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Abstract

We consider the inverse time-harmonic electromagnetic scattering problem of reconstructing
an object from knowledge of the generated far field pattern for one incident field in the case
of a long tubular object. Both perfectly conducting and penetrable objects are considered.
The inverse scattering problem can be formulated as a non-linear, ill-posed operator equation,
where the operator is the far field map that maps the boundary of the scatterer to the far
field pattern of the scattered field. The shape of the scatterer is reconstructed using a Gauss–
Newton minimization procedure for the regularized relative residual of this equation. Our main
theoretical result is a characterization of the domain derivative of the far field map for the class
of tubular objects considered. Numerical examples are provided in which the computation of
the electromagnetic scattered fields and their domain derivatives are carried out using boundary
element methods. Even for noisy data we obtain very accurate reconstructions of scatterers
with rather complicated shapes.
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MSC codes: 35R30, 78A46

1 Introduction

In this paper, we are concerned with the scattering of time-harmonic electromagnetic waves by a
perfectly conducting or penetrable obstacle. Motivated by applications in the design of highly chiral
scatterers [7–10], we consider tubular objects, in particular, those having a helical structure. We
derive a computable characterization of the domain derivative of the far field map for such objects
and numerically solve the inverse problem of reconstructing such objects from far field data for one
incident field through a regularized iterative Gauss–Newton scheme.

Tubular scatterers have previously been considered in a series of papers [1, 5, 8] in the case
of a very small cross section. In this case, asymptotic representation formulas for the scattered
electromagnetic field and the derivative of the resulting far field with respect to variations of the
curve have been derived and used in algorithms for finding such objects from far field data and
optimizing the center curve in order to maximize electromagnetic chirality. However, the objects
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arising via this approach have turned out to be difficult to realize in practice due to their extremely
thin nature. Thus, there is a need to develop shape optimization procedures for thicker tubular
objects. It is our ultimate aim to generalize the results obtained using asymptotic representation
formulas to the more general class of obstacles considered here. Characterizing the domain derivative
and solving the inverse scattering problem is a first step in this direction.

The principal approach to solving an inverse scattering problem by an iterative algorithm of
Gauss–Newton type is well-established, see [15] and the references contained therein. Given an
incident field, one studies the dependence of the scattered field or its far field pattern on variations
of the boundary of the scatterer. Considering an abstract far field map that maps the boundary of
the obstacle onto the far field of the scattered field, one needs to establish existence of the map’s
Fréchet derivative as well as a characterization of this derivative that allows its computation in
numerical algorithms.

We base our work on the existence proofs and characterization of the domain derivative of the
electromagnetic far field established in [13, 19] for perfectly conducting and in [14] for penetrable
scatterers. By using a representation of the boundary of the scatterer by a parametrization involving
functions from a suitably chosen function space, one may consider the far field map as an operator
mapping (a subset of) a normed space to the space of far field patterns. In previously published
realizations of this approach [12], star-shaped objects were considered. This assumption renders
the dependence of the boundary parameterization on functions in the domain of the far field map
linear. This substantially simplifies both the characterization of the domain derivative as well as
the implementation of the numerical algorithm. In contrast, the tubular domains considered here
have a non-linear dependence of their boundary parametrizations on the functions in the domain
of the far field map. A careful analysis of their linearizations yields both explicit expressions for all
terms in the domain derivative characterization as well as the theoretical arguments to apply the
previously established existence results.

Our work is limited to the case of a homogeneous, isotropic exterior medium, and, in the case
of a penetrable obstacle, we will also assume that the material inside the scatterer is homogeneous
and isotropic. This allows us to formulate equivalent boundary integral equations for the scattering
problems which may be solved by the boundary element method. We note that for both the perfect
conductor and the penetrable medium problem, the domain derivative for the scattered far field is
characterized by an exterior boundary value problem of the same structure as the original scattering
problem. Thus, in either case the same boundary integral equation formulation may be used for
both problems. The relevant operators need to be assembled only once in each iteration step and
the evaluation of the domain derivative becomes very efficient when fast solvers for the discrete
equations are available.

In section 2 we start by providing mathematical preliminaries and formulating both the direct
and the inverse scattering problems for general scatterers. We also describe the principal approach
of solving an inverse scattering problem by a reconstruction algorithm of Gauss–Newton type that
minimizes the residual in a non-linear ill-posed operator equation for the far field map. We recall
the characterization of domain derivatives of this map via boundary value problems. In section
3, we define the long tubular obstacles of interest and consider perturbations of their surfaces.
Our main theoretical results are Theorem 3.5 in which we characterize the domain derivative of
the far field map for such specific obstacles and Corollary 3.7 which gives explicit expressions of the
linearizations. Based on the boundary value problem formulation discussed in section 2, both results
combined provide computable expressions for the domain derivative that can be used in the concrete
implementation of an iterative reconstruction algorithm. Such an implementation is discussed in
section 4. Suitable regularization terms for the objective functional are introduced. The boundary
value problems can be solved using boundary integral equations. We conclude by providing three
examples of reconstructions of scatterers in different configurations.
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2 The inverse electromagnetic scattering problem

In this section we give an overview over the mathematical formulation of both the direct and the
inverse scattering problem. Before we do so, we first introduce some differential operators together
with some spaces and traces that are required for the study of time-harmonic Maxwell’s equations.

The differential operators grad, div, curl and ∆ denote the variational (or weak) gradient,
divergence, rotation and Laplace operator, respectively. We use the standard Sobolev spaces H1(D′),
H1(D′,C3) as well as

H(curlp, D′) =
{
u ∈ L2(D′) : curlj u ∈ L2(D′,C3) , j = 1, . . . , p

}
,

which are defined for any Lipschitz domain D′ ⊆ R3. As usual, an index “loc” denotes spaces of
functions that are in the corresponding Sobolev space for every compact subdomain. The trace
spaces Hs(∂D′), Hs(∂D′,C3), s = ±1/2 are also standard. For U ∈ H1(D′,C3), we also define the
tangential trace γtU = U × ν on ∂D′ and the corresponding boundary space Vt = γt(H

1(D′,C3)).
The dual space V ∗t is defined via an extension of the bilinear form

〈U , V 〉t,∂D′ =

∫
∂D′
U · (ν × V ) ds , U , V ∈ L2

t (∂D
′) ,

where L2
t (∂D

′) denotes the space of square integrable tangential vector fields on ∂D′. Also, the
surface divergence operator Div on ∂D′ may be defined for distributions in V ∗t by a suitable extension
(see [2] for details). The tangential trace γt can be extended to a bounded, surjective operator
γt : H(curl, D′)→ H−1/2(Div, ∂D′), where

H−1/2(Div, ∂D′) =
{
V ∈ V ∗t : DivV ∈ H−1/2(∂D′)

}
.

