 1 .

then (3.22) remains true with Cc1,c2N1,N2
replaced by C̃c1,c2N1,N2

. ♦

Proof. Denoting F := Fq−F δq ∈ HS(L2(S1)), F̃1 := F̃q1 − F̃ δq1 ∈ V
c1
N1

and F̃2 := F̃q2 − F̃ δq2 ∈ V
c2
N2

,
the least squares property (3.21) implies that

‖F‖2HS = ‖F̃1 + F̃2‖2HS + ‖F − (F̃1 + F̃2)‖2HS ≥ ‖F̃1 + F̃2‖2HS .

Therefore, using (3.19) and the arithmetic-geometric mean inequality yields

‖F‖2HS ≥ ‖F̃1‖2HS + ‖F̃2‖2HS − 2|〈F̃1, F̃2〉HS|

≥ ‖F̃1‖2HS + ‖F̃2‖2HS − 2Cc1,c2N1,N2
‖F̃1‖HS‖F̃2‖HS

≥ ‖F̃1‖2HS + ‖F̃2‖2HS − (Cc1,c2N1,N2
)2‖F̃1‖2HS − ‖F̃2‖2HS .

This shows (3.22).
To obtain the improved estimate stated in Remark 3.9, one has to replace (3.19) by (3.20)

in this calculation.

Remark 3.10. Including the reciprocity property (2.29), which is satisfied by the Fourier coeffi-
cients of actual far field patterns, into the definition (2.30) of the subspaces of non-evanescent
far field operators allows to improve the constants Cc1,c2N1,N2

and C̃c1,c2N1,N2
in the stability estimates

in Theorem 3.8. In fact, any G ∈ VN with

Gg =
∑
|m|≤N

∑
|n|≤N

am,n em
〈
g, en

〉
L2(S1)

, g ∈ L2(S1) ,

that satisfies (2.29) can be rewritten as

Gg =
∑
|m|≤N

N∑
n=−m

am,n

(
1− 1

2
δn,−m

)(
em〈g, en〉L2(S1) + (−1)n+men〈g, em〉L2(S1)

)
.

Here, δn,−m denotes the Kronecker delta. Accordingly, we define for any c ∈ R2 and N ∈ N the
finite dimensional subspace

Wc
N :=

{
G ∈ HS(L2(S1))

∣∣ TcG ∈ WN

}
, (3.23)
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with

WN :=
{
G ∈ HS(L2(S1))

∣∣∣
Gg =

∑
|m|≤N

N∑
n=−m

am,n

(
1− 1

2
δn,−m

)(
em〈g, en〉L2(S1) + (−1)n+men〈g, em〉L2(S1)

)}
. (3.24)

Then Wc
N ⊆ VcN and thus the first inequality in (3.19) and (3.20), respectively, remains valid.

However, since ‖G‖`0×`0 ≤ (2N + 1)(N + 1) for any G ∈ WN , only about half as many coef-
ficients are required when using this representation compared to the representation in (2.30).
Accordingly, given c1, c2 ∈ R2 and N1, N2 ∈ N, and replacing Vc1N1

and Vc2N2
by Wc1

N1
and Wc2

N2
in

the least squares problems (3.21) yields the improved constants

Cc1,c2N1,N2
:=

√
(2N1 + 1)(N1 + 1)(2N2 + 1)(N2 + 1)

(k|c1 − c2|)
2
3

,

C̃c1,c2N1,N2
:=

√
(2N1 + 1)(N1 + 1)(2N2 + 1)(N2 + 1)

k|c1 − c2|

in the stability estimates in Theorem 3.8. These constants are better by a factor of about 1/2. ♦

Remark 3.11. Recalling (2.4) it would be possible to split the far field operator Fq corresponding
to a scatterer D = D1 ∪D2 with two components into two far field operators corresponding to
each scatterer D1 and D2 by splitting the far field patterns u∞q ( · ; d) for each incident direction
d ∈ S1 individually using the methods developed in [25, 28, 29], which also neglect multiple
scattering. However, comparing the stability estimate for least squares splitting of single far
field patterns u∞q ( · ; d) established in [29, Thm. 5.3] with the stability estimate for least squares
splitting of whole far field operators Fq in Theorem 3.8 we find that the latter is more stable.
The stability estimates in [29, Thm. 5.3] and in Theorem 3.8 are of the same structure but the
constants Cc1,c2N1,N2

and C̃c1,c2N1,N2
in Theorem 3.8 are the squares of the corresponding constants

in [29, Thm. 5.3]. Taking into account the additional improvement that can be obtained by
using the reciprocity principle as outlined in Remark 3.10, this shows a significant advantage
of the algorithms developed in this work, when interested in splitting whole far field operators.
Furthermore, the improved version of the splitting scheme, taking into account multiple scatter-
ing, that we discuss in the next section, is not applicable for splitting single far field patterns at
all. ♦

3.2 Far field operator splitting in Born approximation of order 2

Next we include multiple scattering into the algorithm for far field operator splitting. The main
idea is to replace the ansatz (3.5) in the least squares problem (3.11) by (3.6). We have already
developed sparse representations of the additional components F (2)

q1,q2 and F (2)
q2,q1 at the beginning

of Section 3 (see (3.9) and (3.10)). We note that using higher order Born approximations such
as, e.g., (3.7) does not work with our approach, because terms like F (3)

q1,q2,q1 and F (3)
q2,q1,q2 cannot

be distinguished from F
(3B)
q1 and F (3B)

q2 , respectively, using the techniques at hand. Essentially,
we can only characterize the first and the last scatterer that interacts with the scattered field
components described by far field operator components in (3.4).

Given the far field operator Fq associated to the two scattering objects with contrast functions
q1 and q2 as defined at the beginning of Section 3, we seek approximations F̃q1 ∈ V

c1
N1

and
F̃q2 ∈ V

c2
N2

of the far field operators Fq1 and Fq2 , corresponding to the two components of the
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scatterer, satisfying the least squares problem

Fq
LS
= F̃q1 + F̃q2 + F̃q1,q2 + F̃q2,q1 in HS(L2(S1)) (3.25)

for some F̃q1,q2 ∈ V
c1,c2
N1,N2

and F̃q2,q1 ∈ V
c2,c1
N2,N1

. This is equivalent to the Galerkin condition

〈Fq, φ〉HS = 〈F̃q1 , φ〉HS + 〈F̃q2 , φ〉HS + 〈F̃q1,q2 , φ〉HS + 〈F̃q2,q1 , φ〉HS

for all φ ∈ Vc1N1
⊕ Vc2N2

⊕ Vc1,c2N1,N2
⊕ Vc2,c1N2,N1

.

