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A MULTISCALE APPROACH TO THE STATIONARY GINZBURG–LANDAU

EQUATIONS OF SUPERCONDUCTIVITY

CHRISTIAN DÖDING, BENJAMIN DÖRICH, AND PATRICK HENNING

Abstract. In this work, we study the numerical approximation of minimizers of the Ginzburg–

Landau free energy, a common model to describe the behavior of superconductors under magnetic
fields. The unknowns are the order parameter, which characterizes the density of superconduct-

ing charge carriers, and the magnetic vector potential, which allows to deduce the magnetic

field that penetrates the superconductor. Physically important and numerically challenging are
especially settings which involve lattices of quantized vortices which can be formed in materials

with a large Ginzburg–Landau parameter κ. In particular, κ introduces a severe mesh resolution

condition for numerical approximations. In order to reduce these computational restrictions, we
investigate a particular discretization which is based on mixed meshes where we apply a La-

grange finite element approach for the vector potential and a localized orthogonal decomposition

(LOD) approach for the order parameter. We justify the proposed method by a rigorous a-priori
error analysis (in L2 and H1) in which we keep track of the influence of κ in all error contri-

butions. This allows us to conclude κ-dependent resolution conditions for the various meshes

and which only impose moderate practical constraints compared to a conventional finite element
discretization. Finally, our theoretical findings are illustrated by numerical experiments.

1. Introduction

In most materials the flow of an electric current is countered with an electric resistance which
leads to a loss in energy. Materials with no electrical resistance, usually referred to as supercon-
ductors, are rare in nature, but open up a large variety of possible applications. To consider a
mathematical model for superconductivity, we let Ω ⊂ R3 denote a cuboid which is occupied by
the superconducting material. The superconductivity itself is described by a complex-valued wave
function u : Ω → C which is called the order parameter. Though not a physical observable on its
own, we can extract from u the density of the superconducting electron pairs |u|2. This density is
real-valued and can be observed in physical experiments. In fact, the scaling in the corresponding
models enforces 0 ≤ |u|2 ≤ 1, where |u(x)|2 = 0 implies that the material is not superconducting
(in normal state) in x ∈ Ω and |u(x)|2 = 1 implies a perfect superconductor, locally in x. In
between, the percentage of superconducting charge carriers might drop to a value between 0 and
1. In these mixed normal-superconducting states, both phases can coexist in a so-called Abrikosov
vortex lattice [1] with |u(x)|2 = 0 in the vortex centers. These kind of configurations can only
occur for so-called type-II superconductors when a sufficiently strong (but not too strong) external
magnetic field H is applied. In fact, in mixed normal-superconducting states, the magnetic field
partially penetrates the superconducting material. In this paper, we focus on exactly these kind
of settings.

Considering such a situation, the relevant order parameter and the unknown internal magnetic
field can be characterized as minimzers of the so-called Ginzburg–Landau (GL) free energy (cf.
[24, Sec. 3]), which is given by

EGL(u,A) :=
1

2

∫
Ω

| i
κ
∇u+Au|2 + 1

2

(
1− |u|2

)2
+ | curlA−H|2 dx.(1.1)
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Here, H is a given external magnetic field and κ ∈ R+ is a material parameter, often called the
Ginzburg–Landau parameter. The unknown A denotes the magnetic vector potential, from which
we can obtain the internal magnetic field given by curlA. In fact, besides the density |u|2, the
magnetic field curlA is the second physical quantity of interest. Recalling that we are interested in
vortex states, it is important to note that the size of the parameter κ determines the structure of
the vortex lattice [53–56]. In particular, for small values of κ, no vortices will appear, whereas with
increasing κ, the number of vortices grows and they become more localized [2,53]. Thus, the regime
of large values of κ is the physically most interesting regime accompanied by many challenges for
its numerical approximation. The phenomenon is also closely related to the appearance of vortices
in superfluids [22].

First results on the numerical approximation of minimizers to (1.1) were obtained in the pioneering
works by Du, Gunzburger and Peterson [24, 25] who derived H1-error estimates in finite element
(FE) spaces for both the order parameter u and the magnetic vector potential A. Even though
estimates of optimal convergence order could be provided in a (joint) mesh parameter H, the proof
techniques could not take into account the precise role of κ and how it affects potential constraints
on the mesh size for u and A respectively. An error analysis for alternative discretizations based
on a covolume method [27] or a finite volume method [26] can be also found in the literature.
However, both works only establish convergence, but no rates in H and κ.

First error estimates that are indeed explicit with respect to κ and the mesh size H were recently
obtained in [18] for a finite element discretization of (1.1), however, in a simplified setting where
the vector potential A was assumed to be given and the minimization of the energy only involved
u. In this case, the last term in (1.1) can be dropped. In the aforementioned work, it was found
that the mesh size H needs to fulfill a resolution condition of at least H ≲ κ−1 to obtain reliable
approximations. Even more, the error estimates indicated a pre-asymptotic convergence regime,
subject to a second resolution condition that depends on the strength of local convexity of EGL in
a neighborhood of a minimizer, i.e., on the smallest eigenvalues of E′′

GL(u). In fact, the numerical
experiments indicated that this resolution condition is not an artifact of the analysis, but FE
spaces with too coarse meshes are not able to capture the correct vortex patterns, which leads to
significant practical constraints.

To overcome these constraints it was suggested in [18] to use a discretization based on Localized
Orthogonal Decomposition (LOD). This idea was later realized in [8] (still in the setting of given
A). The LOD is a numerical homogenization technique designed by Målqvist and Peterseim [50]
to tackle elliptic multiscale problems. In the last decade it was generalized multiple times and
applied to a large variety of different problems, were we exemplary refer to [16,17,29,31,37,38,41,
45,47–49,52,58] and the reference therein, as well as to the reviews given in [3] and [51]. Applying
the LOD to approximate minimizers of the Ginzburg–Landau energy can be motivated with its
fast convergence under comparably weak regularity assumptions. This is achieved by constructing
an approximation space (the LOD space) that contains problem-specific information, in particular
it is based on κ and A. A comprehensive error analysis of the resulting method was given in [8],
revealing that the κ-dependent resolution conditions can be indeed relaxed with this strategy and
correct vortex patters could be computed on rather coarse meshes. Furthermore, the locality for
the LOD shape functions was quantified, where it was found that approximate shape functions with
a diameter of order O(log(Hκ)H) are sufficient to preserve the overall approximation properties
of the ideal LOD method. However, in the aforementioned work the LOD spaces were computed
in an offline phase and the error analysis was only carried out for the simplified energy under the
assumption that the vector potential A is a-priori known and not part of the minimization process.

Turning to the full problem (1.1), one would naively try and use an LOD approach on both u andA.
However, this is computationally extremely expensive and, as one can see from our error analysis
and numerical experiments, there is typically no need for a fine resolution of the vector potential
A. This motivates one of the main questions of this work: What are suitable, possibly different
discretizations of the pair (u,A) such that we can achieve high convergence rates under possibly
low regularity assumptions and weak resolution conditions and can we quantify the corresponding
error if different ansatz spaces are used for u and A? The key in the error analysis of [18] was a
detailed a-priori analysis of the continuous and discrete minimizers in order to obtain bounds which
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are sharp in their κ-scaling. Following this approach, we generalize these techniques and derive
bounds for continuous and discrete minimizers which are explicit in κ. Most notably, we show that
the bounds on u in Sobolev norms depend on κ whereas the bounds onA up to its second derivative
are independent of κ, which resembles the simpler structure of A even in large κ-regimes. Denoting
by H and h the spatial mesh size of the discrete spaces for u and A respectively, our error bounds
allow us to extract optimal coupling conditions between H and h depending on the polynomial
degree of the FE space and the parameter κ. The main challenge is the intrinsic coupling of u and
A within the energy and the Fréchet derivatives. Here, again it turned out to be crucial to work
with appropriately scaled norms for both quantities in order to derive sharp estimates in κ. Also
in the error analysis we need to carefully balance the distribution of regularity and integrability in
our estimates such that no superfluous powers of κ enter the final error bounds. Our experiments
then indeed confirm that these bounds are optimal with one minor exception. In our theory, the
H3-norm of A is expected to grow linearly in κ which is not visible in the experiments. To us it
remains open whether this is an artifact of the analysis or other examples could support our theory.
We note that we chose Ω as a cuboid to obtain all necessary regularity estimates in a rigorous way
even without assuming a smooth boundary.

Finally, let us mention that there has also been a lot of work on the time-dependent Ginzburg–
Landau equations which typically has a gradient flow structure and which is used to describe the
dynamics within a superconductor. Corresponding numerical methods, convergence results and
error estimates can be for example found in [5–7, 13, 14, 19–21, 23, 28, 32, 33, 42–44, 46] and the
references therein. To the best of our knowledge, questions regarding vortex-resolution conditions
depending on κ and A have not yet been studied in the time-dependent case. Due to the different
nature of the time-dependent problem, we will not discuss the equation any further here.

The rest of the paper is organized as follows: In Section 2, we introduce the analytical framework
and present several results on a-priori bounds and the regularity of the continuous minimizers.
Furthermore, we discuss the gauge conditions and study the resulting properties of the Fréchet
derivatives. The core findings of our paper are stated in Section 3. Here we present the construction
of LOD spaces in our problem setting together with our corresponding main results. The main
results are proved step by step in the sections after. First, in Section 4, we provide further
analytical findings which are crucial for the later error estimates. An abstract error analysis is then
established in Section 5. Finally, the abstract results are applied in Section 6 to the considered LOD
discretization and we give the corresponding proofs to our main results. Numerical experiments
which illustrate our theoretical findings are shown in Section 7. The regularity theory and technical
computations are postponed to the Appendices A and B.

Notation. For a complex number z ∈ C, we use z∗ for the complex conjugate of z. In the
whole paper we further denote by L2(Ω) := L2(Ω,C) the Hilbert space of L2-integrable com-
plex functions, but equipped with the real scalar product m(u, v) := Re

∫
Ω
v w∗ dx for v, w ∈

L2(Ω). Hence, we interpret the space as a real Hilbert space. Analogously, we equip the space
H1(Ω) := H1(Ω,C), which will be the solution space for the order parameter, with the scalar
product m(v, w) +m(∇v,∇w). This interpretation is crucial so that the Fréchet derivatives of E
are meaningful and exist on H1(Ω). For any space X, we denote its dual space by X ′. Note that
this implies, that the elements of the dual space of H1 consist of real-linear functionals, which are
not necessarily complex-linear. For example, if F (v) := m(f, v) for some f ∈ L2(Ω), then it holds
F (α v) = αF (v) if α ∈ R, but in general not if α ∈ C.

For the real-valued vector potentials, we use boldface letters and denote L2(Ω) := L2(Ω;R3) and
H1(Ω) := H1(Ω;R3). Note that functions in H1(Ω) are complex-valued, whereas functions in
H1(Ω) are real-valued. Analogously, we transfer the notation to higher order Sobolev spaces, i.e.,
Hk(Ω) := Hk(Ω;C) and Hk(Ω) := Hk(Ω;R3) for k ∈ N0. Further, we use the standard spaces
for the weak rotation and divergence, i.e., H(curl) = H(curl,Ω) and H(div) = H(div,Ω), both for
real-valued functions.

Throughout the paper C denotes a generic constant which is independent of κ and the spatial mesh
parameters H and h, but might depend on numerical constants as well as Ω and H. In particular,
we write α ≲ β if there is a constant C independent of κ, H and h such that α ≤ C β.
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2. Analytical framework

In the following, recall that Ω ⊂ R3 denotes the computational domain which we assume to be
a rectangular cuboid. For the naturally appearing boundary conditions of minimizers as well as
the gauging process, we additionally introduce the subspace of H1(Ω) of functions with vanishing
normal trace as

H1
n(Ω) := {B ∈ H1(Ω) | B · ν|∂Ω = 0 }.(2.1)

Among all order parameters u ∈ H1(Ω) and vector potentials A ∈ H1(Ω), we are interested in
finding a pair that minimizes the Ginzburg–Landau free energy in (1.1) with a given external
magnetic field H ∈ H(curl) and a material parameter κ ∈ R+. In this setting, we seek (u,A) ∈
H1(Ω)×H1(Ω) such that

EGL(u,A) = inf
(v,B)∈H1(Ω)×H1(Ω)

EGL(v,B).

It is well known that minimizers cannot be unique since the GL energy functional EGL is invariant
under certain gauge transformations [24]. To be precise, for any (real-valued) ϕ ∈ H2(Ω;R) we
define the corresponding gauge transformation Gϕ : H1(Ω)×H1(Ω) → H1(Ω)×H1(Ω) by

Gϕ(u,A) := (u eiκϕ,A+∇ϕ).(2.2)

It is easily checked that EGL is gauge invariant in the sense that

EGL(u,A) = EGL(Gϕ(u,A) ) for all (u, ϕ,A) ∈ H1(Ω)×H2(Ω)×H1(Ω).

Hence, if (u,A) is a minimizer, then Gϕ(u,A) is a minimizer, too. For smooth domains, it can be
shown that any pair (u,A) ∈ H1(Ω)×H1(Ω) is gauge equivalent to a pair (v,B) ∈ H1(Ω)×H1(Ω)
where the corresponding vector potential B is divergence-free and has a vanishing normal trace, cf.
[24, Lemma 3.1]. To be precise, let ϕ ∈ H1(Ω;R) denote the zero-average solution to the Poisson
problem −∆ϕ = −divA with inhomogeneous Neumann boundary condition ∇ϕ · ν|∂Ω = A · ν|∂Ω,
then it holds ϕ ∈ H2(Ω;R) (this follows by combining the results of [36, Theorem 3.2.1.3] and
[35, Lemma 3.7 and Theorem 3.9] and by decomposing ϕ accordingly into an affine contribution, a
solution to a homogeneous Poisson problem with inhomogeneous Neumann boundary condition and
a solution to an inhomogeneous Poisson problem with homogeneous Neumann boundary condition).
With this, we have Gϕ(u,A) ∈ H1(Ω)×H1

n,div(Ω) where

H1
n,div(Ω) := {B ∈ H1(Ω) | divB = 0 and B · ν|∂Ω = 0 }.

As a direct conclusion, we can, without loss of generality, restrict the minimization of EGL to
functions in H1(Ω)×H1

n,div(Ω). This corresponds to the Coulomb gauge of the vector potentials.
Furthermore, if we restrict the vector potentials to divergence-free functions then they are only
gauge equivalent to itself. In particular, if (u,A), (v,B) ∈ H1(Ω)×H1

n,div(Ω), then

Gϕ(u,A) = (v,B) ⇐⇒ A = B and v = u eiκϕ for ϕ ∈ R.

This equivalence is easily seen by the observation that if divA = 0 and div(A+∇ϕ) = divB = 0,
then ∆ϕ = 0 with ∇ϕ · ν = A · ν = 0 on ∂Ω, hence, ϕ must be a constant and the gauge transform
reduces to Gϕ(u,A) = (u eiκϕ,A) on H1(Ω)×H1

n,div(Ω). Since minimization over divergence-free
functions can be cumbersome in practice, the energy can be stabilized by a penalty term that
depends on the divergence of a vector field. We therefore define

(2.3) E(u,A) := EGL(u,A) +
1

2

∫
Ω

|divA|2 dx

and observe that any minimizer of E must be also a minimizer of EGL and, vice versa, any minimizer
of EGL is gauge-equivalent to a minimizer of E for which divA = 0 holds. In the following, we
can therefore restrict our analysis to the minimization of the stabilized energy E. The existence
of minimizers was proved by Du et al. [24] and we have the following result.

Theorem 2.1 ([24, Thm. 3.8]). There exists at least one minimizer of the energy (2.3), i.e., there
is (u,A) ∈ H1(Ω)×H1

n(Ω) such that

(u,A) = argmin
(v,B)∈H1(Ω)×H1

n(Ω)

E(v,B).(2.4)
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In particular, for any minimizer (u,A) the vector potential A satisfies divA = 0, and thus also
minimizes (1.1).

The result remains valid for external fields H ∈ L2(Ω).

As discussed above, the modification of the energy functional from EGL to E restricts the gauge
transforms to divergence-free vector fields, which in turn implies that the gauge transformsGϕ(u,A)
in (2.2) are only admissible if ϕ is a constant real number. Consequently, we call (u,A) ∈
H1(Ω)×H1

n(Ω) gauge equivalent to (v,B) ∈ H1(Ω)×H1
n(Ω) for E, if and only if A = B and

v = u eiω for some ω ∈ [−π, π).(2.5)

Note that ω corresponds to κϕ in (2.2).

2.1. Fréchet derivatives and stability bounds. Crucial components of our error analysis are
the derivatives of the energy and corresponding first- and second-order conditions for minimizers.
In the following, we start with summarizing the arising Fréchet derivatives of E, where we refer to
[24, Section 3.3].

Lemma 2.2. Let E denote the energy functional given by (2.3), then E is (infinitely) Fréchet
differentiable where, for any (u,A) ∈ H1(Ω)×H1

n(Ω), the first partial derivatives

∂uE(u,A) : H1(Ω) → R and ∂AE(u,A) : H1
n(Ω) → R

are respectively given by

∂uE(u,A)φ = Re

∫
Ω

( i
κ
∇u+Au

)
·
( i
κ
∇φ+Aφ

)∗
+

(
|u|2 − 1

)
uφ∗ dx,

∂AE(u,A)B =

∫
Ω

|u|2A ·B+
1

κ
Re

(
iu∗∇u ·B

)
+ curlA · curlB+ divA · divB−H · curlBdx

for φ ∈ H1(Ω) and B ∈ H1
n(Ω).

The first order conditions for minimizers (cf. [10]) imply E′(u,A) = 0 if (u,A) fulfils (2.4). By
splitting E′(u,A) into ∂uE(u,A) and ∂AE(u,A) we obtain the Ginzburg–Landau equations. For
readability, we highlight this observation in the following lemma.