Let η : H1/2(∂D′) → H1(D′) denote a bounded right inverse of the Dirichlet trace γ0 : H1(D′) →
H1/2(∂D′). The vectorial surface curl operator Curl = γt grad η : H1/2(∂D′)→ H−1/2(Div, ∂D′) is
bounded. Additionally, we introduce the Neumann trace γN : H(curl2, D′)→ H−1/2(Div, ∂D′),

γNU =
1

iωµ
γt curlU , U ∈ H(curl2, D′) .

Denote by ω the angular frequency, by ε0 and µ0 the electric permittivity and magnetic per-
meability of the homogeneous background medium and by k = ω

√
ε0µ0 the wave number. In our

scattering problem, let the pair (Ei,H i) denote smooth incident fields that satisfy the time-harmonic
Maxwell’s equations

curlEi − iωµ0H
i = 0 , curlH i + iωε0E

i = 0 in R3 . (1)

We assume the scattering object to be a bounded tubular C1-smooth domain D ⊆ R3 such
that R3 \D is connected. Throughout this work, the exterior unit normal to ∂D is denoted by ν.
Even though we study Maxwell’s equations for these scattering objects, we note that many of the
results reported here hold in the more general case of a Lipschitz domain. We assume that incident
fields Ei, H i satisfying (1) illuminate the scatterer D. The interaction of the incident fields with
the medium D produces scattered fields Es, Hs, which constitute a solution to the time-harmonic
Maxwell’s equations away from the scatterer and which satisfy the Silver–Müller radiation condition

lim
|x|→∞

|x| (√µ0H
s(x)× x̂−

√
ε0E

s(x)) = 0 (2)

uniformly with respect to the direction of observation x̂ := x/|x| ∈ S2 := {y ∈ R3 : |y| = 1}. A
pair of fields satisfying (2) is called radiating. We distinguish between two different models for the
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scattering object D, which result in contrasting boundary conditions on ∂D for the scattered fields.
The first model is the perfect conductor model. The scattering problem is to determine the vector
fields Es, Hs ∈ Hloc(curl,R3 \D) that satisfy

curlEs − iωµ0H
s = 0 , curlHs + iωε0E

s = 0 in R3 \D , (3a)

γtE
s = −γtEi on ∂D (3b)

together with the Silver–Müller radiation condition (2). The second model describes a penetrable
scattering object. In this case we introduce piecewise constant permittivity and permeability dis-
tributions ε and µ with ε = ε1, µ = µ1 in D and ε = ε0, µ = µ0 in R3 \ D. The Maxwell system
for this transmission problem is to find the vector fields Es, Hs ∈ Hloc(curl,R3 \D) ∪H(curl, D)
that fulfill

curlEs − iωµ0H
s = 0 , curlHs + iωε0E

s = 0 in R3 \D ,

curlEs − iωµ1H
s = 0 , curlHs + iωε1E

s = 0 in D ,
(4a)

[γtE
s]∂D = −γtEi , [γtH

s]∂D = −γtH i on ∂D (4b)

together with the Silver–Müller radiation condition (2). Here, [ · ]∂D denotes the difference of the
boundary values taken from outside and inside of D, respectively. It is well-known that under our
assumptions, both of these problems are uniquely solvable (see, e.g., [18, Ch. 10, 11]).

As a consequence of (2), for both problems (3) and (4), the scattered electric field Es can be
asymptotically expanded as

Es(x) =
eik|x|

4π|x|
(
E∞(x̂) + O

(
|x|−1

))
, |x| → ∞ ,

uniformly with respect to x̂ = x/|x|. The density E∞ ∈ L2
t (S2) is called the electric far field

pattern.
We address the inverse problem to reconstruct the boundary ∂D of the tubular scattering object

D from knowledge of E∞ for one single pair of incident fields Ei, H i. It is not known whether
this problem possesses a unique solution. However, promising numerical reconstructions have been
reported for star-shaped obstacles using iterative methods based on the shape derivative of the far
field pattern [12]. This is the approach that we also use in the present paper. In the remainder
of this section we give a brief summary of results concerning shape-derivatives for electromagnetic
scattering problems based on domain derivatives (see [12–14] for details). Formally, we consider the
map

F :M→ L2
t (S2) , ∂D 7→ E∞ , (5)

that maps boundaries of scattering objects ∂D from an admissible set M to the electric far field
pattern that is generated upon illumination of D with Ei, H i. We refer to this map as the far field
map.

To establish the linearization of the far field map with respect to boundary variations, consider
a sufficiently small η ∈ C1(R3,R3), compactly supported in a neighborhood of ∂D such that the
map x 7→ x + η(x) is a diffeomorphism and maps D to a perturbed domain Dη with boundary
∂Dη = {y = x+ η(x) : x ∈ ∂D}. For such perturbations of D it has been shown that there exists
the domain derivative E′ of the scattered field [14], a radiating solution of Maxwell’s equations with
far field E′∞ = F ′[∂D]η depending linearly on η, such that

1

‖η‖1,∞
‖F (∂Dη)− F (∂D)− F ′[∂D]η‖L2

t (S2) → 0 , ‖η‖1,∞ → 0 . (6)
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In the perfect conductor case (3), the fields E′, H ′ ∈ Hloc(curl,R3 \D) are radiating solutions of
(3a) with the boundary condition (3b) replaced by

γtE
′ = iωµ0 ην ν × γNE −Curl(ηνEν) on ∂D , (7)

see [13,19]. Here E = Ei+Es is the total electric field of the original scattering problem (3) and the
index ν denotes the normal component of the corresponding vector fields. For penetrable media the
situation is similar [14]: The fields E′, H ′ ∈ Hloc(curl,R3 \D)∪H(curl, D) are radiating solutions
of (4a) with the transmission condition (4b) replaced by

[γtE
′]∂D = iω [µ]∂D ην (ν × γtH)− [Curl(ηνEν)]∂D

[γtH
′]∂D = −iω [ε]∂D ην (ν × γtE)− [Curl(ηνHν)]∂D

on ∂D , (8)

where now E = Ei +Es, H = H i +Hs are the total fields in the original problem (4).
One usually assumes that ∂D is represented by an element of some metric spaceM. In much of

the literature on iterative methods for inverse scattering problems, only star shaped obstacles are
considered. Then M is the set of positive functions on the unit sphere representing the distance of
each point on ∂D from the origin. In this paper, we consider tubular scatterers and M is a set of
admissible parametrizations of objects of this type. Exact definitions are given in section 3 below.
In a slight abuse of notation, we henceforth consider F : M → L2

t (S2), X 7→ E∞, where ∂D is
represented by X. Thus, either inverse problem can be formulated as: Given E∞data ∈ L2

t (S2), find
X ∈M such that

F (X) = E∞data . (9)

Linearizing (9) leads to the Gauss–Newton iteration

Xn+1 = Xn +Hn , F ′[Xn]Hn = E∞data − F (Xn) .