In the following we discuss the conditioning of (3.25)

Lemma 3.12. Let c1, c2 ∈ R2, and let Tc1,c2 : HS(L2(S1))→ HS(L2(S1)) be the generalized far
field translation operator in (3.8). Then, for any G ∈ HS(L2(S1)) ∩ `1 × `1,

‖Tc1,c2G‖`∞×`∞ ≤


(k2|c1||c2|)−

1
3 ‖G‖`1×`1 if c1, c2 6= 0 ,

(k|c1|)−
1
3 ‖G‖`1×`1 if c1 6= 0 , c2 = 0 ,

(k|c2|)−
1
3 ‖G‖`1×`1 if c1 = 0 , c2 6= 0 .

(3.26)

Proof. As in the proof of Lemma 3.6 we denote by κG ∈ L2(S1 × S1) the integral kernel of
G ∈ HS(L2(S1)) ∩ `1 × `1. According to (3.8), Tc1,c2 acts as on κG as a multiplication operator,

(Tc1,c2κG)(x̂; d) = eik(x̂·c1−d·c2)κG(x̂; d) , x̂, d ∈ S1 .

Therefore, it operates on the Fourier coefficients (am,n)m,n ∈ `2 × `2 of κG as a convolution
operator, and the Fourier coefficients (ac1,c2m,n )m,n of Tc1,c2κG satisfy

ac1,c2m,n =
∑
m′∈Z

∑
n′∈Z

am−m′,n−n′
(
im
′−n′e−im′ arg c1ein′ arg c2Jm′(k|c1|)Jn′(k|c2|)

)
, m, n ∈ Z .

Using Hölder’s inequality we find that

‖Tc1,c2G‖`∞×`∞ ≤ ‖(Jn(k|c1|))n‖`∞‖(Jn(k|c2|))n‖`∞‖G‖`1×`1 .

Now recalling that |Jn(t)| < min{1, 1/|t|1/3} (see, e.g., [25] and the proof of Lemma 3.12)
shows (3.26).

Proposition 3.13. Suppose that G ∈ Vc1,c2N1,N2
and H ∈ Vc

′
1,c
′
2

N ′1,N
′
2
for some c1, c

′
1, c2, c

′
2 ∈ R2 and

N1, N
′
1, N2, N

′
2 ∈ N. Then,

|〈G,H〉HS|
‖G‖HS‖H‖HS

≤



√
(2N1+1)(2N2+1)(2N ′1+1)(2N ′2+1)

(k|c1−c′1|)
1
3 (k|c2−c′2|)

1
3

if c1 6= c′1 and c2 6= c′2 ,
√

(2N1+1)(2N2+1)(2N ′1+1)(2N ′2+1)

(k|c1−c′1|)
1
3

if c1 = c′1 and c2 6= c′2 ,
√

(2N1+1)(2N2+1)(2N ′1+1)(2N ′2+1)

(k|c2−c′2|)
1
3

if c1 6= c′1 and c2 = c′2 .

(3.27)

Proof. Suppose that c1 6= c′1 and c2 6= c′2. Using Lemma 3.3, Hölder’s inequality, and (3.26)
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gives

|〈G,H〉HS| = |〈Tc′1,c′2G, Tc′1,c′2H〉`2×`2 | ≤ ‖Tc′1,c′2G‖`∞×`∞‖Tc′1,c′2H‖`1×`1
= ‖Tc′1−c1,c′2−c2Tc1,c2G‖`∞×`∞‖Tc′1,c′2H‖`1×`1

≤ 1

(k|c1 − c′1|)
1
3 (k|c2 − c′2|)

1
3

‖Tc1,c2G‖`1×`1‖Tc′1,c′2H‖`1×`1

≤

√
‖Tc1,c2G‖`0×`0‖Tc′1,c′2H‖`0×`0

(k|c1 − c′1|)
1
3 (k|c2 − c′2|)

1
3

‖Tc1,c2G‖`2×`2‖Tc′1,c′2H‖`2×`2

=

√
(2N1 + 1)(2N2 + 1)(2N ′1 + 1)(2N ′2 + 1)

(k|c1 − c′1|)
1
3 (k|c2 − c′2|)

1
3

‖G‖HS‖H‖HS .

This shows the first inequality in (3.27), and the other two inequalities follow by using the
corresponding estimates in (3.26) in this calculation.

In the following theorem we establish a stability result for the least squares problem (3.25)
that is similar to Theorem 3.8. Again F δq denotes a noisy observation of a far field operator Fq
corresponding to a scattererD = D1∪D2 with two well-separated componentsD1 ⊆ BR1(c1) and
D2 ⊆ BR2(c2). Assuming that the a priori information BR1(c1) and BR2(c2) on the approximate
location of these components is available, we choose N1 & kR1 and N2 & kR2 in (3.11) and
compare the solutions of this least squares problem for exact and noisy far field operators.

Theorem 3.14. Suppose that Fq, F δq ∈ HS(L2(S1)), let c1, c2 ∈ R2 and N1, N2 ∈ N, and define

Cc1,c2N1,N2
:=

(2N1 + 1)(2N2 + 1)

(k|c1 − c2|)
2
3

.

We assume that, for all (j, l) ∈ {1, 2}2,

Mj,l :=
√
Cc1,c2N1,N2

(√
Cc1,c2N1,N2

+ (2Nj + 1) + (2Nl + 1)
)
< 1 .

Denote by F̃q1 , F̃q2 , F̃q1,q2 , F̃q2,q1 and F̃ δq1 , F̃
δ
q2 , F̃

δ
q1,q2 , F̃

δ
q2,q1 the solutions to the least squares prob-

lems

Fq
LS
= F̃q1 + F̃q2 + F̃q1,q2 + F̃q2,q1 , F̃qj ∈ V

cj
Nj
, F̃qj ,ql ∈ V

cj ,cl
Nj ,Nl

, (3.28a)

F δq
LS
= F̃ δq1 + F̃ δq2 + F̃ δq1,q2 + F̃ δq2,q1 , F̃ δqj ∈ V

cj
Nj
, F̃ δqj ,ql ∈ V

cj ,cl
Nj ,Nl

, (3.28b)

respectively. Then,

‖F̃qj − F̃ δqj‖
2
HS ≤

(
1−Mj,j

)−1‖Fq − F δq ‖2HS , j = 1, 2 . (3.29)

Proof. We define F := Fq − F δq ∈ HS(L2(S1)), F̃1 := F̃q1 − F̃ δq1 ∈ V
c1
N1

, F̃2 := F̃q2 − F̃ δq2 ∈ V
c2
N2

,
F̃1,2 := F̃q1,q2 − F̃ δq1,q2 ∈ V

c1,c2
N1,N2

, and F̃2,1 := F̃q2,q1 − F̃ δq2,q1 ∈ V
c2,c1
N2,N1

. Then the least squares
property (4.6) implies that

‖F‖2HS = ‖F̃1 + F̃2 + F̃1,2 + F̃2,1‖2HS + ‖F − (F̃1 + F̃2 + F̃1,2 + F̃2,1)‖2HS

≥ ‖F̃1 + F̃2 + F̃1,2 + F̃2,1‖2HS .