Lemma 2.3 (Ginzburg–Landau equations). Let (u,A) ∈ H1(Ω) × H1
n(Ω) be a minimizer of

problem (2.4). Then, it holds ∂uE(u,A) = 0 and ∂AE(u,A) = 0. By expressing these identities in
variational form, we obtain that (u,A) ∈ H1(Ω)×H1

n(Ω) solves the Ginzburg–Landau equations

Re

∫
Ω

( i
κ
∇u+Au

)
·
( i
κ
∇φ+Aφ

)∗
+

(
|u|2 − 1

)
uφ∗ dx = 0,∫

Ω

|u|2A ·B+
1

κ
Re

(
iu∗∇u ·B

)
+ curlA · curlB+ divA · divB−H · curlBdx = 0,

for all φ ∈ H1(Ω) and B ∈ H1
n(Ω).

Next, we turn to the second partial Fréchet derivatives of E which we later require for second order
minimality conditions. The second derivatives of E are given as follows.

Lemma 2.4. Let E be given by (2.3). For (u,A) ∈ H1(Ω) ×H1
n(Ω) we denote the second order

partial Fréchet derivatives by

⟨∂2uE(u,A) · , φ⟩ :=
∂

∂u
(∂uE(u,A)φ) : H1(Ω) → R,

⟨∂A,uE(u,A) · ,B⟩ :=
∂

∂u
(∂AE(u,A)B) : H1(Ω) → R,

⟨∂u,AE(u,A) · , φ⟩ :=
∂

∂A
(∂uE(u,A)φ) : H1

n(Ω) → R,

⟨∂2AE(u,A) · ,B⟩ :=
∂

∂A
(∂AE(u,A)B) : H1

n(Ω) → R,
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where φ ∈ H1(Ω) and B ∈ H1
n(Ω). The derivatives are given by

⟨∂2uE(u,A)ψ,φ⟩ = Re

∫
Ω

( i
κ
∇φ+Aφ

)
·
( i
κ
∇ψ +Aψ

)∗
+

(
|u|2 − 1

)
φψ∗ + u2φ∗ψ∗ + |u|2φψ∗ dx,

⟨∂2AE(u,A)B,C⟩ =
∫
Ω

|u|2C ·B+ curlC · curlB+ divC · divBdx,

⟨∂u,AE(u,A)B, φ⟩ =
∫
Ω

2Re(uφ∗)A ·B+
1

κ
Re

(
iu∗∇φ+ iφ∗∇u

)
·Bdx

and ⟨∂u,AE(u,A)B, φ⟩ = ⟨∂A,uE(u,A)φ,B⟩.

The proof follows with straightforward calculations.

In order to quantify the κ-dependencies in our error estimates, we also require suitable stability
estimates for the minimzers (u,A) of the energy (2.3). For this, we use the following κ-weighted
norms throughout the paper:

||φ||2H1
κ

= κ−2||∇φ||2L2 + ||φ||2L2 , ||φ||2H2
κ

= κ−2||∇φ||2H1
κ
+ ||φ||2L2 ,(2.6a)

||B||2H1 = ||B||2L2 + ||∇B||2L2 , ||B||2H2 = ||D2B||2L2 + ||B||2H1 .(2.6b)

Here we formally define the norms that involve derivatives of the (vector-valued) functions B as

||∇B||2L2 =
3∑

i,k=1

||∂xi
Bj ||2L2 and ||D2B||2L2 =

3∑
i,j,k=1

||∂xixj
Bk||2L2 .

Lemma 2.5 (Stability bounds). Let (u,A) ∈ H1(Ω)×H1
n(Ω) be a minimizer of problem (2.4) in

Theorem 2.1. Then, the following stability bounds hold

|u| ≤ 1 a.e., || 1κ∇u||L2 ≲ ||u||L2 + ||Au||L2 , ||u||H1
κ
≲ 1 + ||H||L2 , ||A||H1 ≲ 1 + ||H||L2 .

Proof. The pointwise bound ||u||L∞ ≤ 1 is shown in [24, Prop. 3.11]. Next, note that

E(0,0) = 1
2 vol(Ω) +

1
2 ||H||2L2 ,

and thus for any minimizer it holds

|| curlA−H||2L2 + ||divA||2L2 ≲ 1 + ||H||2L2 .

At the same time, basic manipulations give us

|| curlA||2L2 ≲ || curlA−H||2L2 + ||H||2L2 .

Combining the two estimates yields || curlA||L2 + || divA||L2 ≲ 1+ ||H||L2 . Using [35, Lemma 3.6]
gives the L2 bound, and [35, Theorem 3.9] the H1 bound on A.

Further, we obtain with |u| ≤ 1 the estimate

|| 1κ∇u||L2 ≤ || 1κ∇u+ iAu||L2 + ||Au||L2 ≲ 1 + ||H||L2 + ||A||L2 ≲ 1 + ||H||L2 .

It remains to prove the second estimate, which we obtain with Lemma 2.3 as∫
Ω

| iκ∇u+Au|2 dx =

∫
Ω

(1− |u|2) |u|2 dx ≤ ∥u∥2L2 .

The estimate now follows with || 1κ∇u||L2 ≤ || 1κ∇u+ iAu||L2 + ||Au||L2 ≤ ∥u∥L2 + ||Au||L2 . □

2.2. Higher order regularity of the minimizers. Next, we will investigate the higher order
regularity of minimizers together with corresponding κ-explicit regularity bounds.

Concerning the vector potential A, we can characterize it as the solution U ∈ H1
n,div(Ω) to a

problem of the following form

(2.7a)

∫
Ω

curlU · curlB dx =

∫
Ω

F ·B+H · curlBdx, for all B ∈ H1
n(Ω) ,

where F ∈ L2(Ω;R3) can be read of Lemma 2.3. Problem (2.7a) corresponds to the weak form of

(2.7b) ∆U = F+ curlH, U · ν|∂Ω = 0, curlU× ν|∂Ω = H× ν|∂Ω.
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For simplicity, we restrict ourselves from now on to homogeneous boundary conditions for the
external magnetic field, i.e., following [24], we assume H ∈ H(curl) with the (well-defined) traces

H× ν|∂Ω = 0 ,(2.8a)

curlH · ν|∂Ω = 0 .(2.8b)

The regularity of solutions to problem (2.7a) is presented in the following theorem. The first part
is a direct consequence of [40, Lemma 3.7]. The proof of the second part is given in Appendix A.

Theorem 2.6. Let U ∈ H1
n,div(Ω) be the solution of (2.7a) with F ∈ L2(Ω;R3).

(a) If H satisfies (2.8a), then U ∈ H2(Ω) with

||U||H2 ≲ ||F||L2 + || curlH||L2 .

(b) If in addition curlH ∈ H1(Ω) satisfies (2.8b) and F · ν|∂Ω = 0, then U ∈ H3(Ω) with

||U||H3 ≲ ||F||H1 + || curlH||H1 .

The hidden constants only depend on the domain Ω.

Remark 2.7. (a) If Ω is a general polyhedral domain instead of a cube, similar results are available
in Section 4.4 of [15] if the boundary conditions in (2.7b) are replaced by U × ν = divU = 0 on
∂Ω.

(b) Relaxing the condition (2.8) is a delicate issue. To do so, we assume divH = 0 and need to
find a smooth vector potential V such that

curlV = H, divV = 0, V · ν|∂Ω = 0

holds. Then, one can replace A by A−V and one is in the situation of (2.7) with H = 0. However,
the results for convex polyhedral domains [35, Thm. 3.5] only yield some V ∈ H1(Ω). To derive the
same regularity as in Theorem 2.6, we would require higher regularity of V in H2(Ω) or H3(Ω),
respectively, but this is beyond the scope of the present paper.

For our proofs, we also require higher order regularity for the order parameter. In order to obtain
it, we will make use of the following auxiliary result which we prove in Appendix A.

Lemma 2.8. Let Ω ⊂ R3 denote a cuboid and let f ∈ H1(Ω). If u ∈ H1(Ω) solves the Neumann
problem

−∆u = f in Ω and ∇u · ν|∂Ω = 0,

then it holds u ∈ H3(Ω) with ∥u∥H3(Ω) ≲ ∥u∥L2(Ω) + ∥f∥H1(Ω). Furthermore, if f ∈ Lp(Ω) for
some 1 < p <∞, then there exists a constant Cp > 0 (depending on Ω and p), such that

∥u∥W 2,p(Ω) ≤ Cp (∥u∥Lp(Ω) + ∥f∥Lp(Ω)).

Here, ∥ · ∥W 2,p denotes the usual W 2,p-norm on Ω with ∥u∥W 2,p :=
∑

|α|≤2

∥Dαu∥Lp(Ω).

With Theorem 2.6 and Lemma 2.8, we can conclude the H2-bounds on the vector potential A and
the order parameter u.

Corollary 2.9. Let (u,A) ∈ H1(Ω)×H1
n(Ω) be a minimizer of problem (2.4).

(a) Then A ∈ H2(Ω) with

||A||H2 ≲ 1 + ||H||L2 + || curlH||L2

and constants independent of κ. Note that the estimate implies a L∞-bound for A. Furthermore,

together with the second inequality in Lemma 2.5 this yields
∥u∥H1

κ

∥u∥L2
≲ 1 + ||H||L2 + || curlH||L2 .

(b) Then u ∈ H2(Ω) with

||u||H2
κ
≲

(
1 + ||H||L2 + || curlH||L2

)2
and || 1κ∇u||L4 ≲ 1(2.9)

and constants independent of κ.
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Proof. (a) Since A is a minimizer, it holds ∂AE(u,A)B = 0 for all B ∈ H1
n(Ω), and hence by

Lemma 2.2∫
Ω

curlA · curlB+ divA · divB dx = −
∫
Ω

|u|2A ·B+
1

κ
Re

(
iu∗∇u ·B

)
+H · curlB dx .

Since divA = 0, Theorem 2.6 (a) together with the estimates in Lemma 2.5 yield the desired
regularity and a-priori estimate for A.

(b) We follow the lines of the proof in [18, Theorem 2.2], and only have to establish the H2-bound.
We exploit ∂uE(u,A)φ = 0 for all φ ∈ H1(Ω) to obtain that the minimizer u satisfies

Re

∫
Ω

∇u · ∇φ∗ dx = m(f, φ), with f = −κ2(|u|2 − 1)u− 2iκA∇u− κ2|A|2u .

The Sobolev embedding H2(Ω) ↪→ L∞(Ω) for A, the estimates in part (a), and Lemma 2.5 imply

||f ||L2 ≲ κ2(1 + ||H||L2 + || curlH||L2)2

which yields the H2-bound. □

In order to prove optimal order convergence rates for our numerical approximations of u and A,
we need to establish H3-regularity for both unknowns including corresponding regularity estimates
that are explicit with respect to κ. This is done in the following lemma.

Lemma 2.10. We consider a minimizer (u,A) ∈ H1(Ω) × H1
n(Ω) of problem (2.4) and assume

that curlH ∈ H1(Ω).

(a) It holds A ∈ H3(Ω) and the estimate

||A||H3 ≲ κ

(with a hidden constant independent of κ).

(b) It holds u ∈ H3(Ω) and u ∈W 2,p(Ω) for any 1 < p <∞ with

||u||H3 ≲ κ3, ||u||W 2,p ≲ Cp κ
2 and ||u||W 1,p ≲ Cp κ,(2.10)

where Cp > 0 depends on p and can be different for W 1,p and W 2,p.

Proof. (a) We aim to employ Theorem 2.6 and proceed as in Corollary 2.9 by estimating

|||u|2A+
1

κ
Re

(
iu∗∇u

)
+ curlH||H1

≲ ||A||H1 + ||∇u||L2 ||A||L∞ +
1

κ
||∇u||2L4 +

1

κ
||u||H2 + || curlH||H1 ≲ κ .

The boundary conditions for A and u yield that in the notation of the theorem F · ν|∂Ω = 0 holds
and with (2.8b) the statement follows form Theorem 2.6.

(b) Using Lemma 2.5, we only need to bound f from the proof of Corollary 2.9 in the H1-norm.
Here we obtain with the results from Lemma 2.5 and Corollary 2.9 that

||f ||H1 ≲ ||κ2(|u|2 − 1)u− 2iκA∇u− κ2|A|2u||H1

≲ κ2||u||H1 + κ||A||L4 ||∇u||L4 + κ||A||L∞ ||u||H2 + κ2||A||2L∞ ||u||H1 + κ2||A||2H2 ≲ κ3.

Next, we use the second part of Lemma 2.5 with

||f ||L4 ≲ κ2 + κ||A||L∞ ||∇u||L4 + κ2||A||2L∞ ||u||L∞ ≲ κ2

to conclude that for any 1 < p ≤ 4 we have

∥u∥W 2,p ≲ ||f ||L4 + ||u||L4 ≤ κ2.

Next, we consider ∥u∥W 1,8 for which we obtain

∥∇u∥8L8 =

∫
Ω

∇u · ∇u∗|∇u|6 dx
∇u·ν|∂Ω=0

= −
∫
Ω

u div(∇u∗|∇u|6) dx

Hölder

≲ ∥u∥L∞∥∇u∥6L8 ∥u∥W 2,4 ≲ ∥∇u∥6L8 κ2.
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We conclude ∥∇u∥L8 ≲ κ. With this regularity estimate at hand, we can return to f to see that
∥f∥L8 ≲ κ2 and hence, with Lemma 2.5, ∥u∥W 2,8 ≲ κ2. It becomes apparent that the argument
can be repeated recursively to obtain ∥∇u∥Lp ≲ κ and ∥u∥W 2,p ≲ κ2 for any 1 < p < ∞. For
example, assume that ∥∇u∥Lq ≲ κ holds for some q ≥ 2, then ∥f∥Lq ≲ κ2 and consequently
∥u∥W 2,q ≲ κ2. With this, we have in turn

∥∇u∥2qL2q = −
∫
Ω

u div(∇u∗|∇u|2q−2) dx ≲ ∥u∥L∞∥ |∇u|2q−2∥L2q/(2q−2) ∥u∥W 2,q

= ∥u∥L∞∥∇u∥2q−2
L2q ∥u∥W 2,q ≲ ∥∇u∥2q−2

L2q κ2 ⇒ ∥∇u∥L2q ≲ κ.

We can repeat with 2q. Note however that the hidden constants in the above estimates can
potentially explode for p→ ∞ and we cannot conclude that the estimates hold for p = ∞. □

2.3. Kernel in the second Fréchet derivative E′′. In this section, we want to specify second
order conditions for our minimizers.

Recalling the results of Lemma 2.4, the second Fréchet derivative of E in (u,A) ∈ H1(Ω)×H1
n(Ω)

is given by

⟨E′′(u,A)(φ,B), (ψ,C)⟩
= ⟨∂2uE(u,A)φ,ψ⟩+ ⟨∂u,AE(u,A)C, φ⟩+ ⟨∂u,AE(u,A)B, ψ⟩+ ⟨∂2AE(u,A)B,C⟩

= Re

∫
Ω

( i
κ
∇ψ +Aψ

)
·
( i
κ
∇φ+Aφ

)∗
+
(
|u|2 − 1

)
ψφ∗ + u2ψ∗φ∗ + |u|2ψφ∗ dx

+

∫
Ω

2Re(uφ∗)A ·C+
1

κ
Re

(
iu∗∇φ+ iφ∗∇u

)
·Cdx

+

∫
Ω

2Re(uψ∗)A ·B+
1

κ
Re

(
iu∗∇ψ + iψ∗∇u

)
·Bdx

+

∫
Ω

|u|2C ·B+ curlC · curlB+ divC · divBdx(2.11)

for (φ,B), (ψ,C) ∈ H1(Ω)×H1
n(Ω).

Lemma 2.11. Let (u,A) ∈ H1(Ω)×H1
n(Ω) be a minimizer of (2.4). Then, it holds

⟨E′′(u,A)(iu,0), (ψ,C)⟩ = 0

for all (ψ,C) ∈ H1(Ω)×H1
n(Ω). Thus, E′′(u,A) is singular and cannot be coercive.

Proof. Using (2.11), we have by linearity that the terms with B = 0 vanish and thus obtain

⟨E′′(u,A)(iu,0), (ψ,C)⟩
= ⟨∂2uE(u,A)iu, ψ⟩+ ⟨∂u,AE(u,A)C, iu⟩+ ⟨∂u,AE(u,A)0, ψ⟩+ ⟨∂2AE(u,A)0,C⟩
= ⟨∂2uE(u,A)iu, ψ⟩+ ⟨∂u,AE(u,A)C, iu⟩.

Further, we conclude from Lemma 2.3 and the fact that iu is still a minimizer that we have
⟨∂uE(iu,A), ψ⟩ = 0. Using Lemmas 2.2 and 2.4, this implies

⟨∂2uE(u,A)iu, ψ⟩ = ⟨∂uE(iu,A), ψ⟩+Re

∫
Ω

u2(iu)∗ψ∗ + |u|2iuψ∗ dx = 0.

Since we also have

⟨∂u,AE(u,A)C, iu⟩ =
∫
Ω

2Re(−i|u|2)A ·C− 1

κ
Re

(
−u∗∇u+ u∗∇u

)
·Cdx = 0,

the claim follows. □

Lemma 2.11 can be interpreted through smooth curves γ(t) in H1(Ω) × H1
n(Ω). If the curve is

locally (in a neighborhood of t = 0) of the form γ(t) := (ueiωt,A) for fixed a minimizer (u,A) ∈
H1(Ω)×H1

n(Ω) and for some ω ∈ R \ {0}, then, due to the gauge invariance of E under complex
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phase shifts of u (cf. (2.5)), we have E( γ(t) ) ≡ const in a neighborhood of t = 0. Together with
γ′(0) = ω(iu,0) and Lemma 2.3, we conclude

0 = d
2

d2tE( γ(t) )|t=0 = ⟨E′′(γ(0)) γ′(0), γ′(0)⟩+ E′(γ(0)) γ′′(0) = ω2⟨E′′(u,A) (iu,0), (iu,0)⟩.
In other words, (iu,0) is an eigenfunction of E′′(u,A) with eigenvalue 0, which immediately implies
the statement of Lemma 2.11. Furthermore, if all other eigenvalues of E′′(u,A) are positive,
then this implies that (iu,0) is the only direction for a curve γ(t) with γ(0) = (u,A) such that
d
2

d2tE( γ(t) )|t=0 = 0. If this is fulfilled, then (u,A) is an isolated minimizer of E up to the gauge
transformations (2.5), i.e., it is locally quasi-unique.