We note that in this formulation we automatically avoid the difficulty that for a boundary surface
∂D with representation X ∈ M, the perturbed domain ∂Dη may not have such a representation.
By directly perturbing X, we stay inside the admissible class of domains.

3 Tubular obstacles

The obstacles that we discuss in this work are longitudinal objects that follow a central spine curve
C. The cross section that is perpendicular to the center curve is assumed to be a disc at each point,
but the radius r may vary along the curve.

Let us start by reminding the reader of some results concerning perturbations of regular curves
obtained in [11]. Let z : [0, 1] → R3 be a parametrization of a C2-smooth regular curve C. By
(t,n, b) we denote a continuous orthogonal frame accompanying C, i.e., at every τ ∈ [0, 1], we have
t(τ) = z′(τ)/|z′(τ)| and (t(τ),n(τ), b(τ)) is an orthonormal basis of R3. Moreover, all three vectors
continuously depend on τ . Let δ : [0, 1] → R3 denote the parametrization of another C2-curve.
Then, [11, Proof of Lem. 4.1] yields a continuous orthogonal frame of the curve parametrized by
z + δ denoted by (tδ,nδ, bδ) given by

tδ =
z′ + δ′

|z′ + δ′|
,

nδ = (t · tδ)n−
b · tδ

1 + t · tδ
(t× tδ)− (n · tδ) t ,

bδ = (t · tδ) b+
n · tδ

1 + t · tδ
(t× tδ)− (b · tδ) t .
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Moreover, an asymptotic expansion with respect to the magnitude of the perturbation is provided,
which reads

tδ = t+
δ′

|z′|
− δ

′ · t
|z′|

t+ o (‖δ′‖∞) , (11a)

nδ = n− δ
′ · n
|z′|

t+ o (‖δ′‖∞) , (11b)

bδ = b− δ
′ · b
|z′|

t+ o (‖δ′‖∞) (11c)

as ‖δ′‖∞ → 0. We note that the condition that (t,n, b) is continuous on [0, 1] will not necessarily
be satisfied by the Frénet frame, which is the standard accompanying orthogonal frame used in
differential geometry. If the curvature of C vanishes at some point, the Frénet frame is not defined
in that point, and a continuous extension may also not be possible. In the worst case of a straight
line the Frénet frame is not defined for any point. Instead, we use rotation minimizing frames
known, e.g., from applications in computer graphics [21].

Definition 3.1 Let z : [0, 1]→ R3 be a parametrization of a C2-smooth regular curve C. The frame
(t,n, b) ∈ C1([0, 1],R3×3) is called a rotation minimizing frame of C, if

t =
z′

|z′|
, t · n = 0 , n′ = −(t′ · n) t , b = t× n on [0, 1] .

Given a curve C with a rotation minimizing frame, we now turn to the definition of the surface
of a long tubular obstacle having C as its spine curve. Such a surface will be represented by an atlas
of three charts, xbody, xstart and xend, parametrizing the tubular body Sbody, the start cap Sstart and
the end cap Send, respectively. To define these charts, we additionally introduce the vectors

ζ(τ, ϕ) = cos(ϕ)n(τ) + sin(ϕ) b(τ) , (12a)

ξstart(ϑ, ϕ) = cos(ϕ) sin(ϑ) b(0) + sin(ϕ) sin(ϑ)n(0)− cos(ϑ) t(0) , (12b)

ξend(ϑ, ϕ) = cos(ϕ) sin(ϑ)n(1) + sin(ϕ) sin(ϑ) b(1) + cos(ϑ) t(1) , (12c)

where τ ∈ [0, 1], ϕ ∈ (−π, π] and ϑ ∈ [0, π/2]. The charts are given by

xbody(τ, ϕ) = z(τ) + r(τ) ζ(τ, ϕ) , (13a)

xstart(ϑ, ϕ) = z(0) + ρ0(ϑ, ϕ) ξstart(ϑ, ϕ) (13b)

xend(ϑ, ϕ) = z(1) + ρ1(ϑ, ϕ) ξend(ϑ, ϕ) (13c)

where τ ∈ [0, 1], ϕ ∈ (−π, π] and ϑ ∈ [0, π/2] (see Figure 1 for an illustration). The functions ρ0

and ρ1 need to be chosen in such a way that the resulting surface is C1-smooth. To achieve this, we
establish some helpful results.

Lemma 3.2 Let z : [0, 1] → R3 a parametrization of a C2-smooth regular curve C and (t,n, b) ∈
C1([0, 1],R3×3) a rotation minimizing frame of C. Then

∂τxbody = ψ t+ r′ ζ with ψ = |z′| − r t′ · ζ . (14)

Proof: From Definition 3.1, we have

b′ = t′ × n− (t′ · n) (t× t) = t′ × (b× t) = (t′ · t) b− (t′ · b) t .
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Figure 1: Parameters used for the parametrizations xstart (purple), xbody (orange) and xend (green)
of the tube surface together with the underlying coordinate systems.

As |t| = 1, there holds t′ · t = 0 and hence b′ = −(t′ · b) t. Thus, ∂τζ(τ, ϕ) = −(t′ · ζ) t follows. As
z′ = |z′| t, the assertion follows from the product rule.

It is straightforward to obtain that

t′ =
z′′

|z′|
−
(
z′′

|z′|
· t
)
t .

We now assume ‖r‖∞ to be small enough such that ψ ≥ c > 0 and set

ρτ (ϑ, ϕ) = r(τ)− ητ (ϑ, ϕ) , τ ∈ {0 , 1} , (15)

with

η0(ϑ, ϕ) =
4ϑ2 (ϑ− π

2
) r(0) r′(0)

π2 ψ
(
0, π

2
− ϕ

) , η1(ϑ, ϕ) =
4ϑ2 (ϑ− π

2
) r(1) r′(1)

π2 ψ (1, ϕ)
.

The following Lemma is proven in Appendix A as the proof just consists of straightforward
technical calculations.

Lemma 3.3 Let z : [0, 1] → R3 be a parametrization of a C2-smooth regular curve C and let
(t,n, b) ∈ C1([0, 1],R3×3) be a rotation minimizing frame of C. If ‖r‖2,∞ is sufficiently small, then
xbody, xstart and xend given by (13) and (15) are the atlas of a C1-smooth surface.

In the setting of the previous section, each obstacle D is, thus, represented by an element
X = (z, r) of the set

M =
{

(ẑ, r̂) : ẑ : [0, 1]→ R3 C2-smooth, regular and r̂ ∈ C1([0, 1]), r̂ > 0
}
. (16)

We note that not every element of M yields an atlas of a regular C1-surface. Restrictions on the
curvature of z and the magnitude of r apply.