21



Therefore, using the arithmetic-geometric mean inequality yields and (3.27) yields

‖F‖2HS ≥ ‖F̃1‖2HS + ‖F̃2‖2HS + ‖F̃1,2‖2HS + ‖F̃2,1‖2HS

− 2|〈F̃1, F̃2〉HS| − 2|〈F̃1, F̃1,2〉HS| − 2|〈F̃1, F̃2,1〉HS|

− 2|〈F̃2, F̃1,2〉HS| − 2|〈F̃2, F̃2,1〉HS| − 2|〈F̃1,2, F̃2,1〉HS|

≥ ‖F̃1‖2HS

(
1− |〈F̃1, F̃2〉HS|
‖F̃1‖HS‖F̃2‖HS

− |〈F̃1, F̃1,2〉HS|
‖F̃1‖HS‖F̃1,2‖HS

− |〈F̃1, F̃2,1〉HS|
‖F̃1‖HS‖F̃2,1‖HS

)
+ ‖F̃2‖2HS

(
1− |〈F̃1, F̃2〉HS|
‖F̃1‖HS‖F̃2‖HS

− |〈F̃2, F̃1,2〉HS|
‖F̃2‖HS‖F̃1,2‖HS

− |〈F̃2, F̃2,1〉HS|
‖F̃2‖HS‖F̃2,1‖HS

)
+ ‖F̃1,2‖2HS

(
1− |〈F̃1, F̃1,2〉HS|
‖F̃1‖HS‖F̃1,2‖HS

− |〈F̃2, F̃1,2〉HS|
‖F̃2‖HS‖F̃1,2‖HS

− |〈F̃1,2, F̃2,1〉HS|
‖F̃1,2‖HS‖F̃2,1‖HS

)
+ ‖F̃2,1‖2HS

(
1− |〈F̃1, F̃2,1〉HS|
‖F̃1‖HS‖F̃2,1‖HS

− |〈F̃2, F̃2,1〉HS|
‖F̃2‖HS‖F̃2,1‖HS

− |〈F̃1,2, F̃2,1〉HS|
‖F̃1,2‖HS‖F̃2,1‖HS

)
≥ ‖F̃1‖2HS(1−M1,1) + ‖F̃2‖2HS(1−M2,2) + ‖F̃1,2‖2HS(1−M1,2) + ‖F̃2,1‖2HS(1−M2,1) .

This shows (4.7).

Remark 3.15. If N1, N2 ≥ 1, k|c1 − c2| > 2(N1 +N2 + 1) in Theorem 3.14, and

C̃c1,c2N1,N2
:=

(2N1 + 1)(2N2 + 1)

k|c1 − c2|
< 1 ,

then (4.7) remains true with Cc1,c2N1,N2
replaced by C̃c1,c2N1,N2

. This can be shown analogous to the
improved estimate in Remark 3.9. ♦

Remark 3.16. Similar to Remark 3.10, including the reciprocity properties (2.29) and (3.3) into
the ansatz spaces for the least squares problems (4.6), the constants Mj,l, (j, l) ∈ {1, 2}2, in
Theorem 3.14 can be improved by a factor of about 1/2. Given c1, c2 ∈ R2 and N1, N2 ∈ N,
one needs to replace the subspaces Vc1N1

and Vc2N2
in (4.6) by Wc1

N1
and Wc2

N2
as defined in (3.23).

Moreover, the unknowns F̃q1,q2 , F̃q2,q1 and F̃ δq1,q2 , F̃
δ
q2,q1 , respectively, have to be combined into

a single unknown using (3.3). ♦

If a priori knowledge of the sizes Rj of the individual scatterers Dj ⊆ BRj (cj), j = 1, 2,
which is required to determine the parameters Nj & kRj of the ansatz spaces in the least
squares formulation (3.25), is not available but at least the approximate positions c1 and c2 are
known, then (3.25) can be replaced by an `1× `1 minimization problem. In Theorem 3.17 below
we present this approach and establish an associated stability result. As before, F δq represents a
noisy observation of a far field operator Fq corresponding to a scatterer D = D1 ∪D2 with two
well-separated components D1 ⊆ BR1(c1) and D2 ⊆ BR2(c2). Accordingly, let

Fq ≈ F̃q1 + F̃q2 + F̃q1,q2 + F̃q2,q1 (3.30)

be an approximate decomposition of the exact far field operator with F̃q1 ∈ V
c1
N1

, F̃q2 ∈ V
c2
N2

,
F̃q1,q2 ∈ V

c1,c2
N1,N2

, and F̃q2,q1 ∈ V
c2,c1
N2,N1

for some N1 & kR1 and N2 & kR2, which could be
the least squares solution of (3.25) but does not have to be computed. The bound δ0 > 0
in (3.31) describes the accuracy of this approximate solution, which in case of the least squares
solution corresponds to the error of the second order Born approximation and projection errors as
in (2.31) and (3.10). Now the optimization problem (3.33) seeks an approximate decomposition
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of the given noisy far field operator F δq in the spaces Vc1N1
, Vc2N2

, Vc1,c2N1,N2
, and Vc2,c1N2,N1

but without
specifying N1, N2 > 0 in advance. Here, the assumption (3.32) guarantees that the approximate
split (3.30) is feasible. The theorem gives a stability estimate for the solution of this minimization
problem.

Theorem 3.17. Suppose that Fq ∈ HS(L2(S1)), let c1, c2 ∈ R2 and N1, N2 ∈ N such that for
all (j, l) ∈ {1, 2}2,

C
cj ,cl
Nj ,Nl

:=
12(2Nj + 1)(2Nl + 1)

(k|c1 − c2|)
1
3

< 1 .