With these thoughts, we consider the orthogonal complement of (iu,0) which is given by the space

(iu)⊥ ×H1
n(Ω), with (iu)⊥ := {φ ∈ H1(Ω) | Re

∫
Ω

iuψ∗ dx = 0}

and define “local quasi-uniqueness” of minimizers by assuming that the spectrum of E′′(u,A) is
positive on (iu)⊥×H1

n(Ω). This is fixed in Definition 2.12 below. Note that E′′(u,A) cannot have
negative eigenvalues since this implies the existence of a direction in which the energy E is further
reduced, which would contradict the assumption that (u,A) is a minimizer of E. The definition
below summarizes the above discussion and follows [18, Definition 2.4].

Definition 2.12 (Local quasi-uniqueness). Let

((φ,B), (ψ,C))L2×L2 := Re

∫
Ω

φψ∗ dx+

∫
Ω

B ·Cdx.

We call a minimizer (u,A) ∈ H1(Ω)×H1
n(Ω) of (2.4) locally quasi-unique if E′′(u,A) has positive

spectrum on (iu)⊥ ×H1
n(Ω), i.e., if (φj ,Bj) ∈ H1(Ω)×H1

n(Ω) is an eigenfunction with eigenvalue
λj ∈ R such that

⟨E′′(u,A)(φj ,Bj), (ψ,C)⟩ = λj ((φj ,Bj), (ψ,C))L2×L2

for all (ψ,C) ∈ H1(Ω)×H1
n(Ω), then λj ≥ 0 for all j ∈ N and λj = 0 if and only if ϕj ∈ span{iu}

and Bj = 0.

For the final error estimates we assume that the minimizers are locally quasi-unique in the sense
of the above definition. Whenever we need the assumption it will be explicitly mentioned in the
corresponding result.

Assumption 2.13. The minimizers (u,A) of the Ginzburg–Landau energy (2.3) are locally quasi-
unique in the sense of Definition 2.12.

For locally quasi-unique minimizers we have coercivity of E′′(u,A) on (iu)⊥ ×H1
n(Ω).

Proposition 2.14. Let (u,A) be a minimizer of (2.3) that is locally quasi-unique in the sense of
Definition 2.12. Then the second Fréchet derivative E′′(u,A) is coercive on (iu)⊥ ×H1

n(Ω), i.e.,
there exists a constant Csol(u,A, κ) > 0 such that

⟨E′′(u,A)(φ,B), (φ,B)⟩ ≥ Csol(u,A, κ)
−1||(φ,B)||2H1

κ×H1 , for all (φ,B) ∈ (iu)⊥ ×H1
n(Ω)

where ||(φ,B)||2H1
κ×H1 := ||φ||2H1

κ
+ ||B||2H1 . Furthermore, it holds

|⟨E′′(u,A)(φ,B), (ψ,C)⟩| ≲ ||(φ,B)||H1
κ×H1 ||(ψ,C)||H1

κ×H1

for all (φ,B), (ψ,C) ∈ H1(Ω)×H1
n(Ω) and with a constant independent of κ.

In general, the dependence of Csol(u,A, κ) on κ is unknown and we are not aware of any analytical
results. However, numerical experiments indicate that Csol(u,A, κ) ∼ κα with α ≥ 1 on rectangular
domains, cf. [8, 18]. Hence, the coercivity constant degenerates with growing κ.

Proof. We proceed along the lines of [18, Proposition 2.6]. The local quasi-uniqueness (Definition
2.12) guarantees the existence of the second-smallest eigenvalue λ2 > 0 of E′′(u,A) such that

⟨E′′(u,A)(φ,B), (φ,B)⟩ ≥ λ2||(φ,B)||2L2×L2(2.12)
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for all (φ,B) ∈ (iu)⊥ ×H1
n(Ω). On the other hand, we can use (2.11) together with the identity

Re((uφ∗)2 + |u|2|φ|2) = 2(Re(uφ∗))2 to obtain

⟨E′′(u,A)(φ,B), (φ,B)⟩ =

∫
Ω

| iκ∇φ+Aφ|2 +
(
|u|2 − 1

)
|φ|2 + 2Re(uφ∗)2 dx

+

∫
Ω

4Re(uφ∗)A ·B+ 2
κ Re

(
iu∗∇φ+ iφ∗∇u

)
·Bdx+

∫
Ω

|u|2|B|2 + | curlB|2 + |divB|2 dx.

Since | iκ∇φ+Aφ|2 ≥ 1
2κ2 |∇φ|2−|A|2|φ|2 and ∥B∥H1 ≲ ∥ divB∥L2+∥ curlB∥L2 (cf. [35, Lem. 3.6]

and [35, Thm. 3.9]), we conclude together with the L∞-bounds for u and A from Lemma 2.5 and
Corollary 2.9 that

⟨E′′(u,A)(φ,B), (φ,B)⟩

≥
∫
Ω

1
2 |

1
κ∇φ|

2 +
(
|u|2 − 1− |A|2

)
|φ|2 − 4|u| |φ| |A| |B| − 2

κ (|u| |∇φ|+ |φ| |∇u|)|B|dx

+

∫
Ω

| curlB|2 + |divB|2 dx

≳ ||φ||2H1
κ
+ ∥B∥2H1 − c1∥φ∥2L2 − c2∥B∥2L2

for constants c1, c2 ≥ 0. In the last step of the estimate, we also used the Young’s inequal-
ity ∥ 2

κ |u| |∇φ||B| ∥L1 ≤ ∥ 1
4 |

1
κ∇φ|

2∥L1 + 4 ∥|u|2|B|2∥L1 , as well as ∥∇u∥L4 ≲ κ which yields

∥ 2
κ |φ| |∇u| |B| ∥L1 ≤ 2∥ 1

κ∇u∥L4∥φ∥L2∥B∥L4 ≲ 1
ε∥

1
κ∇u∥

2
L4∥φ∥2L2 + ε∥B∥2H1 . We conclude that

the following G̊arding inequality holds:

⟨E′′(u,A)(φ,B), (φ,B)⟩ ≥ C1||(φ,B)||2H1
κ×H1 − C2||(φ,B)||2L2×L2 .

Together with (2.12) we obtain for (φ,B) ∈ (iu)⊥ ×H1
n(Ω) the coercivity estimate

(1 + C2

λ2
)⟨E′′(u,A)(φ,B), (φ,B)⟩ ≥ C1||(φ,B)||2H1

κ×H1 ,

and Csol(u,A, κ) = (1+C2

λ2
)C−1

1 . In addition, the continuity estimate for |⟨E′′(u,A)(φ,B), (ψ,C)⟩|
follows from Lemma 4.2 (c) below. □

We have the following direct consequence of Proposition 2.14.

Lemma 2.15. Let (u,A) be a locally quasi-unique minimizer of (2.3) in the sense of Definition
2.12. Then, for all f ∈ L2(Ω) × L2(Ω) ⊂ ((iu)⊥ × H1

n(Ω))
∗, there exists a unique (φ,B) ∈

(iu)⊥ ×H1
n(Ω) which solves

(2.13) ⟨E′′(u,A)(φ,B), (ψ,C)⟩ = (f , (ψ,C))L2×L2 , for all (ψ,C) ∈ (iu)⊥ ×H1
n(Ω).

The solution further satisfies

||(φ,B)||H1
κ×H1 ≲ Csol(u,A, κ) ||f ||L2×L2 .

3. LOD discretization and main results

In this section we introduce the LOD discretization for the GLE by adapting the constructions
proposed in [8] and [18]. For that, let TH and Th be two shape-regular and quasi-uniform triangu-
lations of Ω with mesh sizes H and h respectively. The mesh TH will be used to approximate the
order parameter u and Th to approximate the vector potential A. In the first step, let us define
the P1-Lagrange finite element space on TH by

VH = {φH ∈ C0(Ω;C) | φH |K ∈ P1(K) for all K ∈ TH }
and the Pk-Lagrange finite element space of degree k = 1, 2 on Th by

(3.1) Vk
h,0 = {Bh ∈ C0(Ω;R3) | Bh|K ∈ Pk(K)3 for all K ∈ Th and Bh · ν = 0 on ∂Ω }.

In order to improve the approximation properties of VH w.r.t. u we enrich the nodal basis functions
using the L2-inner product of two covariant gradients. To make this construction precise, let us
first define, for a fixed minimizer (u,A) of (2.3), the bilinear form

aLOD
A (φ,ψ) := Re

∫
Ω

( i
κ
∇φ+Aφ

)
·
( i
κ
∇ψ +Aψ

)∗
dx
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for φ,ψ ∈ H1(Ω). Loosely speaking, we want to interpret aLOD
A (·, ·) as a differential operator and

define the LOD space as the inverse of this differential operator under VH . However, the bilinear
form aLOD

A (·, ·) is typically not coercive and possibly singular so that the inverse does not necessarily
exist. However, as proved in [8, Lemma 4.1], we have coercivity on the kernelW = kernπFEM

H |H1(Ω)

of the L2-projection πFEM
H : H1(Ω) → VH which is given by

(πFEM
H φ,ψH)L2(Ω) = (φ,ψH)L2(Ω) for all ψH ∈ VH .(3.2)

Note that due to our assumption TH is quasi-uniform, the L2-projection πFEM
H is H1-stable [4],

and consequently, its kernel is a closed subspace of H1(Ω). The following lemma summarizes the
statement.

Lemma 3.1. Let A ∈ H1
n(Ω)∩L∞(Ω). Then, there exists a constant Cres > 0 that depends on Ω,

∥A∥L∞ and the shape-regularity and uniformity constants of TH such that if H ≤ Cresκ
−1, then it

holds

aLOD
A (w,w) ≥ 1

2∥w∥
2
H1

κ
for all w ∈W,

where, for πFEM
H : H1(Ω) → VH given by (3.2),

W := {w ∈ H1(Ω) |πFEM
H w = 0}.

For the proof, we refer to [8, Lemma 4.1].

Exploiting the coercivity on the so-called detail space W , we can introduce the (well-defined)
correction operator C : H1(Ω) →W by

aLOD
A (Cφ,w) = aLOD

A (φ,w) for all w ∈W.(3.3)

The operator allows us to correct the elements of VH to obtain the LOD space as

V LOD
H := (1− C)VH = {φH − CφH |φH ∈ VH}.(3.4)

For practical aspects on the construction of V LOD
H and additional errors arising from its discrete

approximation we refer to [8] where this is described and analyzed in detail for the Ginzburg–
Landau equation.

With V LOD
H and Vk

h,0 defined in (3.4) and (3.1) we seek numerical approximations (uLOD
H ,AFEM

h,k ) ∈
V LOD
H ×Vk

h,0 such that

(3.5) E(uLOD
H ,AFEM

h,k ) = min
(φLOD

H ,Bh)

∈V LOD
H ×Vk

h,0

E(φLOD
H ,Bh).

Noting that the construction of the space V LOD
H requires knowledge about A, one might wonder

how it is practically possible to seek numerical approximations uLOD
H ∈ V LOD

H . We will get back to
this question in Subsection 3.2. Before we do that, we shall present some error estimates for the
approximations uLOD

H and AFEM
h,k in the next subsection.

3.1. Error estimates. We are now prepared to present our main result, which includes error
estimates in the H1

κ ×H1- and the L2 × L2-norm, as well as an estimate for the energy error. We
emphasize that in order to obtain optimal order error estimates for quadratic elements for A, i.e.,
k = 2 in Vk

h,0, we always additionally assume that curlH ∈ H1(Ω).

Theorem 3.2 (Error estimates for LOD approximations). Let Assumption 2.13 hold. We consider
an arbitrary discrete minimizer (uLOD

H ,AFEM
h,k ) ∈ V LOD

H × Vk
h,0 of problem (3.5) for either k = 1

or k = 2. If (H,h) is sufficiently small with at least H ≲ κ−1, then there exists a minimizer
(u,A) ∈ H1(Ω)×H1

n(Ω) of (2.4) such that uLOD
H ∈ (iu)⊥ and it holds

∥(u− uLOD
H ,A−AFEM

h,k )∥H1
κ×H1 ≲ κ3H3 + κk−1hk + Csol(u,A, κ)(κ

4H4 + κk−1hk+1).

Furthermore, for any ε > 0, we have

∥(u− uLOD
H ,A−AFEM

h,k )∥L2×L2

≲ (κH + h) (κ3H3 + κk−1hk) (1 + Cε κ
ε Csol(u,A, κ)) (1 + Csol(u,A, κ)(κH + h)),
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and for the corresponding energy error we have

0 ≤ E(uLOD
H ,AFEM

h,k )− E(u,A) ≲ κ6H6 + κ2k−2h2k + Csol(u,A, κ)
2(κ8H8 + κ2k−2h2k+2).

All hidden constants in the above estimates are independent of κ and (H,h).

The result is a summary of Proposition 6.3 and Proposition 6.4 which we prove in Section 6.

In essence, the error estimates in Theorem 3.2 demonstrate convergence of order O(κ3H3+κk−1hk)
for theH1

κ-error. The necessary resolutionH for the order parameter u is constrained by κ, whereas
the necessary resolution h forA is only weakly (if at all) constrained by κ. However, we also observe
that there is a higher order term Csol(u,A, κ)(κ

4H4 + κk−1hk+1) which has to be compensated
first in order to observe the asymptotic rate O(κ3H3 + κk−1hk). Here we recall that we expect
Csol(u,A, κ) to behave as κα for some positive α. This means that the higher order term is indeed
of certain relevance, because it requires the resolution H ≲ Csol(u,A, κ)

−1/4κ−1 and (for k = 2)
h ≲ Csol(u,A, κ)

−1/3κ−1/3 to become small. For our discretization, this is a slightly stronger
condition than for the dominating term where we only require H ≲ κ−1. Hence, we can expect a
short pre-asymptotic convergence regime caused by this additional resolution condition.

Note that error estimates indicate the same resolution conditions for the H1
κ-error and the error in

energy, but an even stronger resolution condition for the L2-error. In fact, for the L2-error even the
asymptotic rates show a dependence on Csol(u,A, κ). In the proofs, this constant entered through
an Aubin–Nitsche argument. However, our experiments as well as previous experiments [8, 18]
could not find any indications that there is a stronger influence of Csol(u,A, κ) on the L2-error
and we therefore believe that the L2-estimate is still suboptimal with respect to the dependence
on Csol(u,A, κ).

Remark 3.3 (κ constraint for h). The error estimates in Theorem 3.2 show, for k = 2, a conver-
gence rate of κh2 for the H1

κ-error and a rate of κh3 for the L2-error. The additional κ entered
through the regularity estimate ∥A∥H3 ≲ κ. Again, we could not find numerical evidence that this
estimate is sharp, and we rather observe constants which indicate ∥A∥H3 ≲ 1. If this is true,
then we could remove the κ-dependence in front of h in all our error estimates. However, due to
our computational limitations for studying very large κ-values, it is not yet possible to draw any
definite conclusions from our numerical experiments.

We conclude with a comparison to a standard finite element discretization with VH instead of
V LOD
H , i.e. both spaces of the same dimension but different approximation properties. The proof

of the following result is analogous to the LOD case by exploiting the abstract convergence theory
from Section 5. Recall that for the case k = 2 we again assume curlH ∈ H1(Ω).

Theorem 3.4 (Error estimates for FEM approximations). Let Assumption 2.13 hold and let
(uH ,Ah,k) ∈ VH ×Vk

h,0 fulfill for k = 1, 2:

E(uH ,Ah,k) = min
(φH ,Bh)

∈VH×Vk
h,0

E(φH ,Bh).

If (H,h) is sufficiently small with at least H ≲ κ−1, then there is a minimizer (u,A) ∈ H1(Ω) ×
H1

n(Ω) of (2.4) such that uH ∈ (iu)⊥ and it holds

∥(u− uH ,A−Ah,k)∥H1
κ×H1 ≲ κH + κk−1hk + Csol(u,A, κ)(κ

2H2 + κk−1hk+1).

Furthermore, for any ε > 0, we have

∥(u− uLOD
H ,A−Ah,k)∥L2×L2

≲ (κ2H2 + κk−1hk+1 + κ2k−2h2k) (1 + Cε κ
ε Csol(u,A, κ)) (1 + Csol(u,A, κ)(κH + h)),

and for the corresponding energy error we have

0 ≤ E(uLOD
H ,Ah,k)− E(u,A) ≲ κ2H2 + κ2k−2h2k + Csol(u,A, κ)

2(κ4H4 + κ2k−2h2k+2).

Comparing the results of Theorem 3.2 and Theorem 3.4 we do not only observe that the LOD ap-
proximations converge much faster in H1

κ (third order in H vs. first order in H), but also that the
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necessary resolution condition for small errors is significantly reduced withH ≲ Csol(u,A, κ)
−1/4κ−1

for LOD approximations vs. H ≲ Csol(u,A, κ)
−1/2κ−1 for standard P1-Langrange FE approxi-

mations. Even though the usage of P2-Lagrange FE for u would relax the resolution condition to
H ≲ Csol(u,A, κ)

−1/3κ−1, this would come at the expense of more degrees of freedom (compared
to V LOD

H ) and a loss of one order of convergence w.r.t. to the mesh size H. Finally, we also note

that for LOD discretizations the condition H ≲ Csol(u,A, κ)
−1/4κ−1 is sufficient for reliable ap-

proximations but not necessarily sufficient to observe the optimal third order convergence. This is
seen by rephrasing the H1

κ ×H1-estimate as

∥(u− uH ,A−Ah,k)∥H1
κ×H1 ≲ (1 + Csol(u,A, κ)(κH + h)) (κ3H3 + κk−1hk),

i.e. we need Csol(u,A, κ)(κH + h) ≲ 1 for optimal order.

