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A MULTISCALE APPROACH TO THE STATIONARY GINZBURG–LANDAU

EQUATIONS OF SUPERCONDUCTIVITY

CHRISTIAN DÖDING, BENJAMIN DÖRICH, AND PATRICK HENNING

Abstract. In this work, we study the numerical approximation of minimizers of the Ginzburg–

Landau free energy, a common model to describe the behavior of superconductors under magnetic
fields. The unknowns are the order parameter, which characterizes the density of superconduct-

ing charge carriers, and the magnetic vector potential, which allows to deduce the magnetic

field that penetrates the superconductor. Physically important and numerically challenging are
especially settings which involve lattices of quantized vortices which can be formed in materials

with a large Ginzburg–Landau parameter κ. In particular, κ introduces a severe mesh resolution

condition for numerical approximations. In order to reduce these computational restrictions,
we investigate a particular discretization which is based on mixed meshes where we apply a

Lagrange finite element approach for the vector potential and a localized orthogonal decompo-

sition (LOD) approach for the order parameter. We justify the proposed method by a rigorous
a-priori error analysis (in L2 and H1) in which we keep track of the influence of κ in the main

error contributions. This allows us to conclude κ-dependent resolution conditions for the various

meshes and which only impose moderate practical constraints compared to a conventional finite
element discretization. While our results only provide information on the approximability of

the minimizers, we conclude by further proposing a minimization procedure to illustrate our
theoretical findings by numerical experiments.

1. Introduction

In most materials the flow of an electric current is countered with an electric resistance which
leads to a loss in energy. Materials with no electrical resistance, usually referred to as supercon-
ductors, are rare in nature, but open up a large variety of possible applications. To consider a
mathematical model for superconductivity, we let Ω ⊂ R3 denote a cuboid which is occupied by
the superconducting material. The superconductivity itself is described by a complex-valued wave
function u : Ω → C which is called the order parameter. Though not a physical observable on its
own, we can extract from u the density of the superconducting electron pairs |u|2. This density is
real-valued and can be observed in physical experiments. In fact, the scaling in the corresponding
models enforces 0 ≤ |u|2 ≤ 1, where |u(x)|2 = 0 implies that the material is not superconducting
(in normal state) in x ∈ Ω and |u(x)|2 = 1 implies a perfect superconductor, locally in x. In
between, the percentage of superconducting charge carriers might drop to a value between 0 and
1. In these mixed normal-superconducting states, both phases can coexist in a so-called Abrikosov
vortex lattice [1] with |u(x)|2 = 0 in the vortex centers. These kinds of configurations can only
occur for so-called type-II superconductors when a sufficiently strong (but not too strong) external
magnetic field H is applied. In fact, in mixed normal-superconducting states, the magnetic field
partially penetrates the superconducting material. In this paper, we focus on exactly these kind
of settings.

Considering such a situation, the relevant order parameter and the unknown internal magnetic
field can be characterized as minimzers of the so-called Ginzburg–Landau (GL) free energy (cf.
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[27, Sec. 3]), which is given by

EGL(u,A) :=
1

2

∫
Ω

| i
κ
∇u+Au|2 + 1

2

(
1− |u|2

)2
+ | curlA−H|2 dx.(1.1)

Here, H is a given external magnetic field and κ ∈ R+ is a material parameter, often called the
Ginzburg–Landau parameter. The unknown A denotes the magnetic vector potential, from which
we can obtain the internal magnetic field given by curlA. In fact, besides the density |u|2, the
magnetic field curlA is the second physical quantity of interest. Recalling that we are interested
in vortex states, it is important to note that the size of the parameter κ determines the structure
of the vortex lattice [60, 61, 63, 64]. In particular, for small values of κ, no vortices will appear,
whereas with increasing κ, the number of vortices grows and they become more localized [2, 60].
Thus, the regime of large values of κ is the physically most interesting regime accompanied by
many challenges for its numerical approximation. The phenomenon is also closely related to the
appearance of vortices in superfluids [25].

First results on the numerical approximation of minimizers to (1.1) were obtained in the pioneering
works by Du, Gunzburger and Peterson [27, 28] who derived H1-error estimates in finite element
(FE) spaces for both the order parameter u and the magnetic vector potential A. Even though
estimates of optimal convergence order could be provided in a (joint) mesh parameter H, the proof
techniques could not take into account the precise role of κ and how it affects potential constraints
on the mesh size for u and A respectively. An error analysis for alternative discretizations based
on a covolume method [30] or a finite volume method [29] can be also found in the literature.
However, both works only establish convergence, but no rates in H and κ.

First error estimates that are indeed explicit with respect to κ and the mesh size H were recently
obtained in [20] for a finite element discretization of (1.1), however, in a simplified setting where
the vector potential A was assumed to be given and the minimization of the energy only involved
u. In this case, the last term in (1.1) can be dropped. In the aforementioned work, it was found
that the mesh size H needs to fulfill a resolution condition of at least H ≲ κ−1 to obtain reliable
approximations. Even more, the error estimates indicated a pre-asymptotic convergence regime,
subject to a second resolution condition that depends on the strength of local convexity of EGL in
a neighborhood of a minimizer, i.e., on the smallest eigenvalues of E′′

GL(u). In fact, the numerical
experiments indicated that this resolution condition is not an artifact of the analysis, but FE
spaces with too coarse meshes are not able to capture the correct vortex patterns, which leads to
significant practical constraints.

To overcome these constraints it was suggested in [20] to use a discretization based on Localized
Orthogonal Decomposition (LOD). This idea was later realized in [8] (still in the setting of given
A). The LOD is a numerical homogenization technique designed by Målqvist and Peterseim [55] to
tackle elliptic multiscale problems. In the last decade it was generalized multiple times and applied
to a large variety of different problems, where we exemplary refer to [18, 19, 32, 36, 42, 43, 46, 50,
52–54, 59, 67] and the reference therein, as well as to the reviews given in [3] and [56]. Applying
the LOD to approximate minimizers of the Ginzburg–Landau energy can be motivated with its
fast convergence under comparably weak regularity assumptions. This is achieved by constructing
an approximation space (the LOD space) that contains problem-specific information, in particular
it is based on κ and A. A comprehensive error analysis of the resulting method was given in [8],
revealing that the κ-dependent resolution conditions can be indeed relaxed with this strategy and
correct vortex patters could be computed on rather coarse meshes. Furthermore, the locality for
the LOD shape functions was quantified, where it was found that approximate shape functions with
a diameter of order O(log(Hκ)H) are sufficient to preserve the overall approximation properties
of the ideal LOD method. However, in the aforementioned work the LOD spaces were computed
in an offline phase and the error analysis was only carried out for the simplified energy under the
assumption that the vector potential A is a-priori known and not part of the minimization process.

Turning to the full problem (1.1), one would naively try and use an LOD approach on both u andA.
However, this is computationally extremely expensive and, as one can see from our error analysis
and numerical experiments, there is typically no need for a fine resolution of the vector potential
A. This motivates one of the main questions of this work: What are suitable, possibly different
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discretizations of the pair (u,A) such that we can achieve high convergence rates under possibly
low regularity assumptions and weak resolution conditions and can we quantify the corresponding
error if different ansatz spaces are used for u and A? The key in the error analysis of [20] was a
detailed a-priori analysis of the continuous and discrete minimizers in order to obtain bounds which
are sharp in their κ-scaling. Following this approach, we generalize these techniques and derive
bounds for continuous and discrete minimizers which are explicit in κ. Most notably, we show that
the bounds on u in Sobolev norms depend on κ whereas the bounds onA up to its second derivative
are independent of κ, which resembles the simpler structure of A even in large κ-regimes. Denoting
by H and h the spatial mesh size of the discrete spaces for u and A respectively, our error bounds
allow us to extract optimal coupling conditions between H and h depending on the polynomial
degree of the FE space and the parameter κ. The main challenge is the intrinsic coupling of u and
A within the energy and the Fréchet derivatives. Here, again it turned out to be crucial to work
with appropriately scaled norms for both quantities in order to derive sharp estimates in κ. Also
in the error analysis we need to carefully balance the distribution of regularity and integrability in
our estimates such that no superfluous powers of κ enter the final error bounds. Our experiments
then indeed confirm that these bounds are optimal with one minor exception. In our theory, the
H3-norm of A is expected to grow linearly in κ which is not visible in the experiments. To us it
remains open whether this is an artifact of the analysis or other examples could support our theory.
We note that we chose Ω as a cuboid to obtain all necessary regularity estimates in a rigorous way
even without assuming a smooth boundary. Furthermore, let us emphasize that our results are
only concerned with the approximability of the exact minimizers by their discrete counterparts, but
not with the analysis of iterative methods for finding such minimizers. To perform our numerical
experiments, we propose a novel minimization algorithm, however proving its convergence is far
beyond the scope of this work.

Finally, let us mention that there has also been a lot of work on the time-dependent Ginzburg–
Landau equation which typically has a gradient flow structure and which is used to describe the
dynamics within a superconductor. Corresponding numerical methods, convergence results and
error estimates can be for example found in [5–7, 14, 15, 22–24, 26, 31, 37, 38, 47–49, 51] and the
references therein. To the best of our knowledge, questions regarding vortex-resolution conditions
depending on κ and A have not yet been studied in the time-dependent case. Due to the different
nature of the time-dependent problem, we will not discuss the equation any further here.

The rest of the paper is organized as follows: In Section 2, we introduce the analytical framework
and present several results on a-priori bounds and the regularity of the continuous minimizers.
Furthermore, we discuss the gauge conditions and study the resulting properties of the Fréchet
derivatives. The core findings of our paper are stated in Section 3. Here we present the construction
of LOD spaces in our problem setting together with our corresponding main results. The main
results are proved step by step in the sections after. First, in Section 4, we provide further
analytical findings which are crucial for the later error estimates. An abstract error analysis is then
established in Section 5. Finally, the abstract results are applied in Section 6 to the considered LOD
discretization and we give the corresponding proofs to our main results. Numerical experiments
which illustrate our theoretical findings are shown in Section 7. The regularity theory and technical
computations are postponed to the Appendices A and B.

Notation. For a complex number z ∈ C, we use z∗ for the complex conjugate of z. In the
whole paper we further denote by L2(Ω) := L2(Ω,C) the Hilbert space of L2-integrable com-
plex functions, but equipped with the real scalar product (u, v)L2 := Re

∫
Ω
v w∗ dx for v, w ∈

L2(Ω). Hence, we interpret the space as a real Hilbert space. Analogously, we equip the space
H1(Ω) := H1(Ω,C), which will be the solution space for the order parameter, with the scalar
product (v, w)L2 + (∇v,∇w)L2 . This interpretation is crucial so that the Fréchet derivatives of E
are meaningful and exist on H1(Ω). For any space X, we denote its dual space by X ′. Note that
this implies, that the elements of the dual space of H1 consist of real-linear functionals, which are
not necessarily complex-linear. For example, if F (v) := (f, v)L2 for some f ∈ L2(Ω), then it holds
F (α v) = αF (v) if α ∈ R, but in general not if α ∈ C.
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Throughout the paper, we let ε > 0 denote an arbitrarily small, but fixed, constant which is
independent of κ or mesh parameters.

For the real-valued vector potentials, we use boldface letters and denote L2(Ω) := L2(Ω;R3) and
H1(Ω) := H1(Ω;R3). Note that functions in H1(Ω) are complex-valued, whereas functions in
H1(Ω) are real-valued. Analogously, we transfer the notation to higher order Sobolev spaces, i.e.,
Hk(Ω) := Hk(Ω;C) and Hk(Ω) := Hk(Ω;R3) for k ∈ N0. Further, we use the standard spaces
for the weak rotation and divergence, i.e., H(curl) = H(curl,Ω) and H(div) = H(div,Ω), both for
real-valued functions.

Throughout the paper C denotes a generic constant which is independent of κ and the spatial
mesh parameters H and h, but might depend on numerical constants as well as Ω, H and ε. In
particular, we write α ≲ β if there is a constant C independent of κ, H and h such that α ≤ C β.

2. Analytical framework

In the following, recall that Ω ⊂ R3 denotes the computational domain which we assume to be
a rectangular cuboid. For the naturally appearing boundary conditions of minimizers as well as
the gauging process, we additionally introduce the subspace of H1(Ω) of functions with vanishing
normal trace as

H1
n(Ω) := {B ∈ H1(Ω) | B · ν|∂Ω = 0 }.(2.1)

Among all order parameters u ∈ H1(Ω) and vector potentials A ∈ H1(Ω), we are interested in
finding a pair that minimizes the Ginzburg–Landau free energy in (1.1) with a given external
magnetic field H ∈ H(curl) and a material parameter κ ∈ R+. In this setting, we seek (u,A) ∈
H1(Ω)×H1(Ω) such that

EGL(u,A) = inf
(v,B)∈H1(Ω)×H1(Ω)

EGL(v,B).

It is well known that minimizers cannot be unique since the GL energy functional EGL is invariant
under certain gauge transformations [27]. To be precise, for any (real-valued) ϕ ∈ H2(Ω;R) we
define the corresponding gauge transformation Gϕ : H1(Ω)×H1(Ω) → H1(Ω)×H1(Ω) by

Gϕ(u,A) := (u eiκϕ,A+∇ϕ).(2.2)

It is easily checked that EGL is gauge invariant in the sense that

EGL(u,A) = EGL(Gϕ(u,A) ) for all (u, ϕ,A) ∈ H1(Ω)×H2(Ω)×H1(Ω).

Hence, if (u,A) is a minimizer, then Gϕ(u,A) is a minimizer, too. For smooth domains, it can be
shown that any pair (u,A) ∈ H1(Ω)×H1(Ω) is gauge equivalent to a pair (v,B) ∈ H1(Ω)×H1(Ω)
where the corresponding vector potential B is divergence-free and has a vanishing normal trace, cf.
[27, Lemma 3.1]. To be precise, let ϕ ∈ H1(Ω;R) denote the zero-average solution to the Poisson
problem −∆ϕ = −divA with inhomogeneous Neumann boundary condition ∇ϕ · ν|∂Ω = A · ν|∂Ω,
then it holds ϕ ∈ H2(Ω;R) (this follows by combining the results of [41, Theorem 3.2.1.3] and
[40, Lemma 3.7 and Theorem 3.9] and by decomposing ϕ accordingly into an affine contribution, a
solution to a homogeneous Poisson problem with inhomogeneous Neumann boundary condition and
a solution to an inhomogeneous Poisson problem with homogeneous Neumann boundary condition).
With this, we have Gϕ(u,A) ∈ H1(Ω)×H1

n,div(Ω) where

H1
n,div(Ω) := {B ∈ H1(Ω) | divB = 0 and B · ν|∂Ω = 0 }.

As a direct conclusion, we can, without loss of generality, restrict the minimization of EGL to
functions in H1(Ω)×H1

n,div(Ω). This corresponds to the Coulomb gauge of the vector potentials.
Furthermore, if we restrict the vector potentials to divergence-free functions then they are only
gauge equivalent to itself. In particular, if (u,A), (v,B) ∈ H1(Ω)×H1

n,div(Ω), then

Gϕ(u,A) = (v,B) ⇐⇒ A = B and v = u eiκϕ for ϕ ∈ R.
This equivalence is easily seen by the observation that if divA = 0 and div(A+∇ϕ) = divB = 0,
then ∆ϕ = 0 with ∇ϕ · ν = A · ν = 0 on ∂Ω, hence, ϕ must be a constant and the gauge transform
reduces to Gϕ(u,A) = (u eiκϕ,A) on H1(Ω)×H1

n,div(Ω). Since minimization over divergence-free
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functions can be cumbersome in practice, the energy can be stabilized by a penalty term that
depends on the divergence of a vector field. We therefore define

(2.3) E(u,A) := EGL(u,A) +
1

2

∫
Ω

|divA|2 dx

and observe that any minimizer of E must be also a minimizer of EGL and, vice versa, any minimizer
of EGL is gauge-equivalent to a minimizer of E for which divA = 0 holds. In the following, we
can therefore restrict our analysis to the minimization of the stabilized energy E. The existence
of minimizers was proved by Du et al. [27] and we have the following result.

Theorem 2.1 ([27, Thm. 3.8]). There exists at least one minimizer of the energy (??), i.e., there
is (u,A) ∈ H1(Ω)×H1

n(Ω) such that

(u,A) = argmin
(v,B)∈H1(Ω)×H1

n(Ω)

E(v,B).(2.4)

In particular, for any minimizer (u,A) the vector potential A satisfies divA = 0, and thus also
minimizes (1.1).

The result remains valid for external fields H ∈ L2(Ω).

As discussed above, the modification of the energy functional from EGL to E restricts the gauge
transforms to divergence-free vector fields, which in turn implies that the gauge transformsGϕ(u,A)
in (2.2) are only admissible if ϕ is a constant real number. Consequently, we call (u,A) ∈
H1(Ω)×H1

n(Ω) gauge equivalent to (v,B) ∈ H1(Ω)×H1
n(Ω) for E, if and only if A = B and

v = u eiω for some ω ∈ [−π, π).(2.5)

Note that ω corresponds to κϕ in (2.2).

2.1. Fréchet derivatives and stability bounds. Crucial components of our error analysis are
the derivatives of the energy and corresponding first- and second-order conditions for minimizers.
In the following, we start with summarizing the arising Fréchet derivatives of E, where we refer to
[27, Section 3.3].

Lemma 2.2. Let E denote the energy functional given by (??), then E is (infinitely) Fréchet
differentiable where, for any (u,A) ∈ H1(Ω)×H1

n(Ω), the first partial derivatives

∂uE(u,A) : H1(Ω) → R and ∂AE(u,A) : H1
n(Ω) → R

are respectively given by

∂uE(u,A)φ = Re

∫
Ω

( i
κ
∇u+Au

)
·
( i
κ
∇φ+Aφ

)∗
+

(
|u|2 − 1

)
uφ∗ dx,

∂AE(u,A)B =

∫
Ω

|u|2A ·B+
1

κ
Re

(
iu∗∇u ·B

)
+ curlA · curlB+ divA · divB−H · curlBdx

for φ ∈ H1(Ω) and B ∈ H1
n(Ω).

The first order conditions for minimizers (cf. [11]) imply E′(u,A) = 0 if (u,A) fulfils (??). By
splitting E′(u,A) into ∂uE(u,A) and ∂AE(u,A) we obtain the Ginzburg–Landau equations. For
readability, we highlight this observation in the following lemma.

Lemma 2.3 (Ginzburg–Landau equations). Let (u,A) ∈ H1(Ω) × H1
n(Ω) be a minimizer of

problem (??). Then, it holds ∂uE(u,A) = 0 and ∂AE(u,A) = 0. By expressing these identities in
variational form, we obtain that (u,A) ∈ H1(Ω)×H1

n(Ω) solves the Ginzburg–Landau equations

Re

∫
Ω

( i
κ
∇u+Au

)
·
( i
κ
∇φ+Aφ

)∗
+

(
|u|2 − 1

)
uφ∗ dx = 0,∫

Ω

|u|2A ·B+
1

κ
Re

(
iu∗∇u ·B

)
+ curlA · curlB+ divA · divB−H · curlBdx = 0,

for all φ ∈ H1(Ω) and B ∈ H1
n(Ω).
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Next, we turn to the second partial Fréchet derivatives of E which we later require for second order
minimality conditions. The second derivatives of E are given as follows.

Lemma 2.4. Let E be given by (??). For (u,A) ∈ H1(Ω) ×H1
n(Ω) we denote the second order

partial Fréchet derivatives by

⟨∂2uE(u,A) · , φ⟩ :=
∂

∂u
(∂uE(u,A)φ) : H1(Ω) → R,

⟨∂A,uE(u,A) · ,B⟩ :=
∂

∂u
(∂AE(u,A)B) : H1(Ω) → R,

⟨∂u,AE(u,A) · , φ⟩ :=
∂

∂A
(∂uE(u,A)φ) : H1

n(Ω) → R,

⟨∂2AE(u,A) · ,B⟩ :=
∂

∂A
(∂AE(u,A)B) : H1

n(Ω) → R,

where φ ∈ H1(Ω) and B ∈ H1
n(Ω). For ψ ∈ H1(Ω) and C ∈ H1

n(Ω) the derivatives are given by

⟨∂2uE(u,A)ψ,φ⟩ = Re

∫
Ω

( i
κ
∇φ+Aφ

)
·
( i
κ
∇ψ +Aψ

)∗
+

(
|u|2 − 1

)
φψ∗ + u2φ∗ψ∗ + |u|2φψ∗ dx,

⟨∂2AE(u,A)B,C⟩ =
∫
Ω

|u|2C ·B+ curlC · curlB+ divC · divBdx,

⟨∂u,AE(u,A)B, φ⟩ =
∫
Ω

2Re(uφ∗)A ·B+
1

κ
Re

(
iu∗∇φ+ iφ∗∇u

)
·Bdx

and ⟨∂u,AE(u,A)B, φ⟩ = ⟨∂A,uE(u,A)φ,B⟩.

The proof follows with straightforward calculations.

In order to quantify the κ-dependencies in our error estimates, we also require suitable stability
estimates for the minimzers (u,A) of the energy (??). For this, we use the following κ-weighted
norms throughout the paper:

||φ||2H1
κ

= κ−2||∇φ||2L2 + ||φ||2L2 , ||φ||2H2
κ

= κ−2||∇φ||2H1
κ
+ ||φ||2L2 ,(2.6a)

||B||2H1 = ||B||2L2 + ||∇B||2L2 , ||B||2H2 = ||D2B||2L2 + ||B||2H1 .(2.6b)

Here we formally define the norms that involve derivatives of the (vector-valued) functions B as

||∇B||2L2 =
3∑

i,k=1

||∂xiBj ||2L2 and ||D2B||2L2 =
3∑

i,j,k=1

||∂xixjBk||2L2 .