We assume that F̃q1 ∈ V
c1
N1

, F̃q2 ∈ V
c2
N2

, F̃q1,q2 ∈ V
c1,c2
N1,N2

, and F̃q2,q1 ∈ V
c2,c1
N2,N1

are such that

‖Fq − (F̃q1 + F̃q2 + F̃q1,q2 + F̃q2,q1)‖HS < δ0 (3.31)

for some δ0 > 0. Moreover, suppose that F δq ∈ HS(L2(S1)) and δ ≥ 0 satisfy

δ ≥ δ0 + ‖Fq − F δq ‖HS (3.32)

and let (F̃ δq1 , F̃
δ
q2 , F̃

δ
q1,q2 , F̃

δ
q2,q1) ∈ HS(L2(S1))4 denote the solution to

minimize
Fq1 ,Fq2 ,Fq1,q2 ,Fq2,q1

‖Tc1Fq1‖`1×`1 + ‖Tc2Fq2‖`1×`1 + ‖Tc1,c2Fq1,q2‖`1×`1 + ‖Tc2,c1Fq2,q1‖`1×`1

subject to ‖F δq − (Fq1 + Fq2 + Fq1,q2 + Fq2,q1)‖HS ≤ δ . (3.33)

Then,
‖F̃qj − F̃ δqj‖

2
HS ≤

(
1− Ccj ,cjNj ,Nj

)−1
4δ2 , j = 1, 2 .

Proof. We define F := Fq − F δq , F̃1 := F̃q1 − F̃ δq1 , F̃2 := F̃q2 − F̃ δq2 , F̃1,2 := F̃q1,q2 − F̃ δq1,q2 , and
F̃2,1 := F̃q2,q1 − F̃ δq2,q1 . Moreover, we denote the `0 × `0 support of Tc1F̃q1 , Tc2F̃q2 , Tc1,c2F̃q1,q2 ,
and Tc2,c1F̃q2,q1 by W1, W2, W1,2, and W2,1, respectively, and their complements by W c

1 , W c
2 ,

W c
1,2, and W c

2,1. We estimate, for j ∈ {1, 2},

‖Tcj F̃ δqj‖`1×`1 = ‖Tcj (F̃qj + F̃j)‖`1×`1 = ‖Tcj (F̃qj + F̃j)‖(`1×`1)(Wj) + ‖Tcj F̃j‖(`1×`1)(W c
j )

= ‖Tcj (F̃qj + F̃j)‖(`1×`1)(Wj) + ‖Tcj F̃j‖`1×`1 − ‖Tcj F̃j‖(`1×`1)(Wj)

≥ ‖Tcj F̃qj‖(`1×`1)(Wj) + ‖Tcj F̃j‖`1×`1 − 2‖Tcj F̃j‖(`1×`1)(Wj)

and we can do the same for F̃ δqj ,ql with j, l ∈ {1, 2}, j 6= l. Together with (3.33) this gives

‖Tc1F̃1‖`1×`1 + ‖Tc2F̃2‖`1×`1 + ‖Tc1,c2F̃1,2‖`1×`1 + ‖Tc2,c1F̃2,1‖`1×`1
≤ 2

(
‖Tc1F̃1‖(`1×`1)(W1) + ‖Tc2F̃2‖(`1×`1)(W2)

+ ‖Tc1,c2F̃1,2‖(`1×`1)(W1,2) + ‖Tc2,c1F̃2,1‖(`1×`1)(W2,1)

)
. (3.34)
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Using (3.31)–(3.33) and (3.26) we obtain

4δ2 ≥ ‖F̃1‖2HS + ‖F̃2‖2HS + ‖F̃1,2‖2HS + ‖F̃2,1‖2HS

− 2|〈F̃1, F̃2〉HS| − 2|〈F̃1, F̃1,2〉HS| − 2|〈F̃1, F̃2,1〉HS|

− 2|〈F̃2, F̃1,2〉HS| − 2|〈F̃2, F̃2,1〉HS| − 2|〈F̃1,2, F̃2,1〉HS|

≥ ‖F̃1‖2HS + ‖F̃2‖2HS + ‖F̃1,2‖2HS + ‖F̃2,1‖2HS

− 2

(k|c1 − c2|)
2
3

(
‖Tc1F̃1‖`1×`1‖Tc2F̃2‖`1×`1 + ‖Tc1,c2F̃1,2‖`1×`1‖Tc2,c1F̃2,1‖`1×`1

)
− 2

(k|c1 − c2|)
1
3

(
‖Tc1F̃1‖`1×`1‖Tc1,c2F̃1,2‖`1×`1 + ‖Tc1F̃1‖`1×`1‖Tc2,c1F̃2,1‖`1×`1

+ ‖Tc2F̃2‖`1×`1‖Tc1,c2F̃1,2‖`1×`1 + ‖Tc2F̃2‖`1×`1‖Tc2,c1F̃2,1‖`1×`1
)
.

For a1, . . . , a4 ≥ 0 a simple calculation shows that
∑

i

∑
j 6=i aiaj ≤

3
4 (
∑

i ai)
2 ≤ 3

∑
i a

2
i . To-

gether with (3.34) and the Cauchy Schwarz inequality this implies

4δ2 ≥ ‖F̃1‖2HS + ‖F̃2‖2HS + ‖F̃1,2‖2HS + ‖F̃2,1‖2HS

− 3

4(k|c1 − c2|)
1
3

(
‖Tc1F̃1‖`1×`1 + ‖Tc2F̃2‖`1×`1 + ‖Tc1,c2F̃1,2‖`1×`1 + ‖Tc2,c1F̃2,1‖`1×`1

)2
≥ ‖F̃1‖2HS + ‖F̃2‖2HS + ‖F̃1,2‖2HS + ‖F̃2,1‖2HS

− 3

(k|c1 − c2|)
1
3

(
‖Tc1F̃1‖`1×`1(W1) + ‖Tc2F̃2‖`1×`1(W2)

+ ‖Tc1,c2F̃1,2‖`1×`1(W1,2) + ‖Tc2,c1F̃2,1‖`1×`1(W2,1)

)2
≥ ‖F̃1‖2HS + ‖F̃2‖2HS + ‖F̃1,2‖2HS + ‖F̃2,1‖2HS

− 3

(k|c1 − c2|)
1
3

(
|W1|

1
2 ‖F̃1‖HS + |W2|

1
2 ‖F̃2‖HS + |W1,2|

1
2 ‖F̃1,2‖HS + |W2,1|

1
2 ‖F̃2,1‖HS

)2
≥ (1− Cc1,c1N1,N1

)‖F̃1‖2HS + (1− Cc2,c2N2,N2
)‖F̃2‖2HS + (1− Cc1,c2N1,N2

)
(
‖F̃1,2‖2HS + ‖F̃2,1‖2HS

)
.