3.2. Construction of V LOD
H through approximations of A. As mentioned above, A is an

unknown of the problem and therefore it is not possible to construct the approximation space V LOD
H

for u, as long as we do not have a sufficiently accurate approximation of A. The influence of such
an approximation is easily traceable as it only influences the construction of V LOD

H = (1 − C)VH
through the correctors C given by (3.3). To make this precise, let Â ∈ H1

n(Ω) ∩ L∞(Ω) be an

arbitrary approximation of A such that ∥A∥L∞ +∥Â∥L∞ ≲ 1 (for some bound possibly depending
on the external field H). In this case, Lemma 3.1 is still valid and aLOD

Â
(·, ·) is coercive on W . We

can hence consider the two correctors: the original correctors CA : H1(Ω) → W (which coincides
with C in (3.3)) and the approximate corrector CÂ : H1(Ω) →W which are respectively given, for
φ ∈ H1(Ω), by

aLOD
A (CAφ,w) = aLOD

A (φ,w) and aLOD

Â
(CÂφ,w) = aLOD

Â
(φ,w)

for all w ∈W . Since CA is H1
κ-stable with ∥CAφ∥H1

κ
≤ 2(1+∥A∥L∞)2∥φ∥H1

κ
≲ ∥φ∥H1

κ
we conclude

with ∥A∥L∞ + ∥Â∥L∞ ≲ 1 that

1
2∥CÂφ− CAφ∥2H1

κ
≤ aLOD

Â
(CÂφ− CAφ, CÂφ− CAφ)

= (aLOD

Â
− aLOD

A )(φ, CÂφ− CAφ) + (aLOD
A − aLOD

Â
)(CAφ, CÂφ− CAφ)

≲ ∥Â−A∥L∞ ∥CÂφ− CAφ∥H1
κ
∥φ∥H1

κ
.

Consequently, we have

∥CÂφ− CAφ∥H1
κ

≲ ∥Â−A∥L∞ ∥φ∥H1
κ
.(3.6)

With this estimate, we can revisit all error estimates and observe that it results in an additional
error contribution which is at most of the order ∥Â−A∥L∞ . To avoid an overly technical presen-
tation of our proofs, we omitted this contribution in our error estimates.

From a practical perspective, a suitable approximation Â of A can be obtained by exploiting that
minimizers are found in an iterative process computing (un+1,An+1) from a previous approxima-
tion (un,An). The detailed setup for the iterative solver based on a discretization of the L2-gradient
flow is described in Section 7.1. We emphasize that we empirically observed that the iterates An

converge significantly faster to A, then un converges to u. Intuitively, this is not surprising since
the vector potential has typically a simple structure where even ∥A∥H2 is bounded independent
of κ. On the contrary, u has a complex vortex structure that requires many iterations to form
and which is heavily impacted by larger κ values. Consequently, it is possible to construct the
LOD space in every step based on the current iterate An and update it for the first few iterations.
Once Am is converged and stabilized for some m ∈ N we keep the LOD space constant for the
remaining iteration process until un converges. The additional error contribution ∥Am − A∥L∞

(according to (3.6)) is typically smaller than ∥An −A∥H1 for the final iteration n ≫ m, because
of the expected linear convergence of the iterative solver (i.e. θn for some 0 < θ < 1) and the fact
that the L∞-error of smooth functions in FE spaces converges faster than the H1-error. To obtain
more reliable approximations we update the LOD space a few more times during the remaining
iteration process. A full error analysis of this scheme, including the approximation error from the
iterative solver, is beyond the scope of this paper and left for future work.
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4. Analytical preparations

Before we can start with the error analysis, we require a few more analytical preparations regarding
the regularity of certain auxiliary functions which later appear as solutions to a dual problem in
an Aubin–Nitsche argument. Furthermore, we state an alternative representation of E′′(u,A) that
will be useful for the aforementioned duality arguments. To keep the notation short, we introduce
two bilinear forms that are used for the rest of the paper. For that, assume that (u,A) denotes a
(fixed) minimizer of (2.3). For φ,ψ ∈ H1(Ω) and B,C ∈ H1

n(Ω) we define

aA(φ,ψ) := Re

∫
Ω

( i
κ
∇φ+Aφ

)
·
( i
κ
∇ψ +Aψ

)∗
+ (|A|2 + 1)φψ∗ dx(4.1a)

b(B,C) :=

∫
Ω

curlB · curlC+ divB divCdx .(4.1b)

We note that the bilinear form in (4.1a) is coercive and bounded with respect to the H1
κ-norm with

constants uniformly bounded in κ, see [18, Lemma 2.1], and the bilinear form in (4.1b) is coercive
and bounded with respect to the H1

n-norm, see [35, Theorem 3.9], where the respective norms were
defined in (2.6). We start with a lemma that characterizes the regularity of solutions to problems
that involve either the bilinear form aA(·, ·) or the bilinear form b(·, ·).

Lemma 4.1. (a) Let f ∈ L2(Ω), then there exists a unique B ∈ H1
n(Ω) ∩H2(Ω) such that

b(B,C) = (f ,C)L2 for all C ∈ H1
n(Ω)

and it holds

||B||H1 ≲ ||f ||(H1
n)

∗ and ||B||H2 ≲ ||f ||L2 .

(b) The bilinear form aA(·, ·) is coercive and continuous on H1(Ω) with constants independent of κ.
In particular, since (iu)⊥ is a closed subspace of H1(Ω), there is for each f ∈ H1(Ω)∗ ⊂ ((iu)⊥)∗

a unique φ ∈ (iu)⊥ such that

aA(φ,ψ) = ⟨f, ψ⟩ for all ψ ∈ (iu)⊥

and ||φ||H1
κ
≲ ||f ||(H1)∗ . Furthermore, if f ∈ L2(Ω), then φ ∈ H2(Ω) ∩ (iu)⊥ and it holds

||φ||H2
κ
≲ ||f ||L2 .

Proof. (a) Since Ω is a cuboid, the results in [35, Lemma 3.6, Theorem 3.9] are applicable and give
the coercivity of b(·, ·) on H1

n(Ω). This yields the unique solvability for any f ∈ L2(Ω) and the
corresponding stability estimate. The H2-estimate follows from Theorem 2.6 for the case H = 0.

(b) The result is covered by [18, Lemma 2.8]. □

The next lemma gives an alternative representation of E′′(u,A) for minimizers (u,A).

Lemma 4.2. Let (u,A) ∈ H1(Ω)×H1
n(Ω) be a minimizer of (2.4) with the regularity established

in Corollary 2.9. Then, it holds for all (φ,B), (ψ,C) ∈ H1(Ω)×H1
n(Ω)

⟨E′′(u,A)(φ,B), (ψ,C)⟩ = aA(φ,ψ) + b(B,C) + ∆̃
(
(φ,B), (ψ,C)

)
(4.2)

for some continuous bilinear form ∆̃(·, ·) with the following properties: For each ε > 0 there exists
a constant Cε (independent of κ), such that

(i) For ψ = 0 :

|∆̃
(
(φ,B), (0,C)

)
| ≲ (Cε κ

ε||φ||H1
κ
+ ||B||L2) ||C||L2 ≲ Cε κ

ε ||(φ,B)||H1
κ×H1

n
||C||L2 .

(ii) For C = 0 :

|∆̃
(
(φ,B), (ψ,0)

)
| ≲

(
||φ||L2 + ||B||H1

)
||ψ||L2 ≲ ||(φ,B)||H1

κ×H1
n
||ψ||L2 .

(iii) For arbitrary (ψ,C) ∈ H1(Ω)×H1
n(Ω) :

|∆̃
(
(φ,B), (ψ,C)

)
| ≲

(
||φ||L2 + ||B||H1

)(
||ψ||L2 + ||C||H1

)
.
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Proof. First, note that by using (2.11), we can identify ∆̃(·, ·) as

∆̃
(
(φ,B), (ψ,C)

)
= −Re

∫
Ω

(
|A|2 + 1

)
φψ∗ dx+Re

∫
Ω

(
|u|2 − 1

)
φψ∗ + u2φ∗ψ∗ + |u|2φψ∗ dx

+Re

∫
Ω

2(uφ∗)A ·C+
1

κ

(
iu∗∇φ+ iφ∗∇u

)
·Cdx

+Re

∫
Ω

2(uψ∗)A ·B+
1

κ

(
iu∗∇ψ + iψ∗∇u

)
·Bdx + Re

∫
Ω

|u|2C ·Bdx.

We estimate the individual terms one after another.

(a) With the embedding H2(Ω) ↪→ L∞(Ω) (in 3d) and the H2-bound for A we have

|Re
∫
Ω

(
|A|2 + 1

)
φψ∗ dx| ≲ ||φ||L2 ||ψ||L2 .

(b) For the second term, we have readily with |u| ≤ 1 that

|Re
∫
Ω

(
|u|2 − 1

)
φψ∗ + u2φ∗ψ∗ + |u|2φψ∗ dx| ≲ ||φ||L2 ||ψ||L2 .

(c) Using again the L∞-bounds for u and A, we have

|Re
∫
Ω

2(uφ∗)A ·Cdx| ≲ ||φ||L2 ||C||L2 .

(d) The fourth term can be estimated in two different ways. On the one hand, we have

| 1
κ
Re

∫
Ω

iu∗∇φ ·Cdx| ≲ ||φ||H1
κ
||C||L2 .

On the other hand, we can apply integration by parts to obtain with Lemma 2.5

| 1
κ
Re

∫
Ω

iu∗∇φ ·Cdx| = | 1
κ
Re

∫
Ω

i
(
∇u∗φ ·C+ u∗φdivC

)
dx| ≲ ||φ||L2 ||C||H1 .

(e) The next term is also estimated in two ways. First, by using (2.9) we have

| 1
κ
Re

∫
Ω

iφ∗∇u ·Cdx| ≲
1

κ
||φ||L2 ||∇u||L4 ||C||L4

(2.9)

≲ ||φ||L2 ||C||H1 .

For the alternative estimate, we apply the Hölder inequality for a sufficiently small δ > 0
with the coefficients p1 = 2 + δ, p2 = 4+2δ

δ and p3 = 2 to obtain with (2.10)

| 1
κ
Re

∫
Ω

iφ∗∇u ·Cdx| ≲
1

κ
||φ||L2+δ ||∇u||L(4+2δ)/δ ||C||L2

(2.10)

≲ Cδ ||φ||L2+δ ||C||L2 ,

where Cδ depends on δ through ||∇u||L(4+2δ)/δ ≤ C(4+2δ)/δ κ. To estimate ||φ||L2+δ , we
use the Gagliardo–Nirenberg interpolation estimate [9] which states in our case (by log-
convexity of Lp-norms) that

||φ||L2+δ ≤ ||φ||1−εδ
L2 ||φ||εδL6 for εδ := 3

2
δ

2+δ .

Since ||φ||L2 ≤ ||φ||H1
κ
and ||φ||L6 ≲ κ||φ||H1

κ
, we conclude by combining the previous

estimates that

| 1
κ
Re

∫
Ω

iφ∗∇u ·Cdx| ≲ Cδ ||φ||1−εδ
H1

κ
(κ||φ||H1

κ
)εδ ||C||L2 = Cδ κ

εδ ||φ||H1
κ
||C||L2 .

Note that εδ → 0 for δ → 0.

(f) The sixth term is readily estimated with the L∞ bounds for u and A as

|Re
∫
Ω

2(uψ∗)A ·B dx| ≲ ||ψ||L2 ||A||L∞ ||B||L2 ≲ ||ψ||L2 ||B||L2 .

(g) Analogous to (d) we obtain the two estimates

| 1
κ
Re

∫
Ω

iu∗∇ψ ·B dx| ≲ ||ψ||H1
κ
||B||L2 and | 1

κ
Re

∫
Ω

iu∗∇ψ ·B dx| ≲ ||ψ||L2 ||B||H1 .
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(h) We can proceed as for the first estimate in (e). Using (2.9) we have ||∇u||L4 ≲ κ and hence

| 1
κ
Re

∫
Ω

iψ∗∇u ·B dx| ≲
1

κ
||ψ||L2 ||∇u||L4 ||B||L4 ≲ ||ψ||L2 ||B||H1 .

(i) Finally, we also have

|Re
∫
Ω

|u|2C ·Bdx| ≤ ||B||L2 ||C||L2 .

By combining the previous estimates we obtain two alternative estimates for ∆̃
(
(φ,B), (ψ,C)

)
:

|∆̃
(
(φ,B), (ψ,C)

)
| ≲ ||φ||L2(||ψ||L2 + ||C||H1) + ||B||H1 ||ψ||L2 + ||B||L2 ||C||L2

and

|∆̃
(
(φ,B), (ψ,C)

)
| ≲ (||φ||L2 + ||B||H1)||ψ||L2 + (Cε κ

ε||φ||H1
κ
+ ||B||L2) ||C||L2 .

Both estimates together prove (i)-(iii). □

Later we will consider auxiliary problems based on the operator E′′(u,A). The following proposi-
tion yields H2-regularity estimates for the corresponding solutions.

Proposition 4.3. Let (φ,B) ∈ (iu)⊥ × H1
n(Ω) be the solution of (2.13) with f = (f1,F2) ∈

L2(Ω) × L2(Ω). Then (φ,B) ∈ H2(Ω) ×H2(Ω) and, for any ε > 0 and some constant Cε > 0, it
holds

||φ||H2
κ

≲ ||f1||L2 + Csol(u,A, κ) ∥f∥L2×L2 ,

||B||H2 ≲ ||F2||L2 + Cε κ
ε Csol(u,A, κ) ∥f∥L2×L2 .

Proof. Using (4.2), we first note that we can rewrite the problem as

aA(φ,ψ) + b(B,C) = ⟨f , (ψ,C)⟩ − ∆̃
(
(φ,B), (ψ,C)

)
.

With this, we divide the proof in two parts and study the regularity separately.

(a) Setting C = 0, yields that φ ∈ (iu)⊥ solves for all ψ ∈ (iu)⊥

aA(φ,ψ) = ⟨f , (ψ,0)⟩ − ∆̃
(
(φ,B), (ψ,0)

)
.

We estimate the right-hand side with Lemma 2.15 and Lemma 4.2 by

|⟨f , (ψ,0)⟩ − ∆̃
(
(φ,B), (ψ,0)

)
| ≲ ||f1||L2 ||ψ||L2 + ||(φ,B)||H1

κ×H1
n
||ψ||L2

≲
(
||f1||L2 + Csol(u,A, κ)∥f∥L2×L2

)
||ψ||L2 ,

i.e., ⟨f , (·,0)⟩ − ∆̃
(
(φ,B), (·,0)

)
∈ L2(Ω)∗, and hence by Lemma 4.1 (b) we have φ ∈ H2(Ω) with

||φ||H2
κ

≲ ||f1||L2 + Csol(u,A, κ) ∥f∥L2×L2 .

(b) Setting ψ = 0, then B ∈ H1
n(Ω) solves

b(B,C) = ⟨f , (0,C)⟩ − ∆̃
(
(φ,B), (0,C)

)
for all C ∈ H1

n(Ω). We estimate the right-hand side with Lemma 2.15 and Lemma 4.2 by

|⟨f, (0,C)⟩ − ∆̃
(
(φ,B)| ≲

(
||F2||L2 + Cε κ

ε Csol(u,A, κ)∥f∥L2×L2

)
||C||L2

and hence by Lemma 4.1 (a) we have B ∈ H2(Ω) and

||B||H2 ≲ ||F2||L2 + Cε κ
ε Csol(u,A, κ) ∥f∥L2×L2 .

This proves the claim. □
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5. Abstract error analysis

As a basis for our error analysis in FEM and LOD spaces, we will start with some abstract
convergence results in this section. For this, we consider an arbitrary family of (non-empty) finite-
dimensional spaces

XH(δ) ×Xh(δ) ⊂ H1(Ω)×H1
n(Ω)

which are parametrized by a small parameter δ > 0. The notation H(δ) and h(δ) is used to indicate
that different mesh sizes could be used for the approximations of order parameter and magnetic
potential. We further assume that functions in H1(Ω)×H1

n(Ω) can be approximated by arbitrary
accuracy in the sense that for each (φ,B) ∈ H1(Ω)×H1

n(Ω) it holds

lim
δ→0

inf
(φH(δ),Bh(δ))

∈XH(δ)×Xh(δ)

∥(φ− φH(δ),B−Bh(δ))∥H1×H1 = 0.

This assumption is fulfilled for all reasonable families of standard approximation spaces, such as
finite element spaces. For brevity, we skip from now on δ in the notation and just write H = H(δ)
and h = h(δ), unless the role of δ is explicitly required. With this, we are looking for discrete
minimizers of

(5.1) E(uH ,Ah) = min
(φH ,Bh)∈XH×Xh

E(φH ,Bh)

which thus satisfy

∂uE(uH ,Ah)φH = 0, for all φH ∈ XH ,

∂AE(uH ,Ah)Bh = 0 for all Bh ∈ Xh.

The following lemma provides uniform bounds on the discrete minimizers only using the minimiz-
ing properties. The bounds are in line with the respective bounds obtained for the continuous
minimizers.

Lemma 5.1. Let (uH ,Ah) be a minimizer of (5.1) in XH ×Xh. Then it holds

E(uH ,Ah) ≲ 1, ||uH ||H1
κ
+ ||uH ||L4 ≲ 1, ||Ah||H1 ≲ 1

with hidden constants independent of κ and δ, but depending on the external field H.

Proof. Since (0,0) ∈ XH ×Xh, we obtain the bound on the energy. Further, as in [18], we obtain
||uH ||L2 ≲ 1, and conclude with this

||uH ||4L4 ≤
∫
Ω

(
1− |uH |2

)2
dx+ 2||uH ||2L2 + ||1||2L2 ≤ 2E(uH ,Ah) + 2||uH ||2L2 + ||1||2L2 ≲ 1.

The H1-bound ∥Ah∥H1 ≲ 1 + ∥H∥L2 ≲ 1 follows as in Lemma 2.5. Next, we use the identity

2E(uH ,Ah) ≥ || 1κ∇uH + iAhuH ||2L2 = || 1κ∇uH ||2L2 + ||AhuH ||2L2 + 2Re( 1κ∇uH , iAhuH)L2 ,

and bound the inner product via

2Re( 1κ∇uH , iAhuH)L2 ≤ 2|| 1κ∇uH ||L2 ||Ah||L4 ||uH ||L4 ≤ 1
2 ||

1
κ∇uH ||2L2 + 2||Ah||2L4 ||uH ||2L4 ,

to conclude || 1κ∇uH ||L2 ≲ 1. □

This allows us to conclude the following abstract convergence result, which is fully analogous to
[18, Prop. 5.1].

Proposition 5.2. Denote by (uH(δ),Ah(δ))δ>0 a family of minimizers of (5.1). Then, there exists

an exact minimizer (u0,A0) ∈ H1(Ω)×H1
n(Ω) of problem (2.4) such that there is a monotonically

decreasing sequence (δn)n∈N with

lim
n→∞

||(u0 − uH(δn),A0 −Ah(δn))||H1
κ×H1 = 0.