Lemma 2.5 (Stability bounds). Let (u,A) ∈ H1(Ω)×H1
n(Ω) be a minimizer of problem (??) in

Theorem 2.1. Then, the following stability bounds hold

|u| ≤ 1 a.e., || 1κ∇u||L2 ≲ ||u||L2 + ||Au||L2 , ||u||H1
κ
≲ 1 + ||H||L2 , ||A||H1 ≲ 1 + ||H||L2 .

Proof. The pointwise bound ||u||L∞ ≤ 1 is shown in [27, Prop. 3.11]. Next, note that

E(0,0) = 1
2 vol(Ω) +

1
2 ||H||2L2 ,

and thus for any minimizer it holds

|| curlA−H||2L2 + ||divA||2L2 ≲ 1 + ||H||2L2 .

At the same time, basic manipulations give us

|| curlA||2L2 ≲ || curlA−H||2L2 + ||H||2L2 .

Combining the two estimates yields || curlA||L2 + || divA||L2 ≲ 1+ ||H||L2 . Using [40, Lemma 3.6]
gives the L2 bound, and [40, Theorem 3.9] the H1 bound on A.

Further, we obtain with |u| ≤ 1 the estimate

|| 1κ∇u||L2 ≤ || 1κ∇u+ iAu||L2 + ||Au||L2 ≲ 1 + ||H||L2 + ||A||L2 ≲ 1 + ||H||L2 .

It remains to prove the second estimate, which we obtain with Lemma 2.3 as∫
Ω

| iκ∇u+Au|2 dx =

∫
Ω

(1− |u|2) |u|2 dx ≤ ∥u∥2L2 .

The estimate now follows with || 1κ∇u||L2 ≤ || 1κ∇u+ iAu||L2 + ||Au||L2 ≤ ∥u∥L2 + ||Au||L2 . □
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2.2. Higher order regularity of the minimizers. Next, we will investigate the higher order
regularity of minimizers together with corresponding κ-explicit regularity bounds.

Concerning the vector potential A, we can characterize it as the solution U ∈ H1
n,div(Ω) to a

problem of the following form

(2.7a)

∫
Ω

curlU · curlB dx =

∫
Ω

F ·B+H · curlBdx, for all B ∈ H1
n(Ω) ,

where F ∈ L2(Ω;R3) can be read of Lemma 2.3. Problem (??) corresponds to the weak form of

(2.7b) ∆U = F+ curlH, U · ν|∂Ω = 0, curlU× ν|∂Ω = H× ν|∂Ω.

For simplicity, we restrict ourselves from now on to homogeneous boundary conditions for the
external magnetic field, i.e., following [27], we assume H ∈ H(curl) with the (well-defined) traces

H× ν|∂Ω = 0 ,(2.8a)

curlH · ν|∂Ω = 0 .(2.8b)

The regularity of solutions to problem (??) is presented in the following theorem. The first part is
a direct consequence of [45, Lemma 3.7]. The proof of the second part is given in Appendix A.

Theorem 2.6. Let U ∈ H1
n,div(Ω) be the solution of (??) with F ∈ L2(Ω;R3).

(a) If H satisfies (2.6a), then U ∈ H2(Ω) with

||U||H2 ≲ ||F||L2 + || curlH||L2 .

(b) If in addition curlH ∈ H1(Ω) satisfies (2.6b) and F · ν|∂Ω = 0, then U ∈ H3(Ω) with

||U||H3 ≲ ||F||H1 + || curlH||H1 .

The hidden constants only depend on the domain Ω.

Remark 2.7. (a) If Ω is a general polyhedral domain instead of a cube, similar results are available
in Section 4.4 of [16] if the boundary conditions in (??) are replaced by U× ν = divU = 0 on ∂Ω.

(b) Relaxing the condition (2.6) is a delicate issue. To do so, we assume divH = 0 and need to
find a smooth vector potential V such that

curlV = H, divV = 0, V · ν|∂Ω = 0

holds. Then, one can replace A by A−V and one is in the situation of (2.5) with H = 0. However,
the results for convex polyhedral domains [40, Thm. 3.5] only yield some V ∈ H1(Ω). To derive the
same regularity as in Theorem 2.6, we would require higher regularity of V in H2(Ω) or H3(Ω),
respectively, but this is beyond the scope of the present paper.

For our proofs, we also require higher order regularity for the order parameter. In order to obtain
it, we will make use of the following auxiliary result which we prove in Appendix A.

Lemma 2.8. Let Ω ⊂ R3 denote a cuboid and let f ∈ H1(Ω). If u ∈ H1(Ω) solves the Neumann
problem

−∆u = f in Ω and ∇u · ν|∂Ω = 0,

then it holds u ∈ H3(Ω) with ∥u∥H3(Ω) ≲ ∥u∥L2(Ω) + ∥f∥H1(Ω). Furthermore, if f ∈ Lp(Ω) for
some 1 < p <∞, then there exists a constant Cp > 0 (depending on Ω and p), such that

∥u∥W 2,p(Ω) ≤ Cp (∥u∥Lp(Ω) + ∥f∥Lp(Ω)).

Here, ∥ · ∥W 2,p denotes the usual W 2,p-norm on Ω with ∥u∥W 2,p :=
∑

|α|≤2

∥Dαu∥Lp(Ω).

With Theorem 2.6 and Lemma 2.8, we can conclude the H2-bounds on the vector potential A and
the order parameter u.
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Corollary 2.9. Let (u,A) ∈ H1(Ω)×H1
n(Ω) be a minimizer of problem (??).

(a) Then A ∈ H2(Ω) with

||A||H2 ≲ 1 + ||H||L2 + || curlH||L2

and constants independent of κ. Note that the estimate implies a L∞-bound for A. Furthermore,

together with the second inequality in Lemma 2.5 this yields
∥u∥H1

κ

∥u∥L2
≲ 1 + ||H||L2 + || curlH||L2 .

(b) Then u ∈ H2(Ω) and ∇u · n|∂Ω = 0 with

||u||H2
κ
≲

(
1 + ||H||L2 + || curlH||L2

)2
and || 1κ∇u||L4 ≲ 1(2.9)

and constants independent of κ.

Proof. (a) Since A is a minimizer, it holds ∂AE(u,A)B = 0 for all B ∈ H1
n(Ω), and hence by

Lemma 2.2∫
Ω

curlA · curlB+ divA · divB dx = −
∫
Ω

|u|2A ·B+
1

κ
Re

(
iu∗∇u ·B

)
+H · curlB dx .

Since divA = 0, Theorem 2.6 (a) together with the estimates in Lemma 2.5 yield the desired
regularity and a-priori estimate for A.

(b) We follow the lines of the proof in [20, Theorem 2.2], and only have to establish the H2-bound.
We exploit ∂uE(u,A)φ = 0 for all φ ∈ H1(Ω) to obtain that the minimizer u satisfies

(∇u,∇φ)L2 = (f, φ)L2 , with f = −κ2(|u|2 − 1)u− 2iκA∇u− κ2|A|2u .
The Sobolev embedding H2(Ω) ↪→ L∞(Ω) for A, the estimates in part (a), and Lemma 2.5 imply

||f ||L2 ≲ κ2(1 + ||H||L2 + || curlH||L2)2,

which yields κ−2|u|H2 ≲ κ−2(||f ||L2 + ||u||L2) ≲ (1 + ||H||L2 + || curlH||L2)2 by Lemma 2.8.
Combining this with the already established H1

κ- and L
2-bound gives the claimed H2

κ-bound. □

In order to prove optimal order convergence rates for our numerical approximations of u and A,
we need to establish H3-regularity for both unknowns including corresponding regularity estimates
that are explicit with respect to κ. This is done in the following lemma.

Lemma 2.10. We consider a minimizer (u,A) ∈ H1(Ω) × H1
n(Ω) of problem (??) and assume

that curlH ∈ H1(Ω).

(a) It holds A ∈ H3(Ω) and the estimate

||A||H3 ≲ κ

(with a hidden constant independent of κ).

(b) It holds u ∈ H3(Ω) and u ∈W 2,p(Ω) for any 1 < p <∞ with

||u||H3 ≲ κ3, ||u||W 2,p ≲ Cp κ
2 and ||u||W 1,p ≲ Cp κ,(2.10)

where Cp > 0 depends on p and can be different for W 1,p and W 2,p.

Proof. (a) We aim to employ Theorem 2.6 and proceed as in Corollary 2.9 by estimating

|||u|2A+
1

κ
Re

(
iu∗∇u

)
+ curlH||H1

≲ ||A||H1 + ||∇u||L2 ||A||L∞ +
1

κ
||∇u||2L4 +

1

κ
||u||H2 + || curlH||H1 ≲ κ .

The boundary conditions for A and u yield that in the notation of the theorem F · ν|∂Ω = 0 holds
and with (2.6b) the statement follows form Theorem 2.6.

(b) Using Lemma 2.5, we only need to bound f from the proof of Corollary 2.9 in the H1-norm.
Here we obtain with the results from Lemma 2.5 and Corollary 2.9 that

||f ||H1 ≲ ||κ2(|u|2 − 1)u− 2iκA∇u− κ2|A|2u||H1

≲ κ2||u||H1 + κ||A||L4 ||∇u||L4 + κ||A||L∞ ||u||H2 + κ2||A||2L∞ ||u||H1 + κ2||A||2H2 ≲ κ3.
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Next, we use the second part of Lemma 2.5 with

||f ||L4 ≲ κ2 + κ||A||L∞ ||∇u||L4 + κ2||A||2L∞ ||u||L∞ ≲ κ2

to conclude that for any 1 < p ≤ 4 we have

∥u∥W 2,p ≲ ||f ||L4 + ||u||L4 ≲ κ2.

Next, we consider ∥u∥W 1,8 for which we obtain

∥∇u∥8L8 =

∫
Ω

∇u · ∇u∗|∇u|6 dx
∇u·ν|∂Ω=0

= −
∫
Ω

u div(∇u∗|∇u|6) dx

Hölder

≲ ∥u∥L∞∥∇u∥6L8 ∥u∥W 2,4 ≲ ∥∇u∥6L8 κ2.

We conclude ∥∇u∥L8 ≲ κ. With this regularity estimate at hand, we can return to f to see that
∥f∥L8 ≲ κ2 and hence, with Lemma 2.5, ∥u∥W 2,8 ≲ κ2. It becomes apparent that the argument
can be repeated recursively to obtain ∥∇u∥Lp ≲ κ and ∥u∥W 2,p ≲ κ2 for any 1 < p < ∞. For
example, assume that ∥∇u∥Lq ≲ κ holds for some q ≥ 2, then ∥f∥Lq ≲ κ2 and consequently
∥u∥W 2,q ≲ κ2. With this, we have in turn

∥∇u∥2qL2q = −
∫
Ω

u div(∇u∗|∇u|2q−2) dx ≲ ∥u∥L∞∥ |∇u|2q−2∥L2q/(2q−2) ∥u∥W 2,q

= ∥u∥L∞∥∇u∥2q−2
L2q ∥u∥W 2,q ≲ ∥∇u∥2q−2

L2q κ2 ⇒ ∥∇u∥L2q ≲ κ.

We can repeat with 2q. Note however that the hidden constants in the above estimates can
potentially explode for p→ ∞ and we cannot conclude that the estimates hold for p = ∞. □

2.3. Kernel in the second Fréchet derivative E′′. In this section, we want to specify second
order conditions for our minimizers.

Recalling the results of Lemma 2.4, the second Fréchet derivative of E in (u,A) ∈ H1(Ω)×H1
n(Ω)

is given by

⟨E′′(u,A)(φ,B), (ψ,C)⟩
= ⟨∂2uE(u,A)φ,ψ⟩+ ⟨∂u,AE(u,A)C, φ⟩+ ⟨∂u,AE(u,A)B, ψ⟩+ ⟨∂2AE(u,A)B,C⟩

= Re

∫
Ω

( i
κ
∇ψ +Aψ

)
·
( i
κ
∇φ+Aφ

)∗
+
(
|u|2 − 1

)
ψφ∗ + u2ψ∗φ∗ + |u|2ψφ∗ dx

+

∫
Ω

2Re(uφ∗)A ·C+
1

κ
Re

(
iu∗∇φ+ iφ∗∇u

)
·Cdx

+

∫
Ω

2Re(uψ∗)A ·B+
1

κ
Re

(
iu∗∇ψ + iψ∗∇u

)
·Bdx

+

∫
Ω

|u|2C ·B+ curlC · curlB+ divC · divBdx(2.11)

for (φ,B), (ψ,C) ∈ H1(Ω)×H1
n(Ω).

Lemma 2.11. Let (u,A) ∈ H1(Ω)×H1
n(Ω) be a minimizer of (??). Then, it holds

⟨E′′(u,A)(iu,0), (ψ,C)⟩ = 0

for all (ψ,C) ∈ H1(Ω)×H1
n(Ω). Thus, E′′(u,A) is singular and cannot be coercive.

Proof. Using (2.8), we have by linearity that the terms with B = 0 vanish and thus obtain

⟨E′′(u,A)(iu,0), (ψ,C)⟩
= ⟨∂2uE(u,A)iu, ψ⟩+ ⟨∂u,AE(u,A)C, iu⟩+ ⟨∂u,AE(u,A)0, ψ⟩+ ⟨∂2AE(u,A)0,C⟩
= ⟨∂2uE(u,A)iu, ψ⟩+ ⟨∂u,AE(u,A)C, iu⟩.

Further, we conclude from Lemma 2.3 and the fact that iu is still a minimizer that we have
⟨∂uE(iu,A), ψ⟩ = 0. Using Lemmas 2.2 and 2.4, this implies

⟨∂2uE(u,A)iu, ψ⟩ = ⟨∂uE(iu,A), ψ⟩+Re

∫
Ω

u2(iu)∗ψ∗ + |u|2iuψ∗ dx = 0.
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Since we also have

⟨∂u,AE(u,A)C, iu⟩ =
∫
Ω

2Re(−i|u|2)A ·C− 1

κ
Re

(
−u∗∇u+ u∗∇u

)
·Cdx = 0,

the claim follows. □

Lemma 2.11 can be interpreted through smooth curves γ(t) in H1(Ω) × H1
n(Ω). If the curve is

locally (in a neighborhood of t = 0) of the form γ(t) := (ueiωt,A) for fixed a minimizer (u,A) ∈
H1(Ω)×H1

n(Ω) and for some ω ∈ R \ {0}, then, due to the gauge invariance of E under complex
phase shifts of u (cf. (2.3)), we have E( γ(t) ) ≡ const in a neighborhood of t = 0. Together with
γ′(0) = ω(iu,0) and Lemma 2.3, we conclude

0 = d
2

d2tE( γ(t) )|t=0 = ⟨E′′(γ(0)) γ′(0), γ′(0)⟩+ E′(γ(0)) γ′′(0) = ω2⟨E′′(u,A) (iu,0), (iu,0)⟩.
In other words, (iu,0) is an eigenfunction of E′′(u,A) with eigenvalue 0, which immediately implies
the statement of Lemma 2.11. Furthermore, if all other eigenvalues of E′′(u,A) are positive,
then this implies that (iu,0) is the only direction for a curve γ(t) with γ(0) = (u,A) such that
d
2

d2tE( γ(t) )|t=0 = 0. If this is fulfilled, then (u,A) is an isolated minimizer of E up to the gauge
transformations (2.3), i.e., it is locally quasi-unique.

With these thoughts, we consider the orthogonal complement of (iu,0) which is given by the space

(iu)⊥ ×H1
n(Ω), with (iu)⊥ := {φ ∈ H1(Ω) | Re

∫
Ω

iuψ∗ dx = 0}

and define “local quasi-uniqueness” of minimizers by assuming that the spectrum of E′′(u,A) is
positive on (iu)⊥×H1

n(Ω). This is fixed in Definition 2.12 below. Note that E′′(u,A) cannot have
negative eigenvalues since this implies the existence of a direction in which the energy E is further
reduced, which would contradict the assumption that (u,A) is a minimizer of E. The definition
below summarizes the above discussion and follows [20, Definition 2.4].

Definition 2.12 (Local quasi-uniqueness). Let

((φ,B), (ψ,C))L2×L2 := Re

∫
Ω

φψ∗ dx+

∫
Ω

B ·Cdx.

We call a minimizer (u,A) ∈ H1(Ω)×H1
n(Ω) of (??) locally quasi-unique if E′′(u,A) has positive

spectrum on (iu)⊥ ×H1
n(Ω), i.e., if (φj ,Bj) ∈ H1(Ω)×H1

n(Ω) is an eigenfunction with eigenvalue
λj ∈ R such that

⟨E′′(u,A)(φj ,Bj), (ψ,C)⟩ = λj ((φj ,Bj), (ψ,C))L2×L2

for all (ψ,C) ∈ H1(Ω)×H1
n(Ω), then λj ≥ 0 for all j ∈ N and λj = 0 if and only if φj ∈ span{iu}

and Bj = 0.

For the final error estimates we assume that the minimizers are locally quasi-unique in the sense
of the above definition. Whenever we need the assumption it will be explicitly mentioned in the
corresponding result.

Assumption 2.13. The minimizers (u,A) of the Ginzburg–Landau energy (??) are locally quasi-
unique in the sense of Definition 2.12.

For locally quasi-unique minimizers we have coercivity of E′′(u,A) on (iu)⊥ ×H1
n(Ω).

Proposition 2.14. Let (u,A) be a minimizer of (??) that is locally quasi-unique in the sense of
Definition 2.12. Then the second Fréchet derivative E′′(u,A) is coercive on (iu)⊥ ×H1

n(Ω), i.e.,
there exists a constant ρu,A(κ) > 0 such that

⟨E′′(u,A)(φ,B), (φ,B)⟩ ≥ ρu,A(κ)−1||(φ,B)||2H1
κ×H1 , for all (φ,B) ∈ (iu)⊥ ×H1

n(Ω)

where ||(φ,B)||2H1
κ×H1 := ||φ||2H1

κ
+ ||B||2H1 . Furthermore, it holds

|⟨E′′(u,A)(φ,B), (ψ,C)⟩| ≲ ||(φ,B)||H1
κ×H1 ||(ψ,C)||H1

κ×H1

for all (φ,B), (ψ,C) ∈ H1(Ω)×H1
n(Ω) and with a constant independent of κ.
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Remark 2.15. To the best of our knowledge the precise dependence of ρu,A(κ) on κ could so far
not be resolved in the literature. However, there is quite some effort in the literature to estimate
the smallest eigenvalue λ(κ) of the magnetic Neumann Laplacian (later defined as aA in (3.2)),
which basically corresponds to the very special case of u = 0. For example in [35, Thm. 8.1.1 &
9.1.1], it is shown that in a bounded and smooth domain asymptotically λ(κ) ∼ κ−1 holds if curlA
does not vanish on Ω. By the proof below this would lead to ρu,A(κ) ∼ κ. In alignment with these
theoretical results, our numerical experiments similarly indicate that ρu,A(κ) ∼ κα with α ≥ 1 on
rectangular domains, cf. [8, 20].

Proof of Proposition 2.14. The local quasi-uniqueness (Definition 2.12) guarantees the existence of
the second-smallest eigenvalue λ2 > 0 of E′′(u,A) such that

⟨E′′(u,A)(φ,B), (φ,B)⟩ ≥ λ2||(φ,B)||2L2×L2(2.12)

for all (φ,B) ∈ (iu)⊥ × H1
n(Ω). On the other hand, we can use (2.8) together with the identity

Re((uφ∗)2 + |u|2|φ|2) = 2(Re(uφ∗))2 to obtain

⟨E′′(u,A)(φ,B), (φ,B)⟩ =

∫
Ω

| iκ∇φ+Aφ|2 +
(
|u|2 − 1

)
|φ|2 + 2Re(uφ∗)2 dx

+

∫
Ω

4Re(uφ∗)A ·B+ 2
κ Re

(
iu∗∇φ+ iφ∗∇u

)
·Bdx+

∫
Ω

|u|2|B|2 + | curlB|2 + |divB|2 dx.

Since | iκ∇φ+Aφ|2 ≥ 1
2κ2 |∇φ|2−|A|2|φ|2 and ∥B∥H1 ≲ ∥ divB∥L2+∥ curlB∥L2 (cf. [40, Lem. 3.6]

and [40, Thm. 3.9]), we conclude together with the L∞-bounds for u and A from Lemma 2.5 and
Corollary 2.9 that

⟨E′′(u,A)(φ,B), (φ,B)⟩

≥
∫
Ω

1
2 |

1
κ∇φ|

2 +
(
|u|2 − 1− |A|2

)
|φ|2 − 4|u| |φ| |A| |B| − 2

κ (|u| |∇φ|+ |φ| |∇u|)|B|dx

+

∫
Ω

| curlB|2 + |divB|2 dx

≳ ||φ||2H1
κ
+ ∥B∥2H1 − c1∥φ∥2L2 − c2∥B∥2L2

for constants c1, c2 ≥ 0. In the last step of the estimate, we also used the Young’s inequal-
ity ∥ 2

κ |u| |∇φ||B| ∥L1 ≤ ∥ 1
4 |

1
κ∇φ|

2∥L1 + 4 ∥|u|2|B|2∥L1 , as well as ∥∇u∥L4 ≲ κ which yields

∥ 2
κ |φ| |∇u| |B| ∥L1 ≤ 2∥ 1

κ∇u∥L4∥φ∥L2∥B∥L4 ≲ 1
ε∥

1
κ∇u∥

2
L4∥φ∥2L2 + ε∥B∥2H1 . We conclude that

the following G̊arding inequality holds:

⟨E′′(u,A)(φ,B), (φ,B)⟩ ≥ C1||(φ,B)||2H1
κ×H1 − C2||(φ,B)||2L2×L2 .

Together with (2.9) we obtain for (φ,B) ∈ (iu)⊥ ×H1
n(Ω) the coercivity estimate

(1 + C2

λ2
)⟨E′′(u,A)(φ,B), (φ,B)⟩ ≥ C1||(φ,B)||2H1

κ×H1 ,

and ρu,A(κ) = (1 + C2

λ2
)C−1

1 . In addition, the continuity estimate for |⟨E′′(u,A)(φ,B), (ψ,C)⟩|
follows from Lemma 4.2 (c) below. □

We have the following direct consequence of Proposition 2.14.