We proceed by formulating a theorem that characterizes the domain derivative of the electro-
magnetic far field map for tubular obstacles, both in the case of a perfectly conducting and a
penetrable obstacle. We vary the shape of the obstacle represented by (z, r) ∈ M by considering
(z + δ, r + ε) ∈ M for (δ, ε) sufficiently small in norm. In what follows, quantities, which are
perturbed in this way are equipped with an additional index (δ, ε).
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Lemma 3.4 Let ∂D denote a regular C1-surface represented by (z, r) ∈ M. The function defined
on ∂D by

h(δ,ε)(x) = x`,(δ,ε)(x
−1
` (x))− x , x ∈ S` , ` ∈ {body, start, end} , (17)

for sufficiently small ‖(δ, ε)‖2,∞×1,∞ is C1-smooth on ∂D and depends smoothly on the quantities
δ, δ′, δ′′, ε, ε′ in C1(∂D).

Proof: From (13) it is clear that in the neighborhood of almost every point on ∂D, with the
exceptions of the points z(0)−r(0) t(0), z(1)+r(1) t(1) on the caps, the charts are diffeomorphisms.
Then, for sufficiently small ‖(δ, ε)‖2,∞×1,∞, by definition, h(δ,ε) is C1-smooth except at these isolated
points. In a neighborhood of these points, we may instead use a regular parameterization of the
surface, for example by projection on the tangential plane, to extend the definition.

An inspection of the asymptotic formulas in (11) together with (12) and (13) reveals that xbody

depends smoothly on δ, δ′ and ε, while xstart and xend also depend on δ′′(0), ε′(0) and δ′′(1), ε′(1),
respectively. Straightforward calculations then yield that all three charts and their inverses smoothly
depend on δ, δ′, δ′′, ε, ε′. The same is consequently true for h(δ,ε).

The next theorem characterizes the electromagnetic domain derivative for tubular objects D with
boundary ∂D parametrized as in (13). The linearization of h(δ,ε) with respect to the perturbation
(δ, ε), denoted by h ∈ C1(∂D), plays an essential role here. As the theorem and its proof show,
both terms F ′[∂D]h(δ,ε) and F ′[∂D]h satisfying (6) exist and fulfill

F ′[∂D]h(δ,ε) = F ′[∂D]h+ o(‖δ‖2,∞ + ‖ε‖1,∞) as ‖δ‖2,∞ , ‖ε‖1,∞ → 0 .

Thus, instead of dealing with h(δ,ε), which involves the inverse of the parametrization in ∂D from
(13), one can consider only its linearization h, which is significantly easier to compute and implement
numerically.

Theorem 3.5 Let ∂D denote a regular C1-surface represented by (z, r) ∈ M. Let h ∈ C1(∂D)
denote the linearization of h(δ,ε) with respect to (δ, ε), so that

lim
‖δ‖2,∞,‖ε‖1,∞→0

‖h(δ,ε) − h‖1,∞

‖δ‖2,∞ + ‖ε‖1,∞
= 0 . (18)

The far field map F from (5) with M as in (16) is Fréchet differentiable at (z, r). With the
linearization h as given above, the Fréchet derivative F ′[∂D]h from (6), represented via F ′[z, r](δ, ε),
satisfies F ′[∂D](δ, ε) = E′∞. Here, E′ is the unique solution of (3a) together with (7) in the case
of a perfect conducting obstacle and of (4a) together with (8) in the case of a penetrable obstacle,
where in both cases (7) and (8), the perturbation η is replaced by h.

The proof of Theorem 3.5 requires the explicit computation of the linearization h for given
h(δ,ε). In the following lemma, we start its derivation by studying the asymptotic behavior of the
quantities involved in the surface parametrizations with respect to δ and ε. As these results are
purely technical in nature, we formulate them in a separate lemma that we prove in Appendix B.

Lemma 3.6 It holds that

ψ(δ,ε) = ψ − (t′ · ζ) ε+ δ′ · t− r
(

1

|z′|
δ′′ − δ

′ · t
|z′|2

z′′ − z
′′ · t
|z′|2

δ′
)
· ζ + o (‖δ‖2,∞ + ‖ε‖∞)

as ‖δ‖2,∞, ‖ε‖∞ → 0, as well as

ρτ,(δ,ε) = ρτ +
1∑
j=0

µj,τ ε
(j)(τ) +

2∑
j=1

νj,τ · δ(j)(τ) + o (‖δ‖2,∞ + ‖ε‖1,∞) , τ ∈ {0 , 1} ,
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as ‖δ‖2,∞, ‖ε‖1,∞ → 0, where

µ0,0(ϑ, ϕ) = 1− η0(ϑ, ϕ)

r(0)
− η0(ϑ, ϕ)

ψ(0, π
2
− ϕ)

t′(0) · ζ(0, ϕ) , µ1,0(ϑ, ϕ) = −η0(ϑ, ϕ)

r′(0)
,

µ0,1(ϑ, ϕ) = 1− η1(ϑ, ϕ)

r(1)
− η1(ϑ, ϕ)

ψ(1, ϕ)
t′(1) · ζ(1, ϕ) , µ1,1(ϑ, ϕ) = −η1(ϑ, ϕ)

r′(1)
,

and

ν1,0(ϑ, ϕ) =
η0(ϑ, ϕ)

ψ
(
0, π

2
− ϕ

)((1 +
r(0) z′′(0) · ζ(0, ϕ)

|z′(0)|2
)
t(0) +

r(0) z′′(0) · t(0)

|z′(0)|2
ζ(0, ϕ)

)
,

ν1,1(ϑ, ϕ) =
η1(ϑ, ϕ)

ψ (1, ϕ)

((
1 +

r(1) z′′(1) · ζ(1, ϕ)

|z′(1)|2
)
t(1) +

r(1) z′′(1) · t(1)

|z′(1)|2
ζ(1, ϕ)

)
,

ν2,0(ϑ, ϕ) = − r(0) η0(ϑ, ϕ)

ψ
(
0, π

2
− ϕ

)
|z′(0)|

ζ(0, ϕ) ,

ν2,1(ϑ, ϕ) = − r(1) η1(ϑ, ϕ)

ψ (1, ϕ) |z′(1)|
ζ(1, ϕ) .