The assumptions of Theorem 3.17 are much more restrictive than the assumptions of Theo-
rem 3.14 and the stability estimate is worse, but the `1× `1 minimization algorithm requires less
a priori information and our numerical results in Section 5 suggest that both algorithms work
comparably well.

Remark 3.18. Similar to Remark 3.16 the reciprocity principle can be used to improve the
constants Ccj ,clNj ,Nl

, (j, l) ∈ {1, 2}2, in Theorem 3.17 by a factor of about 1/2. ♦

4 Far field operator completion

We consider the inverse problem (b) introduced in Section 2.1. Suppose that the scatterer
D ⊆ BR(c) is contained in a ball of radius R > 0 centered at c ∈ R2, and that the far field
pattern u∞q cannot be observed on some subset Ω ⊆ S1 × S1. Without loss of generality we
assume that Ω is symmetric in the sense of reciprocity, i.e., that Ω = Ωr with

Ωr := {(−d,−x̂) | (x̂; d) ∈ Ω} .
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Otherwise (2.3) can be used to extend the observed far field patterns from S1 × S1 \ Ω to
S1 × S1 \ (Ω ∪ Ωr). We define the infinite dimensional subspace

VΩ :=
{
G ∈ HS(L2(S1))

∣∣∣ Gg =

∫
S1

χΩ(·, d)α(·; d)g(d) ds(d) , α ∈ L2(S1 × S1)
}
.

Given the observed far field operator Fq|S1×S1\Ω from (2.5) we seek approximations F̃q ∈ VcN
and B̃ ∈ VΩ of the far field operator Fq and of its non-observable part B := Fq|S1×S1\Ω − Fq
satisfying the least squares problem

Fq|S1×S1\Ω
LS
= F̃q + B̃ in HS(L2(S1)) , (4.1)

or equivalently,

〈Fq|S1×S1\Ω, φ〉HS = 〈F̃q, φ〉HS + 〈B̃, φ〉HS for all φ ∈ VcN ⊕ VΩ .

Again, the condition number of (4.1) is given by the cosecant of the angle between VcN and
VΩ, which can be estimated using upper bounds on the cosine of the angle between these two
spaces.

Proposition 4.1. Suppose that G ∈ VcN and H ∈ VΩ for some c ∈ R2, N ∈ N, and Ω ⊆ S1×S1.
Then,

|〈G,H〉HS|
‖G‖HS‖H‖HS

≤
(2N + 1)

√
|Ω|

2π
. (4.2)

Proof. Using (3.13), Hölder’s inequality, (3.14) with p =∞, and (3.17) yields

|〈G,H〉HS| = |〈G,H〉L2 | ≤ ‖G‖L∞‖H‖L1 = ‖TcG‖L∞‖H‖L1 ≤
1

2π
‖TcG‖`1×`1‖H‖L1

≤
√
‖TcG‖`0×`0‖H‖L0

2π
‖TcG‖`2×`2‖H‖L2 ≤

(2N + 1)
√
|Ω|

2π
‖G‖HS‖H‖HS .

In the following theorem F δq |S1×S1\Ω denotes a noisy version of a restricted far field operator
Fq|S1×S1\Ω corresponding to a scatterer D ⊆ BR(c) that cannot be observed on Ω ⊆ S1 × S1.
We assume that a priori information on the approximate location of the scatterer is available,
i.e., that the ball BR(c) is known, and we establish a stability estimate for the least squares
problem (4.1).

Theorem 4.2. Suppose that Fq, F δq ∈ HS(L2(S1)), c ∈ R2, N ∈ N, and Ω ⊆ S1 × S1 such that

CΩ
N :=

(2N + 1)
√
|Ω|

2π
< 1 .

Denote by F̃q and F̃ δq the solutions to the least squares problems

Fq|S1×S1\Ω
LS
= F̃q + B̃q , F̃q ∈ VcN , B̃q ∈ VΩ , (4.3a)

F δq |S1×S1\Ω
LS
= F̃ δq + B̃δ

q , F̃ δq ∈ VcN , B̃δ
q ∈ VΩ , (4.3b)

respectively. Then,

‖F̃ δq − F̃q‖2HS ≤
(
1− (CΩ

N )2
)−1∥∥F δq |S1×S1\Ω − Fq|S1×S1\Ω

∥∥2

HS
, (4.4a)

‖B̃δ
q − B̃q‖2HS ≤

(
1− (CΩ

N )2
)−1∥∥F δq |S1×S1\Ω − Fq|S1×S1\Ω

∥∥2

HS
. (4.4b)
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Proof. Denoting F := Fq|S1×S1\Ω − F δq |S1×S1\Ω, F̃ := F̃q − F̃ δq ∈ VcN and B̃ := B̃q − B̃δ
q ∈ VΩ,

the least squares property (4.3) implies that

‖F‖2HS = ‖F̃ + B̃‖2HS + ‖F − (F̃ + B̃)‖2HS ≥ ‖F̃ + B̃‖2HS .

Therefore, using (4.2) and the arithmetic-geometric mean inequality yields

‖F‖2HS ≥ ‖F̃‖2HS + ‖B̃‖2HS − 2|〈F̃ , B̃〉HS| ≥ ‖F̃‖2HS + ‖B̃‖2HS − 2CΩ
N‖F̃‖HS‖B̃‖HS

≥ ‖F̃‖2HS + ‖B̃‖2HS − (CΩ
N )2‖F̃‖2HS − ‖B̃‖2HS .

(4.5)

This shows the first estimate in (4.4), and the second estimate is obtained by interchanging the
roles of F̃ and B̃ in the last step of (4.5).

Remark 4.3. Similar to Remark 3.10, including the reciprocity property (2.29) and replacing the
space VcN in Theorem 4.2 by Wc

N from (3.23)–(3.24) allows to improve the constant CΩ
N in the

stability estimate (4.4) by a factor of about 1/
√

2. ♦

Remark 4.4. As we already discussed in Remark 3.11 for far field operator splitting, it would be
possible to complete the far field operator Fq by completing the far field patterns u∞q (·; d) for
each incident direction d ∈ S1 individually using the methods developed in [29]. The stability
estimate in [29, Thm. 5.5] and in Theorem 4.2 have the same structure, but again the constant
CΩ
N in Theorem 4.2 is roughly the square of the corresponding constant in [29, Thm. 5.5]. This

means that one should use the data completion scheme developed in this work, when completing
whole far field operators. ♦

Several variants of this data completion scheme have been discussed for single far field pat-
terns in [29], and these can in principle also be generalized to the setting considered in this work.
For instance one can avoid the required a priori knowledge of the size R > 0 of the scatterer
by reformulating the data completion problem as an `1 × `1 minimization problem similar to
Theorem 3.17. Since the size of the support of the scatterer enters the stability estimate in
Theorem 4.2 via the parameter N & kR, it is often advantageous to combine far field operator
completion with far field operator splitting to obtain better stability properties. In Theorem 4.5
below we provide a corresponding stability result. It can be shown by combining the proofs of
the Theorems 3.14 and 4.2, and the proof is therefore omitted.

