
On the mathematical foundation of full

waveform inversion in viscoelastic

vertically transverse isotropic media

Andreas Rieder

CRC Preprint 2024/26 (revised), April 2025

KARLSRUHE INSTITUTE OF TECHNOLOGY

KIT – The Research University in the Helmholtz Association www.kit.edu



Participating universities

Funded by

ISSN 2365-662X

2



ON THE MATHEMATICAL FOUNDATION OF
FULL WAVEFORM INVERSION IN

VISCOELASTIC VERTICALLY TRANSVERSE ISOTROPIC MEDIA

ANDREAS RIEDER

Abstract. We present a mathematical framework for viscoelastic full waveform in-
version (FWI) in vertically transverse isotropic media. FWI can be formulated as
the nonlinear inverse problem of identifying parameters in the underlying attenuating
anisotropic wave equation given partial wave field measurements (seismograms). From
a mathematical point of view, one has to solve an operator equation for the full wave-
form forward operator, which is the corresponding parameter-to-state map. We give
a rigorous definition of this operator, show its Fréchet di!erentiability, and explicitly
characterize the adjoint operator of its Fréchet derivative. Thus, we provide the main
ingredients to implement Newton-type/gradient-based regularization schemes for FWI.
Our approach can be directly applied to other concepts of anisotropy.

1. Introduction

In seismic imaging we explore the earth’s subsurface. The goal is to determine material
parameters, such as the directional variations of velocities of compression and shear waves
as well as their attenuations, from partial measurements of wave fields, which have been
excited by artificial or natural sources. Here, full waveform inversion (FWI) refers to
the corresponding fully nonlinear inverse and ill-posed problem involving the complete
parameter-to-state map of the underlying wave propagation model without any further
simplifications.

Accurate mathematical models describing the physics of wave propagation are essential
to the success of FWI. Since most real rock formations exhibit a directional dependence
of wave velocities and attenuation, the resulting anisotropic e!ects must be taken into
account, as has been demonstrated by, e.g., [16, 18, 20]. The most realistic model to
date is the viscoleastic wave equation with an anisotropic material law. Several such
material laws have been described in the literature modeling various real-world media,
see [5] for an overview. As an example, we will limit our analysis to the widely used
Vertical Transverse Isotropy (VTI) [22], which involves rotational symmetry about the
vertical axis and accounts for anisotropy caused by thin horizontal layers.
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2 A. RIEDER

Since VTI media are characterized by three dimensionless parameters, the Thomsen
parameters, FWI in the viscoelastic regime under VTI anisotropy entails the reconstruc-
tion of 11 parameter functions, which are in general spatially dependent: bulk density,
the vertical velocities of the P- and S-wave, Thomsen parameters, and 5 scaling factors,
which specify the attenuation anisotropy. In this work, we rigorously define the corre-
sponding nonlinear operator ” : D(”) → L→(D)11 ↑ W as the parameter-to-state map
of the governing wave equation, where D(”) is the admissible parameter set and W is
a suitable Hilbert space containing the wave fields. Evaluating ”(m) for a given pa-
rameter vector m means solving the wave equation, which we formulate as a first-order
hyperbolic system and show to fit the abstract form studied in [15]. Thus, we can ex-
plicitly provide the Fréchet derivative ”↑(m) ↓ L

(
L→(D)11,W

)
1 and its adjoint operator

”↑(m)↓ ↓ L
(
W, (L→(D)11)↑

)
, which are the central building blocks for most FWI solvers

relying on local linearizations, see, e.g., [4, 8, 17, 24].
The paper is organized as follows. In the next section we discuss the elastic wave equa-

tion for VTI media, where we recall the main results of [22] and introduce our notation.
Furthermore, we give a sound mathematical formulation of the sti!ness tensor, which is
the basis for all subsequent considerations. Then we add viscosity to the elastic wave
equation in Section 3, introducing damping tensors through a slight variation of the gen-
eralized standard linear solid rheology due to [25]. Here, we also show that the resulting
viscoelastic anisotropic wave equation can be rewritten in an abstract hyperbolic evolu-
tion equation as studied in [15]. So we immediately obtain well-posedness and regularity
(Theorem 3.1). Based on this well-posedness, in Section 4 we define the corresponding
parameter-to-state map ” and formulate the inverse problem of FWI, which is locally
ill-posed everywhere. Finally, we prove Fréchet di!erentiability of ” (Theorem 4.2) and
express explicitly the adjoint operator of the Fréchet derivative (Theorem 4.6). In the
last section, we conclude with a brief comment on other anisotropy concepts and the
two-dimensional situation.

2. The elastic wave equation for VTI media

Let D → R3 be a Lipschitz domain. Denoting the velocity by v : [0,↔)↗D ↑ R3 and
the stress by ω : [0,↔)↗D ↑ R3↔3

sym
, the elastic wave equation for VTI media reads

ω εtv = divω + f in [0,↔)↗D,(1a)

εtω = C ε(v) in [0,↔)↗D,(1b)

where f denotes the external volume force density and ω : D ↑ (0,↔) is the mass density.
Further,

ε(v) =
1

2

[
(↘xv)

↗ +↘xv
]

is the linearized strain rate.
The linear map C : R3↔3

sym
↑ R3↔3

sym
implements Hooke’s law and is given in the Voigt

notation by

(2) C = T(c3,3, c5,5, c1,1, c6,6, c1,3)
↗

1Throughout L(Y, Z) denotes the space of bounded linear operators between normed vector spaces Y
and Z. Further, L(Y ) := L(Y, Y ).
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where T ↓ L
(
R5,L(R3↔3

sym
)
)
is the tensor-valued map

T(t3,3, t5,5, t1,1, t6,6, t1,3)
↗ :=





t1,1 t1,1 ≃ 2t6,6 t1,3 0 0 0

t1,1 ≃ 2t6,6 t1,1 t1,3 0 0 0

t1,3 t1,3 t3,3 0 0 0

0 0 0 t5,5 0 0

0 0 0 0 t5,5 0

0 0 0 0 0 t6,6





.