In particular, we can define the twisted approximations to u0 by

ũH(δn) := eiωnuH(δn), where ωn ∈ [−π
2 ,

π
2 ] is chosen such that m(ũH(δn), u0) = 0
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which also converge in H1, i.e.,

lim
n→∞

||(u0 − ũH(δn),A0 −Ah(δn))||H1
κ×H1 = 0.

Conversely, for any n, the minimizer uH(δn) is an approximation to eiωnu0.

Proof. The proof is along the lines of [11] and [18, Prop. 5.1]. We employ the bounds in Lemma 5.1
and the semi-lower continuity of E, see e.g. [57, Theorem 1.6]. Since we only apply constant
rotations ωn, the magnetic potential is unaffected, and the proof in [18, Prop. 5.1] is applicable. □

In the light of Proposition 5.2 we can assume without loss of generality that the considered discrete
minimizers (uH ,Ah) are such that uH ∈ XH ∩ (iu)⊥ for a suitable exact minimizer (u,A) to which
we compare it. In such a setting, we derive error bounds for (u− uH ,A−Ah) depending on the
best-approximation properties of the space XH ×Xh. For that, we split the error as

∥(u− uH ,A−Ah)∥H1
κ×H1(5.2)

≤ ∥(u− R⊥
Hu,A− RhA)∥H1

κ×H1 + ∥(uH − R⊥
Hu,Ah − RhA)∥H1

κ×H1

for suitable Ritz projections R⊥
H and Rh, based on the bilinear forms aA(·, ·) and b(·, ·) in (4.1). Both

bilinear forms are coercive and continuous by Lemma 4.1. The Ritz projection R⊥
Hv ∈ XH ∩ (iu)⊥

is defined as the unique solution to

aA(R⊥
Hv, φH) = aA(v, φH) for all φH ∈ XH ∩ (iu)⊥(5.3)

and the Ritz projection RhB ∈ Xh solves

b(Rh B ,Ch) = b(B,Ch) for all Ch ∈ Xh.(5.4)

In order to estimate the error through the splitting (5.2), we require the approximation properties

of the Ritz projections R⊥
H and Rh and an estimate for the defect ∥(uH −R⊥

Hu,Ah−RhA)∥H1×H1 .

We start with a lemma that allows us to estimate ∥(u− R⊥
Hu,A− RhA)∥H1

κ×H1 .

Lemma 5.3. Let (u,A) ∈ H1(Ω)×H1
n(Ω) be a minimizer of (2.4). Then, for B ∈ H1

n(Ω) it holds

∥B− RhB∥H1 ≲ inf
Bh∈Xh

∥B−Bh∥H1 .(5.5)

If πH : H1(Ω) → XH denotes the L2-projection on XH and if πHu ̸= 0, then we have for v ∈ (iu)⊥

∥v − R⊥
Hv∥H1

κ
≲ ∥v − πHv∥H1

κ
+

∥πHu∥H1
κ

∥u∥L2−∥u−πHu∥L2
∥v − πHv∥L2 .(5.6)

In particular, if XH is such that the L2-projection is H1
κ-stable, then we have unconditionally,

∥v − R⊥
Hv∥H1

κ
≲ inf

vH∈XH

∥v − vH∥H1
κ
+

(
1− inf

wH∈XH

∥u− wH∥L2

∥u∥H1
κ

)−1

inf
vH∈XH

∥v − vH∥L2 .

(5.7)

Proof. The first estimate readily follows from the fact that b(·, ·) is coercive and continuous on

H1
n(Ω), cf. Lemma 4.1. Analogously, we obtain with Lemma 4.1 that R⊥

Hu is a quasi-best approx-
imation of u in XH ∩ (iu)⊥. In order to get a quasi-best approximation on the full space XH with
estimates (5.6) and (5.7), we exploit that v, u ∈ (iu)⊥ and proceed analogously as in [18, Lemma
5.11] to get

∥v − R⊥
Hv∥H1

κ
≤ ∥v − πHv +

(πHv−v,iu)L2

(πH(iu),iu)L2
πH(iu)∥H1

κ
.

Estimate (5.6) follows straightforwardly with (πH(iu), iu)L2 = ∥u∥2L2 + (πH(iu)− iu, iu)L2 and by
noting that πHu ̸= 0 implies ∥u − πHu∥L2 < ∥u∥L2 . For πHu = 0, we trivially have the estimate

∥v − R⊥
Hv∥H1

κ
≤ ∥v − πHv∥H1

κ
. Next, note that the second estimate in Lemma 2.5 together with

∥A∥L∞ ≲ ∥A∥H2 ≲ 1 from Corollary 2.9 imply ||u||H1
κ
≲ ||u||L2 . Hence, if πH is H1

κ-stable, i.e.,
∥πHv∥H1

κ
≲ ∥v∥H1

κ
, then we get

∥πHu∥H1
κ

∥u∥L2−∥u−πHu∥L2
≲

∥u∥H1
κ

∥u∥L2−∥u−πHu∥L2
≲ (1− ∥u−πHu∥L2

∥u∥H1
κ

)−1.

The desired estimate (5.7) follows. □
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In the next step, we study the defect, which we estimate by exploiting the coercivity of E′′(u,A).
Therefore, we consider the term

⟨E′′(u,A)(R⊥
Hu− uH ,RhA−Ah), (ψH ,Ch)⟩ =: ε(ψH ,Ch),

which we decompose into ε = ε1 + ε2 with

ε1(ψH ,Ch) := ⟨E′′(u,A)(R⊥
Hu− u,RhA−A), (ψH ,Ch)⟩,(5.8)

ε2(ψH ,Ch) := ⟨E′′(u,A)(u− uH ,A−Ah), (ψH ,Ch)⟩.(5.9)

The following two lemmas give the respective estimates for ε1(ψH ,Ch) and ε2(ψH ,Ch).

Lemma 5.4. Let (u,A) ∈ H1(Ω)×H1
n(Ω) be a minimizer of (2.4) and ε1(ψH ,Ch) be defined as

in (5.8). It holds

|ε1(ψH ,Ch)| ≲ ∥(R⊥
Hu− u,RhA−A)∥L2×L2 ∥(ψH ,Ch)∥H1

κ×H1 .

Proof. With (2.11) as well as aA(R⊥
Hu− u, ψH) = 0 and b(Rh B −B,Ch) = 0 we obtain

ε1(ψH ,Ch) = ⟨E′′(u,A)(R⊥
Hu− u,RhA−A), (ψH ,Ch)⟩

= −Re

∫
Ω

(
|A|2 + 1

)
(R⊥

Hu− u)ψ∗
H dx

+Re

∫
Ω

(
|u|2 − 1

)
(R⊥

Hu− u)ψ∗
H + u2(R⊥

Hu− u)∗ψ∗
H + |u|2(R⊥

Hu− u)ψ∗
H dx

+

∫
Ω

2Re(u(R⊥
Hu− u)∗)A ·Ch +

1

κ
Re

(
iu∗∇(R⊥

Hu− u) + i(R⊥
Hu− u)∗∇u

)
·Ch dx

+

∫
Ω

2Re(uψ∗
H)A · (RhA−A) +

1

κ
Re

(
iu∗∇ψH + iψ∗

H∇u
)
· (RhA−A) dx

+

∫
Ω

|u|2(RhA−A)Ch dx.

Using

−Re
i

κ

∫
Ω

u∗∇(R⊥
Hu− u) ·Ch dx = Re

i

κ

∫
Ω

(R⊥
Hu− u)∇u∗ ·Ch + u∗(R⊥

Hu− u) divCh dx

we get, again with the uniform L∞-bounds for u and A, that

|ε1(ψH ,Ch)|
≲ ||R⊥

Hu− u||L2 ||ψH ||L2 + ||R⊥
Hu− u||L2

(
||Ch||L2 + ||Ch||H1 + ||divCh||L2

)
+ ||Rbu,hA−A||L2

(
||ψH ||L2 + 1

κ ||∇ψH ||L2

)
+ ||Rbu,hA−A||L2 ||Ch||L2

≲
√

||R⊥
Hu− u||2L2 + ||Rbu,hA−A||2L2

√
||ψH ||2H1

κ
+ ||Ch||2H1

which gives the claim. □

Lemma 5.5. Let (u,A) ∈ H1(Ω)×H1
n(Ω) be a minimizer of (2.4) and ε2(ψH ,Ch) be defined as

in (5.9). It holds

|ε2(ψh,Ch)| ≲
(
∥u− uH∥2L6 + ∥u− uH∥2H1

κ
+ ∥A−Ah∥2H1

)
∥(ψH ,Ch)∥H1

κ×H1 .

The proof is technical and given in Appendix B.

As a direct conclusion from Lemma 5.4 and Lemma 5.5, we have the following theorem.

Theorem 5.6. Let (u,A) ∈ H1(Ω) ×H1
n(Ω) be a minimizer of (2.4) that is locally quasi-unique

in the sense of Definition 2.12 and let (uH ,Ah) ∈ XH × Xh be a (discrete) minimizer of (5.1).

With the Ritz-projections R⊥
H and Rh, given by (5.3) and (5.4) respectively, it holds

∥(u− uH ,A−Ah)∥H1
κ×H1

≲ ∥(u− R⊥
Hu,A− RhA)∥H1

κ×H1 + Csol(u,A, κ)∥(u− R⊥
Hu,A− RhA)∥L2×L2

+ Csol(u,A, κ)
(
∥u− uH∥2L6 + ∥u− uH∥2H1

κ
+ ∥A−Ah∥2H1

)
.(5.10)
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Proof. With the error splitting (5.2) and the coercivity of E′′(u,A) in Proposition 2.14, we obtain

∥(u− uH ,A−Ah)∥H1
κ×H1 ≤ ∥(u− R⊥

Hu,A− RhA)∥H1
κ×H1

+ Csol(u,A, κ)
⟨E′′(u,A)(uH − R⊥

Hu,Ah − RhA), (uH − R⊥
Hu,Ah − RhA)⟩

∥(uH − R⊥
Hu,Ah − RhA)∥H1

κ×H1

(5.8),(5.9)
= ∥(u− R⊥

Hu,A− RhA)∥2H1
κ×H1 + Csol(u,A, κ)

(ε1 + ε2)(uH − R⊥
Hu,Ah − RhA)

∥(uH − R⊥
Hu,Ah − RhA)∥H1

κ×H1

,

where the last term is estimated with Lemma 5.4 and Lemma 5.5. □

Even though Theorem 5.6 looks promising on its own, it only gets meaningful when used in
combination with Proposition 5.2. The reason is that (u,A) and (uH ,Ah) might not be unique
(even aside from gauge transformations). Hence, the higher order remainder term ∥u− uH∥2L6 +
∥u − uH∥2H1

κ
+ ∥A − Ah∥2H1 is not necessarily small. However, Proposition 5.2 guarantees that

for each discrete minimizer (uH ,Ah) there is a corresponding exact minimizer (u,A), such that
∥(u− uH ,A−Ah)∥H1

κ×H1 becomes arbitrarily small for (H(δ), h(δ)) → 0. Hence, we can absorb
the higher order term on the right-hand side of (5.10) into the left-hand side. With this, we obtain
the following conclusion.

Conclusion 5.7. Let Assumption 2.13 hold and let (uH ,Ah) ∈ XH×Xh be a discrete minimizer of
(5.1). Then, for all sufficiently small (H(δ), h(δ)), there exists a minimizer (u,A) ∈ H1(Ω)×H1

n(Ω)
of (2.4) such that uH ∈ (iu)⊥ and

∥(u− uH ,A−Ah)∥H1
κ×H1

≲ ∥(u− R⊥
Hu,A− RhA)∥H1

κ×H1 + Csol(u,A, κ)∥(u− R⊥
Hu,A− RhA)∥L2×L2 ,

with constants independent of κ and (H,h).

We finish the section on abstract error estimates with an estimate for the error in energy.

Theorem 5.8. Let (u,A) ∈ H1(Ω)×H1
n(Ω) be a minimizer of (2.4) and (uH ,Ah) ∈ XH ×Xh a

corresponding discrete minimizer of (5.1). Then, the error in the energy is bounded by

E(uH ,Ah)− E(u,A) ≲ ||(u− uH ,A−Ah)||2H1
κ×H1 + ∥uH∥2L6∥u− uH∥2L2 + ∥u− uH∥4L4

with constants independent of κ and (H,h). Note here that E(u,A) ≤ E(uH ,Ah).

If δ (and hence (H,h)) is sufficiently small and (uH ,Ah) converges to (u,A) in the sense of
Proposition 5.2, then ∥uH∥L6 ≲ 1 and it holds

E(uH ,Ah)− E(u,A) ≲ ||(u− uH ,A−Ah)||2H1
κ×H1 .

Proof. The proof follows similar arguments as in [18, Lemma 5.9]. With the notation

N (u,A) := 1
2

∫
Ω

1
2

(
1− |u|2

)2
+ | curlA−H|2 − | curlA|2 dx,

we can write the energy as

E(u,A) = 1
2a

LOD
A (u, u) + 1

2b(A,A) +N (u,A).

With this, we expand the energy error as

E(uH ,Ah)− E(u,A)

= 1
2a

LOD
Ah

(uH , uH) + 1
2b(Ah,Ah) +N (uH ,Ah)− 1

2a
LOD
A (u, u)− 1

2b(A,A)−N (u,A)

= 1
2a

LOD
A (uH , uH) + 1

2b(Ah,Ah)− 1
2a

LOD
A (u, u)− 1

2b(A,A)︸ ︷︷ ︸
=: I1

+ 1
2a

LOD
Ah

(uH , uH)− 1
2a

LOD
A (uH , uH)︸ ︷︷ ︸

=:I2

+ N (uH ,Ah)−N (u,A)︸ ︷︷ ︸
=:I3

.

We now treat these terms separately.



22 C. DÖDING, B. DÖRICH, AND P. HENNING

(a) With Lemma 2.2 we write

I1 = 1
2a

LOD
A (u− uH , u− uH) + 1

2b(A−Ah,A−Ah)− aLOD
A (u, u− uH)− b(A,A−Ah)

E′(u,A)=0
= 1

2a
LOD
A (u− uH , u− uH) + 1

2b(A−Ah,A−Ah) + Re

∫
Ω

(|u|2 − 1)u(u− uH)∗ dx

+Re

∫
Ω

|u|2A · (A−Ah) +
i
κ

(
u∗∇u · (A−Ah)

)
−H · curl(A−Ah) dx.

(b) Concerning I2 we compute

I2 = 1
2a

LOD
Ah

(uH , uH)− 1
2a

LOD
A (uH , uH)

= 1
2

∫
Ω

| iκ∇uH +AhuH |2 − | iκ∇uH +AuH |2 dx

= Re

∫
Ω

i
κ∇uH · (Ah −A)u∗H + 1

2 |Ah|2 |uH |2 − 1
2 |A|2 |uH |2 dx.

(c) We now turn to I3. In the proof of [18, Lemma 5.9] it was shown that for eH = u− uH(
1− |uH |2

)2 − (
1− |u|2

)2
= 4(1− |u|2)Re(u(u− uH)∗) + h.o.t (eH),

with h.o.t (eH) := 2(|u|2− 1)|eH |2+(|eH |2−Re(u(eH)∗)2)2 being a higher order term. With this
we obtain

I3 = 1
2

∫
Ω

1
2

(
1− |uH |2

)2 − 1
2

(
1− |u|2

)2
+ 2H · curl(A−Ah) dx

=

∫
Ω

(1− |u|2)Re(u(u− uH)∗) +H · curl(A−Ah) dx+

∫
Ω

h.o.t (eH) dx.

We are ready to sum up I1, I2 and I3. By noting that

1
2 |Ah|2|uH |2 − 1

2 |A|2|uH |2 + |A|2|u|2 − (Ah ·A)|u|2

= 1
2 (|Ah|2 − |A|2)(|uH |2 − |u|2) + 1

2 |Ah −A|2|u|2

we obtain

E(uH ,Ah)− E(u,A) = 1
2a

LOD
A (u− uH , u− uH) + 1

2b(A−Ah,A−Ah)

+ 1
2

∫
Ω

(|Ah|2 − |A|2)(|uH |2 − |u|2) + |Ah −A|2|u|2 dx

+Re

∫
Ω

i
κ

(
(u∗ − u∗H)∇u+ u∗H(∇u−∇uH)

)
· (A−Ah) dx+

∫
Ω

h.o.t (eH) dx

≲ ∥u− uH∥2H1
κ
+ ∥Ah −A∥2H1 + ∥A−Ah∥L6∥|A|+ |Ah|∥L6∥u− uH∥L2∥|u|+ |uH |∥L6

+∥A−Ah∥L4∥ 1
κ∇u∥L4∥u− uH∥L2 + ∥ 1

κ∇(u− uH)∥L2∥uH∥L4∥A−Ah∥L4

+∥u− uH∥2L2 + ∥u− uH∥4L4

≲ ∥u− uH∥2H1
κ
+ ∥Ah −A∥2H1 + ∥uH∥2L6∥u− uH∥2L2 + ∥u− uH∥4L4 .

For the latter part of the theorem, recall that Proposition 5.2 ensures ∥uH−u∥L6 ≲ ∥uH−u∥H1 → 0
for (H,h) → 0. Hence ∥uH∥L6 ≤ ∥u∥L6+∥uH−u∥L6 is bounded independent of κ. Furthermore, the
higher order term ∥u−uH∥4L4 is asymptotically negligible and can be absorbed into ∥u−uH∥2H1

κ
. □

6. Error analysis in the LOD space

We are prepared now for the error analysis in the LOD space and for proving the main results
stated in Section 3. For that, we shall apply the results from Section 5 with the choice (XH ,Xh) =
(V LOD

H ,Vk
h,0). In the first step, we need an auxiliary result, which is an inverse inequality in V LOD

H .
The proof is given in Appendix B.

Lemma 6.1 (Inverse inequality in V LOD
H ). Assume H ≲ κ−1, then it holds

∥∇φLOD
H ∥L2 ≲ 1

H ∥φLOD
H ∥L2 for all V LOD

H .
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Next, we specify the approximation properties of the corresponding Ritz-projections R⊥
H : (iu)⊥ →

V LOD
H ∩(iu)⊥ and Rh : H1

n(Ω) → Vk
h,0 given by (5.3) and (5.4) respectively. We obtain the following

result.