Theorem 4.5. Suppose that Fq, F δq ∈ HS(L2(S1)), and let c1, c2 ∈ R2, N1, N2 ∈ N, and Ω ⊆
S1 × S1. We define

Cc1,c2N1,N2
:=

(2N1 + 1)(2N2 + 1)

(k|c1 − c2|)
2
3

and CΩ
Nj ,Nl

:=

√
(2Nj + 1)(2Nl + 1)

√
|Ω|

2π
,

where (j, l) ∈ {1, 2}2. We assume that, for all (j, l) ∈ {1, 2}2,

Mj,l :=
√
Cc1,c2N1,N2

(√
Cc1,c2N1,N2

+ (2Nj + 1) + (2Nl + 1)
)

+ CΩ
Nj ,Nl

< 1 ,

CΩ
N1,N2

+ CΩ
N1,N2

+ CΩ
N2,N1

+ CΩ
N2,N2

< 1 .

Denote by F̃q1 , F̃q2 , F̃q1,q2 , F̃q2,q1 , B̃q and F̃ δq1 , F̃
δ
q2 , F̃

δ
q1,q2 , F̃

δ
q2,q1 , B̃

δ
q the solutions to the least squares

problems

Fq|S1×S1\Ω
LS
= F̃q1 + F̃q2 + F̃q1,q2 + F̃q2,q1 + B̃q , F̃qj ∈ V

cj
Nj
, F̃qj ,ql ∈ V

cj ,cl
Nj ,Nl

, B̃q ∈ VΩ , (4.6a)

F δq |S1×S1\Ω
LS
= F̃ δq1 + F̃ δq2 + F̃ δq1,q2 + F̃ δq2,q1 + B̃δ

q , F̃ δqj ∈ V
cj
Nj
, F̃ δqj ,ql ∈ V

cj ,cl
Nj ,Nl

, B̃δ
q ∈ VΩ ,

(4.6b)
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respectively. Then,

‖F̃qj − F̃ δqj‖
2
HS ≤

(
1− (Mj,j + CΩ

Nj ,Nj
)
)−1‖Fq − F δq ‖2HS , j = 1, 2 , (4.7a)

‖B̃q − B̃δ
q‖2HS ≤

(
1− (CΩ

N1,N1
+ CΩ

N1,N2
+ CΩ

N2,N1
+ CΩ

N2,N2
)
)−1‖Fq − F δq ‖2HS . (4.7b)

5 Numerical examples

We briefly comment on the numerical implementation and illustrate the performance of the far
field operator splitting and completion methods discussed in Sections 3.2 and 4. As before,
let D = D1 ∪ D2 be a scatterer with two well separated components Dj ⊆ BRj (cj) for some
cj ∈ R2 and Rj > 0, j = 1, 2. Assuming that far field patterns cannot be observed on a
subdomain Ω ⊆ S1 × S1 satisfying Ωr = Ω, i.e., given the noisy restricted far field operator
G := F δq |S1×S1\Ω we aim to recover the non-observable part B := Fq|S1×S1\Ω − Fq and the far
field operator components Fq1 and Fq2 associated to the two scatterer components individually.

The least squares approach from Theorem 4.5 requires to solve the linear least squares
problem

G
LS
= F̃q1 + F̃q2 + F̃q1,q2 + F̃q2,q1 + B̃ ,

F̃q1 ∈ V
c1
N1
, F̃q2 ∈ V

c2
N2
, F̃q1,q2 ∈ V

c1,c2
N1,N2

, F̃q2,q1 ∈ V
c2,c1
N2,N1

, B̃ ∈ VΩ .

Letting Pj,l := Pcj ,clNj ,Nl
denote the orthogonal projection in HS(L2(S1)) onto Vcj ,clNj ,Nl

, j, l = 1, 2,
and PΩ the orthogonal projection onto VΩ, this is equivalent to the linear system

F̃q1 + P1,1P2,2F̃q2 + P1,1P1,2F̃q1,q2 + P1,1P2,1F̃q2,q1 + P1,1PΩB̃ = P1,1G ,

P2,2P1,1F̃q1 + F̃q2 + P2,2P1,2F̃q1,q2 + P1,1P2,1F̃q2,q1 + P2,2PΩB̃ = P2,2G ,

P1,2P1,1F̃q1 + P1,2P2,2F̃q2 + F̃q1,q2 + P1,2P2,1F̃q2,q1 + P1,2PΩB̃ = P1,2G ,

P2,1P1,1F̃q1 + P2,1P2,2F̃q2 + P2,1P1,2F̃q1,q2 + F̃q2,q1 + P2,1PΩB̃ = P2,1G ,

PΩP1,1F̃q1 + PΩP2,2F̃q2 + PΩP1,2F̃q1,q2 + PΩP2,1F̃q2,q1 + B̃ = 0 .

(5.1)

If the assumptions of Theorem 4.5 are fulfilled, then the self-adjoint block operator on the left
side of (5.1) is strictly diagonally dominant and thus positive definit. Therefore, (5.1) can be
solved efficiently using conjugate gradients.

On the other hand, the `1 × `1 approach in Theorem 3.17 can also be extended to simulta-
neously splitting and completing far field operators. Introducing a Lagrange multiplier 1/µ the
associated unconstrained optimization problem consists in minimizing the functional

Ψµ(Fq1 , Fq2 , Fq1,q2 , Fq2,q1) :=
∥∥∥G− PΩ(Fq1 + Fq2 + Fq1,q2 + Fq2,q1)

∥∥∥2

HS

+ µ
(
‖Tc1Fq1‖`1×`1 + ‖Tc2Fq2‖`1×`1 + ‖Tc1,c2Fq1,q2‖`1×`1 + ‖Tc2,c1Fq2,q1‖`1×`1

)
(5.2)

with respect to (Fq1 , Fq2 , Fq1,q2 , Fq2,q1) ∈ HS(L2(S1))4 for some suitably chosen regularization
parameter µ > 0. The unique minimizer (F̃q1 , F̃q2 , F̃q1,q2 , F̃q2,q1) of Ψµ can be approximated using
iterative soft thresholding (see [4, 16]). Then F̃q := F̃q1 +F̃q2 +F̃q1,q2 +F̃q2,q1 is an approximation
to Fq, and B̃ := −PΩF̃q approximates the non-observable part B.