Lemma 2.16. Let (u,A) be a locally quasi-unique minimizer of (??) in the sense of Definition
2.12. Then, for all f ∈ L2(Ω) × L2(Ω) ⊂ ((iu)⊥ × H1

n(Ω))
∗, there exists a unique (z,Z) ∈

(iu)⊥ ×H1
n(Ω) which solves

(2.13) ⟨E′′(u,A)(z,Z), (ψ,C)⟩ = (f , (ψ,C))L2×L2 , for all (ψ,C) ∈ (iu)⊥ ×H1
n(Ω).

The solution further satisfies

||(z,Z)||H1
κ×H1 ≲ ρu,A(κ) ||f ||L2×L2 .
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3. LOD discretization and main results

In this section we introduce the LOD discretization for minimizers of the GL free energy by
adapting the constructions proposed in [8] and [20]. For that, let TH and Th be two shape-regular
and quasi-uniform triangulations of Ω with mesh sizes H and h respectively. The mesh TH will be
used to approximate the order parameter u and Th to approximate the vector potential A. In the
first step, let us define the P1-Lagrange finite element space on TH by

VH = {φH ∈ C0(Ω;C) | φH |K ∈ P1(K) for all K ∈ TH }
and the Pk-Lagrange finite element space of degree k = 1, 2 on Th by

(3.1) Vk
h,0 = {Bh ∈ C0(Ω;R3) | Bh|K ∈ Pk(K)3 for all K ∈ Th and Bh · ν = 0 on ∂Ω }.

The usual approximation properties of these Lagrange FE spaces (cf. [9]) together with an Aubin–
Nitsche argument yield the estimates

inf
φH∈VH

(
∥φ− φH∥L2 + κH∥φ− φH∥H1

κ

)
≲ (κH)2 ∥φ∥H2

κ
and(3.2a)

inf
Bh∈Vk

h,0

(∥B−Bh∥L2 + h∥B−Bh∥H1) ≲ hk+1∥B∥Hk+1(3.2b)

for all (φ,B) ∈ H2(Ω)×Hk+1(Ω) where k = 1, 2.

In order to improve the approximation properties of VH w.r.t. u we enrich the nodal basis functions
using the so-called magnetic Laplacian, which is represented by the bilinear form

aA⋆(φ,ψ) := Re

∫
Ω

( i
κ
∇φ+A⋆φ

)
·
( i
κ
∇ψ +A⋆ψ

)∗
dx(3.3)

for φ,ψ ∈ H1(Ω) and where A⋆ ∈ H1
n,div(Ω) ∩ L∞(Ω) denotes a selected vector potential that is

seen as an arbitrary approximation of the exact (unknown) potentialA of some arbitrary minimizer
(u,A) of (??). A reasonable choice is for example obtained by selecting A⋆ such that divA⋆ = 0
and curlA⋆ = H for the given external magnetic field H. Loosely speaking, we want to define the
LOD space as the image of the inverse magnetic Laplacian under VH . However, the bilinear form
aLOD
A⋆

(·, ·) is typically not coercive and possibly singular so that the inverse does not necessarily

exist. However, as proved in [8, Lemma 4.1], we have coercivity on the kernelW = kernπFEM
H |H1(Ω)

of the L2-projection πFEM
H : H1(Ω) → VH which is given by

(πFEM
H φ,ψH)L2(Ω) = (φ,ψH)L2(Ω) for all ψH ∈ VH(3.4)

with the standard approximation property

∥φ− πFEM
H φ∥L2 ≲ H∥∇φ∥L2 for all φ ∈ H1(Ω).(3.5)

Note that due to our assumption TH is quasi-uniform, the L2-projection πFEM
H is H1-stable [4],

and consequently, its kernel is a closed subspace of H1(Ω). The following lemma summarizes the
statement.

Lemma 3.1. For any A⋆ ∈ H1
n,div(Ω) ∩ L∞(Ω), there is a constant Cres > 0 that depends on Ω,

∥A⋆∥L∞ and the shape-regularity and uniformity constants of TH such that if H ≤ Cresκ
−1, then

it holds

aA⋆
(w,w) ≥ 1

2∥w∥
2
H1

κ
for all w ∈W,

where, for πFEM
H : H1(Ω) → VH given by (3.3),

W := {w ∈ H1(Ω) |πFEM
H w = 0}.

For the proof, we refer to [8, Lemma 4.1].

Exploiting the coercivity on the so-called detail space W , we can introduce the (well-defined)
correction operator C : H1(Ω) →W by

aA⋆
(Cφ,w) = aA⋆

(φ,w) for all w ∈W.(3.6)

The operator allows us to correct the elements of VH to obtain the LOD space as

V LOD
H := (1− C)VH = {φH − CφH |φH ∈ VH}.(3.7)
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For practical aspects on the construction of V LOD
H and additional errors arising from its discrete

approximation we refer to [8] where this is described and analyzed in detail for the Ginzburg–
Landau equation for given A⋆. Also note that the hidden real parts in (3.5) can be formally
dropped. This is seen by testing with iw in (3.5) to obtain that also the imagery parts of the
integrals are necessarily the same.

The main goal of our paper is to study the approximation properties of the spaces V LOD
H and Vk

h,0

defined in (3.6) and (??) with respect to minimizers of the Ginzburg–Landau energy. To be precise,
we consider discrete minimizers (uLOD

H ,AFEM
h,k ) ∈ V LOD

H ×Vk
h,0 with

(3.8) E(uLOD
H ,AFEM

h,k ) = min
(φLOD

H ,Bh)

∈V LOD
H ×Vk

h,0

E(φLOD
H ,Bh)

and are concerned with quantifying their distance to some exact minimizer. In particular we want
to show that, besides achieving super convergence with respect to the mesh sizeH, the κ-dependent
smallness condition for H in V LOD

H is significantly relaxed compared to the analogous condition in
the standard space VH . Furthermore, we show that for smooth external magnetic fields H, this is
already achieved if A⋆ is a crude generic approximation of A that can be a priori selected.

We present the corresponding error estimates for the approximations uLOD
H and AFEM

h,k in the next

subsection. We shall now present our main result, which includes error estimates in the H1
κ ×H1-

and the L2×L2-norm, as well as an estimate for the energy error. In order to obtain optimal order
error estimates, both in the LOD space and the quadratic elements for A in V2

h,0, we require the
following regularity assumption.

Assumption 3.2 (Regularity of external magnetic field and vector potential). The external mag-
netic field is assumed to fulfil curlH ∈ H1(Ω). With this, Lemma 2.10 guarantees, for any mini-
mizing pair (u,A) ∈ H1(Ω)×H1

n(Ω) of (??), that A ∈ H3(Ω) with ||A||H2 ≲ 1 and ||A||H3 ≲ κ.
In the construction of V LOD

H we further assume that A⋆ ∈ H1
n,div(Ω) has a consistent regularity

and stability, i.e., A⋆ ∈ H3(Ω) with ∥A⋆∥H2(Ω) ≲ 1 and ∥A⋆∥H3(Ω) ≲ κ.

If the full regularity in Assumption 3.2 is available, the next theorem shows that there is a large
class of admissible ad-hoc choices for A⋆ such that optimal convergence in V LOD

H is achieved (i.e.
the same order as for the ideal choice A⋆ = A). However, if there is reduced regularity, the
approximation properties of the LOD space can be reduced (at most by one order). Details are
given in Lemma 6.3 in Section 6 where the precise effect of A⋆ on the error estimates is traced.

Theorem 3.3 (Error estimates for LOD approximations). Let Assumptions 2.13 and 3.2 hold.
We consider an arbitrary discrete minimizer (uLOD

H ,AFEM
h,k ) ∈ V LOD

H × Vk
h,0 of problem (??) for

either k = 1 or k = 2. If κH ≲ 1, then the error in energy is bounded by

0 ≤ E(uLOD
H ,AFEM

h,k ) − min
(v,B)∈

H1(Ω)×H1
n(Ω)

E(v,B) ≲ κ6H6 + κ2k−2h2k

Furthermore, there exists a minimizer (u,A) ∈ H1(Ω) × H1
n(Ω) of (??) with uLOD

H ∈ (iu)⊥ such
that if (H,h) is sufficiently small with at least

(κ2H2 + h) κε ρu,A(κ) ≲ 1(3.9)

then it holds

∥(u− uLOD
H ,A−AFEM

h,k )∥H1
κ×H1 ≲ κ3H3 + κk−1hk.(3.10)

and

∥(u− uLOD
H ,A−AFEM

h,k )∥L2×L2 ≲ κ4H4 + κkHhk

+κε ρu,A(κ)
(
κ3H3 + κk−1hk

)
(κ2H2 + h) + ρu,A(κ)(κ8H6 + κ2 h2k)(3.11)

All hidden constants in the above estimates are independent of κ and (H,h).
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The result is a summary of Conclusion 6.4, Proposition 6.5 and Proposition 6.7 which we prove in
Section 6.

The error estimates in Theorem 3.3 demonstrate convergence of order O(κ3H3 + κk−1hk) for
the H1

κ-error. The necessary resolution H for the order parameter u is constrained by κ with
at least H ≲ κ−1−ε/2 ρu,A(κ)−1/2. In fact, a careful inspection of the arguments in the proof
of Proposition 6.5 shows that ∥(u − uLOD

H ,A −AFEM
h,k )∥H1

κ×H1 behaves as the best-approximation
error in this regime. The necessary resolution for A in terms of h is only weakly constrained by κ.
Though the resolution condition for attaining the best-approximation requires h ≲ κ−ε ρu,A(κ)−1,
the asymptotic convergence rate in h is only mildly (if at all) affected by κ (see Remark 3.4 below).

As for the resolution condition (3.7), recall that we expect ρu,A(κ) to behave as κα for some

positive α, which would result in the constraints H ≲ κ−1−(ε+α)/2 and h ≲ κ−(ε+α). However, the
constraint (3.7) can be dropped on the expense on the additional term

(κ3H3 + κk−1hk) (κ2H2 + h) κε ρu,A(κ)(3.12)

on the right hand side of (3.8). This shows that reasonable approximations can be already obtained
on coarse meshes, e.g. requiring H ≲ κ−1−ε/5ρu,A(κ)−1/5 instead of H ≲ κ−1−ε/2ρu,A(κ)−1/2

(which is needed for a quasi-best-approximation). Hence, we expect that there is only short pre-
asymptotic convergence regime caused by this additional resolution condition.

For the error in energy, we observe that the convergence order of the H1-error is squared. Fur-
thermore, no additional resolution depending on ρu,A(κ) is needed but only the natural minimal
resolution condition H ≲ κ−1.

Finally, note that the L2-error estimate indicates a stronger resolution condition for the L2-error
w.r.t. H, as far as the optimal rate (κH)4 is concerned. Here we require H ≲ κ−1−ερu,A(κ)−1

such that the middle term on the right hand side of (3.9) behaves like (κH)4. However, the term
is identical to (3.10), which is exactly the dropped term in the H1-error which originally lead to
the resolution condition (3.7). Hence, we can still expect that L2- and H1-error become small at
the same time, though the optimal rate for the L2-error might not be visible instantly. In fact, our
experiments as well as previous experiments [8, 20] could not find any indications that there is a
stronger influence of ρu,A(κ) on the L2-error than on the H1-error.

Remark 3.4 (κ constraint for h). The error estimates in Theorem 3.3 show, for k = 2, a conver-
gence rate of κh2 for the H1

κ-error and a rate of κh3 for the L2-error. The additional κ entered
through the regularity estimate ∥A∥H3 ≲ κ. Again, we could not find numerical evidence that this
estimate is sharp, and we rather observe constants which indicate ∥A∥H3 ≲ 1. If this is true,
then we could remove the κ-dependence in front of h in all our error estimates. However, due to
our computational limitations for studying very large κ-values, it is not yet possible to draw any
definite conclusions from our numerical experiments.

We conclude with a comparison to a standard finite element discretization with VH instead of
V LOD
H , i.e. both spaces of the same dimension but different approximation properties. The proof

of the following result is analogous to the LOD case by exploiting the abstract convergence theory
from Section 5. Recall that for the case k = 2 we again assume curlH ∈ H1(Ω).

Theorem 3.5 (Error estimates for FEM approximations). Let Assumption 2.13 hold and let
(uH ,Ah,k) ∈ VH ×Vk

h,0 fulfill for k = 1, 2:

E(uH ,Ah,k) = min
(φH ,Bh)

∈VH×Vk
h,0

E(φH ,Bh).

If κH ≲ 1, then the error in energy is bounded by

0 ≤ E(uH ,Ah,k) − min
(v,B)∈

H1(Ω)×H1
n(Ω)

E(v,B) ≲ κ2H2 + κ2k−2h2k.

Furthermore, there exists a minimizer (u,A) ∈ H1(Ω)×H1
n(Ω) of (??) with uH ∈ (iu)⊥ such that

if (H,h) is sufficiently small with at least

(κH + h) κε ρu,A(κ) ≲ 1(3.13)
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then it holds

∥(u− uH ,A−Ah,k)∥H1
κ×H1 ≲ κH + κk−1hk

and

∥(u− uH ,A−Ah,k)∥L2×L2

≲ κε ρu,A(κ)
(
κ2H2 + κkHhk + κk−1hk+1

)
+ ρu,A(κ)(κ3H2 + κ2 h2k).

Comparing the results of Theorem 3.3 and Theorem 3.5 we do not only observe that the LOD ap-
proximations converge much faster in H1

κ (third order in H vs. first order in H), but also that the
necessary resolution condition for small errors is significantly reduced withH ≲ κ−1−ε/5ρu,A(κ)−1/5

for LOD approximations vs. H ≲ κ−1−ε/2ρu,A(κ)−1/2 for standard P1-Langrange FE approxima-
tions. The difference becomes even more pronounced by noting that in order to obtain a quasi-best
approximation, the LOD approximation requires H ≲ κ−1−ε/2ρu,A(κ)−1/2 whereas the standard
P1-FEM requires the stronger condition H ≲ κ−1−ερu,A(κ)−1. The resolution conditions in terms
of h for the vector potential are in essence the same for both types of approximations. Finally, we
also note that the L2-error estimate for the FEM approximation has an explicit scaling with ρu,A(κ)
in the leading order term, which is absent in the L2-error estimate for the LOD-approximation.

4. Analytical preparations

Before we can start with the error analysis, we require a few more analytical preparations regarding
the regularity of certain auxiliary functions which later appear as solutions to a dual problem in
an Aubin–Nitsche argument. Furthermore, we state an alternative representation of E′′(u,A) that
will be useful for the aforementioned duality arguments. In the following, we assume that (u,A)
always denotes a (fixed) minimizer of (??). To keep the notation short, we introduce another
bilinear form that is used for the rest of the paper. B,C ∈ H1

n(Ω) we define

b(B,C) :=

∫
Ω

curlB · curlC+ divB divCdx .(4.1)

Furthermore, we recall from (3.2) the magnetic Laplacian aA⋆
(φ,ψ) for the vector potential A⋆ ∈

H1
n,div(Ω). On it is own, it is not necessarily an elliptic operator, however, if a sufficiently large

L2-contribution is added, e.g. ( (|A⋆|2 + 1)φ,ψ)L2 , then it becomes coercive and bounded with
respect to the H1

κ-norm with constants uniformly bounded in κ, see [20, Lemma 2.1]. On the
contrary, the bilinear form in (4.1) is always coercive and bounded with respect to the H1

n-norm,
see [40, Theorem 3.9], where the respective norms were defined in (2.4). We start with a lemma
that characterizes the regularity of solutions to problems that involve either the bilinear form
aA⋆(·, ·) or the bilinear form b(·, ·).

Lemma 4.1. (a) Let f ∈ L2(Ω), then there exists a unique B ∈ H1
n(Ω) ∩H2(Ω) such that

b(B,C) = (f ,C)L2 for all C ∈ H1
n(Ω)

and it holds

||B||H1 ≲ ||f ||(H1
n)

∗ and ||B||H2 ≲ ||f ||L2 .

(b) Let A⋆ ∈ H1
n,div(Ω) ∩ L∞(Ω) be such that ∥A⋆∥L∞ ≲ 1, then aA⋆

(·, ·) + ((1 + |A⋆|2)·, ·)L2 is

coercive and continuous w.r.t. the H1
κ-norm with constants independent of κ. Furthermore, for

each f ∈ L2(Ω) there is a unique z ∈ (iu)⊥ ∩H2(Ω) with

aA⋆(z, ψ) + ((1+ |A⋆|2) z, ψ)L2 = (f, ψ)L2 for all ψ ∈ (iu)⊥

and

||z||H1
κ
≲ ||f ||L2 and ||z||H2

κ
≲ ||f ||L2 .

Proof. (a) Since Ω is a cuboid, the results in [40, Lemma 3.6, Theorem 3.9] are applicable and give
the coercivity of b(·, ·) on H1

n(Ω). This yields the unique solvability for any f ∈ L2(Ω) and the
corresponding stability estimate. The H2-estimate follows from Theorem 2.6 for the case H = 0.
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(b) The result follows by similar argument as in [20, Lemma 2.8], where we make use of the estimate∣∣∣ (φ, iu)L2

||u||L2

aA⋆
(z, iu)

∣∣∣ ≲ ||φ||L2 ||z||H1
κ
||u||H1

κ
≲ ||φ||L2 ||f ||L2 ,

to conclude the H2-regularity. □

The next lemma gives an alternative representation of E′′(u,A) for minimizers (u,A).

Lemma 4.2. Let (u,A) ∈ H1(Ω)×H1
n(Ω) be a minimizer of (??) with the regularity established

in Corollary 2.9. Then, it holds for all (φ,B), (ψ,C) ∈ H1(Ω)×H1
n(Ω)

⟨E′′(u,A)(φ,B), (ψ,C)⟩(4.2)

= aA(φ,ψ) + ((1 + |A|2)φ,ψ)L2 + b(B,C) + r
(
(φ,B), (ψ,C)

)
for some continuous remainder bilinear form r(·, ·) with the following properties:

(i) For ψ = 0 :

|r
(
(φ,B), (0,C)

)
| ≲ (κε||φ||H1

κ
+ ||B||L2) ||C||L2 ≲ κε ||(φ,B)||H1

κ×H1
n
||C||L2 .

(ii) For C = 0 :

|r
(
(φ,B), (ψ,0)

)
| ≲

(
||φ||L2 + ||B||H1

)
||ψ||L2 ≲ ||(φ,B)||H1

κ×H1
n
||ψ||L2 .

(iii) For arbitrary (ψ,C) ∈ H1(Ω)×H1
n(Ω) :

|r
(
(φ,B), (ψ,C)

)
| ≲

(
||φ||L2 + ||B||H1

)(
||ψ||L2 + ||C||H1

)
.

Proof. First, note that by using (2.8), we can identify r(·, ·) as

r
(
(φ,B), (ψ,C)

)
= −Re

∫
Ω

(
1 + |A|2

)
φψ∗ dx+Re

∫
Ω

(
|u|2 − 1

)
φψ∗ + u2φ∗ψ∗ + |u|2φψ∗ dx

+Re

∫
Ω

2(uφ∗)A ·C+
1

κ

(
iu∗∇φ+ iφ∗∇u

)
·Cdx

+Re

∫
Ω

2(uψ∗)A ·B+
1

κ

(
iu∗∇ψ + iψ∗∇u

)
·Bdx +

∫
Ω

|u|2C ·Bdx.

We estimate the individual terms one after another.

(a) With the embedding H2(Ω) ↪→ L∞(Ω) (in 3d) and the H2-bound for A we have

|Re
∫
Ω

(
|A|2 + 1

)
φψ∗ dx| ≲ ||φ||L2 ||ψ||L2 .

(b) For the second term, we have readily with |u| ≤ 1 that

|Re
∫
Ω

(
|u|2 − 1

)
φψ∗ + u2φ∗ψ∗ + |u|2φψ∗ dx| ≲ ||φ||L2 ||ψ||L2 .

(c) Using again the L∞-bounds for u and A, we have

|Re
∫
Ω

2(uφ∗)A ·Cdx| ≲ ||φ||L2 ||C||L2 .

(d) The fourth term can be estimated in two different ways. On the one hand, we have

| 1
κ
Re

∫
Ω

iu∗∇φ ·Cdx| ≲ ||φ||H1
κ
||C||L2 .

On the other hand, we can apply integration by parts to obtain with Lemma 2.5

| 1
κ
Re

∫
Ω

iu∗∇φ ·Cdx| = | 1
κ
Re

∫
Ω

i
(
∇u∗φ ·C+ u∗φdivC

)
dx| ≲ ||φ||L2 ||C||H1 .
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(e) The next term is also estimated in two ways. First, by using (??) we have

| 1
κ
Re

∫
Ω

iφ∗∇u ·Cdx| ≲
1

κ
||φ||L2 ||∇u||L4 ||C||L4

(??)

≲ ||φ||L2 ||C||H1 .

For the alternative estimate, we apply the Hölder inequality for a sufficiently small δ > 0
with the coefficients p1 = 2 + δ, p2 = 4+2δ

δ and p3 = 2 to obtain with (2.7)

| 1
κ
Re

∫
Ω

iφ∗∇u ·Cdx| ≲
1

κ
||φ||L2+δ ||∇u||L(4+2δ)/δ ||C||L2

(2.7)

≲ Cδ ||φ||L2+δ ||C||L2 ,

where Cδ depends on δ through ||∇u||L(4+2δ)/δ ≤ C(4+2δ)/δ κ. To estimate ||φ||L2+δ , we
use the Gagliardo–Nirenberg interpolation estimate [10] which states in our case (by log-
convexity of Lp-norms) that

||φ||L2+δ ≤ ||φ||1−εδL2 ||φ||εδL6 for εδ :=
3
2

δ
2+δ .