Finally, the perturbation of the parametrization of the caps from (12b) and (12c) is given by

ξstart,δ(ϑ, ϕ) = ξstart(ϑ, ϕ) + α0(ϑ) δ′(0) + β0(ϑ, ϕ) · δ′(0) t(0) + o (‖δ‖1,∞) ,

ξend,δ(ϑ, ϕ) = ξend(ϑ, ϕ) + α1(ϑ) δ′(1) + β1(ϑ, ϕ) · δ′(1) t(1) + o (‖δ‖1,∞)

as ‖δ‖1,∞ → 0, where

α0(ϑ) = −cos(ϑ)

|z′(0)|
, β0(ϑ, ϕ) = −ξstart(ϑ, ϕ)

|z′(0)|
,

α1(ϑ) =
cos(ϑ)

|z′(1)|
, β1(ϑ, ϕ) = −ξend(ϑ, ϕ)

|z′(1)|
.

From Lemma 3.6, we can immediately obtain an explicit formula for h.

Corollary 3.7 The function h from Theorem 3.5 is given by h(x) = hbody(x) for x = xbody(τ, ϕ)
and by h(x) = h`(x) for x = x`(ϑ, ϕ), ` ∈ {start, end}, where

hbody(x) = δ(τ)− r(τ) δ′(τ) · ζ(τ, ϕ)

|z′(τ)|
t(τ) + ε(τ) ζ(τ, ϕ) ,

hstart(x) = δ(0) + ρ0(ϑ, ϕ)α0(ϑ) δ′(0) + ρ0(ϑ, ϕ)β0(ϑ, ϕ) · δ′(0) t(0)

+

( 1∑
j=0

µj,0(ϑ, ϕ) ε(j)(0) +
2∑
j=1

νj,0(ϑ, ϕ) · δ(j)(0)

)
ξstart(ϑ, ϕ) ,

hend(x) = δ(1) + ρ1(ϑ, ϕ)α1(ϑ) δ′(1) + ρ1(ϑ, ϕ)β1(ϑ, ϕ) · δ′(1) t(1)

+

( 1∑
j=0

µj,1(ϑ, ϕ) ε(j)(1) +
2∑
j=1

νj,1(ϑ, ϕ) · δ(j)(1)

)
ξend(ϑ, ϕ) ,

with the coefficient functions defined in Lemma 3.6.

Proof: By definition,

x`,(δ,ε) = x` + h ◦ x` + o (‖δ‖2,∞ + ‖ε‖1,∞) , ` ∈ {body, start, end} .
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for ‖δ‖2,∞, ‖ε‖1,∞ → 0. We have

xbody,(δ,ε)(τ, ϕ) = z(τ) + δ(τ) + ε(τ)ζ(τ, ϕ)

+ r(τ) (cos(ϕ)nδ(τ) + sin(ϕ) bδ(τ)) + o (‖δ‖1,∞ + ‖ε‖∞) ,

where τ ∈ [0, 1] and ϕ ∈ (−π, π]. Inserting the asymptotic expansions from (11) then gives the
result of the corollary for x = xbody(τ, ϕ). Likewise,

x`,(δ,ε)(ϑ, ϕ) = x`(ϑ, ϕ) + ρτ (ϑ, ϕ)
(
ξ`,δ(ϑ, ϕ)− ξ`(ϑ, ϕ)

)
+ ξ`(ϑ, ϕ)

(
ρτ,(δ,ε)(ϑ, ϕ)− ρτ (ϑ, ϕ)

)
+ o (‖δ‖2,∞ + ‖ε‖1,∞) ,

where (`, τ) ∈ {(start, 0), (end, 1)}, ϑ ∈ [0, π/2] and ϕ ∈ (−π, π]. The remaining assertion follows
from Lemma 3.6.

Proof:[Proof of Theorem 3.5] In order for F ′[∂D]h(δ,ε) to exist and to satisfy the formula F ′[∂D]h(δ,ε) =
E′∞(δ,ε), the vector field h(δ,ε) from (17) needs to be extended to a compact neighborhood of ∂D. Here,
we first extend it constantly to a tubular neighborhood of ∂D and multiply with a smooth cut-off
function afterwards so that the extension has compact support. For this purpose, let I ⊂ R be a
small neighborhood of 0 and denote by Sσ the C1-smooth surface generated by (z, r+σ), for σ ∈ I.
Then, U =

⋃
σ∈I Sσ is an open neighborhood of ∂D. Let

Ψ(x, σ) = x+ h(0,σ)(x) , (x, σ) ∈ ∂D × I .

For any (x, σ) ∈ ∂D × I, it holds that Ψ(x, σ) ∈ Sσ. Moreover, Ψ is continuous. Now, let
x∗ ∈ ∂D and let U ⊂ ∂D be a relative open and sufficiently small neighborhood of x∗ in ∂D.
By the definition of a regular C1-smooth domain, there exists an open V ⊂ R2 and a regular C1

parametrization α : V → U . Let y∗ ∈ V be such that α(y∗) = x∗. With Ψ̃(y, σ) = Ψ(α(y), σ) for
(y, σ) ∈ V × I, we obtain for ` ∈ {body, start, end}

Ψ̃(y, σ) = α(y) + h(0,σ)(α(y)) = x`,(0,σ)(x
−1
` (α(y))) , α(y) ∈ S` ∩ U .

Then, since h(0, 0) vanishes, it holds that

∂Ψ̃(y∗, 0)

∂yj
=

∂α(y∗)

∂yj
,

∂Ψ̃(y∗, 0)

∂σ
= lim

σ→0

Ψ(x∗, σ)−Ψ(x∗, 0)

σ
= lim

σ→0

h(0,σ)(x
∗)

σ
= lim

σ→0

h̃(x∗)

σ
,

where h̃ denotes the linearization of h(0,σ) with respect to σ. The regularity of α implies that

∂y1Ψ̃(y∗, 0)×∂y2Ψ̃(y∗, 0) = cν for some function c 6= 0. An inspection of h̃ in Corollary 3.7, together

with the fact that the Jacobian JΨ̃ of Ψ̃ satisfies det(JΨ̃) = (∂y1Ψ̃(y∗, 0)×∂y2Ψ̃(y∗, 0)) · h̃ 6= 0 yields
that JΨ̃ is invertible. By the inverse function theorem Ψ defines a local diffeomorphism around
(x∗, 0). Due to the compactness of ∂D, it follows that there exists a sufficiently small I such that
Ψ : ∂D × I → U is bijective. The constant extension of h(δ,ε) to U is now given by

h(δ,ε)(u) = h(δ,ε)(x) , u = Ψ(x, σ) ∈ U .

Multiplication of h(δ,ε) with a smooth cut-off function provides a compact support in U . For the
extended and truncated h(δ,ε) we can now apply (6), what yields that

lim
‖h(δ,ε)‖1,∞→0

∥∥F (z + δ, r + ε)− F (z, r)−E′∞(δ,ε)
∥∥
L2
t (S2)

‖h(δ,ε)‖1,∞
= 0 ,
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where E′(δ,ε) denotes the solution of (3a) together with (7) in the case of a perfect conducting
obstacle and of (4a) together with (8) in the case of a penetrable obstacle, with η replaced by h(δ,ε).
From the well-posedness of these exterior boundary value problems, we furthermore conclude∥∥E′∞(δ,ε) −E′∞∥∥L2

t (S2)
≤ C ‖h(δ,ε) − h‖1,∞ .