We discuss three examples with a scattering object D = D1 ∪D2, where D1 ⊆ BR1(c1) has
the shape of a nut and D2 ⊆ BR2(c2) the shape of a kite. Throughout, we use q = −0.5χD1 +χD2

for the contrast function. Example 5.1 is concerned with far field operator splitting only, i.e.,
Ω = ∅, while in Example 5.2 we consider far field operator completion but without splitting, i.e.,
we view D as a single object that is contained in a large ball BR(0). Finally, in Example 5.3 we
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Figure 5.1: Left: Geometry of scatterer (solid) and a priori information on location and size of
components (dashed) in Example 5.1 for varying distance (|c1 − c2| = 25 highlighted). Right:
Geometry of two scatterer (solid) and a priori information on location and size of components
(dashed) in Example 5.1 for varying size R1 of nut-shaped component (R1 = 5 highlighted).

combine far field operator completion with far field operator splitting and show that this yields
better results for certain geometrical setups.

Example 5.1. We fix the wave number k = 0.5, i.e., the wave number is λ = 2π/k ≈ 12.57. In
our first test we study the accuracy of numerical reconstructions for far field operator splitting
depending on the distance |c1 − c2| between the centers of the two components of the scatterer.
To this end we vary |c1 − c2| as depicted in Figure 5.1 (left). We use R1 = 3.5, R2 = 5,
c1 = (26,−3), and consider

c2 = (26,−3) +
|c1 − c2|√

5
(−2,−1) with |c1 − c2| ∈ {15, 20, 25, 30, 35, 40} .

In our second test we fix the size of D2 and the positions of both scatterers and vary the size R1

of D1, as shown in Figure 5.1 (right). We use c1 = (26,−3), c2 = (−10,−21), i.e., |c1− c2| ≈ 40,
R2 = 5, and consider

R1 ∈ {2, 3.5, 5, 6.5, 8, 9.5} .
We apply a Nyström method to evaluate the far field patterns u∞q for L = 256 incident and
observation directions on an equidistant grid on the unit sphere for each configuration. This
then gives an approximation of the associated far field operators Fq (see Example 2.6). We
add 5% complex valued uniformly distributed additive relative error to Fq and denote the result
by F δq .

To solve the far field operator splitting problem using the least squares approach in Theo-
rem 3.14, we assume the dashed circles in Figure 5.1 to be known a priori, i.e., we choose N1 = 5
and N2 = 7 for the first test, and N1 ∈ {3, 5, 7, 9, 11, 13} and N2 = 7 for the second test. For
the l1× l1 approach in Theorem 3.17, we use µ = 10−3 for the regularization parameter in (5.2).
In contrast to the least squares method no a priori information on the approximate size of the
components D1 and D2 but only the approximate positions c1 and c2 are required. We also
simulate the far field operators Fqj , j = 1, 2, corresponding to the two scatterers individually
using the Nyström method and compare them to the results of our reconstruction method by
evaluating relative reconstruction errors

εjrel :=
‖Fqj − F̃qj‖HS

‖Fqj‖HS
, j = 1, 2 .
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In Table 5.1 these relative errors are shown. The left part of the table corresponds to our

least squares `1 × `1-minimization
|c1 − c2| ε1rel ε2rel ε1rel ε2rel

15 0.171 0.340 0.099 0.077
20 0.023 0.068 0.043 0.054
25 0.019 0.020 0.027 0.023
30 0.017 0.018 0.029 0.022
35 0.015 0.015 0.030 0.023
40 0.015 0.013 0.030 0.021

least squares `1 × `1-minimization
R1 ε1rel ε2rel ε1rel ε2rel

2 0.025 0.012 0.056 0.019
3.5 0.014 0.012 0.026 0.020
5 0.016 0.013 0.021 0.022
6.5 0.029 0.017 0.021 0.026
8 0.044 0.020 0.028 0.037
9.5 0.079 0.022 0.054 0.050

Table 5.1: Left: Relative errors of far field operator splitting for varying distance |c1−c2|. Right:
Relative errors of far field operator splitting for varying size R1 of scatterer D1.

first test with varying distances between the two components of the scatterers, and the right
part of the table corresponds to our second test with varying size for the component D1 of the
scatterer. In both tables, the first two columns correspond to the reconstructions that have
been obtained using the least squares approach, and the last two columns correspond to the
reconstructions that have been obtained using the `1 × `1 minimization. The relative errors
decay with increasing distance |c1− c2| and also with decreasing size R1 of the first components.
This is to be expected because the accuracy of the second order Born approximation and also the
stability of both reconstruction algorithms improve in this case (see Theorems 3.14 and 3.17).
Both computational approaches yield satisfying results of comparable accuracy. ♦
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Figure 5.2: Left: Geometry of scatterer (solid), a priori information on location of scatterer
(dashed) in Example 5.2, and a priori information on location of components of scatterer (dotted)
in Example 5.3. Center: Support of missing data segment Ω1(α) in (5.3) for varying α (Ω1(π/8)
highlighted). Right: Support of missing data segment Ω2(α) in (5.4) for varying α (Ω2(π/8)
highlighted).