The 5 independent real-valued entries of C are determined to describe layered media
that are isotropic in the x1-x2-plane and anisotropic in all other planes containing the
x3-direction. These media are called vertically transverse isotropic (VTI). In this work,
we express the entries of C by the dimensionless Thomsen parameters ϑ, ϖ, and ϱ, as well
as vp and vs, which are the P- and S-wave velocities along the x3-direction, respectively,
see, e.g., [5, Chap. 1.2.1]. To model inhomogeneous material, these 5 quantities, like
the mass density ω, are real-valued functions on D, with both velocities attaining only
positive values.

The content of the next two paragraphs is basically taken from Thomsen [22]. In VTI
media the velocities of plane waves are directional dependent and, for weak anisotropy,
are approximated in terms of the Thomsen parameters by

vp(ς) = vp
(
1 + ϖ sin2(ς) cos2(ς) + ϑ sin4(ς)

)
,

vSV(ς) = vs
(
1 +

v2
p

v2
s

(ϑ≃ ϖ) sin2(ς) cos2(ς)
)
,

vSH(ς) = vs
(
1 + ϱ sin2(ς)

)
,

where ς is the angle between the x3-axis and the direction of wave propagation. The oc-
currence of shear-wave splitting is the most reliable evidence for the presence of anisotropy.

Figure 1 shows the directional variation of P- and S-waves in Mesaverde shale and
Biotite crystal. The P-wave velocity increases monotonically towards the horizontal di-
rection. The S-wave velocity depends on the polarity: horizontally polarized S-waves
(SH) are fastest in the horizontal direction, whereas vertically polarized S-waves (SV)
have the maximum velocity at about ς = φ/4. Observe that for the Biotite crystal there
are directions of propagation where both S-waves travel faster than the P-wave.

We introduce the P- and S-wave moduli M2 and µ, which are connected to the P- and
S-wave velocities by

(3) M = ω v2
p

and µ = ω v2
s
.

The relations of the Thomsen parameters and the entries of C are

ϑ =
c1,1 ≃ c3,3

2c3,3
, ϖ =

(c1,3 + c5,5)2 ≃ (c3,3 ≃ c5,5)2

2c3,3(c3,3 ≃ c5,5)
, ϱ =

c6,6 ≃ c5,5
2c5,5

.

Additionally,

(4a) c3,3 = M, c5,5 = µ,

2We have that M = K + 4µ/3, where K is the bulk modulus.
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Figure 1. Approximations to P- and S-wave phase velocities for two homo-
geneous media. The angle ω ↓ [0,ε/2] denotes direction of wave propagation
relative to the vertical axes.
Left: Mesaverde shale at a depth of 3.9km with vp = 3749m/s, vs = 2621m/s,
ϑ = 0.128, ϖ = 0.1, and ϱ = 0.078.
Right: Biotite crystal with vp = 4054m/s, vs = 1341m/s, ϑ = 0.1222, ϖ = 6.12,
and ϱ = ≃0.388.

The numerical values for both materials are taken from [22].

yielding

c1,1 = (2ϑ+ 1)M, c6,6 = (2ϱ + 1)µ,

c1,3 = ≃µ±
√

(M ≃ µ)
(
(2ϖ + 1)M ≃ µ

)
,

(4b)

provided the radicand defining c1,3 is non-negative. This is actually a restriction on ϖ:
since M > µ (see explanation below following (5)) we must have that 2ϖ + 1 ⇐ µ/M .

To resolve the ambiguity of which sign to choose in front of the square root in c1,3, we
consider the case ϖ = 0 and choose the plus sign: we get c1,3 = M ≃ 2µ = ↼, which is the
(first) Lamé coe#cient, and this happens to be the physically meaningful case.

The parameters are further subject to the following restrictions which guarantee the
positive definiteness of C as a 6↗ 6 matrix (all principal minors are positive):

M > 0, µ > 0, 2ϑ+ 1 > 0, 2ϱ + 1 > 0, 2ϖ + 1 ⇐ µ

M
,

M

µ
>

2ϱ + 1

2ϑ+ 1
,(5a)

(
(2ϑ+ 1)M ≃ (2ϱ + 1)µ

)
M >

(√
(M ≃ µ)

(
(2ϖ + 1)M ≃ µ

)
≃ µ

)2

.(5b)

Observe that (2ϑ+1)M≃(2ϱ+1)µ > 0 by the lower bound onM/µ. Setting ϑ = ϖ = ϱ = 0
in (5b) yields 3M > 4µ (or 3v2

p
> 4v2

s
, in particular vp > vs) which indicates that

compression waves travel significantly faster than shear waves in isotropic media.

Remark 2.1. In this remark we comment further on the physical aspects of the conditions

in (5). As already mentioned above, they originate from the positive definiteness of the

Hooke tensor C. This property of C is a physical requirement so that the strain-energy

volume density
1

2

∑
i,j(Cε(u))i,jϑ(u)i,j attains its minimum at zero strain state (u =

0) and always increases when the medium is deformed. As far as the author knows,
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the resulting condition vp >
√

4/3 vs is satisfied for real material.
3

Therefore, we can

conclude by continuity that (5) holds for natural materials and small absolute values of

the Thomsen parameters. Most of the measured parameters listed in [22] have rather small

absolute magnitudes (in relation to M/µ), so it seems that they satisfy (5) (samples taken

have confirmed this conjecture, for example both sets of values reported in the caption of

Figure 1). A full physical interpretation of the parameters is beyond the scope of the

present work. In a nutshell, they have the following meaning: ϑ describes the level of

P-wave anisotropy, ϱ the level of SH-wave anisotropy, and ϖ the level of P-wave moveout

anisotropy; for all details we refer to the Section ”Weak Anisotropy” of [22, Page 1957 !]
and to [23, Section 1.2.2].

Finally, the inequalities in (5) are invariant under the same positive scaling of M and

m. This was to be expected since the validity of (5) should be independent of the physical

units in which the P- and S-wave moduli are expressed. Consequently, we may replace M
and µ by v2

p
and v2

s
, respectively.