Since ||φ||L2 ≤ ||φ||H1
κ
and ||φ||L6 ≲ κ||φ||H1

κ
, we conclude by combining the previous

estimates that

| 1
κ
Re

∫
Ω

iφ∗∇u ·Cdx| ≲ Cδ ||φ||1−εδH1
κ

(κ||φ||H1
κ
)εδ ||C||L2 = Cδ κ

εδ ||φ||H1
κ
||C||L2 .

Note that εδ → 0 for δ → 0. We select δ such that εδ = ε for some fixed ε according to
our general notation.

(f) The sixth term is readily estimated with the L∞ bounds for u and A as

|Re
∫
Ω

2(uψ∗)A ·B dx| ≲ ||ψ||L2 ||A||L∞ ||B||L2 ≲ ||ψ||L2 ||B||L2 .

(g) Analogous to (d) we obtain the two estimates

| 1
κ
Re

∫
Ω

iu∗∇ψ ·B dx| ≲ ||ψ||H1
κ
||B||L2 and | 1

κ
Re

∫
Ω

iu∗∇ψ ·B dx| ≲ ||ψ||L2 ||B||H1 .

(h) We can proceed as for the first estimate in (e). Using (??) we have ||∇u||L4 ≲ κ and hence

| 1
κ
Re

∫
Ω

iψ∗∇u ·B dx| ≲
1

κ
||ψ||L2 ||∇u||L4 ||B||L4 ≲ ||ψ||L2 ||B||H1 .

(i) Finally, we also have

|
∫
Ω

|u|2C ·Bdx| ≤ ||B||L2 ||C||L2 .

By combining the previous estimates we obtain two alternative estimates for r
(
(φ,B), (ψ,C)

)
:

|r
(
(φ,B), (ψ,C)

)
| ≲ ||φ||L2(||ψ||L2 + ||C||H1) + ||B||H1 ||ψ||L2 + ||B||L2 ||C||L2

and

|r
(
(φ,B), (ψ,C)

)
| ≲ (||φ||L2 + ||B||H1)||ψ||L2 + (κε||φ||H1

κ
+ ||B||L2) ||C||L2 .

Both estimates together prove (i)-(iii). □

Later we will consider auxiliary problems based on the operator E′′(u,A). The following proposi-
tion yields H2-regularity estimates for the corresponding solutions.

Proposition 4.3. Let (z,Z) ∈ (iu)⊥×H1
n(Ω) be the solution of (??) with f = (f1,F2) ∈ L2(Ω)×

L2(Ω). Then (z,Z) ∈ H2(Ω)×H2(Ω) and

||z||H2
κ

≲ ||f1||L2 + ρu,A(κ) ∥f∥L2×L2 ,

||Z||H2 ≲ ||F2||L2 + κε ρu,A(κ) ∥f∥L2×L2 .

Proof. Using (4.2), we first note that we can rewrite problem (??) as

aA(z, ψ) + ((1 + |A|2)z, ψ)L2 + b(Z,C) = (f , (ψ,C))L2×L2 − r
(
(z,Z), (ψ,C)

)
.

With this, we divide the proof in two parts and study the regularity separately.
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(a) Setting C = 0, yields that z ∈ (iu)⊥ solves for all ψ ∈ (iu)⊥

aA(z, ψ) + ((1 + |A|2)z, ψ)L2 = (f , (ψ,0))L2×L2 − r
(
(z,Z), (ψ,0)

)
.

We estimate the right-hand side with Lemma 2.16 and Lemma 4.2 by

|(f , (ψ,0))L2×L2 − r
(
(z,Z), (ψ,0)

)
| ≲ ||f1||L2 ||ψ||L2 + ||(z,Z)||H1

κ×H1
n
||ψ||L2

≲
(
||f1||L2 + ρu,A(κ)∥f∥L2×L2

)
||ψ||L2 ,

i.e., (f , (·,0))L2×L2 − r
(
(z,Z), (·,0)

)
∈ L2(Ω)∗, and hence by Lemma 4.1 (b) we have z ∈ H2(Ω)

with

||z||H2
κ

≲ ||f1||L2 + ρu,A(κ) ∥f∥L2×L2 .

(b) Setting ψ = 0, then Z ∈ H1
n(Ω) solves

b(Z,C) = (f , (0,C))L2×L2 − r
(
(z,Z), (0,C)

)
for all C ∈ H1

n(Ω). We estimate the right-hand side with Lemma 2.16 and Lemma 4.2 (i) by

|(f , (0,C))L2×L2 − r
(
(z,Z), (0,C)

)
| ≲

(
||F2||L2 + κε ρu,A(κ)∥f∥L2×L2

)
||C||L2

and hence by Lemma 4.1 (a) we have Z ∈ H2(Ω) and

||Z||H2 ≲ ||F2||L2 + κε ρu,A(κ) ∥f∥L2×L2 .

This proves the proposition. □

5. Abstract error analysis

As a basis for our error analysis in FEM and LOD spaces, we will start with some abstract
convergence results in this section. For this, we consider an arbitrary family of (non-empty) finite-
dimensional spaces

XH(δ) ×Xh(δ) ⊂ H1(Ω)×H1
n(Ω)

which are parametrized by a small parameter δ > 0. The notation H(δ) and h(δ) is used to indicate
that different mesh sizes could be used for the approximations of order parameter and magnetic
potential. We further assume that functions in H1(Ω)×H1

n(Ω) can be approximated by arbitrary
accuracy in the sense that for each (φ,B) ∈ H1(Ω)×H1

n(Ω) it holds

lim
δ→0

inf
(φH(δ),Bh(δ))

∈XH(δ)×Xh(δ)

∥(φ− φH(δ),B−Bh(δ))∥H1
κ×H1 = 0.

This assumption is fulfilled for all reasonable families of standard approximation spaces, such as
finite element spaces. For brevity, we skip from now on δ in the notation and just write H = H(δ)
and h = h(δ), unless the role of δ is explicitly required. With this, we are looking for discrete
minimizers of

(5.1) E(uH ,Ah) = min
(φH ,Bh)∈XH×Xh

E(φH ,Bh)

which thus satisfy

∂uE(uH ,Ah)φH = 0, for all φH ∈ XH ,

∂AE(uH ,Ah)Bh = 0 for all Bh ∈ Xh.

The following lemma provides uniform bounds on the discrete minimizers only using the minimiz-
ing properties. The bounds are in line with the respective bounds obtained for the continuous
minimizers.

Lemma 5.1. Let (uH ,Ah) be a minimizer of (??) in XH ×Xh. Then it holds

E(uH ,Ah) ≲ 1, ||uH ||H1
κ
+ ||uH ||L4 ≲ 1, ||Ah||H1 ≲ 1

with hidden constants independent of κ and δ, but depending on the external field H.
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Proof. Since (0,0) ∈ XH ×Xh, we obtain the bound on the energy. Further, as in [20], we obtain
||uH ||L2 ≲ 1, and conclude with this

||uH ||4L4 ≤
∫
Ω

(
1− |uH |2

)2
dx+ 2||uH ||2L2 + ||1||2L2 ≤ 2E(uH ,Ah) + 2||uH ||2L2 + ||1||2L2 ≲ 1.

The H1-bound ∥Ah∥H1 ≲ 1 + ∥H∥L2 ≲ 1 follows as in Lemma 2.5. Next, we use the identity

2E(uH ,Ah) ≥ || 1κ∇uH + iAhuH ||2L2 = || 1κ∇uH ||2L2 + ||AhuH ||2L2 + 2Re( 1κ∇uH , iAhuH)L2 ,

and bound the inner product via

2Re( 1κ∇uH , iAhuH)L2 ≤ 2|| 1κ∇uH ||L2 ||Ah||L4 ||uH ||L4 ≤ 1
2 ||

1
κ∇uH ||2L2 + 2||Ah||2L4 ||uH ||2L4 ,

to conclude || 1κ∇uH ||L2 ≲ 1. □

This allows us to conclude the following abstract convergence result, which is fully analogous to
[20, Prop. 5.1].

Proposition 5.2. Denote by (uH(δ),Ah(δ))δ>0 a family of minimizers of (??). Then, there exists

an exact minimizer (u0,A0) ∈ H1(Ω)×H1
n(Ω) of problem (??) such that there is a monotonically

decreasing sequence (δn)n∈N with

lim
n→∞

||u0 − uH(δn),A0 −Ah(δn)||H1
κ×H1 = 0.

In particular, we can define the twisted approximations to u0 by

ũH(δn) := eiωnuH(δn), where ωn ∈ [−π
2 ,

π
2 ] is chosen such that m(ũH(δn), u0) = 0

which also converge in H1, i.e.,

lim
n→∞

||(u0 − ũH(δn),A0 −Ah(δn))||H1
κ×H1 = 0.

Conversely, for any n, the minimizer uH(δn) is an approximation to eiωnu0.

Proof. The proof is along the lines of [12] and [20, Prop. 5.1]. We employ the bounds in Lemma 5.1
and the semi-lower continuity of E, see e.g. [66, Theorem 1.6]. Since we only apply constant
rotations ωn, the magnetic potential is unaffected, and the proof in [20, Prop. 5.1] is applicable. □

In the light of Proposition 5.2 we can assume without loss of generality that the considered discrete
minimizers (uH ,Ah) are such that uH ∈ XH ∩ (iu)⊥ for a suitable exact minimizer (u,A) to which
we compare it. In such a setting, we derive error bounds for (u− uH ,A−Ah) depending on the
best-approximation properties of the space XH ×Xh.

As a first step towards this result we need to verify that for any v ∈ (iu)⊥ theH1
κ-best-approximation

in XH ∩ (iu)⊥ behaves as the H1
κ-best-approximation in XH , i.e., the discrete space without the

orthogonality constraint.

Lemma 5.3. Let (u,A) ∈ H1(Ω) × H1
n(Ω) be a minimizer of (??) and let πH : H1(Ω) → XH

denote the L2-projection on XH . If πHu ̸= 0, then we have for any φ ∈ (iu)⊥

inf
φH∈XH∩(iu)⊥

∥φ− φH∥H1
κ

≲ ∥φ− πHφ∥H1
κ
+

∥πHu∥H1
κ

∥u∥L2−∥u−πHu∥L2
∥φ− πHφ∥L2 .(5.2)

In particular, if XH is such that the L2-projection is H1
κ-stable, inf

wH∈XH

∥u− πHu∥L2 ≲ κH∥u∥H1
κ
,

and H ≲ κ−1, then we have

(5.3) inf
φH∈XH∩(iu)⊥

∥φ− φH∥H1
κ
≲ inf
φH∈XH

∥φ− φH∥H1
κ
.

Proof. Let P⊥
H : (iu)⊥ → XH∩(iu)⊥ denote the orthogonal projection with respect to the H1

κ-inner
product, i.e. (φ,ψ)H1

κ
:= (φ,ψ)L2 + 1

κ2 (∇φ,∇ψ)L2 . We have

∥φ− P⊥
H(φ)∥H1

κ
= inf

φH∈XH∩(iu)⊥
∥φ− φH∥H1

κ
.
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In order to get a quasi-best approximation on the full space XH with estimates (5.1) and (??), we
exploit that φ, u ∈ (iu)⊥ and proceed analogously as in [20, Lemma 5.11] to get

∥φ− P⊥
Hφ∥H1

κ
≤ ∥φ− πHφ+

(πHφ−φ,iu)L2

(πH(iu),iu)L2
πH(iu)∥H1

κ
.

Estimate (5.1) follows straightforwardly with (πH(iu), iu)L2 = ∥u∥2L2 + (πH(iu)− iu, iu)L2 and by
noting that πHu ̸= 0 implies ∥u − πHu∥L2 < ∥u∥L2 . For πHu = 0, we trivially have the estimate

∥φ− P⊥
Hφ∥H1

κ
≤ ∥φ− πHφ∥H1

κ
. Next, note that the second estimate in Lemma 2.5 together with

∥A∥L∞ ≲ ∥A∥H2 ≲ 1 from Corollary 2.9 imply ||u||H1
κ
≲ ||u||L2 . Hence, if πH is H1

κ-stable, i.e.,
∥πHφ∥H1

κ
≲ ∥φ∥H1

κ
, then we get

∥πHu∥H1
κ

∥u∥L2−∥u−πHu∥L2
≲

∥u∥H1
κ

∥u∥L2−∥u−πHu∥L2
≲ (1− ∥u−πHu∥L2

∥u∥L2
)−1.

Further, we conclude ∥u− πHu∥L2 ≲ κH||u||H1
κ
≲ κH∥u∥L2 , and thus by the resolution condition

κH ≲ 1, the desired estimate (??) follows. □

Next, we define a simultaneous projection for the order parameter and the vector potential based
on the inner product ⟨E′′(u,A)·, ·⟩ on (iu)⊥ ×H1

n(Ω).

Definition 5.4 (E′′(u,A)-Ritz-projection). Let (u,A) ∈ H1(Ω)×H1
n(Ω) be a minimizer of (??)

and suppose that Assumption 2.13 holds. We define the Ritz-projection

RH,h := (RH ,Rh) : (iu)⊥ ×H1
n(Ω) → (XH ∩ (iu)⊥)×Xh

for (φ,B) ∈ (iu)⊥ ×H1
n(Ω) by

⟨E′′(u,A)RH,h(φ,B), (ψH ,Ch)⟩ = ⟨E′′(u,A) (φ,B), (ψH ,Ch)⟩
for all (ψH ,Ch) ∈ (XH ∩ (iu)⊥)×Xh. The projection RH,h is well-defined by Proposition 2.14.

To work with RH,h, we need to show that RH,h(φ,B) is a quasi-best-approximation in H1(Ω) ×
H1

n(Ω). We have the following result.

Lemma 5.5 (Approximation properties of RH,h). Suppose we are in the setting of Definition 5.4
and let the assumptions of Lemma 5.3 hold. Then, we have for arbitrary (φ,B) ∈ (iu)⊥ ×H1

n(Ω)

||(φ,B)−RH,h(φ,B)||H1
κ×H1

≲ inf
(φH ,Bh)∈XH×Xh

||(φ− φH ,B−Bh)||H1
κ×H1 + inf

(zH ,Zh)∈XH×Xh

||(z − zH ,Z− Zh)||H1
κ×H1 ,

where (z,Z) ∈ (iu)⊥ ×H1
n(Ω) solves

⟨E′′(u,A)(z,Z), (ψ,C)⟩ = ((φ,B)−RH,h(φ,B), (ψ,C))L2×L2

for all (ψ,C) ∈ (iu)⊥ ×H1
n(Ω).

Proof. To shorten the notation, we write (eφ, eB) := (φ,B)−RH,h(φ,B). In the proof of Propo-
sition 2.14, we verified the G̊arding inequality

⟨E′′(u,A)(eφ, eB), (eφ, eB)⟩ ≥ C1||(eφ, eB)||2H1
κ×H1 − C2||(eφ, eB)||2L2×L2

for some κ-independent constants C1, C2 ≥ 0. Following the “Schatz argument” [62], we let
(z,Z) ∈ (iu)⊥ ×H1

n(Ω) denote the unique solution to

⟨E′′(u,A)(z,Z), (ψ,C)⟩ = ((eφ, eB), (ψ,C))L2×L2 , for all (ψ,C) ∈ (iu)⊥ ×H1
n(Ω).

Then, we have by linear combination

||(eφ, eB)||2H1
κ×H1 ≲ ⟨E′′(u,A)((eφ, eB) + (z,Z)), (eφ, eB)⟩.

Exploiting the symmetry of ⟨E′′(u,A) ·, ·⟩ and the Galerkin-orthogonality for RH,h, we further
obtain for arbitrary (φH ,Bh), (zH ,Zh) ∈ (XH ∩ (iu)⊥)×Xh that

||(eφ, eB)||2H1
κ×H1 ≲ ⟨E′′(u,A)((eφ, eB) + (z,Z)), (eφ, eB)⟩

= ⟨E′′(u,A)(eφ, eB), (φ− φH ,B−Bh)⟩+ ⟨E′′(u,A)(eφ, eB), (z − zH ,Z− Zh)⟩.
The continuity of E′′(u,A) in Proposition 2.14 together with estimate (??) in Lemma 5.3 finish
the proof. □
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With the approximation properties of the Ritz-projection RH,h = (RH ,Rh) at hand, we split the
error as

∥(u− uH ,A−Ah)∥H1
κ×H1(5.4)

≤ ∥(u− RHu,A− RhA)∥H1
κ×H1 + ∥(uH − RHu,Ah − RhA)∥H1

κ×H1 ,

where it remains to provide an abstract estimate for the defect, i.e., the second term. To study
the defect, we exploit the coercivity of E′′(u,A) and consider the term

σ(ψH ,Ch) := ⟨E′′(u,A)(uH − RHu,Ah − RhA), (ψH ,Ch)⟩(5.5)

for (ψH ,Ch) ∈ (XH ∩ (iu)⊥)×Xh. By Galerkin orthogonality, we can write

σ(ψH ,Ch) = ⟨E′′(u,A)(u− uH ,A−Ah), (ψH ,Ch)⟩

which yields the following estimate.

Lemma 5.6. Let (u,A) ∈ H1(Ω) ×H1
n(Ω) be a minimizer of (??) and σ(ψH ,Ch) be defined as

in (5.3). It holds

|σ(ψh,Ch)| ≲
(
∥u− uH∥2L6 + ∥u− uH∥2H1

κ
+ ∥A−Ah∥2H1

)
∥(ψH ,Ch)∥H1

κ×H1 .(5.6)

The proof is technical and given in Appendix B.

As a direct conclusion from Lemma 5.5 and Lemma 5.6, we have the following theorem.

Theorem 5.7. Let (u,A) ∈ H1(Ω) ×H1
n(Ω) be a minimizer of (??) that is locally quasi-unique

in the sense of Definition 2.12 and let (uH ,Ah) ∈ XH × Xh be a (discrete) minimizer of (??).
Under the assumptions on XH in Lemma 5.3, it holds

∥(u− uH ,A−Ah)∥H1
κ×H1

≲ inf
(φH ,Bh)∈XH×Xh

||(u− φH ,A−Bh)||H1
κ×H1 + inf

(zH ,Zh)∈XH×Xh

||(z − zH ,Z− Zh)||H1
κ×H1

+ ρu,A(κ)
(
∥u− uH∥2L6 + ∥u− uH∥2H1

κ
+ ∥A−Ah∥2H1

)
(5.7)

where (z,Z) ∈ (iu)⊥ ×H1
n(Ω) solves

⟨E′′(u,A)(z,Z), (ψ,C)⟩ = ((u,A)−RH,h(u,A), (ψ,C)L2×L2(5.8)

for all (ψ,C) ∈ (iu)⊥ ×H1
n(Ω).

Proof. We consider the error splitting (5.2), where the first term is estimated by Lemma 5.5. For
the second term, we have with the coercivity of E′′(u,A) and the definition of σ in (5.3)

ρu,A(κ)−1 ∥(uH − RHu,Ah − RhA)∥2H1
κ×H1

≲ ⟨E′′(u,A)(uH − RHu,Ah − RhA), (uH − RHu,Ah − RhA)⟩
= σ(uH − RHu,Ah − RhA).

Lemma 5.6 finishes the proof. □

Even though Theorem 5.7 looks promising on its own, it only gets meaningful when used in
combination with Proposition 5.2. The reason is that (u,A) and (uH ,Ah) might not be unique
(even aside from gauge transformations). Hence, the higher order remainder term ∥u− uH∥2L6 +
∥u − uH∥2H1

κ
+ ∥A − Ah∥2H1 is not necessarily small. However, Proposition 5.2 guarantees that

for each discrete minimizer (uH ,Ah) there is a corresponding exact minimizer (u,A), such that
∥(u− uH ,A−Ah)∥H1

κ×H1 becomes arbitrarily small for (H(δ), h(δ)) → 0. Hence, we can absorb
the higher order term on the right-hand side of (5.5) into the left-hand side. With this, we obtain
the following conclusion.
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Conclusion 5.8. Let Assumption 2.13 hold and let (uH ,Ah) ∈ XH ×Xh be a discrete minimizer
of (??), where XH has the properties as in Lemma 5.3 .

Then, for all sufficiently small (H(δ), h(δ)), there exists a minimizer (u,A) ∈ H1(Ω)×H1
n(Ω) of

(??) such that uH ∈ (iu)⊥ and

∥(u− uH ,A−Ah)∥H1
κ×H1

≲ inf
(φH ,Bh)∈XH×Xh

||(u− φH ,A−Bh)||H1
κ×H1 + inf

(zH ,Zh)∈XH×Xh

||(z − zH ,Z− Zh)||H1
κ×H1

with constants independent of κ and (H,h) and where (z,Z) ∈ (iu)⊥ ×H1
n(Ω) denotes the solution

to (5.6).

We finish the section on abstract error estimates with an estimate for the error in energy.

Theorem 5.9. Let (u,A) ∈ H1(Ω) ×H1
n(Ω) be an arbitrary minimizer of (??) and (uH ,Ah) ∈

XH ×Xh an arbitrary discrete minimizer of (??). Then, the error in the energy is bounded by

E(uH ,Ah)− E(u,A)

≲ inf
(φH ,Bh)∈XH×Xh

(
||(u− φH ,A−Bh)||2H1

κ×H1 + ∥u− φH∥L6∥u− φH∥2L2 + ∥u− φH∥4L4

)
with constants independent of κ and (H,h). Note here that E(u,A) ≤ E(uH ,Ah).

The result essentially compares the exact minimal energy level with the minimal energy level in the
discrete space XH ×Xh. Hence, the estimate requires that (uH ,Ah) converges to (u,A).