Example 5.2. Next we consider far field operator completion and study the accuracy of nu-
merical reconstructions depending on the size |Ω| of the non-observable part Ω for two different
geometrical setups for Ω. We use again the wave number k = 0.5, and consider the same contrast
function q = −0.5χD1 + χD2 as in Example 5.1. The geometry of the scatterer D = D1 ∪D2 is
shown in Figure 5.2 (left), and we use the dashed circle as a priori information on the location
of the scatterers, i.e., c = (17,−7) and R = 17. In our first test, we assume that the missing
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data segment is supported on

Ω1(α) :=
{(( cosϕ

sinϕ

)
,
( cosϑ

sinϑ

)) ∣∣∣ (ϕ, ϑ) ∈ [π/3, π/3+α]× [0, 2π)∪ [0, 2π)× [4π/3, 4π/3+α]
}

(5.3)
for α ∈ {π/16, π/8, 3π/16, π/4, 5π/16, 3π/8}, as shown in the Figure 5.2 (center). In our second
test, we consider a less structured non-observable part

Ω2(α) :=
{(( cosϕ

sinϕ

)
,
( cosϑ

sinϑ

)) ∣∣∣ (ϕ, ϑ) ∈ [π/3, π/3+α]× [0, π]∪ [4π/3, 4π/3+α]× [π, 2π)

∪ [(3π − β)/2, (3π + β)/2]× [(π − β)/2, (π + β)/2]
}

(5.4)

for β :=
√
α(2π − α) and α ∈ {π/16, π/8, 3π/16, π/4, 5π/16, 3π/8}, as shown in Figure 5.2

(right). Here, the parameter α controls the area of the non-observable sets, which coincide for
same values of α,

|Ω1(α)|
4π2

=
|Ω2(α)|

4π2
=

α(4π − α)

4π2
∈ {6%, 12%, 18%, 23%, 29%, 34%} .

We simulate the associated far field operators using a Nyström method as outlined in Example 2.6
with L = 256, and we add 5% complex valued uniformly distributed additive relative error.

To solve the far field operator completion problem using the least squares approach in The-
orem 4.2, we assume that the dashed circle in Figure 5.2 to be known a priori, i.e., N = 9.
For the `1 × `1 approach (without splitting) we use µ = 10−3 for the Lagrange parameter. We
evaluate relative reconstruction errors

εrel :=
‖Fq − F̃q‖HS

‖Fq‖HS
and εΩrel :=

‖B − B̃‖HS

‖B‖HS

for the reconstructed far field operator F̃q and for the reconstructed non-observable part B̃. The

least squares `1 × `1-minimization
|Ω|
4π2 εrel εΩrel εrel εΩrel

6% 0.015 0.034 0.044 0.069
12% 0.022 0.049 0.051 0.106
18% 0.065 0.132 0.142 0.289
23% 0.166 0.307 0.250 0.462
29% 0.382 0.637 0.292 0.486
34% 0.621 0.946 0.372 0.566

least squares `1 × `1-minimization
|Ω|
4π2 εrel εΩrel εrel εΩrel

6% 0.059 0.200 0.072 0.225
12% 0.087 0.205 0.150 0.351
18% 0.168 0.332 0.187 0.365
23% 0.167 0.295 0.214 0.375
29% 0.247 0.393 0.283 0.447
34% 0.354 0.516 0.383 0.558

Table 5.2: Relative errors of far field operator completion. Left: Cross-shaped missing data
segment Ω = Ω1. Right: Disconnected missing data segment Ω = Ω2.

results are shown in Table 5.2. The left part of this table corresponds to our first test with the
missing data segment Ω = Ω1, and the right part of this table corresponds to our second test
with Ω = Ω2. In both cases, the relative reconstruction errors are decaying with decaying area
of Ω. The least squares approach yields slightly better reconstructions than the `1×`1 approach.
The two examples show that the quality of the reconstruction not only depends on the area |Ω|
of the missing data segment but also on the geometric structure of Ω. ♦
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Example 5.3. We consider the same setting as in Example 5.2 but now we combine far field
operator splitting and completion and show that this leads to better numerical reconstructions
than those of Example 5.2. For the least squares approach in Theorem 4.5 we assume the dotted
circles in Figure 5.2 (left) to be known a priori, i.e., c1 = (26,−3), c2 = (8,−12), R1 = 3.5 and
R2 = 5. Accordingly, we use N1 = 3 and N2 = 4 in (5.1). For the associated `1×`1 minimization
problem (5.2) we use µ = 10−3 for the Lagrange parameter. Again the data contain 5% complex
valued uniformly distributed additive relative error. We evaluate relative reconstruction errors

εrel :=
‖Fq − F̃q1 − F̃q2 − F̃q1,q2 − F̃q2,q1‖HS

‖Fq‖HS
and εΩrel :=

‖B − B̃‖HS

‖B‖HS

for the reconstructed far field operator F̃q and for the reconstructed non-observable part B̃. The

least squares `1 × `1-minimization
|Ω|
4π2 εrel εΩrel εrel εΩrel

6% 0.014 0.027 0.045 0.074
12% 0.017 0.031 0.048 0.099
18% 0.044 0.088 0.068 0.132
23% 0.059 0.108 0.077 0.137
29% 0.127 0.211 0.089 0.144
34% 0.249 0.379 0.117 0.176

least squares `1 × `1-minimization
|Ω|
4π2 εrel εΩrel εrel εΩrel

6% 0.019 0.058 0.045 0.066
12% 0.043 0.101 0.048 0.084
18% 0.090 0.177 0.059 0.101
23% 0.144 0.254 0.067 0.108
29% 0.248 0.394 0.071 0.104
34% 0.338 0.492 0.090 0.126

Table 5.3: Relative errors of simultaneous far field operator completion and splitting. Left:
Cross-shaped missing data segment Ω = Ω1. Right: Disconnected missing data segment Ω = Ω2.

results are shown in Table 5.3. Again the left part of this table corresponds to our first test with
the missing data segment Ω = Ω1, and the right part of this table corresponds to our second test
with Ω = Ω2 (see Figure 5.2). When comparing the results Table 5.3 and Table 5.2, we find that
combining far field operator completion with far field operator splitting yields more accurate
results. This is due to the fact that N1 + N2 = 7 < 9 = N , where N denotes the parameter
determining the dimension of the space VcN in Example 5.2. Accordingly, sparser representation
are used when combining far field operator completion with far field operator splitting, which
leads to increased stability (see also Theorem 4.5). ♦

Conclusions

Untangling multiple scattering effects to approximate the scattering response of each scatterer
in an ensemble of several scattering objects from scattering data for the whole ensemble is a
basic question in inverse scattering theory. We have developed conditions on how far apart
two scatterers have to be in order to be able to split their far field operator with a reasonable
condition number. Closely related is the question of resolution in inverse scattering, i.e., how far
apart do two scatterers have to be in order to be able to distinguish them in a reconstruction.

We have also discussed the data completion problem to recover missing or corrupted scat-
tering data segments in remote observations. We have established conditions on how large the
area covered by the affected incident or observation directions in the scattering data can be in
order to guarantee that the associated far field operator can be reconstructed with a reasonable
condition number.

For both inverse problems we have seen that these conditions for well-posedness are less
restrictive for scattering problems and associated far field operators than for source problems
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and associated single far field patterns as considered in [29]. In fact, the correlation between
scattered waves corresponding to different incident plane waves improves the stability.
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