Sti!ness tensor as a function of the parameters. From here on, we treat the
sti!ness matrix (2) as a mapping taking 5 real values as arguments:

C : D(C) → R5 ↑ L(R3↔3

sym
), q = (q1, q2, q3, q4, q5)

↗ ⇒↑ C(q),

where the entries of C(q) are set in agreement with (3) and (4) (with the plus sign in
front of the root in c1,3):

c1,1(q) = (2q3 + 1) q1, c3,3(q) = q1, c5,5(q) = q2, c6,6(q) = (2q4 + 1) q2,(6a)

c1,3(q) = q2 +
√

(q1 ≃ q2)
(
(2q5 + 1)q1 ≃ q2

) )
.(6b)

Thus, C(q) = T
(
c3,3(q), c5,5(q), c1,1(q), c6,6(q), c1,3(q)

)↗
.

We will define the domain of definition D(C) of C so that it includes material pa-
rameters (M,µ, ϑ, ϱ, ϖ) which satisfy (5). Moreover, D(C) will be compact with an open
interior. To this end, choose q

i
, qi ↓ R with q

i
< qi for i = 1, . . . , 5, where 0 < q

i
, i = 1, 2,

and ≃1/2 < q
i
, 0 < qi, i = 3, 4, 5. Now, with r > 0 define

D(C) :=


q ↓

5↗
i=1

[
q
i
, qi

]
:
q1
q2

⇐ r +max
2q4 + 1

2q3 + 1
,

1

2q5 + 1


,

(
(2q3 + 1)q1 ≃ (2q4 + 1)q2

)
q1 ⇐ r +

(√
(q1 ≃ q2)

(
(2q5 + 1)q1 ≃ q2

)
≃ q2

)2


.

Obviously, D(C) is compact and we can assume a non-empty interior: for instance, in
case of 3q

1
> 4q

2
we fix an r > 0 such that r ⇑ max{(3q

1
≃ 4q

2
)q

2
, q

1
/q

2
≃ 1}. Then,

Q = (q
1
, q

1
)↗(q

2
, q

2
)↗{0}↗{0}↗{0} → D(C). Moreover, by continuity, for each element

in Q there exists a neighborhood which is contained in D(C). Note that the limiting values
q
i
, qi can be adjusted so that D(C) includes the relevant material parameters for a certain

physical setting, see, e.g., Table 1 in [22] for measured anisotropy values in sedimentary
rocks.

3If Poisson’s ratio of the homogeneous material is in [0, 0.5) then vp ⇐
⇓
2 vs >

√
4/3 vs, see, e.g., [11,

(9.30)]. This is the case for many minerals and rock types, see, e.g.,[10, Table 3 and Figure 4].
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One immediate and important consequence of the properties of D(C) is the uniform
positive definiteness of C(q) for q ↓ D(C) (as a 6 ↗ 6 matrix): there are constants
0 < c ⇑ C such that

(7) c|w|2 ⇑ w↗C(q)w ⇑ C|w|2 for any w ↓ R6 uniformly in q ↓ D(C).

Observe that c tends to zero as r ⇔ 0.
Further, C is Fréchet di!erentiable at any q ↓ int

(
D(C)

)
. In fact, for h ↓ R5,

C ↑(q)h ↓ L(R3↔3

sym
) is represented by

C ↑(q)h =





c↑
1,1(q)h (c↑

1,1 ≃ 2c↑
6,6)(q)h c↑

1,3(q)h 0 0 0

(c↑
1,1 ≃ 2c↑

6,6)(q)h c↑
1,1(q)h c↑

1,3(q)h 0 0 0

c↑
1,3(q)h c↑

1,3(q)h h1 0 0 0

0 0 0 h2 0 0

0 0 0 0 h2 0

0 0 0 0 0 c↑
6,6(q)h





(8a)

= T
(
h1, h2, c

↑
1,1(q)h, c

↑
6,6(q)h, c

↑
1,3(q)h

)↗

with

(8b) c↑
1,1(q)h = (2q3 + 1)h1 + 2q1h3, c↑

6,6(q)h = (2q4 + 1)h2 + 2q2h4,

(8c) c↑
1,3(q)h =

(
q1(2q2 + 1)≃ q2(q5 + 1)

)
h1 +

(
q2 ≃ q1(q5 + 1)

)
h2 + q1(q1 ≃ q2)h5√

(q1 ≃ q2)
(
(2q5 + 1)q1 ≃ q2

) ≃ h2.

For q ↓ D(C) the inverse matrix

(9) C(q) := C(q)↘1

exists and is Fréchet di!erentiable in the interior of D(C) according to

(10) C ↑(q)h = ≃ C(q)C ↑(q)h C(q)

for which we have applied the chain rule and the derivative of matrix inversion, see, e.g.,
[6, Example 16.14].

3. Adding viscosity to VTI media

In contrast to elastic materials, viscoelastic materials possess a memory e!ect, whereby
the stress state at a given instant is subject to the cumulative deformation history of the
material [7].

Instead of (1b) we allow a retarded material law

εtω(t, x) = C(0)ε(v(t, x)) +

 t

0

εtC(t≃ s)ε
(
v(s, x)

)
ds, (t, x) ↓ [0,↔)↗D,

where C : [0,↔) ↑ L(R3↔3

sym
) is the time-dependent Hooke tensor.

In the generalized standard linear solid rheology, see, e.g., [21, 1, 19, 9], one defines

C(t) := C(p) +
L

l=1

exp
(
≃ t

tω,l

)
Cu(p, ϑ )
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with relaxation times tω,l > 0, l = 1, . . . , L ↓ N, where p = (M,µ, ϑ, ϱ, ϖ)↗ contains the
material parameters and ϑ := (↽p, ↽s, ↽e, ↽g, ↽d)↗ collects the positive scaling factors of the
respective material parameters. The entries of the tensor Cu(p, ϑ ) ↓ L(R3↔3

sym
) are the

unrelaxed moduli, that is,

(11) Cu(q, ϑ ) := T
(
ϑ ↖ c(q)

)
, c(q) := (c3,3, c5,5, c1,1, c6,6, c1,3)

↗, q ↓ D(C),

where the ci,j’s are functions of q via (6) and the binary operator symbol ↖ denotes
component-wise multiplication.