Proof. The proof follows similar arguments as in [20, Lemma 5.9], but in contrast to the reference,
we do not exploit the previously established error estimate for ||(u − uH ,A − Ah)||H1

κ×H1 . Let
(φH ,Bh) ∈ XH × Xh be arbitrary. Then by the fact that (uH ,Ah) ∈ XH × Xh is a discrete
minimizer, we have E(uH ,Ah) ≤ E(φH ,Bh) and therefore it is sufficient to estimate E(φH ,Bh)−
E(u,A) to prove the result. With the notation

N (u,A) := 1
2

∫
Ω

1
2

(
1− |u|2

)2
+ | curlA−H|2 − | curlA|2 dx,

we can write the energy as

E(u,A) = 1
2aA(u, u) + 1

2b(A,A) +N (u,A).

With this, we expand the energy error as

E(φH ,Bh)− E(u,A)

= 1
2aAh

(φH , φH) + 1
2b(Bh,Bh) +N (φH ,Bh)− 1

2aA(u, u)− 1
2b(A,A)−N (u,A)

= 1
2aA(φH , φH) + 1

2b(Bh,Bh)− 1
2aA(u, u)− 1

2b(A,A)︸ ︷︷ ︸
=: I1

+ 1
2aAh

(φH , φH)− 1
2aA(φH , φH)︸ ︷︷ ︸

=:I2

+ N (φH ,Bh)−N (u,A)︸ ︷︷ ︸
=:I3

.

We now treat these terms separately.

(a) With Lemma 2.2 we write

I1 = 1
2aA(u− φH , u− φH) + 1

2b(A−Bh,A−Bh)− aA(u, u− φH)− b(A,A−Bh)

E′(u,A)=0
= 1

2aA(u− φH , u− φH) + 1
2b(A−Bh,A−Bh) + Re

∫
Ω

(|u|2 − 1)u(u− φH)∗ dx

+Re

∫
Ω

|u|2A · (A−Bh) +
i
κ

(
u∗∇u · (A−Bh)

)
−H · curl(A−Bh) dx.
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(b) Concerning I2 we compute

I2 = 1
2aAh

(φH , φH)− 1
2aA(φH , φH)

= 1
2

∫
Ω

| iκ∇φH +BhφH |2 − | iκ∇φH +AφH |2 dx

= Re

∫
Ω

i
κ∇φH · (Bh −A)φ∗

H + 1
2 |Bh|2 |φH |2 − 1

2 |A|2 |φH |2 dx.

(c) We now turn to I3. In the proof of [20, Lemma 5.9] it was shown that for eH = u− φH(
1− |φH |2

)2 − (
1− |u|2

)2
= 4(1− |u|2)Re(u(u− φH)∗) + h.o.t (eH),

with h.o.t (eH) := 2(|u|2 − 1)|eH |2 + (|eH |2 −Re(u(eH)∗))2 being a higher order term. With this
we obtain

I3 = 1
2

∫
Ω

1
2

(
1− |φH |2

)2 − 1
2

(
1− |u|2

)2
+ 2H · curl(A−Bh) dx

=

∫
Ω

(1− |u|2)Re(u(u− φH)∗) +H · curl(A−Bh) dx+

∫
Ω

h.o.t (eH) dx.

We are ready to sum up I1, I2 and I3. By noting that

1
2 |Bh|2|φH |2 − 1

2 |A|2|φH |2 + |A|2|u|2 − (Bh ·A)|u|2

= 1
2 (|Bh|2 − |A|2)(|φH |2 − |u|2) + 1

2 |Bh −A|2|u|2

we obtain

E(φH ,Bh)− E(u,A) = 1
2aA(u− φH , u− φH) + 1

2b(A−Bh,A−Bh)

+ 1
2

∫
Ω

(|Bh|2 − |A|2)(|φH |2 − |u|2) + |Bh −A|2|u|2 dx

+Re

∫
Ω

i
κ

(
(u∗ − φ∗

H)∇u+ φ∗
H(∇u−∇φH)

)
· (A−Bh) dx+

∫
Ω

h.o.t (eH) dx

≲ ∥u− φH∥2H1
κ
+ ∥Bh −A∥2H1 + ∥A−Bh∥L6∥|A|+ |Bh|∥L6∥u− φH∥L2∥|u|+ |φH |∥L6

+∥A−Bh∥L4∥ 1
κ∇u∥L4∥u− φH∥L2 + ∥ 1

κ∇(u− φH)∥L2∥φH∥L4∥A−Bh∥L4

+∥u− φH∥2L2 + ∥u− φH∥4L4

≲ ∥u− φH∥2H1
κ
+ ∥Bh −A∥2H1 + ∥φH∥2L6∥u− φH∥2L2 + ∥u− φH∥4L4

≲ ∥u− φH∥2H1
κ
+ ∥Bh −A∥2H1 + (∥u− φH∥L6 + ∥u∥L6)

2 ∥u− φH∥2L2 + ∥u− φH∥4L4

≲ ∥u− φH∥2H1
κ
+ ∥Bh −A∥2H1 + ∥u− φH∥L6∥u− φH∥2L2 + ∥u− φH∥4L4 .

□

6. Error analysis in the LOD space

We are prepared now for the error analysis in the LOD space and for proving the main results
stated in Section 3. For that, we shall apply the results from Section 5 with the choice (XH ,Xh) =
(V LOD
H ,Vk

h,0). In the first step, we need an auxiliary result, which is an inverse inequality in V LOD
H .

The proof is given in Appendix B.

Lemma 6.1 (Inverse inequality in V LOD
H ). Assume H ≲ κ−1, then it holds

∥∇φLOD
H ∥L2 ≲ 1

H ∥φLOD
H ∥L2 for all φLOD

H ∈ V LOD
H .

An important assumption in the abstract error analysis was the H1
κ-stability of the L2-projection

onto the discrete space which is now set to be the LOD space. Using the above inverse inequality,
the following result can be established which verifies that the assumptions in Lemma 5.3 are indeed
fulfilled.
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Lemma 6.2 (H1
κ-stability of the L2-projection on V LOD

H ). Assume that H ≲ κ−1 and let πLOD
H :

H1(Ω) → V LOD
H denote the L2-projection. It holds

∥πLOD
H φ∥H1

κ
≲ ∥φ∥H1

κ
for all φ ∈ H1(Ω).

Furthermore, it holds

∥u− πLOD
H u∥L2 ≲ κH ∥u∥H1

κ

Proof. Consider (1 − C)πFEM
H φ ∈ V LOD

H , then the H1
κ-stability of C and πFEM

H (on quasi-uniform
meshes) imply that

∥(1− C)πFEM
H φ∥H1

κ
≲ ∥φ∥H1

κ
.(6.1)

Furthermore, as (1− C)πFEM
H φ− φ ∈W , we also have

∥(1− C)πFEM
H φ− φ∥L2 = ∥(1− πFEM

H )
(
(1− C)πFEM

H φ− φ
)
∥L2 ≲ κH∥φ∥H1

κ
.(6.2)

We obtain with the inverse inequality from Lemma 6.1

∥πLOD
H φ∥H1

κ
≤ ∥φ− (1− C)πFEM

H φ∥H1
κ
+ ∥(1− C)πFEM

H φ− πLOD
H φ∥H1

κ
+ ∥φ∥H1

κ

≲ ∥φ∥H1
κ
+ 1

κH ∥(1− C)πFEM
H φ− πLOD

H φ∥L2

≲ ∥v∥H1
κ
+ 1

κH ∥(1− C)πFEM
H φ− φ∥L2 + 1

κH ∥πLOD
H φ− φ∥L2

≤ ∥φ∥H1
κ
+ 2

κH ∥(1− C)πFEM
H φ− φ∥L2

(6.2)

≲ ∥φ∥H1
κ
,

The second estimate readily follows with (6.2) for φ = u. □

Next, we quantify the best-approximation error in the LOD space.

Lemma 6.3. (a) Let (u,A) ∈ H1(Ω)×H1
n(Ω) denote an arbitrary minimizer of (??). If H ≲ κ−1,

then it holds

inf
φLOD

H ∈V LOD
H

∥u− φLOD
H ∥H1

κ
(6.3)

≲ (κH)3 + κH inf
φH∈VH

∥( i
κ∇u+ (A⋆+A)u) · (A⋆ −A)− φH∥L2 .

(b) If A⋆ fulfills ∥A⋆∥L∞ + ∥A⋆∥W 1,3 ≲ 1, then the estimate can be further bounded as

inf
φLOD

H ∈V LOD
H

∥u− φLOD
H ∥H1

κ
≲ (κH)2 ((κH) + ∥A⋆ −A∥H1) .

(c) Finally, if A⋆ admits the same regularity κ-dependent stability bounds as A, i.e., ∥A⋆∥H2 ≲ 1
and ∥A⋆∥H3 ≲ κ, then optimal order convergence is obtained with

inf
φLOD

H ∈V LOD
H

∥u− φLOD
H ∥H1

κ
≲ (κH)3.(6.4)

Before proving the result, we note that estimate (6.3) only exploits H2-regularity of u, whereas
the refined estimate exploits both the H3-regularity of u and A, unless A⋆ = A. Recalling that
H3-regularity can only be guaranteed on box-shaped domains, we see that (6.4) might not hold on
general domains, unless the distance between A⋆ and A is sufficiently small. Hence, to keep the
second error contribution in (6.3) small, we practically want to select A⋆ such that ∥A−A⋆∥L2 is
small.

Proof of Lemma 6.3. (a) We consider the function ûLOD
H := (1 − C)πFEM

H (u) ∈ V LOD
H for which we

have ûLOD
H − u ∈ W . Since the error is an element of the detail space, we can apply Lemma 3.1

and obtain

1
2∥u− ûLOD

H ∥2H1
κ

≤ aA⋆(u− ûLOD
H , u− ûLOD

H )
(3.5)
= aA⋆(u, u− ûLOD

H )

= aA(u, u− ûLOD
H ) + (aA⋆ − aA)(u, u− ûLOD

H )

= ((1− |u|2)u, u− ûLOD
H )L2 + ( i

κ∇u, (A⋆ −A) (u− ûLOD
H ))L2

+((A⋆ −A)u, i
κ∇(u− ûLOD

H ))L2 + ((|A⋆|2 − |A|2)u, u− ûLOD
H )L2

= ((1− |u|2 + |A⋆|2 − |A|2)u, u− ûLOD
H )L2 + ( 2iκ∇u · (A⋆ −A), (u− ûLOD

H ))L2 ,
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where we used in the last step that divA⋆ = divA = 0. By defining for brevity

f∗ := ( 2iκ∇u+ u(A⋆ +A)) · (A⋆ −A),

we conclude with the properties of the L2-projection πFEM
H that

1
2∥u− ûLOD

H ∥2H1
κ

≤ ( (1− πFEM
H )

(
(1− |u|2)u

)
+ (1− πFEM

H )f∗ , (1− πFEM
H )(u− ûLOD

H ))L2

(3.4)

≲ κH
(
∥(1− πFEM

H )
(
(1− |u|2)u

)
∥L2 + ∥(1− πFEM

H )f∗∥L2

)
∥u− ûLOD

H ∥H1
κ
.

Exploiting the H2-regularity of u and the corresponding κ-dependent stability bounds yields (1−
|u|2)u ∈ H2(Ω) with |(1− |u|2)u|H2(Ω) ≲ κ2. Consequently, we have

∥u− ûLOD
H ∥H1

κ
≲ κH

(
(κH)2 + ∥(1− πFEM

H )f∗∥L2

)
.

This yields the first estimate (6.3).

(b) & (c) For the refined estimates we use ∥(1− πFEM
H )f∗∥L2 ≲ H |f∗|H1 and ∥(1− πFEM

H )f∗∥L2 ≲
H2|f∗|H2 respectively, where it remains to bound f∗ = i

κ∇u · (A⋆ −A) + u(A⋆ +A) · (A⋆ −A)

in the H1- and H2-semi-norms. For brevity, we use the notation

|D(m)v|2 :=
∑
α∈Nd

0

|α|=m

|∂αv|2

to denote the pointwise norm of all m’th partial derivatives of some given function v ∈ Hm(Ω).
With this, we obtain for ℓ = 1, 2 that

| iκ∇u · (A⋆ −A)|Hℓ ≲ 1
κ

ℓ∑
i=0

∥|D(1+i)u| |D(ℓ−i)(A⋆ −A)| ∥L2

and

|u(A⋆ +A) · (A⋆ −A)|Hℓ ≲
ℓ∑
i=0

i∑
j=0

∥|D(ℓ−i)u| |D(i−j)(A⋆ +A)| |D(j)(A⋆ −A)| ∥L2 .

For ℓ = 1 we use ∥A⋆∥L∞ + ∥A⋆∥W 1,3 ≲ 1 to get

∥∇f∗∥L2 ≲
1

κ
∥u∥W 2,4∥(A⋆ −A)∥L4 +

1

κ
∥∇u∥L∞∥∇(A⋆ −A)∥L2

+∥∇u∥L4∥A⋆ +A∥L4∥A⋆ −A∥L4 + ∥u∥L∞∥∇(A⋆ +A)∥L3∥A⋆ −A∥L6

+∥u∥L∞∥(A⋆ +A)∥L∞∥∇(A⋆ −A)∥L2

≲ κ∥A⋆ −A∥H1

and thus ∥u− ûLOD
H ∥H1

κ
≲ (κH)2 ((κH) + ∥A⋆ −A∥H1).

For ℓ = 2 we use the estimates ∥A∥H2 ≲ 1 and ∥A∥H3 ≲ κ to see that

| iκ∇u · (A⋆ −A)|H2 ≲ 1
κ

2∑
i=0

∥|D(1+i)u| |D(2−i)(A⋆ −A)| ∥L2

≲ 1
κ (∥u∥W 1,4∥A⋆ −A∥W 2,4 + ∥u∥W 2,4∥A⋆ −A∥W 1,4 + ∥u∥H3∥A⋆ −A∥L∞)

≲ ∥A⋆ −A∥W 2,4 + κ∥A⋆ −A∥W 1,4 + κ2∥A⋆ −A∥L∞ ≲ κ2.

In a similar fashion, we also have

|u(A⋆ +A) · (A⋆ −A)|H2 ≲
2∑
i=0

i∑
j=0

∥|D(2−i)u| |D(i−j)(A⋆ +A)| |D(j)(A⋆ −A)| ∥L2 ≲ κ2.

We conclude |f∗|H2 ≲ κ2. This proves (6.4). □

With the previous lemma, we can directly quantify the error in energy.
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Conclusion 6.4. Assume that A⋆ admit the same regularity and κ-dependent stability bounds
as A and that κH ≲ 1. Let (u,A) ∈ H1(Ω) × H1

n(Ω) be an arbitrary minimizer of (??) and
(uLOD
H ,AFEM

h,k ) ∈ V LOD
H ×Vk

h,0 a discrete minimizer fulfilling (??) for k = 1, 2. Then, it holds

E(uLOD
H ,AFEM

h,k )− E(u,A) ≲ (κH)6 + κ2k−2h2k

with constants independent of κ and (H,h).

Proof. We employ Theorem 5.9 and use Lemma 6.3 as well as (3.1) to bound the first term. Thus,
it remains to bound the remaining terms in Lp. Since the L2-projection πFEM

H is Lp-stable on
quasi-uniform meshes for any p ∈ [1,∞] (cf. [17, 21]), i.e.

∥πFEM
H φ∥Lp ≲ ∥φ∥Lp for all φ ∈ Lp(Ω),

we also have the best-approximation property in Lp. Together with the standard approximation
results for finite elements (cf. [9, Sec. 4.4]), this yields

∥φ− πFEM
H φ∥Lp ≲ (κH)ℓ ∥φ∥Hℓ

κ
for all φ ∈ Lp(Ω) ∩Hℓ(Ω),(6.5)

where ℓ = 1, 2. For the trial function (1− C)πFEM
H u ∈ V LOD

H this implies for any p ∈ [2, 6]

∥u− (1− C)πFEM
H u∥Lp ≤ ∥u− πFEM

H u∥Lp + ∥(1− πFEM
H )CπFEM

H u∥Lp

(6.5)

≲ (κH)2∥u∥H2
κ
+ κH∥CπFEM

H u∥H1
κ

≤ (κH)2∥u∥H2
κ
+ κH∥u− (1− C)πFEM

H u∥H1
κ
+ κH∥(1− πFEM

H )u∥H1
κ

(6.4)

≲ (κH)2 + (κH)4 ≲ (κH)2,

where the penultimate step also exploited the H1
κ-stability of πFEM

H . Using these estimates for
p = 2, p = 4, and p = 6 gives the claim. □

We now turn to the error estimates for the discrete minimizers. The estimates in Lemma 6.3
are sufficient to control the first term in Conclusion 5.8. However, for an H1-error estimate we
also need to study the approximation properties of the LOD space with respect to the solution
(z,Z) ∈ (iu)⊥ ×H1

n(Ω) to the auxiliary problem (5.6). This will be the main task in the proof to
establish the following main result.

Proposition 6.5. Let Assumption 2.13 hold and let A⋆ admit the same regularity and κ-dependent
stability bounds as A. If (u,A) ∈ H1(Ω) × H1

n(Ω) is a minimizer of (??) and if the mesh size
(H,h) is sufficiently small, in particular such that

((κH)2 + h) κε ρu,A(κ) ≲ 1(6.6)

then it holds

||(u,A)−RH,h(u,A)||H1
κ×H1 ≲ inf

(φLOD
H ,Bh)∈V LOD

H ×Vk
h,0

||(u− φLOD
H ,A−Bh)||H1

κ×H1

for the E′′(u,A)-Ritz-projection RH,h in Definition 5.4.

Conversely, if (uLOD
H ,AFEM

h,k ) ∈ V LOD
H × Vk

h,0 is a discrete minimizer fulfilling (??) for k = 1, 2,

then, for all sufficiently small mesh sizes (H,h) consistent with (6.6), there exists a minimizer
(u,A) ∈ H1(Ω)×H1

n(Ω) of (??) such that uLOD
H ∈ (iu)⊥ fulfills

∥(u− uLOD
H ,A−AFEM

h,k )∥H1
κ×H1 ≲ κ3H3 + κk−1hk.

Proof. By the definition of (z,Z) ∈ (iu)⊥ ×H1
n(Ω), Lemma 2.16 directly yields

||(z,Z)||H1
κ×H1 ≲ ρu,A(κ) ||(u− RHu,A− RhA)||L2×L2 .(6.7)

Furthermore, we recall from Proposition 4.3 that

κε||z||H2
κ
+ ||Z||H2 ≲ κε ρu,A(κ) ||(u− RHu,A− RhA)||L2×L2 .(6.8)

Next, we test in the equation for (z,Z), i.e. in (5.6), with a test function (ψ,0) ∈ (iu)⊥ ×H1
n(Ω).

Using furthermore the representation of E′′(u,A) in Lemma 4.2 we obtain that (z,Z) fulfills

aA(z, ψ) + (
(
|u|2−1

)
z + 2Re(uz∗)u, ψ)L2 + g

(
(z,Z), (ψ,0)

)
= (u−RHu, ψ)L2
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where g is given by

g
(
(z,Z), (ψ,0)

)
= Re

∫
Ω

2u(A · Z)ψ∗ + i
κ

(
u∗∇ψ + ψ∗∇u

)
· Zdx

Z·n|∂Ω=0
= Re

∫
Ω

2u(A · Z)ψ∗ + 2 i
κ (∇u · Z)ψ∗ + i

κu divZψ∗ dx.

By defining

g∗ := −
(
|u|2−1

)
z − 2Re(uz∗)u− 2u(A · Z) − 2 i

κ (∇u · Z)− i
κu divZ + (u−RHu),

we see that z ∈ (iu)⊥ fulfills aA(z, ψ) = (g∗, ψ)L2 for all ψ ∈ (iu)⊥. By the stability estimates for
u and A, the source term fulfills

∥g∗∥L2 ≲ ||(z,Z)||H1
κ×H1 + ∥u−RHu∥L2 ≲ ρu,A(κ) ||(u− RHu,A− RhA)||L2×L2 .

Furthermore, we have with the stability and regularity bounds for u and A that

∥∇g∗∥L2

≲ ∥∇(u− RHu)∥L2 + ∥∇u∥L∞∥u∥L∞∥z∥L2 + (1 + ∥u∥2L∞)∥∇z∥L2

+∥∇u∥L4∥A∥L∞∥Z∥L4 + ∥u∥L∞∥∇A∥L4∥Z∥L4 + ∥u∥L∞∥A∥L∞∥∇Z∥L2

1
κ∥u∥W 2,4∥Z∥L4 + 1

κ∥∇u∥L∞∥∇Z∥L2 + 1
κ∥u∥L∞ ∥Z∥H2 + 1

κ∥∇u∥L∞ ∥divZ∥L2

≲ ∥∇(u− RHu)∥L2 + κ1+ε∥z∥L2 + κ∥z∥H1
κ
+ κ∥Z∥H1 + κε︸︷︷︸

≤κ

∥Z∥H1 + 1
κ∥Z∥H2 .

Hence with (6.7) and (6.8)

1
κ∥∇g∗∥L2 ≲ 1

κ∥∇(u− RHu)∥L2 + κε ∥z∥L2 + ∥z∥H1
κ
+ ∥Z∥H1 + 1

κ2 ∥Z∥H2(6.9)

≲ ∥u− RHu∥H1
κ
+ κε ρu,A(κ) ||(u− RHu,A− RhA)||L2×L2 .