Lemma 6.2. Assume H ≲ κ−1. Let (u,A) ∈ H1(Ω) × H1
n(Ω) be a minimizer of (2.4) and

(v,B) ∈ (iu)⊥ × H1
n(Ω). If further (v,B) ∈ (H2(Ω),Hk+1(Ω)) with ∇v · ν|∂Ω = 0, then the

Ritz-projections onto V LOD
H ∩ (iu)⊥ and Vk

h,0, for k = 1, 2, fulfill

∥B− RhB∥L2 + h ∥B− RhB∥H1 ≲ hk+1∥B∥Hk+1

and

∥v − R⊥
Hv∥L2 + κH ∥v − R⊥

Hv∥H1
κ

≲ (κH)2∥v∥H2
κ
.

Furthermore, for the minimizer u itself, we even have superconvergence with

∥u− R⊥
Hu∥L2 + κH ∥u− R⊥

Hu∥H1
κ

≲ (κH)4.

Proof. Applying Lemma 5.3 and the approximation properties of Lagrange FE spaces, we im-
mediately have ∥B − RhB∥H1 ≲ hk∥B∥Hk+1 and the estimate for ∥B − RhB∥L2 follows with
Aubin–Nitsche.

For the bounds involving R⊥
H , we first have to verify that the L2-projection πLOD

H : H1(Ω) → V LOD
H

is H1
κ-stable. For that, let us denote the direct aA(·, ·)-Ritz-projection by RLOD

H : H1(Ω) → V LOD
H

(i.e. without orthogonality constraint for iu). We obtain with the inverse inequality from Lemma
6.1

∥πLOD
H v∥H1

κ
≤ ∥v − RLOD

H v∥H1
κ
+ ∥RLOD

H v − πLOD
H v∥H1

κ
+ ∥v∥H1

κ

≲ ∥v∥H1
κ
+ 1

κH ∥RLOD
H v − πLOD

H v∥L2

≲ ∥v∥H1
κ
+ 1

κH ∥RLOD
H v − v∥L2 + 1

κH ∥πLOD
H v − v∥L2

≤ ∥v∥H1
κ
+ 2

κH ∥RLOD
H v − v∥L2 ≲ ∥v∥H1

κ
,

where we used in the last step that ∥RLOD
H v − v∥L2 ≲ κH∥RLOD

H v − v∥H1
κ
≲ κH∥v∥H1

κ
, which is

proved in [8, Lem. 4.4]. Since πLOD
H is H1

κ-stable we can apply the last estimate of Lemma 5.3. For
that, we can use the following two estimates which can be extracted from [8, Lem. 4.4]:

inf
vLOD
H ∈V LOD

H

∥v − vLOD
H ∥H1

κ
≲ κH∥v∥H2

κ

and

inf
vLOD
H ∈V LOD

H

∥v − vLOD
H ∥L2 ≲ κH inf

vLOD
H ∈V LOD

H

∥v − vLOD
H ∥H1

κ
.

Note that the estimates require ∇v · ν|∂Ω = 0. Using the above estimates in equation (5.7) of
Lemma 5.3 we obtain

∥v − R⊥
Hv∥H1

κ
≲ κH∥v∥H2

κ
+ (1− κH)

−1
(Hκ)2∥v∥H2

κ
≲ κH∥v∥H2

κ
.

Similarly, we can use the estimate ∥RLOD
H u−u∥L2 +κH∥RLOD

H u−u∥H1 ≲ (κH)4 from [8, Lem. 4.5]
in (5.7) to obtain

∥u− R⊥
Hu∥H1

κ
≲ (κH)3 + (1− κH)

−1
(Hκ)4 ≲ (κH)3.

It remains to estimate ∥v−R⊥
Hv∥L2 . Here we use an Aubin–Nitsche duality argument. We consider

the unique solution z ∈ (iu)⊥ with

aA(φ, z) = m(φ, v − R⊥
Hv) for all φ ∈ (iu)⊥

to obtain

∥v − R⊥
Hv∥2L2 = aA(v − R⊥

Hv, z − R⊥
Hv) ≲ ∥v − R⊥

Hv∥H1
κ
∥z − R⊥

Hz∥H1
κ
.

As in [18, proof of Lem. 2.8] and [8, proof of Lem. 4.6] it can be shown that ∥z − R⊥
Hz∥H1

κ
≲

κH ∥v−R⊥
Hv∥L2 . Hence, we have ∥v−R⊥

Hv∥L2 ≲ κH∥v−R⊥
Hv∥H1

κ
for all v ∈ (iu)⊥ which finishes

the proof. □
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We are now in the position to state the H1-error and energy error estimate as a direct consequence
of Conclusion 5.7, Theorem 5.8, Lemma 6.2 as well as the regularity estimates from Lemma 2.10.

Proposition 6.3 (H1-error and energy error estimate). Let Assumption 2.13 hold and let (uLOD
H ,AFEM

h,k ) ∈
V LOD
H ×Vk

h,0 be a discrete minimizer fulfilling 3.5 for k = 1, 2. Then, for all sufficiently small mesh

sizes (H,h), there exists a minimizer (u,A) ∈ H1(Ω) × H1
n(Ω) of (2.4) such that uLOD

H ∈ (iu)⊥

fulfills

∥(u− uLOD
H ,A−AFEM

h,k )∥H1
κ×H1 ≲ κ3H3 + κk−1hk + Csol(u,A, κ)(κ

4H4 + κk−1hk+1),

and

E(uLOD
H ,AFEM

h,k )− E(u,A) ≲ κ6H6 + κ2k−2h2k + Csol(u,A, κ)
2(κ8H8 + κ2k−2h2k+2),

where the hidden constants in the above estimates are independent of κ and (H,h).

It remains to turn to the L2-error estimate.

Proposition 6.4 (L2-error estimate). We consider the setting of Proposition 6.3. It holds, for
any ε > 0,

∥(u− uLOD
H ,A−AFEM

h,k )∥L2×L2

≲ (κH + h) (κ3H3 + κk−1hk) (1 + Cε κ
ε Csol(u,A, κ)) (1 + Csol(u,A, κ)(κH + h)),

with hidden constants independent of κ and (H,h).

Proof. For the error (eH ,Eh) := (u − uLOD
H ,A −AFEM

h,k ), let (z,Z) ∈ (iu)⊥ ×H1
n(Ω) be the corre-

sponding solution to the dual problem

⟨E′′(u,A)(φ,B), (z,Z)⟩ = ((eH ,Eh), (φ,B))L2×L2 for all (φ,B) ∈ (iu)⊥ ×H1
n(Ω).

The problem is well-posed by Proposition 2.14 with ∥(z,Z)∥H1
κ×H1 ≲ Csol(u,A, κ)∥(eH ,Eh)∥L2×L2 .

We obtain

||(eH ,Eh)||2L2×L2 = ⟨E′′(u,A)(eH ,Eh), (z,Z)⟩
= ⟨E′′(u,A)(eH ,Eh), (z − R⊥

Hz,RhZ)⟩+ ⟨E′′(u,A)(eH ,Eh), (R
⊥
Hz,RhZ)⟩

= E1 + ε2(R
⊥
Hz,RhZ),(6.1)

where ε2 is as defined in (5.9) and estimated using Lemma 5.5 as

|ε2(R⊥
Hz,RhZ)| ≲

(
∥eH∥2L6 + ∥eH∥2H1

κ
+ ∥Eh∥2H1

)
∥(R⊥

Hz,RhZ)∥H1
κ×H1

≲ Csol(u,A, κ)
(
∥eH∥2L6 + ∥eH∥2H1

κ
+ ∥Eh∥2H1

)
∥(eH ,Eh)∥L2×L2 .

Here we also used the stability of the projections R⊥
H and Rh. It remains to estimate the first term

in (6.1). With Proposition 2.14, Proposition 4.3 and Lemma 6.2 we estimate

E1 ≲ ||(eH ,Eh)||H1
κ×H1 ||(z − R⊥

Hz,Z− RhZ)||H1
κ×H1

≲
(
κH||z||H2

κ
+ h||Z||H2

)
||(eH ,Eh)||H1

κ×H1

≲ (κH + h)
(
||z||H2

κ
+ ||Z||H2

)
||(eH ,Eh)||H1

κ×H1

≲ (κH + h) (1 + Cε κ
ε Csol(u,A, κ)) ∥(eH ,Eh)∥L2×L2 ||(eH ,Eh)||H1

κ×H1 .

Combining everything yields

||(eH ,Eh)||L2×L2 ≲ (κH + h) (1 + Cε κ
ε Csol(u,A, κ)) ||(eH ,Eh)||H1

κ×H1

+ Csol(u,A, κ)
(
∥eH∥2L6 + ∥eH∥2H1

κ
+ ∥Eh∥2H1

)
.

Using ∥eH∥L6 ≲ κ∥eH∥H1
κ
, the last term is of order ||(eH ,Eh)||2H1

κ×H1 and is hence negligible for

sufficiently small (H,h). The proof is finished by Proposition 6.3. □
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7. Numerical experiments

In this section we verify our theoretical results from Theorem 3.2 in numerical experiments and
investigate the optimality of the convergence w.r.t. the mesh size H for the order parameter u
and the mesh size h for the vector potential A as well as the scaling of the convergence w.r.t. the
GL parameter κ. The implementation for our experiments is available as a MATLAB Code on
https://github.com/cdoeding/fullGLmodelLOD.

For the experiments we choose the LOD approximation for the order parameter u and quadratic
FE (k = 2) for the vector potential A. The latter choice has two reasons: First, considering either
k = 1 or k = 2 is sufficient to demonstrate the main results numerically, since the difference in
the analysis is based on standard properties of Lagrange finite elements and there is no reason to
expect a different behavior in the case k = 1, except for the lower order w.r.t. h and κ. Second,
due to the higher convergence in the case of quadratic FE, it is easier to extract the expected third
order convergence in the LOD space by taking sufficiently small h in the experiments.

Another simplification we make is a reduction to two dimensions to keep the complexity and
runtimes reasonable in our experiments. We emphasize that the main results and the analysis in
this work are not restricted to the three-dimensional case, but can be modified to the problem in two
dimensions. To derive the corresponding Ginzburg–Landau model in 2d, one intuitively considers
a 3d external magnetic field H which is perpendicular to the x1-x2 plane, i.e., H = (0, 0,H3)

T for
some scalar function H3. Then the order parameter and the vector potential should not vary in
the x3-direction as far as we stay away from the x3-boundary of the superconductor, i.e., ∂x3u = 0
and ∂x3

A = 0. This implies that the third component of the vector potential has to vanish and
one derives the Ginzburg–Landau free energy in two dimensions

EGL,2d(u,A) :=
1

2

∫
Ω

| i
κ
∇u+Au|2 + 1

2

(
1− |u|2

)2
+ | curl2d A−H3|2 dx

for the reduced 2d-vector potential A : Ω → R2 and the reduced order parameter u : Ω → C where
now Ω ⊂ R2 is a rectangle. Here curl2d denotes the conventional 2d-curl-operator mapping vector
fields to scalar functions. Setting up the previous analysis in two dimensions and introducing the
stabilized energy

E2d(u,A) := EGL,2d(u,A) +
1

2

∫
Ω

|divA|2 dx

one can derive the corresponding results of Theorem 3.2 in 2d using fully analogue arguments. For
the sake of readability and brevity we omit this case in the analysis of this work and drop the 2d
subindices in the following and write H = H3.

7.1. Gradient descent method. Our implementation to compute a discrete minimizer of the
GL energy relies on an implicit Euler discretization of the L2-gradient flow, based on the previous
works [8,18]. Let us assume that we have constructed the LOD space V LOD

H and let us pretend for
the moment that it does not change during the iteration. Taking the Lagrange FE space Vk

h,0 for

the vector potential A into account, the implicit Euler discretization of the L2-gradient flow seeks
for (unH ,A

n
h) ∈ V LOD

H ×Vk
h,0, n ∈ N, satisfying

m(un+1
H , φH) = m(unH , φH)− τ ∂uE(un+1

H ,An+1
h )φH for all φH ∈ V LOD

H ,

⟨An+1
h ,Bh⟩ = ⟨An

h,Bh⟩ − τ ∂AE(un+1
H ,An+1

h )Bh for all Bh ∈ Vk
h,0

for some step size τ > 0 and suitable initial values (u0H ,A
0
h) ∈ V LOD

H ×Vk
h,0. This nonlinear system

is further simplified by linearizing the Fréchet derivatives on the right-hand side at the previous

https://github.com/cdoeding/fullGLmodelLOD
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iterate (unH ,A
n
h), that is

∂uE(un+1
H ,An+1

h )φH ≈ aLOD
An

h
(un+1

H , φH) + Re

∫
Ω

(
|unH |2 − 1

)
un+1
H φ∗

H dx =: ⟨f(unH ,An
h)u

n+1
H , φH⟩,

∂AE(un+1
H ,An+1

h )Bh ≈ b(An+1
h ,Bh) +

∫
Ω

|unH |2An+1
h ·Bh dx

+

∫
Ω

1

κ
Re

(
i(unH)∗∇unH ·Bh

)
−H · curlBh dx =: ⟨F(unH ,An+1

h ),Bh⟩.

Plugging this into the discretized L2-gradient flow leads us to the iterative scheme

m(un+1
H , φH) = m(unH , φH)− τ ⟨f(unH ,An

h)u
n+1
H , φH⟩ for all φH ∈ V LOD

H ,

⟨An+1
h ,Bh⟩ = ⟨An

h,Bh⟩ − τ ⟨F(unH ,An+1
h ),Bh⟩ for all Bh ∈ Vk

h,0.

Note that every (local) minimizer is a stationary point of the iterative scheme and, vice versa,
every stationary point satisfies at least the first order condition for a (local) minimum. Since,
in practice, the iteration is energy diminishing for sufficiently small τ > 0 we may find a (local)
minimizer of the GL energy in V LOD

H × Vk
h,0 as a limit of the iteration. A rigorous convergence

analysis of the scheme is much more involved and left for future research.
Let us now come back to the fact that the LOD space V LOD

H is constructed by the unknown
minimizing vector potential A or, as discussed in Section 3.2, at least by a suitable approximation
Â which are a priori unknown. To overcome this problem we incorporate an adaptive sequence of
LOD spaces in the iterative solver. Given the iteration (unH ,A

n
h) ∈ H1(Ω)×H1

n(Ω) at some step
n ∈ N we can adaptively define the LOD space for the next iteration based on the bilinear form
aLOD
An

h
(·, ·) according to Section 3. Denoting this LOD space by V LOD

n,H ⊂ H1(Ω) we can define an

adaptive iterative scheme that seeks (unH ,A
n
h) ∈ V LOD

n,H ×Vk
h,0 such that

m(un+1
H , φH) = m(unH , φH)− τ⟨f(unH ,An

h)u
n+1
H , φH⟩ for all φH ∈ V LOD

n,H ,

⟨An+1
h ,Bh⟩ = ⟨An

h,Bh⟩ − τ⟨F(unH ,An+1
h ),Bh⟩ for all Bh ∈ Vk

h,0.

Practically, computing a new LOD space in every iteration is way to expensive. To obtain a
method with feasible cost we choose an empirical updating strategy of the LOD spaces: For
the first 10 iterations, we update the LOD space in every step. Then the LOD space is kept
constant until a multiple of 100 steps has been computed and is then updated again. In our
experiments, the vector potential component of the iteration converges quite fast and stabilizes
after a few steps so that this seems to be a valid updating strategy to keep the computational cost
feasible. Furthermore, we terminate the iteration when the difference in energy of two iterates
|EGL(u

n+1,An+1)− EGL(u
n,An)| approaches a given tolerance εtol > 0.

7.2. Model problem and numerical results. The model of our numerical experiments consid-
ers the GL energy on the two dimensional unit square Ω = (0, 1)2 ⊂ R2, with the external magnetic
field

H(x) = 10 sin(πx1) sin(πx2), x = (x1, x2) ∈ Ω,

and the particular values for the GL parameter κ = 6, 12, 18, 24. We compute the discrete mini-
mizers with the LOD approximation for the order parameter u and quadratic FE for the vector
potential A with the iterative solver described in Section 7.1. We choose the mesh sizes H = 2−7

and h = 2−9 and compute the minimizers up to a tolerance of εtol = 10−10 with the step size
τ = 1. For the practical realization of the LOD spaces we solve the corrector problems from (3.3)
with P1-Lagrange FE on a fine mesh with mesh size hfine = 2−9 and with a localization to ℓ = 10
oversampling layers; see [8] for details. The computed discrete minimizers are shown in Figure
1 and the corresponding energy values are given in Table 1. These solutions serve as reference
solutions for the subsequent experiments and are for convenience again denoted by (u,A).

In the order parameter u (Figure 1, top row) we see the expected vortex patterns, known as the
Abrikosov lattice, that occur in type-II superconductors penetrated by external magnetic fields.
The vortices are well resolved by the LOD approximation space, consistent with the observations
of [8] for the reduced Ginzburg–Landau model with given vector potentials A. The number of
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Figure 1. Minimizers (u,A) for κ = 6, 12, 18, 24 (left to right) computed with
the LOD approximation in the order parameter u and quadratic FE for the vector
potential A. Top row: order parameter |u|. Middle row: vector potential A
(plotted on a coarse mesh). Bottom row: curlA of the vector potential.

κ 6 12 18 24

EGL(u,A) 0.393563 0.271846 0.208339 0.182871

Table 1. Approximate energy EGL(u,A) of the minimizers for κ = 6, 12, 18, 24.

vortices increases and their diameter decreases while the GL parameter κ increases. Looking at
the vector potential A (Figure 1, middle line), we clearly see that no special vortex-like structure
appears in the vector potential. This justifies the choice of a standard FE discretization for the
vector potential A. The physically relevant observable is curlA, shown in the bottom row of Figure
1, which describes the magnetic field inside the superconductor. As expected, it is aligned with the
external magnetic field H. Furthermore, we observed during the computation that the alignment
stabilizes after a few iterations, so our strategy for updating the LOD space is empirically justified.
The challenging variable is the order parameter as we have seen that it takes a lot of iterations
until the right vortex-pattern appears and the gradient flow converges.