Following the presentation in [4] and [6, Chap. 1.5], which is based on [25], we introduce
L ↓ N damping tensors ωl : [0,↔)↗D ↑ R3↔3

sym
,

ωl(t) := ωl,0 +

 t

0

exp
(s≃ t

tω,l

)
Cu(p, ϑ )ε

(
v(s)

)
ds, l = 1, . . . , L,

and the corresponding stress decomposition ω = ω0+
∑L

l=1
ωl. This decomposition yields

the first order system for viscoelastic waves in VTI media

⇀ εtv = div
( L

l=0

ωl

)
+ f in [0,↔)↗D,(12a)

εtω0 = C
(
p) ε(v) in [0,↔)↗D,(12b)

tω,l εtωl = tω,l Cu(p, ϑ ) ε(v)≃ ωl, l = 1, . . . , L, in [0,↔)↗D,(12c)

with initial conditions

(12d) v(0) = v0 and ωl(0) = ωl,0, l = 0, . . . , L.

By continuity, we can find bounds 0 < ↽ i ⇑ 1 < ↽ i, i = 1, . . . , 5, such that

(13a) Cu(p, ϑ ) is positive definite and satisfies (7) with adjusted constants

for any ϑ (·) ↓
5↗

i=1

[
↽ i, ↽ i

]
and any p(·) ↓ D(C) a.e. in D.

Further, we require bounds for the bulk density:

(13b) 0 < ωmin ⇑ ω(·) ⇑ ωmax < ↔ a.e. in D.

Under these assumptions, the existence and uniqueness theory for abstract evolution
equations developed in [14, 15] can be applied to (12) when expressed as

(14) Bu↑(t) + (A+BQ)u(t) = f(t), t ↓ [0,↔), u(0) = u0,

where

u(t) = (v(t, ·),ω0(t, ·), . . . ,ωL(t, ·))↗, f(t) = (f(t, ·),0, . . . ,0)↗,
and u0 = (v0,ω0,0, . . . ,ωL,0)

↗.

The operators A, B, and Q are defined on the Hilbert space

X := L2(D,R3)↗ L2(D,R3↔3

sym
)1+L,

which carries the inner product


(v,ω0, . . . ,ωL)

↗, (w,ϖ0, . . . ,ϖl)
↗

X
:=



D

(
v ·w +

L

l=0

ωl : ϖl

)
dx

with the colon denoting the Frobenius inner product on R3↔3.
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For w = (w,ϖ0, . . . ,ϖL)↗ ↓ X we define, recalling (9),

(15) Bw :=





⇀w
C
(
p)ϖ0

Cu

(
p, ϑ )ϖ1

...
Cu

(
p, ϑ )ϖL





and Qw :=





0

0
1

tω,1
ϖ1

...
1

tω,L
ϖL




.

In view of (7), the collection of selfadjoint operators

(16) {B = B(ω,p, ϑ ) : ω,p, ϑ satisfy (13)} → L(X)

is uniformly positive definite and uniformly bounded.
Finally, the di!erential operator

(17a) Aw := ≃





div
(∑L

l=0
ϖl

)

ε(w)
...

ε(w)





is defined on4

(17b) D(A) := H1

0
(D,R3)↗


ω ↓ L2

(
D,R3↔3

sym

)
: divω↓,j ↓ L2(D), j = 1, 2, 3

1+L
.

Within this setting, A : D(A) → X ↑ X is a maximal monotone operator [15, Lem. 4.1].
Now, all assumptions of the abstract framework from [15, Sec. 3] are met and we can

conclude the following well-posedness results for the viscoelastic wave equation in VTI
media.

Theorem 3.1. Assume that p(·) ↓ D(C) a.e. in D. Let (7) and (13) hold.
If (v0,ω0,0, . . . ,ωL,0)↗ ↓ D(A) and f ↓ W 1,1

(
[0,↔), L2(D,R3)

)
, then (12) admits a

unique classical solution (v,ω0, . . . ,ωL)↗ ↓ C([0,↔),D(A)) ↙ C1([0,↔), X).
Under less regularity, (v0,ω0,0, . . . ,ωL,0)↗ ↓ X and f ↓ L1

loc
([0,↔), L2(D,R3)), (12)

admits a unique mild/weak solution (v,ω0, . . . ,ωL)↗ ↓ C([0,↔), X) (see, e.g., [12] for
the definition of mild/weak solutions).

Figure 2 illustrates the e!ects of damped wave propagation under di!erent anisotropies
in two spatial dimensions; see Section 5.2 for the two-dimensional situation.

The frequency dependence of wave propagation in real media about a center frequency
⇁0 is modeled via a constant quality factor Q, which is the ratio of the full energy to
the dissipated energy, see [1]. In this way the relaxations times tω,l = tω,l(⇁0) > 0 are
determined by a least squares method [2, 3]. The frequency-dependent P- and S-wave
moduli are now given by

(18) M =
ω v2

p

1 + ↽pα
and µ =

ω v2
s

1 + ↽sα
with α :=

L

l=1

⇁2

0
t2ω,l

1 + ⇁2

0
t2ω,l

,

replacing (3).

4In our definition of D(A), we impose zero Dirichlet boundary conditions for the velocity on all of
bd(D). However, we could also split the boundary into a part where we have a Dirichlet condition for
the velocity and a part where a Neumann condition applies to the stress, see [15, Sec. 4].

5FDTD: finite di!erence time domain
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Figure 2. Numerical simulations of the vertical component of the particle
velocity excited by a vertical point force in the middle. The snapshots show
P- and SV-waves and the e!ects of attenuation for VTI and tilted transverse
isotropic anisotropy (TTI), which is a rotated version of VTI, see Section 5.1.
The homogeneous anisotropic VTI model is that of Greenhorn shale [13]. In the
TTI model the symmetry axis has been rotated counter-clockwise by the angle
ςv = ε/6. Attenuation is assumed to be isotropic with φp = φs = 0.25 and L = 1.

The simulations were kindly provided by Thomas Bohlen (Geophysical Institute,
KIT) and computed with the FDTD5 code SOFI2D, which is available from
https://gitlab.kit.edu/kit/gpi/ag/software/sofi2d.

4. The inverse problem

Full waveform inversion in VTI media under the viscoelastic regime entails the recon-
struction of the 11 parameter functions ω, ϱ = (vp, vs, ϑ, ϱ, ϖ)↗, and ϑ = (↽p, ↽s, ↽e, ↽g, ↽d)↗

from (partial) wave field measurements.