Before we can proceed, we have to take care of the fact that the test functions for defining z only

involve (iu)⊥. For that reason, we write an arbitrary ψ ∈ H1(Ω) uniquely as ψ = ψ⊥ +
(iu,ψ)L2

(iu,iu)L2
iu

for ψ⊥ ∈ (iu)⊥ and hence

aA(z, ψ) = (g∗, ψ
⊥)L2 + aA(z,iu)

(iu,iu)L2
(iu, ψ)L2 = (g∗, ψ)L2 +

(
aA(z,iu)−(g∗,iu)L2

∥u∥2
L2

)
︸ ︷︷ ︸

=:ζ

(iu, ψ)L2 .(6.10)

With ∥u∥H1
κ
≲ ∥u∥L2 we have

|ζ| =
∣∣∣aA(z,iu)−(g∗,iu)L2

∥u∥2
L2

∣∣∣ ≲ ∥z∥H1
κ
+∥g∗∥L2

∥u∥L2
≲ ∥u∥−1

L2 ρu,A(κ) ||(u− RHu,A− RhA)||L2×L2

and hence again by ∥u∥H1
κ
≲ ∥u∥L2

1
κ∥ζ i∇u∥ ≲ ρu,A(κ) ||(u− RHu,A− RhA)||L2×L2 .(6.11)

With this, we now proceed similar as in the proof of Lemma 6.3 and consider the function

zLOD
H := (1− C)πFEM

H (z) ∈ V LOD
H

which fulfills again zLOD
H − z ∈W . Hence, we obtain

1
2∥z − zLOD

H ∥2H1
κ

≤ aA⋆
(z − zLOD

H , z − zLOD
H )

(3.5)
= aA⋆

(z, z − zLOD
H )

= aA(z, z − zLOD
H ) + (aA⋆

− aA)(z, z − zLOD
H )

(6.10)
= (g∗ + ζ iu, z − zLOD

H )L2 + ( i
κ∇z, (A⋆ −A) (z − zLOD

H ))L2

+((A⋆ −A)z, i
κ∇(z − zLOD

H ))L2 + ((|A⋆|2 − |A|2)z, z − zLOD
H )L2

= (g∗ + ζ iu+ (|A⋆|2 − |A|2)z + 2i
κ∇z · (A⋆ −A)︸ ︷︷ ︸

=:f∗

, z − zLOD
H )L2

= ( (1− πFEM
H )(g∗ + ζ iu+ f∗) , (1− πFEM

H )(z − zLOD
H ) )L2

(3.4)

≲ (κH)2 1
κ∥∇g∗ + ζ i∇u+∇f∗∥L2 ∥z − zLOD

H ∥H1
κ
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Hence, dividing by ∥z − zLOD
H ∥H1

κ
and using (6.9) and (6.11) we have

∥z − zLOD
H ∥H1

κ

≲ (κH)2
(
∥u− RHu∥H1

κ
+ κε ρu,A(κ) ||(u− RHu,A− RhA)||L2×L2 + 1

κ∥∇f∗∥L2

)
.

It remains to bound ∥∇f∗∥L2 where we obtain with the bounds for A and A⋆ that

∥∇f∗∥L2

≲ ∥A⋆ +A∥L∞∥A⋆ −A∥L∞∥∇z∥L2 + ∥A⋆ +A∥W 1,4∥A⋆ −A∥L∞∥z∥L4

+∥A⋆ +A∥L∞∥A⋆ −A∥W 1,4∥z∥L4

+ 1
κ |z|H2∥A⋆ −A∥L∞ + 1

κ∥∇z∥L4∥A⋆ −A∥W 1,4

(6.7),(6.8)

≲ κ ρu,A(κ) ||(u− RHu,A− RhA)||L2×L2 .

In conclusion we have

∥z − zLOD
H ∥H1

κ
≲ (κH)2

(
∥u− RHu∥H1

κ
+ κε ρu,A(κ) ||(u− RHu,A− RhA)||L2×L2

)
.

On the other hand, we obtain with the approximation properties of Vk
h,0 straightforwardly

inf
Zh∈Vk

h,0

∥Z− Zh∥H1 ≲ h ∥Z∥H2

(6.8)

≲ hκε ρu,A(κ) ||(u− RHu,A− RhA)||L2×L2 ,

which leads to the estimate

inf
(zH ,Zh)∈V LOD

H ×Vk
h,0

||(z − zH ,Z− Zh)||H1
κ×H1(6.12)

≲ (κH)2∥u− RHu∥H1
κ
+ ((κH)2 + h)κε ρu,A(κ) ||(u,A)−RH,h(u,A)||L2×L2 .

Note that for this estimate only the condition κH ≲ 1 is required. Recalling that Lemma 6.2
verifies the assumptions of Lemma 5.3 and 5.5, we conclude that

||(u,A)−RH,h(u,A)||H1
κ×H1 ≲ inf

(φLOD
H ,Bh)∈V LOD

H ×Vk
h,0

||(u− φLOD
H ,A−Bh)||H1

κ×H1

+((κH)2 + h)κε ρu,A(κ) ||(u,A)−RH,h(u,A)||H1
κ×H1 .

Hence, for ((κH)2+h)κε ρu,A(κ) ≲ 1 (sufficiently small), the second term can be absorbed into the
left-hand side, which gives the first assertion. In particular, under the above resolution condition
we have

inf
(zLOD

H ,Zh)∈V LOD
H ×Vk

h,0

||(z − zH ,Z− Zh)||H1
κ×H1 ≲ ||(u,A)−RH,h(u,A)||H1

κ×H1

≲ inf
(φLOD

H ,Bh)∈V LOD
H ×Vk

h,0

||(u− φLOD
H ,A−Bh)||H1

κ×H1 .

The proof is finished by combining the above estimate with Conclusion 5.8, the estimates from
Lemma 6.3 and the standard approximation properties (3.1)of Vk

h,0, i.e.,

inf
Bh∈V1

h,0

∥A−Bh∥H1 ≲ h∥A∥H2 ≲ h and

inf
Bh∈V2

h,0

∥A−Bh∥H1 ≲ h2∥A∥H3 ≲ κh2.

□

It remains to turn to the L2-error estimate. For that, we first bound the Ritz-projection error in
the L2-norm by the corresponding error in the H1-norm.

Lemma 6.6. Let Assumption 2.13 hold and let A⋆ admit the same regularity and κ-dependent
stability bounds as A. If κH ≲ 1 and if (u,A) ∈ H1(Ω) ×H1

n(Ω) is a minimizer of (??) then it
holds

∥(u,A)−RH,h(u,A)∥L2×L2

≲
(
κH + ((κH)2 + h)κε ρu,A(κ)

)
||(u,A)−RH,h(u,A)||H1

κ×H1 .
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Proof. We consider again the auxiliary problem (5.6). The corresponding solution (z,Z) ∈ (iu)⊥×
H1

n(Ω) allows to express the L2-error as

∥(u,A)−RH,h(u,A)∥2L2×L2 = ⟨E′′(u,A)(z,Z), (u,A)−RH,h(u,A)⟩
= ⟨E′′(u,A)(z − zH ,Z− ZH), (u,A)−RH,h(u,A)⟩,

for arbitrary (zH ,ZH) ∈ (V LOD
H ∩ (iu)⊥)×Vk

h,0. With the continuity of E′′(u,A) and Lemma 5.3
we therefore have

∥(u,A)−RH,h(u,A)∥2L2×L2

≲ ||(u,A)−RH,h(u,A)||H1
κ×H1 inf

(zH ,Zh)∈V LOD
H ×Vk

h,0

||(z − zH ,Z− Zh)||H1
κ×H1 .

The latter term was already estimated in (6.12), such that combining this with the previous
estimate and applying Young’s inequality afterwards yields for any δ > 0

∥(u,A)−RH,h(u,A)∥2L2×L2

≲ (κH)2||(u,A)−RH,h(u,A)||2H1
κ×H1

+((κH)2 + h)κε ρu,A(κ)||(u,A)−RH,h(u,A)||H1
κ×H1 ||(u,A)−RH,h(u,A)||L2×L2

≲ (κH)2||(u,A)−RH,h(u,A)||2H1
κ×H1

+ 1
δ

(
((κH)2 + h)κε ρu,A(κ)||(u,A)−RH,h(u,A)||H1

κ×H1

)2
+ δ ||(u,A)−RH,h(u,A)||2L2×L2 .

For sufficiently small δ we can absorbe the ||(u,A)−RH,h(u,A)||L2×L2-contribution into the left-
hand side to obtain

∥(u,A)−RH,h(u,A)∥L2×L2

≲
(
κH + ((κH)2 + h)κε ρu,A(κ)

)
||(u,A)−RH,h(u,A)||H1

κ×H1 ,

which gives the claim. □

With this, we are ready to finalize the L2-error estimate

Proposition 6.7 (L2-error estimate). In the setting of Proposition 6.5, the L2-error between a
discrete minimizer (uLOD

H ,AFEM
h,k ) ∈ V LOD

H ×Vk
h,0 and its corresponding exact minimizer (u,A) ∈

H1(Ω)×H1
n(Ω) (in the same phase, i.e. uLOD

H ∈ (iu)⊥) can be bounded by

∥(u− uLOD
H ,A−AFEM

h,k )∥L2×L2 ≲ (κH)4 + κkHhk

+κε ρu,A(κ)
(
κ3H3 + κk−1hk

)
((κH)2 + h) + ρu,A(κ)

(
κ4H3 + κhk

)2
where k = 1, 2.

Proof. We split the error as

∥(u− uLOD
H ,A−AFEM

h,k )∥L2×L2

≤ ∥(u− RHu,A− RhA)∥L2×L2 + ∥(RHu− uLOD
H ,RhA−AFEM

h,k )∥L2×L2

≤ ∥(u− RHu,A− RhA)∥L2×L2 + ∥(RHu− uLOD
H ,RhA−AFEM

h,k )∥H1
κ×H1 ,

where the first term is controlled by Lemma 6.6 in combination with Proposition 6.5 as

∥(u− RHu,A− RhA)∥L2×L2

≲ (κH)4 + κkHhk + κε ρu,A(κ)
(
κ3H3 + κk−1hk

)
((κH)2 + h).

For the second term, we use the coercivity of E′′(u,A) to estimate

ρu,A(κ)−1∥(RHu− uLOD
H ,RhA−AFEM

h,k )∥2H1
κ×H1

≤ ⟨E′′(u,A)(RHu− uLOD
H ,RhA−AFEM

h,k ), (RHu− uLOD
H ,RhA−AFEM

h,k )⟩
(5.3)
= σ(RHu− uLOD

H ,RhA−AFEM
h,k )

(5.4)

≲
(
∥u− uLOD

H ∥2L6 + ∥u− uLOD
H ∥2H1

κ
+ ∥A−AFEM

h,k ∥2H1

)
∥(RHu− uLOD

H ,RhA−AFEM
h,k )∥H1

κ×H1 .
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By combining the previous estimates we obtain

∥(u− uLOD
H ,A−AFEM

h,k )∥L2×L2

≲ (κH)4 + κkHhk + κε ρu,A(κ)
(
κ3H3 + κk−1hk

)
((κH)2 + h)

+ρu,A(κ)
(
∥u− uLOD

H ∥2L6 + ∥u− uLOD
H ∥2H1

κ
+ ∥A−AFEM

h,k ∥2H1

)
.

The last term can be further estimated by using ∥u−uLOD
H ∥L6 ≲ κ∥u−uLOD

H ∥H1
κ
and the previously

established estimate for ∥(u− uLOD
H ,A−AFEM

h,k )∥H1
κ×H1 in Proposition 6.5 to obtain

∥(u− uLOD
H ,A−AFEM

h,k )∥L2×L2 ≲ (κH)4 + κkHhk

+κε ρu,A(κ)
(
κ3H3 + κk−1hk

)
((κH)2 + h) + ρu,A(κ)

(
κ4H3 + κhk

)2
□

7. Numerical experiments

In this section we verify our theoretical results from Theorem 3.3 in numerical experiments and
investigate the optimality of the convergence w.r.t. the mesh size H for the order parameter u
and the mesh size h for the vector potential A as well as the scaling of the convergence w.r.t. the
GL parameter κ. The implementation for our experiments is available as a MATLAB Code on
https://github.com/cdoeding/fullGLmodelLOD.

For the experiments we choose a LOD approximation for the order parameter u and quadratic FE
(k = 2) for the vector potential A. The latter choice has two reasons: First, considering either
k = 1 or k = 2 is sufficient to demonstrate the main results numerically, since the difference in
the analysis is based on standard properties of Lagrange finite elements and there is no reason to
expect a different behavior in the case k = 1, except for the lower order w.r.t. h and κ. Second,
due to the higher convergence in the case of quadratic FE, it is easier to extract the expected third
order convergence in the LOD space by taking sufficiently small h in the experiments.

Another simplification we make is a reduction to two dimensions to keep the complexity and
runtimes reasonable in our experiments. We emphasize that the main results and the analysis in
this work are not restricted to the three-dimensional case, but can be modified to the problem in two
dimensions. To derive the corresponding Ginzburg–Landau model in 2d, one intuitively considers
a 3d external magnetic field H which is perpendicular to the x1-x2 plane, i.e., H = (0, 0,H3)

T for
some scalar function H3. Then the order parameter and the vector potential should not vary in
the x3-direction as far as we stay away from the x3-boundary of the superconductor, i.e., ∂x3

u = 0
and ∂x3

A = 0. This implies that the third component of the vector potential has to vanish and
one derives the Ginzburg–Landau free energy in two dimensions

EGL,2d(u,A) :=
1

2

∫
Ω

| i
κ
∇u+Au|2 + 1

2

(
1− |u|2

)2
+ | curl2dA−H3|2 dx

for the reduced 2d-vector potential A : Ω → R2 and the reduced order parameter u : Ω → C where
now Ω ⊂ R2 is a rectangle. Here curl2d denotes the conventional 2d-curl-operator mapping vector
fields to scalar functions. Setting up the previous analysis in two dimensions and introducing the
stabilized energy

E2d(u,A) := EGL,2d(u,A) +
1

2

∫
Ω

|divA|2 dx

one can derive the corresponding results of Theorem 3.3 in 2d using fully analogue arguments. For
the sake of readability and brevity we omit this case in the analysis of this work and drop the 2d
subindices in the following and write H = H3.

https://github.com/cdoeding/fullGLmodelLOD
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7.1. Gradient descent method. Although our theoretical results focus on approximability re-
sults for minimizers in discrete spaces, verifying these results numerically requires computing the
minimizers themselves. One approach is to compute these minimizers using an implicit Euler dis-
cretization of the L2-gradient flow associated with the GL energy functional (??), as it was done,
for instance, in [8]. However, due to the small coercivity constant ρu,A(κ)−1 from Proposition
2.14, particularly for large κ, the L2-gradient flow typically converges only slowly to the desired
minimizer. Therefore, we employ a more sophisticated approach here: a discretization of a suitable
Sobolev-gradient flow allowing for energy-adaptive step sizes. Sobolev gradients ∇XE represent
E′ with respect to an X-metric induced by an inner product (·, ·)X . By choosing the inner product
in a problem-specific way, the corresponding gradient flow can be significantly accelerated; see
Neuberger [58] for an introduction.

We denote by X the tensor space H1(Ω) × H1
n(Ω). The Sobolev gradient of the Ginzburg-

Landau energy E at any point (u,A) ∈ X, not necessarily a minimizer, is defined as the solution
∇XE(u,A) ∈ X of(

∇XE(u,A), (v,B)
)
X

= ∂uE(u,A)v + ∂AE(u,A)B ∀(v,B) ∈ X.

Here we choose the inner product (·, ·)X as(
(v,B), (w,C)

)
X

:= ãu,A(v, w) + b̃u,A(B,C)

with

ãu,A(v, w) := aA(v, w) +m
(
(β + |u|2 + |A|2)v, w

)
,

b̃u,A(B,C) := b(B,C) +
〈
(β + |u|2)B,C

〉
,

and a stabilization parameter β > 0. It is straightforward to verify that for every β > 0 the bilinear
form (·, ·)X defines an inner product on X. This choice enhances coercivity and ensures stability
of the resulting gradient flow even when |u| or |A| exhibit large variations. Introducing the elliptic
operators

Ãu,A : H1(Ω) → (H1(Ω))∗, ⟨Ãu,Av, w⟩ = ãu,A(v, w) ∀ v, w ∈ H1(Ω),

and

B̃u,A : H1
n(Ω) → (H1

n(Ω))
∗, ⟨B̃u,AB,C⟩ = b̃u,A(B,C) ∀B,C ∈ H1

n(Ω),

the Sobolev gradient can be expressed as ∇XE(u,A) =
(
∇X,uE(u,A),∇X,AE(u,A)

)
∈ X, where

∇X,uE(u,A) = u− Ã−1
u,A

(
(1 + β|A|2)u

)
,

∇X,AE(u,A) = A− B̃−1
u,A

(
βA− 1

κ
Re(iu∗∇u) + curl∗ H

)
,

with H = curlA denoting the magnetic field. The operator curl∗ : H1(Ω) → H1(Ω)∗ is defined by

⟨curl∗ H,B⟩ =
∫
Ω

H · curlB,dx ∀B ∈ H1(Ω).

Here, Ã−1
u,A and B̃−1

u,A denote the inverse operators in the corresponding Sobolev spaces, defined
via the Riesz representation. This formulation provides a problem-adapted metric structure that
typically leads to much faster convergence of the gradient flow compared to the standard L2-based
formulation.

At the discrete level, we select A⋆ ∈ H1
n,div(Ω)∩L∞(Ω) and construct the LOD space V LOD

H based

on this A⋆. As mentioned in Section 3, a natural choice is to select A⋆ ∈ Vk
h,0 as the solution to

curlA⋆ = H with divA⋆ = 0 which can be easily computed. Unless otherwise stated, we use this
choice for A⋆. The desired iteration for computing a minimizer by the ∇XE-gradient descent now
seeks (unH ,A

n
h) ∈ V LOD

H ×Vk
h,0, n ∈ N, satisfying

un+1
H = unH − τn∇X,un

H
E(unH ,A

n
h),

An+1
h = An

h − τn∇X,An
h
E(unH ,A

n
h)
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for some step size τn > 0 and suitable initial values (u0H ,A
0
h) ∈ V LOD

H ×Vk
h,0. The step size τn > 0 in

each iterations is adaptively chosen such that E(un+1
H ,An+1

h ) gets minimal. Since E(un+1
H ,An+1

h )
is a fourth order polynomial in τn this is achieved numerically e.g. by line search in τn.

Clearly, every (local) minimizer is a stationary point of the iterative scheme, and vice versa: every
stationary point satisfies the first-order condition for a local minimum. For an optimal τn, the
iteration is expected to reduce the energy, and we may find a local minimizer of the GL energy in
V LOD
H ×Vk

h,0 as a limit of the iteration. A rigorous convergence analysis of the scheme is much more
involved and is left for future research. In practice, the optimal τn can become very small during
the iteration process, which may cause the iteration to converge slowly due to small updates per
iteration. To avoid very small steps, we set a lower bound of 0.1 for τn in our experiments. This
comes at the cost of losing the energy-diminishing property in every iteration step, but results in a
more robust, quicker-converging overall computation. The stabilization parameter in the definition
of the Sobolev gradient is set to β = 0.1 in our experiments. Finally, we terminate the iteration
when the difference in energy of two iterates, |EGL(u

n+1,An+1)−EGL(u
n,An)|, approaches a given

tolerance, εtol > 0.

7.2. Model problem and discrete minimizers. The model of our numerical experiments con-
siders the GL energy on the two dimensional unit square Ω = (0, 1)2 ⊂ R2, with the external
magnetic field

H(x) = 10 sin(πx1) sin(πx2), x = (x1, x2) ∈ Ω,

and the particular values for the GL parameter κ = 5, 10, 15, 20, 25, 30, 50, 100. The range of GL
parameter is chosen such that it covers the magnitudes of common type-II superconductors such
as niobium (κ ∼ 1), magnesium diboride (κ ∼ 25), or yttrium barium copper oxide (κ ∼ 100),
see [34, 57, 65]. The discrete minimizers are computed with a LOD approximation for the order
parameter u and quadratic FE for the vector potential A with the iterative solver described in
Section 7.1. The mesh sizes are set to H = 2−7 and h = 2−7 and we compute the minimizers up to
a tolerance of εtol = 10−12. The LOD space is constructed in all our experiments, unless otherwise
stated, based on the vector potential A⋆ ∈ V2

h,0 which is a P2-approximation of curlA⋆ = H with

divA⋆ = 0 and fixed fine mesh size h = 2−7 through all experiments .
For the practical realization of the LOD spaces we need to compute an associated basis of V LOD

H

which requires to solve the corrector problems (3.5) for suitable function φ ∈ VH . This is done
using a standard P1-FEM discretization on a fine mesh with mesh size hfine = 2−9. It is known, cf.
[8, 56], that a basis can be chosen such that each basis function decays exponentially. Therefore,
the corrector problems can be restricted to local patches by allowing small localization errors and
to obtain a feasibly computable and locally supported basis of V LOD

H . The patches are defined
through an oversampling parameter ℓ describing the number of layers around the element of TH
associated with the patch. We refer to [8] for more details on the computation and for estimates
of the occurring localization error in the context of the GL energy minimization problem. Unless
otherwise stated, we choose ℓ = 10 oversampling layers for each coarse element in our experiments.
To achieve the fine resolution of H = 2−7 and h = 2−7 at feasible computational cost we use a
multilevel type approach that first computes a discrete minimizer on a coarse mesh which is then
used as an initial value for the minimizing iteration on a finer mesh. This process is repeated across
four levels so that the mesh parameters (H,h, ℓ) follow the sequence

(2−3, 2−4, 3) → (2−5, 2−4, 5) → (2−7, 2−4, 10) → (2−7, 2−7, 10)

and with the constant fine mesh size hfine = 2−9 for the LOD realization. For the first iteration
we use a constant 0.8+ 0.6i initial value in u and A⋆ as an initial value in A. Finally, for the first
three levels we choose εtol = 10−10 and the final iteration is then computed up to εtol = 10−12.
The order parameters u of the computed discrete minimizers are shown in Figure 1 and Figure
2. In Figure 3 the corresponding vector potential A and its curl for κ = 5 is shown. This value
is representative of all other values of κ = 10, 15, 20, 25, 30, 50, 100, since no visual differences are
notable. In contrast, we plot the difference curlA−H in Figure 4 for all values of κ where small
differences can be detected due to the vortex structure of the order parameter. Finally, the energy
values for the original GL energy EGL and the stabilized energy E are given in Table 1.
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Figure 1. Real part Reu (top row), imaginary part Imu (middle row), and
density |u|2 (bottom row) of the order parameter component u of the GL energy
minimizer (u,A) for κ = 5, 10, 15, 20 (left to right).