Thus,

‖F (z + δ, r + ε)− F (z, r)−E′∞‖L2
t (S2)

≤
∥∥F (z + δ, r + ε)− F (z, r)−E′∞(δ,ε)

∥∥
L2
t (S2)

+
∥∥E′∞(δ,ε) −E′∞∥∥L2

t (S2)

≤ o
(
‖h(δ,ε)‖1,∞

)
+ C ‖h(δ,ε) − h‖1,∞

as ‖h(δ,ε)‖1,∞ → 0. By the definition of h(δ,ε) and by (18), we see that both terms are of order
o(‖δ‖2,∞ + ‖ε‖1,∞) as these norms tend to 0, which finishes the proof.

4 Numerical implementation and examples

The challenge in reconstructing a tubular scatterer from its far field data consists in solving the
nonlinear ill-posed operator equation (9). For this purpose, we study the discrepancy between the
given far field data E∞ and the far field F (z, r) generated by a tubular scatterer parametrized by
(z, r) ∈ M with M as in (16). Our approach in solving (9) is to minimize this discrepancy in
the set M. Due to the ill-posed nature of the problem we add suitable regularization terms to the
discrepancy and then minimize this regularized functional using the Gauss–Newton method.

Inspired by previous work using asymptotic scattering models for thin tubular objects [1, 5, 16],
we solve the minimization problem

J(z, r) = ‖F (z, r)−E∞‖2
L2
t (S2) + α1 Ψ1(z) + α2 Ψ2(z) + α3 Ψ3(r)→ min , (19)

for (z, r) ∈ M with regularization parameters αj > 0, j = 1, 2, 3. The regularization terms, which
we discuss in more detail below, penalize unfavorable characteristics of the spine curve z and the
radius function r during the optimization.

The first regularization term is the total curvature of the spine curve z, which is given by

Ψ1(z) =

∫ 1

0

κ2(τ)|z′(τ)|dτ , with curvature κ(τ) =
|z′(τ)× z′′(τ)|
|z′(τ)|3

.

To define the second penalty term, aimed at ensuring a close to uniform segmentation of the pa-
rameter interval, we choose n ∈ N knots tj, j = 1, . . . , n, on the parameter interval [0, 1]. The
regularization term is then defined by

Ψ2(z) =
n−1∑
j=1

∣∣∣∣∣ 1

n− 1

∫ 1

0

|z′(τ)| dτ −
∫ tj+1

tj

|z′(τ)| dτ

∣∣∣∣∣
2

.

Finally, the third term, penalizing large variations of the radius function r, is defined as

Ψ3(r) =

∫ 1

0

|r′(τ)|2 dτ .

In each step of the Gauss–Newton scheme, an update to the current iterate is computed. In this
update step we impose two additional constraints. On the one hand, we require r to remain positive
and on the other hand, we require the condition

r(t)‖κ‖C[0,1] < 1 , t ∈ [0, 1] ,
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to hold. As described in [17, Thm. 1], this condition on the curvature κ and radius r guarantees the
tube to have no local self-intersections.

In the implementation, we represent z by a 3rd-order B-spline curve defined by n + 2 control
points and the radius function by a cubic spline using the knots tj as interpolation points. Applying
the Gauss–Newton method to solve (19) involves the computation of the Fréchet derivative of J .
Formulas for the derivative of Ψ1 and Ψ2 in the context of the Gauss–Newton scheme are given
in [16, Lem. 4.5]. The derivative of Ψ3 is easy to compute. To obtain the Fréchet derivative of the
far field map, the problems (3) and (3a) together with the boundary condition (7) need to be solved
in the case of a perfectly conducting scatterer. For a penetrable scatterer, the problems (4) as well
as (4a) together with the boundary condition (8) need to be solved.

We translate these exterior boundary value problems into equivalent integral equations which
we solve by using the boundary element method. Let

Φk(x,y) =
eik|x−y|

4π|x− y|
, x 6= y ,

denote the fundamental solution of the Helmholtz equation ∆u+ k2u = 0 in R3 \ {y} for the wave
number k. For a smooth scalar- and vector-valued density ϕ and ϕ, the scalar- and vector-valued
single layer potentials SLk and SLk are given by

SLk ϕ(x) =

∫
∂D

Φk(x,y)ϕ(y) ds(y) and SLk ϕ(x) =

∫
∂D

Φk(x,y)ϕ(y) ds(y) ,

where x ∈ R3\∂D. The potentials SLk and SLk extend to continuous operators from H−1/2(∂D,Cm)
to H1

loc(R3,Cm) for m = 1 and m = 3, respectively. The electric and magnetic potentials

Ek ϕ = ik SLk ϕ−
1

ik
grad SLk(Divϕ) and Hk = curl SLk ϕ

are both well-defined continuous linear operators mapping from H−1/2(Div, ∂D) to H(curl2, D)
and to Hloc(curl2,R3 \ D), respectively (see [3, Sec. 4]). The electromagnetic boundary operators
Sk, Ck : H−1/2(Div, ∂D) → H−1/2(Div, ∂D) are obtained by averaging tangential traces of the
potentials,

Sk =
1

2

(
γ+
t Ek +γ−t Ek

)
, Ck =

1

2

(
γ+
t Hk +γ−t Hk

)
.

Here, the superscript “+” indicates a trace taken from R3 \D, while the superscript “−” indicates
a trace taken from inside D. The boundary operators satisfy the jump relations (see [3, Thm. 7])

γ±t Ek = Sk , γ±N Ek = ∓1

2
I + Ck , γ±t Hk = ∓1

2
I + Ck , γ±N Hk = Sk .

We also introduce the multitrace operator

Ak : (H−1/2(Div, ∂D))2 → (H−1/2(Div, ∂D))2 , Ak =

[
Ck Sk
−Sk Ck

]
.

To compute the scattered field or its domain derivative for the perfect conductor problem, we
use the regularized combined field integral equation (CFIE). Defining the regularization operator
R = Sik, the equation is (1

2
I + Ck−R Sk

)
Λ =

(
Sk + R

(1

2
I + Ck

))
f , (20)
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where f is given by the right-hand side of (3b) or (7). The solution of (20) is equal to the magnetic
tangential trace on ∂D of the corresponding radiating field in R3 \D, i.e., it holds

Λ = γ+
NE

s for f as in (3b) and Λ = γ+
NE

′ for f as in (7) .