4.1. The setting. To formulate this seismic inverse problem we need to define the full
waveform forward operator ”. In a first step we introduce the auxiliary operator ” with
domain

D(”) :=

(ω,p, ϑ )↗ ↓ L→(D)11 : (ω,p, ϑ )↗ satisfy (13)


6

according to

” : D(”) → L→(D)11 ↑ L2
(
[0, T ], X), (ω,p, ϑ )↗ ⇒↑ (v,ω0, . . . ,ωL)

↗|[0,T ],

where T > 0 is the observation period and (v,ω0, . . . ,ωL)↗ is the unique classical solution
of (12) for a given f ↓ W 1,1

(
[0,↔), L2(D,R3)

)
and initial values (v0,ω0,0, . . . ,ωL,0)↗ ↓

D(A). This mapping is well defined, see Theorem 3.1.
The final ingredient for ” is the parameter transformation

P : D(P ) → L→(D)11 ↑ L→(D)11,

(p0, p1, p2, . . . , p10)
↗ ⇒↑

(
p0,

p0 p21
1 + αp6

,
p0 p22

1 + αp7
, p3, . . . , p10

)↗
,

where D(P ) = L→(D)6 ↗ T with

T :=

w ↓ L→(D)5 : w(·) ↓

5↗
i=1

[
↽ i, ↽ i

]
a.e. in D


.

6For simplicity, here and later we use (↼,p, ϑ )→ instead of the correct expression (↼,p→, ϑ→)→. Further,
we will write ”(↼,p, ϑ ) for ”((↼,p, ϑ )→) (likewise for other mappings).

https://gitlab.kit.edu/kit/gpi/ag/software/sofi2d
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Note that P implements the change of parameters due to (18):

P (ω, vp, vs, ϑ, ϱ, ϖ, ↽p, ↽s, ↽e, ↽g, ↽d) = (ω,M, µ, ϑ, ϱ, ϖ, ↽p, ↽s, ↽e, ↽g, ↽d)
↗,

in short, P (ω,ϱ, ϑ ) = (ω,p, ϑ )↗.

Remark 4.1. A change in model parameters can be accounted for by adjusting the trans-

formation P .

Now, we define the full waveform forward operator ” := ” ∝P on D(”) := P↘1(D(”)),
the preimage of D(”) under P , by

(19) ” : D(”) → L→(D)11 ↑ L2
(
[0, T ], X), (ω,ϱ, ϑ )↗ ⇒↑ ”

(
P (ω,ϱ, ϑ )

)
.

Since P is continuous, we can ensure, by appropriate choices of ωmin, ωmax, and the limiting
values appearing in the definitions of D(C) and T, that D(”) has a non-empty interior,
which contains all 11 physically relevant parameters (ω,ϱ, ϑ )↗. A more explicit expression
for D(”) is not needed in what follows. It is hard to find anyway and would not gain us
any deeper insight.

For the complete formulation of the inverse problem we model the measurement pro-
cess by the linear seismogram operator S : L2([0, T ], X) ↑ RN , which samples certain
components of

(∑L
l=0

ωl,v
)
at finitely many times in [0, T ] and receiver positions in D

(or at its boundary). Here, N is the number of sample points (time points ↗ number of
receivers). Recall that

∑L
l=0

ωl adds up to the stress ω, some components of which can
actually be observed, unlike the individual ωl’s which have no physical meaning. The
images of S are called seismograms. Now, full waveform inversion (FWI) in VTI media
under the viscoelastic regime consists of solving the nonlinear equation

(20) S”(ω,ϱ, ϑ ) = s

for a given seismogram s ↓ RN .
The inverse problem (20) is locally ill-posed at any parameter point m+ ↓ int

(
D(”)

)

in the following sense: in any neighborhood of m+ there exists a sequence {mk} with

(21) lim
k≃→

′”(mk)≃ ”(m+)′L2([0,T ],X) = 0 but mk ∞↑ m+ in L→(D)11.

The validity of (21) can be shown by reproducing the proof of Theorem 4.3 in [15].

4.2. Di!erentiability and adjoint. The adequate solution of the ill-posed seismic in-
verse problem (20) requires regularization, typically by iterative schemes based on local
linearization. Required ingredients are Fréchet di!erentiability and the adjoint operator
of the Fréchet derivative. We provide both for the full waveform forward operator ”,
where we will rely on the results from [15] for the abstract evolution equation (14).

4.2.1. The derivate. We start by giving the Fréchet derivative of P . For (ω,ϱ, ϑ )↗ ↓ D(P )
and (ω, ϱ, ϑ )↗ ↓ L→(D)11 we have

P ↑(ω,ϱ, ϑ )




ω
ϱ
ϑ



 =


ω,

v2
p

1 + α↽p
ω+ 2ωvp

1 + α↽p
vp ≃

ωv2
p
α

(1 + α↽p)2
↽p,

v2
s

1 + α↽s
ω+ 2ωvs

1 + α↽s
vs ≃

ωv2
s
α

(1 + α↽s)2
↽s, ϑ, ϱ, ϖ, ↽p, ↽s, ↽e, ↽g, ↽d

↗

↓ L→(D)11.
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Further, we di!erentiate B : D(”) → L→(D)11 ↑ L(X), as defined in (15) and (16), to
get

B↑(ω,p, ϑ )




ω
p
ϑ









w
ϖ0

...
ϖL



 =





ωw
C ↑(p)pϖ0

C ↑
u
(p, ϑ )


p
ϑ


ϖ1

...

C ↑
u
(p, ϑ )


p
ϑ


ϖL





↓ X

for (w,ϖ0, . . . ,ϖL)↗ ↓ X where, by analogy to (10),

(22) C ↑
u
(p, ϑ )


p
ϑ


= ≃ Cu(p, ϑ )C

↑
u
(p, ϑ )


p
ϑ


Cu(p, ϑ ).

In view of (11) we get by the chain rule and the linearity of T that

(23a) C ↑
u
(p, ϑ )


p
ϑ


= T

(
ϑ ↖ c(p) + ϑ ↖ c↑(p)p

)
= Cu(p, ϑ ) +T

(
ϑ ↖ c↑(p)p

)

with, see (8),

(23b) c↑(p)p =
(
p1, p2, c↑1,1(p)p, c↑6,6(p)p, c↑1,3(p)p

)↗
.