Figure 2. Real part Reu (top row), imaginary part Imu (middle row), and
density |u|2 (bottom row) of the order parameter component u of the GL energy
minimizer (u,A) for κ = 25, 30, 50, 100 (left to right).

In the density |u|2 of the order parameter u (bottom row of Figure 1 and Figure 2) we see the
expected vortex patterns, known as the Abrikosov lattice, that occur in type-II superconductors
penetrated by external magnetic fields. Interestingly, the vortices in the density arise from the
interplay between the real part (top row) and the imaginary part (middle row) of u. Both compo-
nents exhibit a more intricate structure due to oscillations, particularly in regions where |u| ≈ 1. In
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Figure 3. The vector potential, A (left, plotted on a coarse mesh), and curlA
(middle), of the GL energy minimizer (u,A) for κ = 5, representative of all values
of κ = 5, 10, 15, 20, 25, 30, 50, 100.

Figure 4. Difference curlA − H of the GL energy minimizer (u,A) for κ =
5, 10, 15, 20, 25, 30, 50, 100 (left to right and top to bottom).

κ 5 10 15 20 25 30 50 100

E(u,A) 0.192633 0.164499 0.164999 0.145422 0.142620 0.143023 0.133575 0.122268

EGL(u,A) 0.192615 0.164492 0.164950 0.145396 0.142595 0.142997 0.133560 0.122261

Table 1. Approximate energies E(u,A) and EGL(u,A) of the minimizers for
κ = 5, 10, 15, 20, 25, 30, 50, 100.

particular, the physical relevant vortices in the density are well resolved by the LOD approximation
space, consistent with the observations of [8] for the reduced GL model with given vector poten-
tials A. The number of vortices increases and their diameter decreases while the GL parameter κ
increases. Looking at the vector potential A (Figure 3), we clearly see that no special vortex-like
structure appears in the vector potential. The vortices are only marginally detectable once we
consider the difference curlA−H (Figure 4). This justifies the choice of a standard FE discretiza-
tion for the vector potential A. The physically relevant observable is curlA, which describes the
magnetic field inside the superconductor. As expected, it is aligned with the external magnetic
field H. In general, we observed during the computation that the alignment of A stabilizes after a
few iterations, while the challenging variable is the order parameter as we have seen that it takes
much more iterations (up to O(104) iterations) until the correct vortex-pattern appears and the
Sobolev gradient flow converges.

7.3. Convergence rates. Next we investigate the error of the approximations of the minimizers
and its dependence on the mesh sizes H,h and on the GL parameter κ as stated in Theorem 3.3.
For the first experiment, we choose a fixed fine mesh size h = 2−6 for the vector potential A,
different mesh sizes H = 2−{2,3,4,5,6} for the LOD approximation in the order parameter u, and
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Figure 5. Error of the order parameter u for the mesh sizes H = 2−{2,3,4,5,6},
h = 2−6 and LOD parameters hfine = 2−9 and ℓ = 10. Left: κ-scaled H1

κ-error
κ−3∥u− uLOD

H ∥H1
κ
. Right: κ-scaled L2-error κ−4∥u− uLOD

H ∥L2 .

compute the errors ∥u− uLOD
H ∥H1

κ
and ∥u− uLOD

H ∥L2 to the reference solution for the different val-
ues κ = 5, 10, 20, 25, 30, 50, 100. The minimizers (u,A) computed in Section 7.2 serve as reference
solutions and all other parameters are chosen as in Section 7.2. For the given configuration, the
minimizer is obtained using the iterative method described in Section 7.1, starting from an initial
value given by a projection of the reference solution onto the chosen approximation space.
Due to the fine mesh size in the vector potential we can expect that the overall error (u−uLOD

H ,A−
AFEM
h,2 ) is dominated by the error in the order parameter. The results are depicted in Figure 5.

We observe after a pre-asymptotic phase an order three decay of the H1
κ-error w.r.t. the mesh

size and an order four decay of the L2-error w.r.t. the mesh size. The pre-asymptotic phase is
explained by the resolution condition H ≲ κ−1−ε/2ρu,A(κ)−1/2 which is needed for a quasi-best-

approximation behavior or at least H ≲ κ−1−ε/5ρu,A(κ)−1/5 to compensate the additional higher
order error terms as we discussed in Section 3 after Theorem 3.3. For H = 2−5 both errors start
to stagnate which is most-likely due to the fine scale discretization of order O(hfine) that we used
to solve the local corrector problems for the LOD space. This behavior was also observed in [8]
and we refer to the reference for a more detailed discussion. For larger values of κ, namely κ = 50
and κ = 100, the pre-asymptotic regime is so large that the error directly turns into the stagnation
phase without showing the predicted third-order or fourth-order convergence, respectively. How-
ever, this is in line with our theoretical results. Let us now turn to the κ-dependence of the error.
We point out that in Figure 5 the H1

κ-error is scaled with a κ−3 pre-factor and the L2-error with
a κ−4 pre-factor respectively. We observe that the error curves are almost on top of each other
as κ varies and emphasize that a different κ-scaling of the error leads to a significant difference
between the error curves. Therefore, we conclude that the κ3-dependence (resp. κ4-dependence)
of the H1

κ-error (resp. L2-error) in our theoretical convergence result is optimal. Summarizing,
the numerical experiments verifies the O(κ3H3) (resp. O(κ4H4)) decay of the H1

κ-error (resp.
L2-error) in the order parameter u as proved in Theorem 3.3.

In the next experiment we extract the convergence in the vector potential A. We fix a small mesh
size H = 2−5 for the order parameter, vary the mesh size h = 2−{2,3,4,5,6} for the vector potential,
and compute the errors ∥A − AFEM

h,2 ∥H1 and ∥A − AFEM
h,2 ∥L2 . Again all other parameters are set

as before and we can now expect that the overall error is dominated by the error in the vector
potential A. The results are shown in Figure 6 where we can see that the H1-error decays in a clear
asymptotic phase with a rate of two w.r.t. h after a pre-asymptotic phase which increases in κ.
This pre-asymptotic phase is now explained by the resolution condition h ≲ κ−ερu,A(κ)−1 which

is needed for a quasi-best-approximation or at least h ≲ κ−(1+ε)/3ρu,A(κ)−1/3 to compensate the
additional higher order error terms. This coincides with our theoretical findings from Theorem 3.3.
In view of the κ-dependence the situation is more unclear. First, Figure 6 left shows that for the
small values of κ and in the asymptotic phase the convergence curves lie almost exactly on top of
each other, although the error is not scaled with one order of κ as it would have been expected from
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Figure 6. Error of the vector potentialA for the mesh sizes h = 2−{2,3,4,5,6},H =
2−5 and LOD parameters hfine = 2−9 and ℓ = 10. Left: H1-error ∥A−AFEM

h,2 ∥H1 .

Right: L2-error κ−1∥A−AFEM
h,2 ∥L2 .

Theorem 3.3. This indicates that our error estimates of order O(κh2) might be suboptimal w.r.t. κ
as an implication of a possibly suboptimal estimate of ∥A∥H3 in the analysis; see Remark 3.4 for a
more detailed discussion. We also observe a clear third-order convergence rate with respect to the
mesh size for the L2-error in the asymptotic phase, i.e., for small values of h after a pre-asymptotic
phase, which is again explained by the resolution condition. The dependence of the L2-error on κ
is again much more complicated since we observe the O(κερu,A(κ)h3) error term from Theorem
3.3, for which the dependence on κ enters through the coercivity constant ρu,A(κ). We found that
the error scales best with κ−1 in a range of integer powers, but we cannot draw a precise conclusion
about the dependence on κ since it is unknown for the coercivity constant ρu,A(κ). At this point,
we can conclude that the numerical findings align with our theoretical findings, though they may
indicate that our estimates in the κ-scaling are suboptimal with regard to the vector potential.
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Figure 7. Error of the energy E with LOD parameters hfine = 2−9 and ℓ = 10.
Left: κ−6|E(u,A)−E(uLOD

H ,AFEM
h,2 )| for the mesh sizes H = 2−{2,3,4,5,6}, h = 2−6.

Right: κ−2|E(u,A) − E(uLOD
H ,AFEM

h,2 )| for the mesh sizes h = 2−{2,3,4,5,6}, H =

2−5.

In both experiments we additionally compute the errors in the GL energy which are shown in Figure
7. The error in energy takes the convergence in both components into account and we see in both
error plots a convergence in up to three phases: a pre-asymptotic phase, an asymptotic phase,
and in the order parameter a stagnation phase. We first discuss the convergence in the order
parameter (Figure 7 left). The pre-asymptotic regime is explained by the very weak resolution
condition κH ≲ 1 as stated in Theorem 3.3. Indeed, this regime seems to be smaller compared
to the H1

κ-error, as seen most prominently for the κ = 50 curve. The pre-asymptotic regime
is followed by an asymptotic convergent regime where we observe the predicted sixth order of
convergence. However, due to the high order of convergence and the small magnitudes close to
machine precision, the observations are less clear than for the H1

κ and L2 errors. The same holds for
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the sixth-order scaling of the energy error w.r.t. κ, to which we approximate as closely as possible.
The stagnation regime is again caused most likely by the fine-scale discretization error. For the
error in the vector potential (Figure 7, right), we observe the expected asymptotic fourth-order
convergence. Moreover, the scaling with respect to κ is approximately of order four, as anticipated.
However, the convergence curves are not closely aligned, suggesting potential suboptimality with
respect to κ, consistent with the behavior seen in the H1 and L2 errors. In addition, a pronounced
pre-asymptotic regime is present – particularly for κ = 100 and κ = 50 – which is unexpected and
appears, at first sight, to contradict our main results, since no resolution condition with respect
to h should be required. A closer examination of the computations revealed that, on coarser
meshes (i.e., within the pre-asymptotic regime), the Sobolev gradient descent method converges
to a different minimizer, as evidenced by a substantially different energy level. Unfortunately, we
were unable to recover the corresponding reference minimizer on the coarser meshes through the
Sobolev gradient descent iterations as the descent approach is not robust w.r.t. initial values. This
numerical artifact accounts for the observed pre-asymptotic behavior. Except for this behavior –
and the aforementioned indication of suboptimality in the κ–scaling – the numerical experiments
are overall in good agreement with our theoretical results.

7.4. Choice of A⋆. As a final experiment, we investigate numerically how the choice of A⋆ and
therefore the choice of the LOD space affects our results, in particular the convergence in the order
parameter u in view of Lemma 6.3 and our main results. We compare our standard choice – where
A⋆ is a P2 approximation of curlA⋆ = H and divA⋆ = 0 – against alternatives. For simplicity,
we pick the values κ = 10 and κ = 20 as representatives, since we investigated the influence of κ
numerically in the previous section, and retain all other model parameters. The following vector
potentials A⋆ are considered:

Standard choice: P2 approximation of curlA⋆ = H with divA⋆ = 0 on a fine mesh size of
h = 2−7. This is easily pre-computed at low computational costs and expected to be a
rough but reasonable approximation of A.

Trivial choice: A⋆ = 0. This allows for an efficient computation of the LOD space due to spatial
symmetry at the cost of a poor approximation of A.

Optimal choice: A⋆ = A, where A denotes the reference minimizer introduced in Section 7.2.
This is the best available approximation of A in our experiments but of course in general
unknown.

Since the choice of the LOD space should not have a significant effect on the approximation of the
vector potential A, we are only interested in the error w.r.t. the order parameter u. As in the
previous section, we fix h = 2−6 and vary the mesh size for the LOD space as H = 2−{2,3,4,5,6}

with a fine scale resolution of hfine = 2−9 and an oversampling parameter of ℓ = 10. We compute
the error in H1

κ for each choice of A⋆. The results are shown in Figure 8.

All three choices of A⋆ lead to optimal third-order convergence of the order parameter with respect
to H after the previously shown short pre-asymptotic regime. Every choice is therefore suited
to some extent to approximate energy minimizers in the associated LOD spaces, which aligns
with our main result. However, a direct comparison of the three choices reveals that the “trivial
choice” (A⋆ = 0) results in the largest error, making the “standard choice” preferable. The
difference is almost one order of magnitude, and solving for curlA⋆ = H comes at a very low
computational cost. In some cases, one might choose the “trivial choice” to compute the LOD
space faster using spatial symmetries when A⋆ = 0. However, in view of the computational cost of
the Sobolev gradient descent, this advantage seems to be negligible. Surprisingly, our “standard
choice” (curlA⋆ = H) performs as well as the “optimal choice” (A⋆ = A). This shows that the
error committed by approximatingA byA⋆ enters only weakly into the overall approximation error
of GL energy minimizers. This justifies our standard choice in previous experiments, as it has a
low computational cost and leads to good approximations of GL energy minimizers. Summarizing
the numerical results confirm our main results.
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Figure 8. Error of the order parameter u for the different choices of A⋆, κ = 10
(solid lines) and κ = 20 (dashed lines) for the mesh sizesH = 2−{2,3,4,5,6}, h = 2−6.
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Appendix A. Proofs of the higher regularity results

In this section, we collect the proofs of Theorem 2.6 and Lemma 2.8. As we could not find any
suitable reference which covers our cases, we present the proofs here in the appendix, even though
these results might be known to many experts.

For the sake of notation, we restrict ourselves to the unit cube Ω = (0, 1)3, but the case of general

cuboids is easily derived by a linear transformation. For Ω̂s = (−s, s)3, s ∈ R+, the idea is to use

reflections to extend the functions from Ω to the extended domain Ω̂1, and then periodically to

any Ω̂2k+1 for k ∈ N while preserving its regularity.

The main intuition for this procedure comes from the eigenbasis of the Laplacian on a cube. For
example, for homogeneous Dirichlet boundary conditions the basis on Ω consists of functions

sin(πkx1) sin(πℓx2) sin(πmx3), k, ℓ,m ≥ 1,

and their natural extension is given by first performing an odd reflection on each face and then

obtain a periodic function on Ω̂1. For Neumann boundary conditions, the same idea applies with
the basis

cos(πkx1) cos(πℓx2) cos(πmx3), k, ℓ,m ≥ 0,
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and hence even reflections on each face. For mixed problems the correct combination of sine and
cosine enable us to extend this also to the mixed case.

A.1. Neumann boundary conditions. Let us consider the Neumann problem in Lemma 2.8
given by

−∆u = g in Ω and ∇u · ν|∂Ω = 0,

for g ∈ L2(Ω). For a function f ∈ C(Ω̄), we define the Neumann extension MN : f → fext with

fext(x1, x2, x3) =



f(x1, x2, x3), x1 ∈ (0, 1), x2 ∈ (0, 1), x3 ∈ (0, 1),

f(x1, x2,−x3), x1 ∈ (0, 1), x2 ∈ (0, 1), x3 ∈ (−1, 0),

f(x1,−x2,−x3), x1 ∈ (0, 1), x2 ∈ (−1, 0), x3 ∈ (−1, 0),

f(x1,−x2, x3), x1 ∈ (0, 1), x2 ∈ (−1, 0), x3 ∈ (0, 1),

f(−x1, x2, x3), x1 ∈ (−1, 0), x2 ∈ (0, 1), x3 ∈ (0, 1),

f(−x1, x2,−x3), x1 ∈ (−1, 0), x2 ∈ (0, 1), x3 ∈ (−1, 0),

f(−x1,−x2,−x3), x1 ∈ (−1, 0), x2 ∈ (−1, 0), x3 ∈ (−1, 0),

f(−x1,−x2, x3), x1 ∈ (−1, 0), x2 ∈ (−1, 0), x3 ∈ (0, 1).

Without changing the notation, we extend the operator MN also to L2-functions.

Lemma A.1. Let f ∈ H1(Ω). Then the extension MNf satisfies:

(a) MNf ∈ H1(Ω̂1) with ||MNf ||H1(Ω̂1)
≤ 23||MNf ||H1(Ω).

(b) The periodic extension of MNf satisfies MNf ∈ H1(Ω̂2k+1) for all k ≥ 1 with

||MNf ||H1(Ω̂2k+1)
≤ (2k + 2)3||MNf ||H1(Ω).

Proof. (a) SinceMNf is in H1 on each subdomain, it remains to check that the trace is continuous
in the L2 sense on the faces. However, the even reflection ensures this continuity. Since the H1-
norm on each subdomain is equal to the H1-norm on Ω, the estimate in (a) follows by counting
cubes.

(b) For the periodic case, it is sufficient to note that the periodic extension from Ω̂1 is equivalent
to iteratively performing even reflections on the outer faces. In particular, this implies continuity

at all outer faces of Ω̂1, by repeating the calculation of the interior faces. □

We now turn to the case of preserving H2-regularity.

Lemma A.2. Let f ∈ H2(Ω) with ∇f · ν|∂Ω = 0. Then the extension MNf satisfies:

(a) MNf ∈ H2(Ω̂1) with ||MNf ||H2(Ω̂1)
≤ 23||MNf ||H2(Ω).

(b) The periodic extension of MNf satisfies MNf ∈ H2(Ω̂2k+1) for all k ≥ 1 with

||MNf ||H2(Ω̂2k+1)
≤ (2k + 2)3||MNf ||H2(Ω).

Proof. We note that it is sufficient to show that ∆fext ∈ L2(Ω̂1) and elliptic regularity gives us the
claim. We further note, that the periodic extension is handled as in Lemma A.1.

Since we already know that MNf ∈ H2 on each subdomain and MNf ∈ H1(Ω̂1), in order to show

that ∇fext ∈ H(div, Ω̂1) holds, we have to prove that all normal traces of ∇fext are continuous.
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Computing the gradients on each subdomain, we obtain for the diagonal matrix Ia,b,c = diag(a, b, c)
the expressions

∇fext(x1, x2, x3) =



I1,1,1∇f
∣∣
(x1,x2,x3)

, x1 ∈ (0, 1), x2 ∈ (0, 1), x3 ∈ (0, 1),

I1,1,−1∇f
∣∣
(x1,x2,−x3)

, x1 ∈ (0, 1), x2 ∈ (0, 1), x3 ∈ (−1, 0),

I1,−1,−1∇f
∣∣
(x1,−x2,−x3)

, x1 ∈ (0, 1), x2 ∈ (−1, 0), x3 ∈ (−1, 0),

I1,−1,1∇f
∣∣
(x1,−x2,x3)

, x1 ∈ (0, 1), x2 ∈ (−1, 0), x3 ∈ (0, 1),

I−1,1,1∇f
∣∣
(−x1,x2,x3)

, x1 ∈ (−1, 0), x2 ∈ (0, 1), x3 ∈ (0, 1),

I−1,1,−1∇f
∣∣
(−x1,x2,−x3)

, x1 ∈ (−1, 0), x2 ∈ (0, 1), x3 ∈ (−1, 0),

I−1,−1,−1∇f
∣∣
(−x1,−x2,−x3)

, x1 ∈ (−1, 0), x2 ∈ (−1, 0), x3 ∈ (−1, 0),

I−1,−1,1∇f
∣∣
(−x1,−x2,x3)

, x1 ∈ (−1, 0), x2 ∈ (−1, 0), x3 ∈ (0, 1).

We only check the face {x1 = 0, x2 ∈ (0, 1), x3 ∈ (0, 1)} with normal vector ν = e1 to obtain
formally for all x2 ∈ (0, 1), x3 ∈ (0, 1)

lim
x1→0+

∂νfext(x1, x2, x3) = lim
x1→0+

∂1f(x1, x2, x3) = ∂1f(0, x2, x3) = 0

as well as

lim
x1→0−

∂νfext(x1, x2, x3) = lim
x1→0+

−∂1f(−x1, x2, x3) = −∂1f(0, x2, x3) = 0.

For the other faces the very same computations can be performed. Thus, all normal traces of
∇fext vanish on the inner faces, are thus in particular continuous, and we have shown ∇fext ∈
H(div, Ω̂1). □

With this, we are in the position to prove Lemma 2.8.

Proof of Lemma 2.8. First, we observe with Lemmas A.1 and A.2 that for uext =MNu

−∆uext

∣∣
(x1,x2,x3)

= −∆u
∣∣
(±x1,±x2,±x3)

= f
∣∣
(±x1,±x2,±x3)

= fext(x1, x2, x3),

with signs chosen accordingly to the definition of MN . In particular, uext solves the Neumann

problem in Lemma 2.8 also on Ω̂3 with right-hand side fext ∈ H1(Ω̂3). By interior regularity for
elliptic problems (cf. [33, Theorem 6.3.2]) we conclude u = uext|Ω ∈ H3(Ω) with

∥u∥H3(Ω) ≲ ∥uext∥L2(Ω̂3)
+ ∥fext∥H1(Ω̂3)

≲ ∥u∥L2(Ω) + ∥f∥H1(Ω).

Next, we turn towards theW 2,p-regularity of u, where we exploit again the extensions uext and fext
together with a Calderón–Zygmund estimate. For that, let Bext be a ball with radius r = 2, which

is compactly contained in the extended domain Ω̂3. In particular, we have Ω ⊂⊂ Bext ⊂⊂ Ω̂3

and a regular boundary ∂Bext ∈ C1,1. We want to smoothly truncate uext to Bext with a cut-off
function η ∈ C∞

0 (Bext) with 0 ≤ η ≤ 1. Furthermore, η should not only be constant 1 on Ω, but

also on a slightly enlarged box, that is, η ≡ 1 on Ω̂1+δ for a sufficiently small δ such that we still

have Ω̂1+δ ⊂⊂ Bext. Finally, assume that η is selected such that ∥∇η∥L∞ ≤ C for some constant

C that only depends on Bext and Ω̂3. We consider the function η uext ∈ H1
0 (Bext) which solves

−∆(η uext) = −η∆uext − 2∇uext · ∇η − uext ∆η = η fext − 2∇uext · ∇η − uext ∆η =: f̃ext.