Next we investigate the error of the approximations of the minimizers and its dependence on
the mesh sizes H,h and on the GL parameter κ as stated in Theorem 3.2. For the first experi-
ment, we choose a fixed fine mesh size h = 2−7 for the vector potential A, different mesh sizes
H = 2−{2,3,4,5,6} for the LOD approximation in the order parameter u, and compute the errors
∥u− uLOD

H ∥H1
κ
and ∥u− uLOD

H ∥L2 to the reference solution for the different values κ = 6, 12, 18, 24.
All other parameters are chosen as for the reference solutions above. Due to the fine mesh size
in the vector potential we can expect that the overall error (u − uLOD

H ,A − AFEM
h,2 ) is dominated

by the error in the order parameter. The results are depicted in Figure 2. We observe after a
short pre-asymptotic phase an order three decay of the H1

κ-error w.r.t. the mesh size and an order
four decay of the L2-error w.r.t. the mesh size. The pre-asymptotic phase is explained by the
resolution condition H ≲ Csol(u,A, κ)

−1/4κ−1 that we previously discussed in Section 3.1 after
Theorem 3.2. For H = 2−6 both the errors start to stagnate which is most-likely due to the fine
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Figure 2. Error of the order parameter u for the mesh sizes H = 2−{2,3,4,5,6},
h = 2−7 and LOD parameters hfine = 2−9 and ℓ = 10. Left: κ-scaled H1

κ-error
κ−3∥u− uLOD

H ∥H1
κ
. Right: κ-scaled L2-error κ−4∥u− uLOD

H ∥L2

scale discretization of order O(hfine) that we used to solve the local corrector problems for the LOD
space. This behavior was also observed in [8] and we refer to it for a more detailed discussion. Let
us now turn to the κ-dependence of the error. We point out that in Figure 2 the H1

κ-error is scaled
with a κ−3 pre-factor and the L2-error with a κ−4 pre-factor respectively. We observe that the
error curves are almost on top of each other as κ varies and emphasize that a different κ-scaling
of the error leads to a significant difference between the error curves. Therefore, we conclude that
the κ3-dependence (resp. κ4-dependence) of the H1

κ-error (resp. L
2-error) in our theoretical con-

vergence result is optimal. Summarizing, the numerical experiments verifies the O(κ3H3) (resp.
O(κ4H4)) decay of theH1

κ-error (resp. L
2-error) in the order parameter u as proved in Theorem 3.2.
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Figure 3. Error of the vector potential A for the mesh sizes h = 2−{2,3,4,5,6,7},
H = 2−5 and LOD parameters hfine = 2−9 and ℓ = 10. Left: H1-error ∥A −
AFEM

h,2 ∥H1 . Right: L2-error ∥A−AFEM
h,2 ∥L2 .

In the next experiment we extract the convergence in the vector potential A. We fix a small
mesh size H = 2−5 for the order parameter, vary the mesh size h = 2−{2,3,4,5,6,7} for the vector
potential, and compute the errors ∥A−AFEM

h,2 ∥H1 and ∥A−AFEM
h,2 ∥L2 . Again all other parameters

are set as before and we can now expect that the overall error is dominated by the error in the
vector potential A. The results are shown in Figure 3 where we can see that the H1-error decays
in a clear asymptotic phase with a rate of two w.r.t. h after a short pre-asymptotic phase for the
larger values κ = 18 and κ = 24. The pre-asymptotic phase is now explained by the resolution
condition h ≲ Csol(u,A, κ)

−1/3κ−1/3. This coincides with our theoretical findings from Theorem
3.2. But, in view of the κ-dependence, we see that the convergence curves are almost exactly
on top of each other, although we did not include any κ-scaling of the H1-error. This clearly
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indicates that our error estimates of order O(κh2) might be suboptimal w.r.t. κ as an implication
of a possibly suboptimal estimate of ∥A∥H3 in the analysis; see Remark 3.3 for a more detailed
discussion. For the L2-error we also observe a clear third order convergence rate w.r.t. the mesh
size in the asymptotic phase, i.e., for small values of h and small values of κ = 6, 12, 18. The curves
for κ = 18 and κ = 24 show a significant pre-asymptotic regime from h = 2−2 to h = 2−3 as
for the H1 error, but it is too small to allow for any further conclusions about its κ-dependence.
The curve for κ = 24 shows an unstable third order convergence for h−3 to h−7, which indicates
pollution by further pre-asymptotic effects, but again does not allow for any reliable conclusions.
Nevertheless, as for the H1-error, we see no κ-dependence of the L2-error (apart from the κ = 24
curve) which again points to suboptimality of our estimates in the κ-scaling. Besides this, the
experiment confirms our theoretical results w.r.t. the vector potential.
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Figure 4. Error of the energy E with LOD parameters hfine = 2−9 and ℓ = 10.
Left: κ−6|E(u,A)−E(uLOD

H ,AFEM
h,2 )| for the mesh sizes H = 2−{2,3,4,5,6}, h = 2−7.

Right: |E(u,A)−E(uLOD
H ,AFEM

h,2 )| for the mesh sizes h = 2−{2,3,4,5,6,7}, H = 2−5.

In both experiments we additionally computed the error in the Ginzburg–Landau energy which are
shown in Figure 4. The error in energy takes the convergence in both components into account and
we see in both error plots a convergence in three phases: a pre-asymptotic phase, an asymptotic
phase, and a stagnation phase. The occurrence of the pre-asymptotic phase is again caused by the
resolution conditions discussed above. The stagnation of the error is due to the fixed mesh size h
for the vector potential (Figure 4 left) or the fixed mesh size H for the order parameter (Figure
4 right). In the asymptotic phase the errors show the predicted sixth order convergence w.r.t. H
and correct κ−6-scaling in Figure 4 left. In Figure 4 right we observe the expected fourth order
convergence w.r.t. h but again no κ-scaling. Except for the latter, this is again in agreement with
our main results.
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Appendix A. Proofs of the higher regularity results

In this section, we collect the proofs of Theorem 2.6 and Lemma 2.8. As we could not find any
suitable reference which covers our cases, we present the proofs here in the appendix, even though
these results might be known to many experts.

For the sake of notation, we restrict ourselves to the unit cube Ω = (0, 1)3, but the case of general

cuboids is easily derived by a linear transformation. For Ω̂s = (−s, s)3, s ∈ R+, the idea is to use

reflections to extend the functions from Ω to the extended domain Ω̂1, and then periodically to

any Ω̂2k+1 for k ∈ N while preserving its regularity.

The main intuition for this procedure comes from the eigenbasis of the Laplacian on a cube. For
example, for homogeneous Dirichlet boundary conditions the basis on Ω consists of functions

sin(πkx1) sin(πℓx2) sin(πmx3), k, ℓ,m ≥ 1,

and their natural extension is given by first performing an odd reflection on each face and then

obtain a periodic function on Ω̂1. For Neumann boundary conditions, the same idea applies with
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the basis

cos(πkx1) cos(πℓx2) cos(πmx3), k, ℓ,m ≥ 0,

and hence even reflections on each face. For mixed problems the correct combination of sine and
cosine enable us to extend this also to the mixed case.

A.1. Neumann boundary conditions. Let us consider the Neumann problem in Lemma 2.8
given by

−∆u = g in Ω and ∇u · ν|∂Ω = 0,

for g ∈ L2(Ω). For a function f ∈ C(Ω̄), we define the Neumann extension MN : f → fext with

fext(x1, x2, x3) =



f(x1, x2, x3), x1 ∈ (0, 1), x2 ∈ (0, 1), x3 ∈ (0, 1),

f(x1, x2,−x3), x1 ∈ (0, 1), x2 ∈ (0, 1), x3 ∈ (−1, 0),

f(x1,−x2,−x3), x1 ∈ (0, 1), x2 ∈ (−1, 0), x3 ∈ (−1, 0),

f(x1,−x2, x3), x1 ∈ (0, 1), x2 ∈ (−1, 0), x3 ∈ (0, 1),

f(−x1, x2, x3), x1 ∈ (−1, 0), x2 ∈ (0, 1), x3 ∈ (0, 1),

f(−x1, x2,−x3), x1 ∈ (−1, 0), x2 ∈ (0, 1), x3 ∈ (−1, 0),

f(−x1,−x2,−x3), x1 ∈ (−1, 0), x2 ∈ (−1, 0), x3 ∈ (−1, 0),

f(−x1,−x2, x3), x1 ∈ (−1, 0), x2 ∈ (−1, 0), x3 ∈ (0, 1).

Without changing the notation, we extend the operator MN also to L2-functions.

Lemma A.1. Let f ∈ H1(Ω). Then the extension MNf satisfies:

(a) MNf ∈ H1(Ω̂1) with ||MNf ||H1(Ω̂1)
≤ 23||MNf ||H1(Ω).

(b) The periodic extension of MNf satisfies MNf ∈ H1(Ω̂2k+1) for all k ≥ 1 with

||MNf ||H1(Ω̂2k+1)
≤ (2k + 2)3||MNf ||H1(Ω).

Proof. (a) SinceMNf is in H1 on each subdomain, it remains to check that the trace is continuous
in the L2 sense on the faces. However, the even reflection ensures this continuity. Since the H1-
norm on each subdomain is equal to the H1-norm on Ω, the estimate in (a) follows by counting
cubes.

(b) For the periodic case, it is sufficient to note that the periodic extension from Ω̂1 is equivalent
to iteratively performing even reflections on the outer faces. In particular, this implies continuity

at all outer faces of Ω̂1, by repeating the calculation of the interior faces. □

We now turn to the case of preserving H2-regularity.

Lemma A.2. Let f ∈ H2(Ω) with ∇f · ν|∂Ω = 0. Then the extension MNf satisfies:

(a) MNf ∈ H2(Ω̂1) with ||MNf ||H2(Ω̂1)
≤ 23||MNf ||H2(Ω).

(b) The periodic extension of MNf satisfies MNf ∈ H2(Ω̂2k+1) for all k ≥ 1 with

||MNf ||H2(Ω̂2k+1)
≤ (2k + 2)3||MNf ||H2(Ω).

Proof. We note that it is sufficient to show that ∆fext ∈ L2(Ω̂1) and elliptic regularity gives us the
claim. We further note, that the periodic extension is handled as in Lemma A.1.

Since we already know that MNf ∈ H2 on each subdomain and MNf ∈ H1(Ω̂1), in order to show

that ∇fext ∈ H(div, Ω̂1) holds, we have to prove that all normal traces of ∇fext are continuous.
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Computing the gradients on each subdomain, we obtain for the diagonal matrix Ia,b,c = diag(a, b, c)
the expressions

∇fext(x1, x2, x3) =



I1,1,1∇f
∣∣
(x1,x2,x3)

, x1 ∈ (0, 1), x2 ∈ (0, 1), x3 ∈ (0, 1),

I1,1,−1∇f
∣∣
(x1,x2,−x3)

, x1 ∈ (0, 1), x2 ∈ (0, 1), x3 ∈ (−1, 0),

I1,−1,−1∇f
∣∣
(x1,−x2,−x3)

, x1 ∈ (0, 1), x2 ∈ (−1, 0), x3 ∈ (−1, 0),

I1,−1,1∇f
∣∣
(x1,−x2,x3)

, x1 ∈ (0, 1), x2 ∈ (−1, 0), x3 ∈ (0, 1),

I−1,1,1∇f
∣∣
(−x1,x2,x3)

, x1 ∈ (−1, 0), x2 ∈ (0, 1), x3 ∈ (0, 1),

I−1,1,−1∇f
∣∣
(−x1,x2,−x3)

, x1 ∈ (−1, 0), x2 ∈ (0, 1), x3 ∈ (−1, 0),

I−1,−1,−1∇f
∣∣
(−x1,−x2,−x3)

, x1 ∈ (−1, 0), x2 ∈ (−1, 0), x3 ∈ (−1, 0),

I−1,−1,1∇f
∣∣
(−x1,−x2,x3)

, x1 ∈ (−1, 0), x2 ∈ (−1, 0), x3 ∈ (0, 1).

We only check the face {x1 = 0, x2 ∈ (0, 1), x3 ∈ (0, 1)} with normal vector ν = e1 to obtain
formally for all x2 ∈ (0, 1), x3 ∈ (0, 1)

lim
x1→0+

∂νfext(x1, x2, x3) = lim
x1→0+

∂1f(x1, x2, x3) = ∂1f(0, x2, x3) = 0

as well as

lim
x1→0−

∂νfext(x1, x2, x3) = lim
x1→0+

−∂1f(−x1, x2, x3) = −∂1f(0, x2, x3) = 0.

For the other faces the very same computations can be performed. Thus, all normal traces of
∇fext vanish on the inner faces, are thus in particular continuous, and we have shown ∇fext ∈
H(div, Ω̂1). □

With this, we are in the position to prove Lemma 2.8.

Proof of Lemma 2.8. First, we observe with Lemmas A.1 and A.2 that for uext =MNu

−∆uext

∣∣
(x1,x2,x3)

= −∆u
∣∣
(±x1,±x2,±x3)

= f
∣∣
(±x1,±x2,±x3)

= fext(x1, x2, x3),

with signs chosen accordingly to the definition of MN . In particular, uext solves the Neumann

problem in Lemma 2.8 also on Ω̂3 with right-hand side fext ∈ H1(Ω̂3). By interior regularity for
elliptic problems (cf. [30, Theorem 6.3.2]) we conclude u = uext|Ω ∈ H3(Ω) with

∥u∥H3(Ω) ≲ ∥uext∥L2(Ω̂3)
+ ∥fext∥H1(Ω̂3)

≲ ∥u∥L2(Ω) + ∥f∥H1(Ω).

Next, we turn towards theW 2,p-regularity of u, where we exploit again the extensions uext and fext
together with a Calderón–Zygmund estimate. For that, let Bext be a ball with radius r = 2, which

is compactly contained in the extended domain Ω̂3. In particular, we have Ω ⊂⊂ Bext ⊂⊂ Ω̂3

and a regular boundary ∂Bext ∈ C1,1. We want to smoothly truncate uext to Bext with a cut-off
function η ∈ C∞

0 (Bext) with 0 ≤ η ≤ 1. Furthermore, η should not only be constant 1 on Ω, but

also on a slightly enlarged box, that is, η ≡ 1 on Ω̂1+δ for a sufficiently small δ such that we still

have Ω̂1+δ ⊂⊂ Bext. Finally, assume that η is selected such that ∥∇η∥L∞ ≤ C for some constant

C that only depends on Bext and Ω̂3. We consider the function η uext ∈ H1
0 (Bext) which solves

−∆(η uext) = −η∆uext − 2∇uext · ∇η − uext ∆η = η fext − 2∇uext · ∇η − uext ∆η =: f̃ext.

Since uext ∈ H3(Bext) (by interior regularity from the first part of the proof), Sobolev embeddings
guarantee that we also have ∇uext ∈ L∞(Bext). Together with fext ∈ Lp(Bext) (which directly
follows from f ∈ Lp(Ω)), we conclude that η uext ∈ H1

0 (Bext) is the unique solution to a Poisson
problem on a smooth domain Bext, with homogeneous Dirichlet boundary condition and a right-
hand side f̃ext ∈ Lp. By Lp-regularity theory for elliptic problems, cf. [12, Chapt. 3, Thm. 6.3 &
Thm. 6.4], we conclude that this unique solution fulfills η uext ∈ W 2,p(Bext). By construction of

the cut-off function, we have uext|Ω̂1+δ
= (η uext)|Ω̂1+δ

∈ W 2,p(Ω̂1+δ). Furthermore, we still have

−∆uext = fext in Ω̂1+δ ⊂ Ω̂3. Using the Calderón–Zygmund estimate [34, Theorem 9.11] with

Ω ⊂⊂ Ω̂1+δ, we conclude that there exist constants (depending on p, Ω and δ), such that

∥u∥W 2,p(Ω) = ∥uext∥W 2,p(Ω) ≲
(
∥uext∥Lp(Ω̂1+δ)

+ ∥fext∥Lp(Ω̂1+δ)

)
≲

(
∥u∥Lp(Ω) + ∥f∥Lp(Ω)

)
,
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which proves the claim. □

A.2. Mixed boundary conditions. We now turn to the regularity results of the vector potential
A. As mentioned above, the H2-regularity of a solution U ∈ H1

n,div(Ω) of (2.7) follows from

[40, Lemma 3.7]. In addition, the reference shows that the first component U1 satisfies

(A.1)

−∆U1 = f in Ω,

U1 = 0 on Γ1 = {x ∈ Ω | x1 = 0 or x1 = 1},
∂2U1 = 0 on Γ2 = {x ∈ Ω | x2 = 0 or x2 = 1},
∂3U1 = 0 on Γ3 = {x ∈ Ω | x3 = 0 or x3 = 1},

and similarly the other two components by interchanging the roles of the faces. We thus only study
the case of U1. We follow the ideas of the Neumann case but now with the eigenbasis of the from

sin(πkx) cos(πℓy) cos(πmz)

in mind. This means odd reflections in x1-direction and even reflections on x2- and x3-direction.
We therefore introduce the spaces

H1
0,1(Ω) := {φ ∈ H1(Ω) | φ = 0 on Γ1},

H2
0,1(Ω) := {φ ∈ H2(Ω) | φ = 0 on Γ1, ∂νφ = 0 on Γ2 ∪ Γ3}.

If Ω is replaced by a larger cube Ω̂s, we denote by Γi := {x ∈ ∂Ω̂s | xi = −s or xi = s}. For a
function f ∈ C(Ω̄), we define the mixed extension MD,N : f → fext with

fext(x1, x2, x3) =



f(x1, x2, x3), x1 ∈ (0, 1), x2 ∈ (0, 1), x3 ∈ (0, 1),

f(x1, x2,−x3), x1 ∈ (0, 1), x2 ∈ (0, 1), x3 ∈ (−1, 0),

f(x1,−x2,−x3), x1 ∈ (0, 1), x2 ∈ (−1, 0), x3 ∈ (−1, 0),

f(x1,−x2, x3), x1 ∈ (0, 1), x2 ∈ (−1, 0), x3 ∈ (0, 1),

−f(−x1, x2, x3), x1 ∈ (−1, 0), x2 ∈ (0, 1), x3 ∈ (0, 1),

−f(−x1, x2,−x3), x1 ∈ (−1, 0), x2 ∈ (0, 1), x3 ∈ (−1, 0),

−f(−x1,−x2,−x3), x1 ∈ (−1, 0), x2 ∈ (−1, 0), x3 ∈ (−1, 0),

−f(−x1,−x2, x3), x1 ∈ (−1, 0), x2 ∈ (−1, 0), x3 ∈ (0, 1).