The corresponding radiating electric field is Ek Λ. This version of the CFIE has the advantage of
being well-conditioned as well as neither suffering from spurious frequencies nor having the “low-
frequency problem” [6].

For the penetrable scatterer, we instead use a variant of the well-known PMCHWT integral
equation which uses the exterior traces of the scattered electric and magnetic fields as the unknowns
[3,4]. For abbreviation, we denote by k1 = ω

√
ε1µ1 the wave number in the interior and by εr = ε1/ε0

and µr = µ1/µ0 the relative electric permittivity and relative magnetic permeability, respectively.
The integral equation now reads

(
S−1 Ak1 S + Ak

) [Λ
Υ

]
=
(
S−1 Ak1 S −

1

2
I
)[f
g

]
, with S =

[
1 0

0
√

µr
εr

]
(21)

and the functions f , g given by the right hand sides of (4b) and (8), respectively. The integral
equation is uniquely solvable (see [4, Cor. 6.4]) with the unknown functions given by[

Λ
Υ

]
=

[
γ+
t E

s

γ+
t H

s

]
for

[
f
g

]
as in (4b) and

[
Λ
Υ

]
=

[
γ+
t E

′

γ+
t H

′

]
for

[
f
g

]
as in (8) .

The radiating fields and their far field patterns may be obtained from the Stratton–Chu represen-
tation formula.

The discretization of these boundary integral equations is carried out using the bempp-cl bound-
ary element method library (see https://bempp.com). In this library, the function spaces are dis-
cretized using the Rao–Wilton–Glisson (RWG) and Buffa–Christiansen (BC) finite element families
as detailed in [20]. Implementations of all integral operators introduced above are available, and
data sparse representations can be assembled by employing the fast multipole method.

The operations and surface differential operators occurring in (7) and (8) are not all readily
available in the library and hence require additional implementation. Using the formulas

Eν = ν ·E = − 1

ik
Div(γtH) and Curl (hνEν) = Grad(hνEν)× ν ,

we may compute all quantities occurring in the boundary and transmission conditions (7), (8)
from the total fields of the corresponding direct scattering problem. The surface gradient Grad is
available as an implemented operator in bempp-cl while the surface divergence can be represented
in weak form via the partial integration formula∫

∂D

vDivU ds = −
∫
∂D

U ·Grad v ds .

Further operations such as the rotation operator · × ν and the product of two boundary functions
are implemented using suitable projections on the relevant boundary element spaces.

For our numerical experiments, we consider the scattering of a plane wave

(Ei,H i) =

(
p,

√
ε0

µ0

d× p
)

eikx·d , d =
1√
3

1
1
1

 , p =

 1
0
−1

 ,
from a tubular obstacle D. The vector d ∈ S2 is the direction of propagation and the vector
p ∈ C3 \{0} denotes the polarization of the plane wave. The electric far field pattern corresponding

13

https://bempp.com


to this pair of incident plane waves is denoted by E∞. We further perturb the electric far field
pattern E∞ by some additive complex-valued random noise with noise level δ > 0. The given data
for the reconstruction is thus E∞,δ satisfying∥∥E∞ −E∞,δ∥∥

L2
t (S2)

‖E∞‖L2
t (S2)

= δ .

The obstacle D is represented by functions (z, r) ∈ M as detailed in the examples below. For
representing the iterates during the reconstruction we use a different discretization than in the
simulation for the true scattering object D. This is supposed to reduce the risk of inverse crime. We
use the generalized minimal residual (GMRES) method to approximate the solution to the system
of linear equations resulting from the discretization of the CFIE in (20) and the PMCHWT integral
equation in (21). For the GMRES method we pick the tolerance 1e–5 and do not use any restarts.
The Gauss–Newton iteration terminates when either the relative residual becomes smaller than the
applied noise level or when the relative movement of the spine curve and the relative change of the
radius function, which are computed by the norm of the respective update divided by the norm
of the corresponding previous data, fall below a given tolerance. In all subsequent examples, a
tolerance of 1% for both the relative movement and the relative radius change is selected. For each
example we provide a convergence history together with a graph of the relative residual plotted
against the iteration number. Each plot of the convergence history features the true scatterer in
faded blue together with projections onto two surrounding planes in faded gray. The current iterate
is found in solid blue with its projections in solid gray. The chosen iterates are indicated in the
graph by dashed lines that highlight the iteration number and the associated relative residual.

Example 4.1 We consider a perfectly conducting obstacle D defined by a 3rd-degree B-spline curve
with control points cj = (cos(jπ/5), sin(jπ/5), j/5)>, j = 0, . . . , 4. The radius function r =
3/20 exp(sin( · )) is represented by a cubic spline with the distinct knots of the B-spline as the inter-
polation points. We choose the material parameters ε0 = µ0 = 1 and the angular frequency ω = 2.
Discretizing the surface leads to a mesh and a corresponding RWG finite element family with 9882
degrees of freedom (DOFs).

For the reconstruction, we choose a B-spline spine curve of degree 3 defined by 7 control points
and knots tj = j/6, j = 0, . . . , 6. The radial function is represented by a cubic spline with these points
tj as the interpolation points. For the initial guess, the spine curve is chosen straight and the radius
function constant. In each iteration, the RWG space discretization of the corresponding mesh has
6426 DOFs. The regularization parameters are chosen as α1 = 25/4, α2 = 64, α3 = 36. For solving
the boundary integral equations from (20), the GMRES method requires between 22 and 35 iterations.
Starting with a relative residual of approximately 82.4% the Gauss–Newton iteration terminates after
9 iterations with a relative residual of around 1.5%. The results for the reconstruction are shown in
Figure 4.

Example 4.2 We consider a penetrable obstacle, where the material parameters are chosen as
ε1 = 2, µ1 = 1, i.e., εr = 2, µr = 1, and the angular frequency as ω = 2

√
2. In this example,

the spine curve of the true scatterer z is the 3rd-degree B-spline curve with control points cj =
(cos(2jπ/5), sin(2jπ/5), 3j/5)>, j = 0, . . . , 4. This results in a helical object with one complete
turn. As before, we consider the radius function r = 3/20 exp(sin( · )), which is represented by a
cubic spline with the distinct knots of the B-spline as the interpolation points. The finite element
space of RWG and BC functions, which is used for computing the exact far field data, has 19764
DOFs in total.