Since uext ∈ H3(Bext) (by interior regularity from the first part of the proof), Sobolev embeddings
guarantee that we also have ∇uext ∈ L∞(Bext). Together with fext ∈ Lp(Bext) (which directly
follows from f ∈ Lp(Ω)), we conclude that η uext ∈ H1

0 (Bext) is the unique solution to a Poisson
problem on a smooth domain Bext, with homogeneous Dirichlet boundary condition and a right-
hand side f̃ext ∈ Lp. By Lp-regularity theory for elliptic problems, cf. [13, Chapt. 3, Thm. 6.3 &
Thm. 6.4], we conclude that this unique solution fulfills η uext ∈ W 2,p(Bext). By construction of

the cut-off function, we have uext|Ω̂1+δ
= (η uext)|Ω̂1+δ

∈ W 2,p(Ω̂1+δ). Furthermore, we still have

−∆uext = fext in Ω̂1+δ ⊂ Ω̂3. Using the Calderón–Zygmund estimate [39, Theorem 9.11] with

Ω ⊂⊂ Ω̂1+δ, we conclude that there exist constants (depending on p, Ω and δ), such that

∥u∥W 2,p(Ω) = ∥uext∥W 2,p(Ω) ≲
(
∥uext∥Lp(Ω̂1+δ)

+ ∥fext∥Lp(Ω̂1+δ)

)
≲

(
∥u∥Lp(Ω) + ∥f∥Lp(Ω)

)
,
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which proves the claim. □

A.2. Mixed boundary conditions. We now turn to the regularity results of the vector potential
A. As mentioned above, the H2-regularity of a solution U ∈ H1

n,div(Ω) of (2.5) follows from

[45, Lemma 3.7]. In addition, the reference shows that the first component U1 satisfies

(A.1)

−∆U1 = f in Ω,

U1 = 0 on Γ1 = {x ∈ Ω | x1 = 0 or x1 = 1},
∂2U1 = 0 on Γ2 = {x ∈ Ω | x2 = 0 or x2 = 1},
∂3U1 = 0 on Γ3 = {x ∈ Ω | x3 = 0 or x3 = 1},

and similarly the other two components by interchanging the roles of the faces. We thus only study
the case of U1. We follow the ideas of the Neumann case but now with the eigenbasis of the from

sin(πkx) cos(πℓy) cos(πmz)

in mind. This means odd reflections in x1-direction and even reflections on x2- and x3-direction.
We therefore introduce the spaces

H1
0,1(Ω) := {φ ∈ H1(Ω) | φ = 0 on Γ1},

H2
0,1(Ω) := {φ ∈ H2(Ω) | φ = 0 on Γ1, ∂νφ = 0 on Γ2 ∪ Γ3}.

If Ω is replaced by a larger cube Ω̂s, we denote by Γi := {x ∈ ∂Ω̂s | xi = −s or xi = s}. For a
function f ∈ C(Ω̄), we define the mixed extension MD,N : f → fext with

fext(x1, x2, x3) =



f(x1, x2, x3), x1 ∈ (0, 1), x2 ∈ (0, 1), x3 ∈ (0, 1),

f(x1, x2,−x3), x1 ∈ (0, 1), x2 ∈ (0, 1), x3 ∈ (−1, 0),

f(x1,−x2,−x3), x1 ∈ (0, 1), x2 ∈ (−1, 0), x3 ∈ (−1, 0),

f(x1,−x2, x3), x1 ∈ (0, 1), x2 ∈ (−1, 0), x3 ∈ (0, 1),

−f(−x1, x2, x3), x1 ∈ (−1, 0), x2 ∈ (0, 1), x3 ∈ (0, 1),

−f(−x1, x2,−x3), x1 ∈ (−1, 0), x2 ∈ (0, 1), x3 ∈ (−1, 0),

−f(−x1,−x2,−x3), x1 ∈ (−1, 0), x2 ∈ (−1, 0), x3 ∈ (−1, 0),

−f(−x1,−x2, x3), x1 ∈ (−1, 0), x2 ∈ (−1, 0), x3 ∈ (0, 1).

As in the Neumann case, this extension preserves the regularity of the inserted functions.

Lemma A.3. Let f ∈ H1
0,1(Ω) and g ∈ H2

0,1(Ω).

(a) MD,Nf ∈ H1
0,1(Ω̂1) with ||MNf ||H1(Ω̂1)

≤ 23||MNf ||H1(Ω).

(b) The periodic extension of MD,Nf satisfies MD,Nf ∈ H1
0,1(Ω̂2k+1) for all k ≥ 1 with

||MD,Nf ||H1(Ω̂2k+1)
≤ (2k + 2)3||MD,Nf ||H1(Ω).

(c) MD,Ng ∈ H2
0,1(Ω̂1) with ||MD,Ng||H2(Ω̂1)

≤ 23||MD,Ng||H2(Ω).

(d) The periodic extension of MD,Nf satisfies MNg ∈ H2
0,1(Ω̂2k+1) for all k ≥ 1 with

||MD,Ng||H2(Ω̂2k+1)
≤ (2k + 2)3||MD,Ng||H2(Ω).

Proof. The claims on H1 are easily verified, as we preserve continuity at all faces. Further, the
computations for all faces where x1 is either positive or negative are fully analogous to Lemma A.2
as all the normal traces vanish. Hence, we check the conditions at x1 = 0, and let for example
x2, x3 < 0. Then,

∇fext(x1, x2, x3) = I1,−1,−1∇f
∣∣
(x1,−x2,−x3)

, x1 > 0

∇fext(x1, x2, x3) = −I−1,−1,−1∇f
∣∣
(−x1,−x2,−x3)

, x1 < 0,



44 C. DÖDING, B. DÖRICH, AND P. HENNING

and we obtain

lim
x1→0+

∂νfext(x1, x2, x3) = lim
x1→0+

∂1f(x1,−x2,−x3) = ∂1f(0,−x2,−x3)

as well as

lim
x1→0−

∂νfext(x1, x2, x3) = lim
x1→0+

∂1f(−x1,−x2,−x3) = ∂1f(0,−x2,−x3),

and we also obtain here the continuity of the normal traces of the gradient. □

We can then turn to the proof of the second part of Theorem 2.6.

Proof of Theorem 2.6 (b). Let us recall that by part (a) U ∈ H2(Ω) solves

∆U = G, U · ν|∂Ω = curlU× ν|∂Ω = 0,

with G = F+ curlH. The regularity of H and F and the conditions

curlH · ν|∂Ω = F · ν|∂Ω = 0 imply G ∈ H1(Ω) and G · ν|∂Ω = 0.

Now taking the first component U1, wee see that f in (??) is given by the first component of

G, and thus satisfies f ∈ H1
0,1(Ω). Lemma A.3 further ensures that fext ∈ H1

0,1(Ω̂3) holds. For
Uext =MD,NU we argue as in the proof of Lemma 2.8 and observe that choosing the correct case
in the definition of MD,N

−∆Uext

∣∣
(x1,x2,x3)

= (−1)m∆U
∣∣
(±x1,±x2,±x3)

= (−1)mf
∣∣
(±x1,±x2,±x3)

= fext(x1, x2, x3)

with m = 0 for x1 > 0 and m = 1 for x1 < 0. Hence, Uext ∈ H2
0,1(Ω̂3) solves the mixed problem

(??) with right-hand side fext ∈ H1
0,1(Ω̂3). Again, interior regularity for elliptic problems (cf.

[33, Theorem 6.3.2]) gives U = Uext|Ω ∈ H3(Ω) with

∥U∥H3(Ω) ≲ ∥Uext∥L2(Ω̂3)
+ ∥fext∥H1(Ω̂3)

≲ ∥U∥L2(Ω) + ∥f∥H1(Ω),

which yields the claim. □

Appendix B. Proofs of additional auxiliary results

In this section, we present the proofs of Lemma 5.6 and Lemma 6.1.

Proof of Lemma 5.6. Using ∂uE(u,A)φ = 0 and ∂AE(u,A)B = 0, we obtain the identity

⟨E′′(u,A)(u,A), (ψH ,Ch)⟩

= Re

∫
Ω

( i
κ
∇u+Au

)
·
( i
κ
∇ψH +AψH

)∗
+

(
|u|2 − 1

)
uψ∗

H + 2|u|2uψ∗
H dx

+

∫
Ω

2|u|2A ·Ch +
1

κ
Re

(
iu∗∇u+ iu∗∇u

)
·Ch dx

+

∫
Ω

2Re(uψ∗
H)|A|2 + 1

κ
Re

(
iu∗∇ψH + iψ∗

H∇u
)
·A dx

+

∫
Ω

|u|2Ch ·A+ curlCh · curlA+ divCh · divAdx

= Re

∫
Ω

2|u|2uψ∗
H dx +

∫
Ω

2|u|2A ·Ch +
1

κ
Re

(
iu∗∇u

)
·Ch dx

+

∫
Ω

2Re(uψ∗
H)|A|2 + 1

κ
Re

(
iu∗∇ψH + iψ∗

H∇u
)
·A+H · curlCh dx.(B.1)

Analogously, the same identity holds for ⟨E′′(uH ,Ah)(uH ,Ah), (ψH ,Ch)⟩ if we replace (u,A) by
(uH ,Ah) at all occurrences. Next, we use the decomposition

ε = E′′(u,A)(u,A)− E′′(uH ,Ah)(uH ,Ah)︸ ︷︷ ︸
=:ε1

+ E′′(uH ,Ah)(uH ,Ah)− E′′(u,A)(uH ,Ah)︸ ︷︷ ︸
=:ε2
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to sort the terms and treat them together. For the first term we obtain with (B.1) that

ε1(ψH ,Ch) = Re

∫
Ω

2(|u|2u− |uH |2uH)ψ∗
H dx︸ ︷︷ ︸

=:α1

+

∫
Ω

2(|u|2A− |uH |2Ah) ·Ch dx︸ ︷︷ ︸
=:α2

+

∫
Ω

1

κ
Re

(
iu∗∇u− iu∗H∇uH

)
·Ch dx︸ ︷︷ ︸

=:α3

+

∫
Ω

2Re(uψ∗
H)|A|2 − 2Re(uHψ

∗
H)|Ah|2 dx︸ ︷︷ ︸

=:α4

+

∫
Ω

1

κ
Re

(
iu∗∇ψH + iψ∗

H∇u
)
·A− 1

κ
Re

(
iu∗H∇ψH + iψ∗

H∇uH
)
·Ah dx︸ ︷︷ ︸

=:α5

.

Using

Re

∫
Ω

( i
κ
∇uH +AhuH

)
·
( i
κ
∇ψH +AhψH

)∗ − ( i
κ
∇uH +AuH

)
·
( i
κ
∇ψH +AψH

)∗
dx

= Re

∫
Ω

i
κ∇uH · (Ah −A)ψ∗

H − i
κuH (Ah −A)∇ψ∗

H + (|Ah|2 − |A|2)uHψ∗
H dx,(B.2)

the second term satisfies

ε2(ψH ,Ch) = ⟨E′′(uH ,Ah)(uH ,Ah), (ψH ,Ch)⟩ − ⟨E′′(u,A)(uH ,Ah), (ψH ,Ch)⟩

= Re

∫
Ω

( i
κ
∇uH +AhuH

)
·
( i
κ
∇ψH +AhψH

)∗
+
(
|uH |2 − 1

)
uHψ

∗
H + u2Hu

∗
Hψ

∗
H + |uH |2uHψ∗

H dx

+

∫
Ω

2Re(uHu
∗
H)Ah ·Ch +

1

κ
Re

(
iu∗H∇uH + iu∗H∇uH

)
·Ch dx

+

∫
Ω

2Re(uHψ
∗
H)Ah ·Ah +

1

κ
Re

(
iu∗H∇ψH + iψ∗

H∇uH
)
·Ah dx

+

∫
Ω

|uH |2Ch ·Ah + curlCh · curlAh + divCh · divAh dx

− Re

∫
Ω

( i
κ
∇uH +AuH

)
·
( i
κ
∇ψH +AψH

)∗
+
(
|u|2 − 1

)
uHψ

∗
H + u2u∗Hψ

∗
H + |u|2uHψ∗

H dx

−
∫
Ω

2Re(uu∗H)A ·Ch +
1

κ
Re

(
iu∗∇uH + iu∗H∇u

)
·Ch dx

−
∫
Ω

2Re(uψ∗
H)A ·Ah +

1

κ
Re

(
iu∗∇ψH + iψ∗

H∇u
)
·Ah dx

−
∫
Ω

|u|2Ch ·Ah + curlCh · curlAh + divCh · divAh dx

(B.2)
= Re

∫
Ω

2
(
|uH |2 − |u|2

)
uHψ

∗
H + (u2H − u2)u∗Hψ

∗
H dx︸ ︷︷ ︸

=:β1

+

∫
Ω

2Re(uHu
∗
H)Ah ·Ch + (|uH |2 − |u|2)Ah ·Ch − 2Re(uu∗H)A ·Ch dx︸ ︷︷ ︸

=:β2

+

∫
Ω

1

κ
Re

(
i(uH − u)∗∇uH + iu∗H(∇uH −∇u)

)
·Ch dx︸ ︷︷ ︸

=:β3

+

∫
Ω

(3|Ah|2 − |A|2)Re(uHψ∗
H)− 2A ·AhRe(uψ

∗
H) dx︸ ︷︷ ︸

=:β4

+ Re

(
i

κ

∫
Ω

(Ah−A) · (∇uHψ∗
H−uH∇ψ∗

H) +
(
(uH−u)∗∇ψH + ψ∗

H∇(uH−u)
)
·Ah dx

)
︸ ︷︷ ︸

=:β5

.

We investigate the various terms. For brevity, let us define eH := u− uH and Eh := A−Ah.
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• α1 + β1: First, we note that with uH = u− eH we obtain

2
(
|u|2u− |uH |2uH

)
= 2

(
|u|2u− (|u|2 − u∗eH − e∗Hu+ |eH |2)(u− eH)

)
= 4|u|2eH + 2u2e∗H − |eH |2 + u|eH |2 − u∗e2H + eH |eH |2

as well as

2
(
|uH |2 − |u|2

)
uH + (u2H − u2)u∗H

= 2
(
|u|2 − u∗eH − e∗Hu+ |eH |2 − |u|2

)
(u− eH) + (u2 − 2ueH + e2H − u2)(u− eH)∗

= −4|u|2eH − 2u2e∗H + 3u∗e2H + 6|eH |2u− 3eH |eH |2.

Consequently,

|α1 + β1| = |Re
∫
Ω

(
2
(
|u|2u− |uH |2uH

)
+ 2

(
|uH |2 − |u|2

)
uH + (u2H − u2)u∗H

)
ψ∗
H dx|

= |Re
∫
Ω

((7u− 1)|eH |2 + 2u∗e2H − 2eH |eH |2)ψ∗
H dx|

≤ 10 ∥eH∥2L4∥ψH∥L2 + 2 ∥eH∥3L6∥ψH∥L2 .

• α2 + β2: First, we note that

2(|u|2A− |uH |2Ah) + 2Re(uHu
∗
H)Ah + (|uH |2 − |u|2)Ah − 2Re(uu∗H)A

= 2|u|2A+ (|uH |2 − |u|2)Ah − 2Re(uu∗H)A = |u− uH |2A+ (|uH |2 − |u|2)(Ah −A).

With this, we obtain again with eH = u− uH and Eh = A−Ah

|α2 + β2| = |
∫
Ω

|eH |2A ·Ch + (|uH |2 − |u|2)Eh ·Ch dx|

≤ ∥eH∥2L4∥A∥L4∥Ch∥L4 + ∥eH∥L4∥Eh∥L4∥Ch∥L4 ∥|uH |+|u|∥L4

≲
(
∥eH∥2L4 + ∥Eh∥2L4

)
∥Ch∥H1 .

• α3 + β3: We use

u∗∇u− u∗H∇uH + (uH − u)∗∇uH + u∗H(∇uH −∇u) = (u− uH)∗(∇u−∇uH)

to obtain

|α3 + β3|

= | 1
κ

∫
Ω

Re
(
iu∗∇u− iu∗H∇uH

)
·Ch − Re

(
i(uH − u)∗∇uH + iu∗H(∇uH −∇u)

)
·Ch dx|

= | 1
κ
Re

∫
Ω

i (u− uH)∗(∇u−∇uH) ·Ch dx|

≤ ∥ 1
κ∇eH∥L2∥eH∥L4∥Ch∥L4 ≲ (∥eH∥2H1

κ
+ ∥eH∥2L4) ∥Ch∥H1 .

• α4 + β4: Noting that

2Re(uψ∗
H)|A|2 − 2Re(uHψ

∗
H)|Ah|2 + (3|Ah|2 − |A|2)Re(uHψ∗

H)− 2A ·AhRe(uψ
∗
H)

= Re(uψ∗
H)|A−Ah|2 +Re((u− uH)ψ∗

H) (A−Ah) · (A+Ah),

we obtain with the bounds from Lemma 5.1

|α4 + β4| = |
∫
Ω

Re(uψ∗
H)|A−Ah|2 +Re((u− uH)ψ∗

H) (A−Ah) · (A+Ah) dx|

≤ ∥A−Ah∥2L4∥ψH∥L2 + ∥u− uH∥L6∥ψH∥L2∥A−Ah∥L6∥A+Ah∥L6

≲
(
∥eH∥2L6 + ∥Eh∥2L4 + ∥Eh∥2L6

)
∥ψH∥L2 .

• α5 + β5: It holds(
u∗∇ψH + ψ∗

H∇u
)
·A−

(
u∗H∇ψH + ψ∗

H∇uH
)
·Ah

+ (Ah−A) · (∇uHψ∗
H−uH∇ψ∗

H) +
(
(uH−u)∗∇ψH + ψ∗

H∇(uH−u)
)
·Ah

= (u∗∇ψH + uH∇ψ∗
H) · (A−Ah) + ψ∗

H(∇u−∇uH) · (A−Ah).
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Together with Re (iu∗∇ψH) = Re (u(i∇ψH)∗) = −Re (iu∇ψ∗
H), we hence obtain

|α5 + β5|

=
1

κ
|
∫
Ω

Re
(
i (u∗∇ψH + uH∇ψ∗

H) · (A−Ah) + iψ∗
H(∇u−∇uH) · (A−Ah)

)
dx|

=
1

κ
|
∫
Ω

Re
(
i (uH − u)∇ψ∗

H · (A−Ah) + iψ∗
H(∇u−∇uH) · (A−Ah)

)
dx|

=
1

κ
|
∫
Ω

Re
(
i 2 (uH − u)∇ψ∗

H · (A−Ah) + iψ∗
H(uH − u) · div(A−Ah)

)
dx|

≤ 2∥ 1
κ∇ψH∥L2∥u− uH∥L4∥A−Ah∥L4 + ∥ 1

κψH∥L4∥u− uH∥L4∥ div(A−Ah)∥L2

≲
(
∥u− uH∥2L4 + ∥A−Ah∥2H1

)
∥ψH∥H1

κ
.

It remains to sum up the previous estimates. We obtain

|σ(ψH ,Ch)| ≤ |α1 + β1|+ |α2 + β2|+ |α3 + β3|+ |α4 + β4|+ |α5 + β5|
≲ (∥u− uH∥2L6 + ∥u− uH∥2H1

κ
+ ∥A−Ah∥2H1) (∥ψH∥H1

κ
+ ∥Ch∥H1),

and thus the assertion. □

Proof of Lemma 6.1. The proof follows [44, Lem. 10.8] with some modifications to account for the
missing coercivity of aLOD

A⋆
(·, ·) on H1(Ω) and the influence of κ on the estimates. Let φLOD

H ∈ V LOD
H

be arbitrary, then we can write it as φLOD
H = (1 − C)φH for some φH ∈ VH . By definition of the

corrector C we have for the L2-projection πFEM
H : H1(Ω) → VH that πFEM

H (CφH) = 0 hence with
the approximation properties of πFEM

H we conclude

∥CφH∥L2 = ∥(1− C)φH − πFEM
H ((1− C)φH)∥L2 ≲ H∥∇(1− C)φH∥L2 .(B.3)

Next, we obtain from aLOD
A⋆

((1− C)φH , CφH) = 0 that

1
κ2 ∥∇(1− C)φH∥2L2 ≲ aA((1− C)φH , (1− C)φH)

= aA((1− C)φH , φH) +

∫
Ω

(|A|2 + 1)|(1− C)φH |2 dx

≲ δ∥(1− C)φH∥2H1
κ
+ 1

δ ∥φH∥2H1
κ
+ ∥(1− C)φH∥2L2 ,

for any δ > 0 using Young’s inequality. Hence, for sufficiently small δ (independent of H or κ),
we conclude ∥(1− C)φH∥2H1

κ
≲ ∥φH∥2H1

κ
+ ∥(1− C)φH∥2L2 which we can further estimate with the

standard inverse inequality in Lagrange FE spaces as

1
κ2 ∥∇(1− C)φH∥2L2 ≲ ∥φH∥2L2 + 1

κ2H2 ∥φH∥2L2 + ∥(1− C)φH∥2L2

= (1 + 1
κ2H2 )(φH , (1− C)φH)L2 + ∥(1− C)φH∥2L2

≲ (1 + 1
κ2H2 )∥(1− C)φH∥2L2 + (1 + 1

κ2H2 )(CφH , (1− C)φH)L2

≲ (1 + 1
κ2H2 + 1

δ )∥(1− C)φH∥2L2 + δ (1 + 1
κ2H2 )∥CφH∥2L2

(B.3)

≲ (1 + 1
κ2H2 + 1

δ )∥(1− C)φH∥2L2 + δ (H2 + 1
κ2 )∥∇(1− C)φH∥L2 .

Using H ≲ κ−1, we can absorb the right term for sufficiently small δ into the left-hand side and
conclude

1
κ2 ∥∇(1− C)φH∥2L2 ≲ 1

κ2H2 ∥(1− C)φH∥2L2 . □
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