As in the Neumann case, this extension preserves the regularity of the inserted functions.

Lemma A.3. Let f ∈ H1
0,1(Ω) and g ∈ H2

0,1(Ω).

(a) MD,Nf ∈ H1
0,1(Ω̂1) with ||MNf ||H1(Ω̂1)

≤ 23||MNf ||H1(Ω).

(b) The periodic extension of MD,Nf satisfies MD,Nf ∈ H1
0,1(Ω̂2k+1) for all k ≥ 1 with

||MD,Nf ||H1(Ω̂2k+1)
≤ (2k + 2)3||MD,Nf ||H1(Ω).

(c) MD,Ng ∈ H2
0,1(Ω̂1) with ||MD,Ng||H2(Ω̂1)

≤ 23||MD,Ng||H2(Ω).

(d) The periodic extension of MD,Nf satisfies MNg ∈ H2
0,1(Ω̂2k+1) for all k ≥ 1 with

||MD,Ng||H2(Ω̂2k+1)
≤ (2k + 2)3||MD,Ng||H2(Ω).

Proof. The claims on H1 are easily verified, as we preserve continuity at all faces. Further, the
computations for all faces where x1 is either positive or negative are fully analogous to Lemma A.2
as all the normal traces vanish. Hence, we check the conditions at x1 = 0, and let for example
x2, x3 < 0. Then,

∇fext(x1, x2, x3) = I1,−1,−1∇f
∣∣
(x1,−x2,−x3)

, x1 > 0

∇fext(x1, x2, x3) = −I−1,−1,−1∇f
∣∣
(−x1,−x2,−x3)

, x1 < 0,
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and we obtain

lim
x1→0+

∂νfext(x1, x2, x3) = lim
x1→0+

∂1f(x1,−x2,−x3) = ∂1f(0,−x2,−x3)

as well as

lim
x1→0−

∂νfext(x1, x2, x3) = lim
x1→0+

∂1f(−x1,−x2,−x3) = ∂1f(0,−x2,−x3),

and we also obtain here the continuity of the normal traces of the gradient. □

We can then turn to the proof of the second part of Theorem 2.6.

Proof of Theorem 2.6 (b). Let us recall that by part (a) U ∈ H2(Ω) solves

∆U = G, U · ν|∂Ω = curlU× ν|∂Ω = 0,

with G = F+ curlH. The regularity of H and F and the conditions

curlH · ν|∂Ω = F · ν|∂Ω = 0 imply G ∈ H1(Ω) and G · ν|∂Ω = 0.

Now taking the first component U1, wee see that f in (A.1) is given by the first component of

G, and thus satisfies f ∈ H1
0,1(Ω). Lemma A.3 further ensures that fext ∈ H1

0,1(Ω̂3) holds. For
Uext =MD,NU we argue as in the proof of Lemma 2.8 and observe that choosing the correct case
in the definition of MD,N

−∆Uext

∣∣
(x1,x2,x3)

= (−1)m∆U
∣∣
(±x1,±x2,±x3)

= (−1)mf
∣∣
(±x1,±x2,±x3)

= fext(x1, x2, x3)

with m = 0 for x1 > 0 and m = 1 for x1 < 0. Hence, Uext ∈ H2
0,1(Ω̂3) solves the mixed problem

(A.1) with right-hand side fext ∈ H1
0,1(Ω̂3). Again, interior regularity for elliptic problems (cf.

[30, Theorem 6.3.2]) gives U = Uext|Ω ∈ H3(Ω) with

∥U∥H3(Ω) ≲ ∥Uext∥L2(Ω̂3)
+ ∥fext∥H1(Ω̂3)

≲ ∥U∥L2(Ω) + ∥f∥H1(Ω),

which yields the claim. □

Appendix B. Proofs of additional auxiliary results

In this section, we present the proofs of Lemma 5.5 and Lemma 6.1.

Proof of Lemma 5.5. Using ∂uE(u,A)φ = 0 and ∂AE(u,A)B = 0, we obtain the identity

⟨E′′(u,A)(u,A), (ψH ,Ch)⟩

= Re

∫
Ω

( i
κ
∇u+Au

)
·
( i
κ
∇ψH +AψH

)∗
+

(
|u|2 − 1

)
uψ∗

H + 2|u|2uψ∗
H dx

+

∫
Ω

2|u|2A ·Ch +
1

κ
Re

(
iu∗∇u+ iu∗∇u

)
·Ch dx

+

∫
Ω

2Re(uψ∗
H)|A|2 + 1

κ
Re

(
iu∗∇ψH + iψ∗

H∇u
)
·A dx

+

∫
Ω

|u|2Ch ·A+ curlCh · curlA+ divCh · divAdx

= Re

∫
Ω

2|u|2uψ∗
H dx +

∫
Ω

2|u|2A ·Ch +
1

κ
Re

(
iu∗∇u

)
·Ch dx

+

∫
Ω

2Re(uψ∗
H)|A|2 + 1

κ
Re

(
iu∗∇ψH + iψ∗

H∇u
)
·A+H · curlCh dx.(B.1)

Analogously, the same identity holds for ⟨E′′(uH ,Ah)(uH ,Ah), (ψH ,Ch)⟩ if we replace (u,A) by
(uH ,Ah) at all occurrences. Next, we use the decomposition

ε2 = E′′(u,A)(u,A)− E′′(uH ,Ah)(uH ,Ah)︸ ︷︷ ︸
=:ε2,1

+ E′′(uH ,Ah)(uH ,Ah)− E′′(u,A)(uH ,Ah)︸ ︷︷ ︸
=:ε2,2
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to sort the terms and treat them together. For the first term we obtain with (B.1) that

ε2,1(ψH ,Ch) = Re

∫
Ω

2(|u|2u− |uH |2uH)ψ∗
H dx︸ ︷︷ ︸

=:α1

+

∫
Ω

2(|u|2A− |uH |2Ah) ·Ch dx︸ ︷︷ ︸
=:α2

+

∫
Ω

1

κ
Re

(
iu∗∇u− iu∗H∇uH

)
·Ch dx︸ ︷︷ ︸

=:α3

+

∫
Ω

2Re(uψ∗
H)|A|2 − 2Re(uHψ

∗
H)|Ah|2 dx︸ ︷︷ ︸

=:α4

+

∫
Ω

1

κ
Re

(
iu∗∇ψH + iψ∗

H∇u
)
·A− 1

κ
Re

(
iu∗H∇ψH + iψ∗

H∇uH
)
·Ah dx︸ ︷︷ ︸

=:α5

.

Using

Re

∫
Ω

( i
κ
∇uH +AhuH

)
·
( i
κ
∇ψH +AhψH

)∗ − ( i
κ
∇uH +AuH

)
·
( i
κ
∇ψH +AψH

)∗
dx

= Re

∫
Ω

i
κ∇uH · (Ah −A)ψ∗

H − i
κuH (Ah −A)∇ψ∗

H + (|Ah|2 − |A|2)uHψ∗
H dx,(B.2)

the second term satisfies

ε2,2(ψH ,Ch) = ⟨E′′(uH ,Ah)(uH ,Ah), (ψH ,Ch)⟩ − ⟨E′′(u,A)(uH ,Ah), (ψH ,Ch)⟩

= Re

∫
Ω

( i
κ
∇uH +AhuH

)
·
( i
κ
∇ψH +AhψH

)∗
+
(
|uH |2 − 1

)
uHψ

∗
H + u2Hu

∗
Hψ

∗
H + |uH |2uHψ∗

H dx

+

∫
Ω

2Re(uHu
∗
H)Ah ·Ch +

1

κ
Re

(
iu∗H∇uH + iu∗H∇uH

)
·Ch dx

+

∫
Ω

2Re(uHψ
∗
H)Ah ·Ah +

1

κ
Re

(
iu∗H∇ψH + iψ∗

H∇uH
)
·Ah dx

+

∫
Ω

|uH |2Ch ·Ah + curlCh · curlAh + divCh · divAh dx

− Re

∫
Ω

( i
κ
∇uH +AuH

)
·
( i
κ
∇ψH +AψH

)∗
+
(
|u|2 − 1

)
uHψ

∗
H + u2u∗Hψ

∗
H + |u|2uHψ∗

H dx

−
∫
Ω

2Re(uu∗H)A ·Ch +
1

κ
Re

(
iu∗∇uH + iu∗H∇u

)
·Ch dx

−
∫
Ω

2Re(uψ∗
H)A ·Ah +

1

κ
Re

(
iu∗∇ψH + iψ∗

H∇u
)
·Ah dx

−
∫
Ω

|u|2Ch ·Ah + curlCh · curlAh + divCh · divAh dx

(B.2)
= Re

∫
Ω

2
(
|uH |2 − |u|2

)
uHψ

∗
H + (u2H − u2)u∗Hψ

∗
H dx︸ ︷︷ ︸

=:β1

+

∫
Ω

2Re(uHu
∗
H)Ah ·Ch + (|uH |2 − |u|2)Ah ·Ch − 2Re(uu∗H)A ·Ch dx︸ ︷︷ ︸

=:β2

+

∫
Ω

1

κ
Re

(
i(uH − u)∗∇uH + iu∗H(∇uH −∇u)

)
·Ch dx︸ ︷︷ ︸

=:β3

+

∫
Ω

(3|Ah|2 − |A|2)Re(uHψ∗
H)− 2A ·Ah Re(uψ

∗
H) dx︸ ︷︷ ︸

=:β4

+ Re

(
i

κ

∫
Ω

(Ah−A) · (∇uHψ∗
H −uH∇ψ∗

H) +
(
(uH −u)∗∇ψH + ψ∗

H∇(uH −u)
)
·Ah dx

)
︸ ︷︷ ︸

=:β5

.

We investigate the various terms. For brevity, let us define eH := u− uH and Eh := A−Ah.
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• α1 + β1: First, we note that with uH = u− eH we obtain

2
(
|u|2u− |uH |2uH

)
= 2

(
|u|2u− (|u|2 − u∗eH − e∗Hu+ |eH |2)(u− eH)

)
= 4|u|2eH + 2u2e∗H − |eH |2 + u|eH |2 − u∗e2H + eH |eH |2

as well as

2
(
|uH |2 − |u|2

)
uH + (u2H − u2)u∗H

= 2
(
|u|2 − u∗eH − e∗Hu+ |eH |2 − |u|2

)
(u− eH) + (u2 − 2ueH + e2H − u2)(u− eH)∗

= −4|u|2eH − 2u2e∗H + 3u∗e2H + 6|eH |2u− 3eH |eH |2.

Consequently,

|α1 + β1| = |Re
∫
Ω

(
2
(
|u|2u− |uH |2uH

)
+ 2

(
|uH |2 − |u|2

)
uH + (u2H − u2)u∗H

)
ψ∗
H dx|

= |Re
∫
Ω

((7u− 1)|eH |2 + 2u∗e2H − 2eH |eH |2)ψ∗
H dx|

≤ 10 ∥eH∥2L4∥ψH∥L2 + 2 ∥eH∥3L6∥ψH∥L2 .

• α2 + β2: First, we note that

2(|u|2A− |uH |2Ah) + 2Re(uHu
∗
H)Ah + (|uH |2 − |u|2)Ah − 2Re(uu∗H)A

= 2|u|2A+ (|uH |2 − |u|2)Ah − 2Re(uu∗H)A = |u− uH |2A+ (|uH |2 − |u|2)(Ah −A).

With this, we obtain again with eH = u− uH and Eh = A−Ah

|α2 + β2| = |
∫
Ω

|eH |2A ·Ch + (|uH |2 − |u|2)Eh ·Ch dx|

≤ ∥eH∥2L4∥A∥L4∥Ch∥L4 + ∥eH∥L4∥Eh∥L4∥Ch∥L4 ∥|uH |+|u|∥L4

≲
(
∥eH∥2L4 + ∥Eh∥2L4

)
∥Ch∥H1 .

• α3 + β3: We use

u∗∇u− u∗H∇uH + (uH − u)∗∇uH + u∗H(∇uH −∇u) = (u− uH)∗(∇u−∇uH)

to obtain

|α3 + β3|

= | 1
κ

∫
Ω

Re
(
iu∗∇u− iu∗H∇uH

)
·Ch − Re

(
i(uH − u)∗∇uH + iu∗H(∇uH −∇u)

)
·Ch dx|

= | 1
κ
Re

∫
Ω

i (u− uH)∗(∇u−∇uH) ·Ch dx|

≤ ∥ 1
κ∇eH∥L2∥eH∥L4∥Ch∥L4 ≲ (∥eH∥2H1

κ
+ ∥eH∥2L4) ∥Ch∥H1 .

• α4 + β4: Noting that

2Re(uψ∗
H)|A|2 − 2Re(uHψ

∗
H)|Ah|2 + (3|Ah|2 − |A|2)Re(uHψ∗

H)− 2A ·Ah Re(uψ
∗
H)

= Re(uψ∗
H)|A−Ah|2 +Re((u− uH)ψ∗

H) (A−Ah) · (A+Ah),

we obtain with the bounds from Lemma 5.1

|α4 + β4| = |
∫
Ω

Re(uψ∗
H)|A−Ah|2 +Re((u− uH)ψ∗

H) (A−Ah) · (A+Ah) dx|

≤ ∥A−Ah∥2L4∥ψH∥L2 + ∥u− uH∥L6∥ψH∥L2∥A−Ah∥L6∥A+Ah∥L6

≲
(
∥eH∥2L6 + ∥Eh∥2L4 + ∥Eh∥2L6

)
∥ψH∥L2 .

• α5 + β5: It holds(
u∗∇ψH + ψ∗

H∇u
)
·A−

(
u∗H∇ψH + ψ∗

H∇uH
)
·Ah

+ (Ah−A) · (∇uHψ∗
H −uH∇ψ∗

H) +
(
(uH −u)∗∇ψH + ψ∗

H∇(uH −u)
)
·Ah

= (u∗∇ψH + uH∇ψ∗
H) · (A−Ah) + ψ∗

H(∇u−∇uH) · (A−Ah).
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Together with Re (iu∗∇ψH) = Re (u(i∇ψH)∗) = −Re (iu∇ψ∗
H), we hence obtain

|α5 + β5|

=
1

κ
|
∫
Ω

Re
(
i (u∗∇ψH + uH∇ψ∗

H) · (A−Ah) + iψ∗
H(∇u−∇uH) · (A−Ah)

)
dx|

=
1

κ
|
∫
Ω

Re
(
i (uH − u)∇ψ∗

H · (A−Ah) + iψ∗
H(∇u−∇uH) · (A−Ah)

)
dx|

=
1

κ
|
∫
Ω

Re
(
i 2 (uH − u)∇ψ∗

H · (A−Ah) + iψ∗
H(uH − u) · div(A−Ah)

)
dx|

≤ 2∥ 1
κ∇ψH∥L2∥u− uH∥L4∥A−Ah∥L4 + ∥ 1

κψH∥L4∥u− uH∥L4∥ div(A−Ah)∥L2

≲
(
∥u− uH∥2L4 + ∥A−Ah∥2H1

)
∥ψH∥H1

κ
.

It remains to sum up the previous estimates. We obtain

|ε2(ψH ,Ch)| ≤ |α1 + β1|+ |α2 + β2|+ |α3 + β3|+ |α4 + β4|+ |α5 + β5|
≲ (∥u− uH∥2L6 + ∥u− uH∥2H1

κ
+ ∥A−Ah∥2H1) (∥ψH∥H1

κ
+ ∥Ch∥H1),

and thus the assertion. □

Proof of Lemma 6.1. The proof follows [39, Lem. 10.8] with some modifications to account for the
missing coercivity of aLOD

A (·, ·) on H1(Ω) and the influence of κ on the estimates. Let φLOD
H ∈ V LOD

H

be arbitrary, then we can write it as φLOD
H = (1 − C)φH for some φH ∈ VH . By definition of the

corrector C we have for the L2-projection πFEM
H : H1(Ω) → VH that πFEM

H (CφH) = 0 hence with
the approximation properties of πFEM

H we conclude

∥CφH∥L2 = ∥(1− C)φH − πFEM
H ((1− C)φH)∥L2 ≲ H∥∇(1− C)φH∥L2 .(B.3)

Next, we obtain from aLOD
A ((1− C)φH , CφH) = 0 that

1
κ2 ∥∇(1− C)φH∥2L2 ≲ aA((1− C)φH , (1− C)φH)

= aA((1− C)φH , φH) +

∫
Ω

(|A|2 + 1)|(1− C)φH |2 dx

≲ ε∥(1− C)φH∥2H1
κ
+ 1

ε∥φH∥2H1
κ
+ ∥(1− C)φH∥2L2 ,

for any ε > 0 using Young’s inequality. Hence, for sufficiently small ε (independent of H or κ),
we conclude ∥(1− C)φH∥2H1

κ
≲ ∥φH∥2H1

κ
+ ∥(1− C)φH∥2L2 which we can further estimate with the

standard inverse inequality in Lagrange FE spaces as

1
κ2 ∥∇(1− C)φH∥2L2 ≲ ∥φH∥2L2 + 1

κ2H2 ∥φH∥2L2 + ∥(1− C)φH∥2L2

= (1 + 1
κ2H2 )(φH , (1− C)φH)L2 + ∥(1− C)φH∥2L2

≲ (1 + 1
κ2H2 )∥(1− C)φH∥2L2 + (1 + 1

κ2H2 )(CφH , (1− C)φH)L2

≲ (1 + 1
κ2H2 + 1

ε )∥(1− C)φH∥2L2 + ε (1 + 1
κ2H2 )∥CφH∥2L2

(B.3)

≲ (1 + 1
κ2H2 + 1

ε )∥(1− C)φH∥2L2 + ε (H2 + 1
κ2 )∥∇(1− C)φH∥L2 .

Using H ≲ κ−1, we can absorb the right term for sufficiently small ε into the left-hand side and
conclude

1
κ2 ∥∇(1− C)φH∥2L2 ≲ 1

κ2H2 ∥(1− C)φH∥2L2 . □
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