Finally, we compose B and P to obtain

(24) V := B ∝ P : D(”) → L→(D)11 ↑ L(X), V (ω,ϱ, ϑ ) = B(P (ω,ϱ, ϑ )).

By the chain rule,

V ↑(ω,ϱ, ϑ )




ω
ϱ
ϑ









w
ϖ0

...
ϖL



 = B↑(P (ω,ϱ, ϑ ))P ↑(ω,ϱ, ϑ )




ω
ϱ
ϑ









w
ϖ0

...
ϖL



(25)

=





ωw
C ↑(p)pω ϖ0

C ↑
u
(p, ϑ )


pω

ϑ


ϖ1

...

C ↑
u
(p, ϑ )


pω

ϑ


ϖL





with the following abbreviations

(26a) p = (M,µ, ϑ, ϱ, ϖ)↗, pω = (pω,1, pω,2, ϑ, ϱ, ϖ)↗,

and

(26b) pω,1 =
M

ω
ω+ 2M

vp
vp ≃

αM

1 + α↽p
↽p, pω,2 =

µ

ω
ω+ 2µ

vs
vs ≃

αµ

1 + α↽s
↽s.

After this preparatory work, we can state the derivative of the full waveform forward
operator ” as defined in (19).



12 A. RIEDER

Theorem 4.2. Under the assumptions of this section, the full waveform forward operator

” is Fréchet di!erentiable at any interior point (ω,ϱ, ϑ )↗ of D(”):

For (ω, ϱ, ϑ )↗ ↓ L→(D)11 we have ”↑(ω,ϱ, ϑ )




ω
ϱ
ϑ



 = u where u = (v,ω0, . . . ,ωL)↗ ↓

C([0, T ], X) with u(0) = 0 is the mild solution of

ω εtv = div
( L

l=0

ωl

)
≃ ω εtv,(27a)

εtω0 = C(p)ϑ(v) +C ↑(p)pω ϑ(v),(27b)

εtωl = Cu(p, ϑ )ϑ(v)(27c)

≃ 1

↽ω,l
ωl +C ↑

u
(p, ϑ )


pω

ϑ


ϑ(v), l = 1, . . . , L,

where v ↓ H1

0
(D,R3) is the first component of the classical solution of (12), p, pω, C ↑

,

and C ↑
u
are defined in (26), (8), and (23), respectively.

For the proof of the theorem above we quote Theorem 3.2 from [15] which applies to
the parameter-to-solution map F with respect to (14):

F : D(F ) → L↓(X) ↑ C([0, T ], X), B ⇒↑ u,

where

D(F ) =

B ↓ L↓(X) : β↘′x′2X ⇑ ∈Bx, x∋X ⇑ β+′x′2X



for given 0 < β↘ < β+ < ↔ and L↓(X) = {J ↓ L(X) : J↓ = J}.

Theorem 4.3. Let T > 0, f ↓ W 1,1
(
[0, T ], X

)
, and u0 ↓ D(A). Then, F is Fréchet

differentiable at B ↓ int
(
D(F )

)
with F ↑(B)H = u, H ↓ L↓(X), where u ↓ C

(
[0, T ], X

)

is the mild solution of

Bu↑(t) + Au(t) + BQu(t) = ≃H
(
u↑(t) +Qu(t)

)
, t ↓ [0, T ], u(0) = 0,

with u = F (B) being the classical solution of (14).

Proof of Theorem 4.2. By an appropriate choice of β↘ and β+, V from (24) maps D(”)

into D(F ). Then, ”↑(ω,ϱ, ϑ )




ω
ϱ
ϑ



 = F ↑(V (ω,ϱ, ϑ ))V ↑(ω,ϱ, ϑ )




ω
ϱ
ϑ



 and an application of
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Theorem 4.3 with H = V ↑(ω,p, ϑ )




ω
p
ϑ



 yields





ω εtv
C(p)εtω0

Cu(p, ϑ )εtω1

...
Cu(p, ϑ )εtωL





=





div
(∑L

l=0
ωl

)

ε(v)
...

ε(v)




≃





0

0
1

εω,1

Cu(p, ϑ )ω1

...
1

εω,L

Cu(p, ϑ )ωL





≃ V ↑(ω,ϱ, ϑ )




ω
ϱ
ϑ













εtv

εtω0

εtω1

...

εtωL




+





0

0
1

εω,1
ω1

...
1

εω,L
ωL









which can be casted into (27) by (25), (22) and (12b), (12c). ↭

4.2.2. The adjoint. We will derive a rather explicit expression for the adjoint operator of
”↑(ω,ϱ, ϑ ), which requires some preparation. Again, we build upon an abstract result of
[15, Thm. 3.3], which we quote below for completeness.

Theorem 4.4. Under the notation and assumptions of Theorem 4.3 we have

(28)
[
F ↑(B)↓g

]
H =

 T

0


H(u↑(t) +Qu(t)), w(t)


X
dt, g ↓ L2([0, T ], X), H ↓ L↓(X),

where w ↓ C([0, T ], X) is the mild solution of the adjoint evolution equation

(29) Bw↑(t)≃ A↓w(t)≃Q↓Bw(t) = g(t), t ↓ [0, T ], w(T ) = 0.

To apply the abstract formulation to our concrete setting, it will be convenient to
express the Fréchet derivative (8) of C as the sum

(30) C ↑(q)h =
5

j=1

hjC
↑
j(q) with C ↑

j(q) = C ↑(q)ej,= T
(
c↑(p)ej

)
,

where ej ↓ R5 is the j-th canonical unit vector and the meaning of c↑(p)ej is given in
(23b). For instance,

(31) C ↑
1
(q) = T(1, 0, 2q3 + 1, 0, t1,3)

↗ with t1,3 =
q1(2q2 + 1)≃ q2(q5 + 1)√
(q1 ≃ q2)

(
(2q5 + 1)q1 ≃ q2

) .

Similarly we decompose

C(q)
(11)

= T
(
c3,3(q), c5,5(q), c1,1(q), c6,6(q), c1,3(q)

)↗
=

5

j=1

Cj(q)(32)

where C1(q) = T
(
c3,3(q)e1

)
, C2(q) = T

(
c5,5(q)e2

)
, and so on.
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For a compact notation, we finally introduce the definitions

Di(q, t) := C ↑
i(q) Cu(q, t) and Ei(q, t) := Ci(q) Cu(q, t)

for q ↓ D(C), t ↓ T, i = 1, . . . , 5.

Note that Cu(q,1) = C(q) for 1 = (1, 1, 1, 1, 1).

Remark 4.5. In principle, the matrix inverse Cu(q, t) = Cu(q, t)↘1
can be expressed

explicitly in terms of the entries of Cu(q, t) since only the two 3 ↗ 3 diagonal blocks of

Cu(q, t) have to be inverted.

We are now ready to state and prove the proposed adjoint operator of ”↑.

Theorem 4.6. Let the assumptions of Theorem 4.2 hold. Then, the adjoint

”↑(ω,ϱ, ϑ )↓ ↓ L
(
L2([0, T ], X), (L→(D)11)↑

)

at (ω,ϱ, ϑ )↗ ↓ D(”) is given by

(33) ”↑(ω,ϱ, ϑ )↓g = ≃





∫ T

0

(
1

ϑ ε(v) : ”
ϑ ≃ εtv ·w

)
dt

2M
vp

∫ T

0
ε(v) : ”ε

1
(↽p) dt

2µ
vs

∫ T

0
ε(v) : ”ε

2
(↽s) dt

∫ T

0
ε(v) : ”ε

3
(↽e) dt

∫ T

0
ε(v) : ”ε

4
(↽g) dt

∫ T

0
ε(v) : ”ε

5
(↽d) dt

∫ T

0
ε(v) :

(
”ϑ

1
≃ ϖM

1+ϖεp
”ε

1
(↽p)

)
dt

∫ T

0
ε(v) :

(
”ϑ

2
≃ ϖµ

1+ϖεs
”ε

2
(↽s)

)
dt

∫ T

0
ε(v) : ”ϑ

3
dt

∫ T

0
ε(v) : ”ϑ

4
dt

∫ T

0
ε(v) : ”ϑ

5
dt





↓ L1(D)11

for g = (g↘1, g0, . . . , gL)↗ ↓ L2
(
[0, T ], L2(D,R3) ↗ L2(D,R3↔3

sym
)1+L

)
, where v is the first

component of the solution of (12),

”ϑ =
(
M D1(p,1) + µD2(p,1)

)
ς0 +

(
M↽p D1(p, ϑ ) + µ↽s D2(p, ϑ )

) L

l=1

ςl,

”ε
i (▷) = Di(p,1)ς0 + ▷Di(p, ϑ )

L

l=1

ςl, ▷ ↓ R, ”ϑ
i = Ei(p, ϑ )

L

l=1

ςl, i = 1, . . . , 5,



ON THE MATHEMATICS OF FWI IN VISCOELASTIC VTI MEDIA 15

and w = (w,ς0, . . . ,ςL)↗ ↓ C([0, T ], X) uniquely solves the adjoint state equation

εtw =
1

ω
div

( L

l=0

ςl

)
+

1

ω
g↘1,(34a)

εtς0 = C(p)
(
ε(w) + g0

)
,(34b)

εtςl = Cu(p, ϑ )
(
ε(w) + gl

)
+

1

tω,l
ςl, l = 1, . . . , L,(34c)

with end condition w(T ) = 0.

As a product of two L2(D) functions, each component of the right-hand side of (33) is
actually a function in L1(D) which is a subspace of L→(D)↑.

Proof of Theorem 4.6. Since the operators from (15) and (17) satisfy A↓ = ≃A, Q↓ = Q,
and QB = BQ, we observe that (34) is (29) when formulated for viscoelastic VTI media.
Moreover, by (28),

〈
”↑(ω,ϱ, ϑ )↓g,




ω
ϱ
ϑ




〉

(L→(D)11)↑↔L→(D)11

=

〈
F ↑(V (ω,ϱ, ϑ )

)↓
g, V ↑(ω,ϱ, ϑ )




ω
ϱ
ϑ




〉

L(X)↑↔L(X)

=

 T

0

〈
V ↑(ω,ϱ, ϑ )




ω
ϱ
ϑ



(
u↑(t) +Qu(t)

)
, w(t)

〉

X

dt,

where u = (v,ω0, . . . ,ωL)↗ is the classical solution of (12).
With (25), the integrand can be evaluated to yield

〈
V ↑(ω,ϱ, ϑ )




ω
ϱ
ϑ



(
u↑ +Qu

)
, w

〉

X

=



D

[
ω εtv ·w + C ↑(p)pωεtω0 : ς0

+
L

l=1

C ↑
u
(p, ϑ )


pω

ϑ

(
εtωl +

ωl

tω,l

)
: ςl

]
dx.

We continue to evaluate the terms of the integrand. By (10) and the selfadjointness of
the involved tensors with respect to the Frobenius inner product, we get

C ↑(p)pωεtω0 : ς0 = ≃C ↑(p)pω
C(p)εtω0 : C(p)ς0

(12b)

= ≃C ↑(p)pωε(v) : C(p)ς0.

We apply (30) with (26) to the term on the right. Then,

C ↑(p)pωεtω0 : ς0 = ≃
[(M

ω
ω+ 2M

vp
vp ≃

αM

1 + α↽p
↽p
)
C ↑

1
(p)

+
(µ
ω
ω+ 2µ

vs
vs ≃

αµ

1 + α↽s
↽s
)
C ↑

2
(p) + ϑC ↑

3
(p) + ϱC ↑

4
(p) + ϖC ↑

5
(p)

]
ε(v) : C(p)ς0,
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which we regroup into

C ↑(p)pωεtω0 : ς0 = ≃
[
ω
(M
ω
ε(v) : D1(p,1)ς0 +

µ

ω
ε(v) : D2(p,1)ς0

)

+ vp
(2M

vp
ε(v) : D1(p,1)ς0

)
+ vs

(2µ
vs

ε(v) : D2(p,1)ς0

)

+ ϑ
(
ε(v) : D3(p,1)ς0

)
+ ϱ

(
ε(v) : D4(p,1)ς0

)
+ ϖ

(
ε(v) : D5(p,1)ς0

)

≃ ↽p
( αM

1 + α↽p
ε(v) : D1(p,1)ς0

)
≃ ↽s

( αµ

1 + α↽s
ε(v) : D2(p,1)ς0

)]
.

Now we consider

C ↑
u
(p, ϑ )


pω

ϑ

(
εtωl +

ωl

tω,l

)
: ςl = ≃C ↑

u
(p, ϑ )


pω

ϑ


Cu(p, ϑ )

(
εtωl +

ωl

tω,l

)
: Cu(p, ϑ )ςl

(23),(12c)
= ≃Cu(p, ϑ )ε(v) : Cu(p, ϑ )ςl ≃T

(
ϑ ↖ c↑(p)pω

)
ε(v) : Cu(p, ϑ )ςl.

We can handle T
(
ϑ ↖ c↑(p)pω

)
ε(v) : Cu(p, ϑ )ςl by analogy with C ↑(p)pωε(v) : C(p)ς0

from above. Thus,

T
(
ϑ ↖ c↑(p)pω

)
ε(v) : Cu(p, ϑ )ςl = ω

(M↽p
ω

ε(v) : D1(p, ϑ )ςl +
µ↽s
ω

ε(v) : D2(p, ϑ )ςl

)

+ vp
(2M↽p

vp
ε(v) : D1(p, ϑ )ςl

)
+ vs

(2µ↽s
vs

ε(v) : D2(p, ϑ )ςl

)

+ ϑ
(
↽eε(v) : D3(p, ϑ )ςl

)
+ ϱ

(
↽gε(v) : D4(p, ϑ )ςl

)
+ ϖ

(
↽dε(v) : D5(p, ϑ )ςl

)

≃ ↽p
( αM↽p
1 + α↽p

ε(v) : D1(p, ϑ )ςl

)
≃ ↽s

( αµ↽s
1 + α↽s

ε(v) : D2(p, ϑ )ςl

)
.

Using (11) and (32) we get

Cu(p, ϑ )ε(v) : Cu(p, ϑ )ςl = ↽p
(
ε(v) : E1(p, ϑ )ςl

)
+ ↽s

(
ε(v) : E2(p, ϑ )ςl

)

+ ↽e
(
ε(v) : E3(p, ϑ )ςl

)
+ ↽g

(
ε(v) : E4(p, ϑ )ςl

)
+ ↽d

(
ε(v) : E5(p, ϑ )ςl

)
.

By these evaluations we find that

〈
V ↑(ω,ϱ, ϑ )




ω
ϱ
ϑ



(
u↑ +Qu

)
, w

〉

X

=



D

[
ω
(
εtv ·w ≃ 1

ω
ε(v) : ”ϑ

)
≃ vp

(2M
vp

ε(v) : ”ε
1
(↽p)

)
≃ vs

(2µ
vs

ε(v) : ”ε
2
(↽s)

)

≃ ϑ
(
ε(v) : ”ε

3
(↽e)

)
≃ ϱ

(
ε(v) : ”ε

4
(↽g)

)
≃ ϖ

(
ε(v) : ”ε

5
(↽d)

)

+ ↽p
(
ε(v) :

(
”ϑ

1
≃ αM

1 + α↽p
”ε

1
(↽p)

))
+ ↽s

(
ε(v) :

(
”ϑ

2
≃ αµ

1 + α↽s
”ε

2
(↽s)

))

≃ ↽e
(
ε(v) : ”ϑ

3

)
≃ ↽g

(
ε(v) : ”ϑ

4

)
≃ ↽d

(
ε(v) : ”ϑ

5

)]
dx.

Integrating both sides in time from 0 to T and changing the order of integration leads to
the stated expression for ”↑(ω,ϱ, ϑ )↓g. ↭
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Remark 4.7. We point out that the tensors Ci(p) and C ↑
i(p) being part of Ei(p, ϑ ) and

Di(p, ϑ ), respectively, can be further decomposed into linear combinations of the 5 basis

tensors T(ei), i = 1, . . . , 5. Then, only the scalars in front of the basis tensors depend

on the material parameters. For instance,

C4(p)
(32)

= c6,6(p)T(e4) = (2ϱ + 1)µT(e4)

and

C ↑
1
(p)

(31)

= T(e1) + (2ϑ+ 1)T(e3) +
M(2µ+ 1)≃ µ(ϖ + 1)√
(M ≃ µ)

(
(2ϖ + 1)M ≃ µ

) T(e5).

For a compact and clearer presentation of the previous theorem, we have dispensed with

this granular decomposition.

5. Concluding remarks

5.1. Other anisotropic media. The techniques to obtain the Fréchet derivative and
its adjoint for the viscoelastic FWI forward operator, which we have demonstrated in the
previous sections, transfer to the corresponding operators for other anisotropic media,
such as tilted transverse isotropic (TTI) and monoclinic media, see, e.g., [5]. In a TTI
medium, for example, the vertical rotational symmetry axis of the VTI medium is tilted
by the angles ◁v and ◁h in the vertical x1-x3-plane and the horizontal x1-x2-plane, re-
spectively. In such a way, TTI media model the tilt of strata due to tectonic movement.
The corresponding sti!ness tensor can be obtained from the VTI tensor by a local rota-
tion O(◁v, ◁h) (Bond transformation, see, e.g., [5]), that is, the tilt angles are spatially
dependent functions and

CTTI

u
(p, ϑ , ◁v, ◁h) = O(◁v, ◁h)Cu(p, ϑ )O(◁v, ◁h)

↗.

Hence, three-dimensional FWI in attenuating TTI media inverts for 13 parameter func-
tions. See [18] for a two-dimensional example, however, without attenuation.

5.2. The two-dimensional case. Our results include the two-dimensional situation as
well. We only need to set the partial derivatives of the stress components with respect
to x2 in (12) to zero. Then the wave equation decomposes into two independent systems
describing the P/SV case and the SH case. For instance, the sti!ness tensor for the P/SV
case is the 3↗ 3 matrix

C =




c1,1 c1,3 0

c1,3 c3,3 0

0 0 c5,5



 ,

whose entries are still given by (4). Horizontally polarized S-waves occur only in the SH
case, where the sti!ness tensor is the 2↗ 2 diagonal matrix with entries c6,6 and c5,5.
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