To represent the domains in the reconstruction, we use 8 control points and the knots tj = j/7,
j = 0, . . . , 7. Here, throughout the whole reconstruction we pick finite element spaces of RWG and BC
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Figure 2: Top-left to bottom-center: The initial guess, samples of the reconstruction and the final
reconstruction for Example 4.1 are depicted. The exact obstacle is displayed slightly transparent as a
comparison for each iteration. Bottom-right: The relative residual plotted against the corresponding
iteration.
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Figure 3: Top-left to bottom-center: The initial guess, samples of the reconstruction and the final
reconstruction for Example 4.2 are depicted. The exact obstacle is displayed slightly transparent as a
comparison for each iteration. Bottom-right: The relative residual plotted against the corresponding
iteration.
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Figure 4: Top-left to bottom-center: The initial guess, samples of the reconstruction and the final
reconstruction for Example 4.3 are depicted. The exact obstacle is displayed slightly transparent as a
comparison for each iteration. Bottom-right: The relative residual plotted against the corresponding
iteration.

functions with a total of 12852 DOFs, respectively. The radius function of the initial guess is again
chosen constant. We pick the regularization parameters α1 = 9/16, α2 = 64, α3 = 36 and start
the reconstruction algorithm. Throughout the whole algorithm, the GMRES method approximating a
solution to (21) converges within 6 to 7 iterations. Starting with a relative residual of approximately
108.4% the Gauss–Newton iteration terminates after 14 iterations with a relative residual of about
2.6%. In Figure 4 samples of the reconstruction are depicted.

Example 4.3 We consider a penetrable obstacle, where the material parameters are chosen as
ε1 = 2, µ1 = 3/2, i.e., εr = 2, µr = 3/2, and the angular frequency as ω = 2

√
2. In this

example, z is the 3rd-degree B-spline curve with control points cj = ((j/6 + 3/20) cos(jπ/3), (j/6 +
3/20) sin(jπ/3), 2j/9 − 1)>, j = 0, . . . , 9. This represents a conical helical object performing one
and a half turns around the vertical axis. We consider the radius function r = 1/10 exp(sin( · )) +
1/30 sin(4π · ), which is represented by a cubic spline with the distinct knots of the B-spline as
the interpolation points. The finite element space of RWG and BC functions, which is used for
computing the exact far field data, has 9780 DOFs in total.
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To represent the domains in the reconstruction, we use 12 control points and the knots tj = j/11,
j = 0, . . . , 11. The finite element spaces of RWG and BC functions which are used throughout the
iteration have 6624 DOFs in total. The radius function of the initial guess is again chosen constant.
The regularization parameters are chosen as α1 = 9/25, α2 = 64, α3 = 16. The GMRES method
approximating the solution to (21) converges within 7 to 9 iterations. The Gauss–Newton iteration
starts with a relative residual of approximately 91.1% and terminates after 34 iterations with a
relative residual of around 5.7%. In Figure 4 samples of the reconstruction are depicted. Restarting
the algorithm with the final reconstruction seen in the bottom middle plot of Figure 4 as the initial
guess, but with the regularization parameters lowered to α1 = 1/100, α2 = 1, α3 = 1/4, yields an
even better result with a relative residual of around 1.8% after 5 additional iterations. We do not
show this result graphically here.

The examples show that we have developed an algorithm that reliably reconstructs the shape
of tubular scatterers from electromagnetic far field patterns for just one incident plane wave. In all
cases, we obtain a very good approximation of both the spine curve and the radius function. In our
experiments, the most delicate issue has turned out to be the choice of regularization parameters for
which we cannot offer an automated or a-posteriori selection procedure. A reasonable choice leads
to a very good approximation of the scatterers shape in all examples. For challenging geometries,
in particular such as in example 4.3, the stopping criterion of small updates in the iteration is met
rather than that of the relative residual falling below the noise level in the data. In such cases,
a restart of the minimization with reduced regularization parameters, as outlined at the end of
example 4.3, often yields an additional improvement of the shape approximation.

We observe that the reconstruction of penetrable obstacles with real permitivitties and perme-
abilities works more reliably and stably than the reconstruction of perfectly conducting obstacles.
For objects with a helical structure, it has turned out to be quite delicate to reconstruct perfect
conductors with more than 1/2 turns while this is still soundly feasible for dielectric scatterers.

In conclusion, we derived a computable characterization of the domain derivative of far fields for
a class of tubular objects, where – in contrast to star-shaped obstacles – the surface representation
depends non-linearly on the degrees of freedom in the parameterization. Furthermore, we have
demonstrated consistent reconstructions of a variety of such objects, confirming the underlying
theoretical results.
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A Proof of Lemma 3.3

We here give the proof of Lemma 3.3. Obviously, xbody, xstart and xend each are parametrizations
of C1-smooth surface patches in R3. Moreover,

xend(π
2
, ϕ) = z(1) + ρ1(π

2
, ϕ) ζ(1, ϕ) = z(1) + r(1) ζ(1, ϕ) = xbody(1, ϕ) ,

and

xstart(
π
2
, ϕ) = z(0) + ρ0(π

2
, ϕ) (cos(ϕ) b(0) + sin(ϕ)n(0))

= z(0) + ρ0(π
2
, ϕ)

(
sin(π

2
− ϕ) b(0) + cos(π

2
− ϕ)n(0)

)
= z(0) + r(0) ζ(0, π

2
− ϕ) = xbody(0, π

2
− ϕ) .

Hence, these three functions form the atlas of a C0-smooth surface. Note that the ϕ-coordinate
is oriented differently for the starting cap than for the body and end cap, and that there is a
phase-shift.

It remains to show that the unit normal is continuous across the interfaces of the three surface
patches. By Lemma 3.2,

∂ϕxbody × ∂τxbody = r ∂ϕζ × (ψ t+ r′ ζ) = r (ψ ∂ϕζ × t+ r′∂ϕζ × ζ) .

We note that

∂ϑρ1(π
2
, ϕ) = −r(1) r′(1)

ψ(1, ϕ)
, ∂ϕρ1(π

2
, ϕ) = 0 .

Hence,

∂ϑxend(π
2
, ϕ) = ∂ϑρ1(π

2
, ϕ) ξend(π

2
, ϕ) + ρ1(π

2
, ϕ) ∂ϑξend(π

2
, ϕ)

= −r(1) r′(1)

ψ(1, ϕ)
(cos(ϕ)n(1) + sin(ϕ) b(1))− r(1) t(1)

= − r(1)

ψ(1, ϕ)
(r′(1) ζ(1, ϕ) + ψ(1, ϕ) t(1)) ,

∂ϕxend(π
2
, ϕ) = ∂ϕρ1(π

2
, ϕ) ξend(π

2
, ϕ) + ρ1(π

2
, ϕ) ∂ϕξend(π

2
, ϕ)

= r(1) (−n(1) sin(ϕ) + b(1) cos(ϕ)) = r(1) ∂ϕζ(1, ϕ) .

We conclude from

∂ϑxend(π
2
, ϕ)× ∂ϕxend(π

2
, ϕ) = − r(1)2

ψ(1, ϕ)
(ψ(1, ϕ) t(1) + r′(1) ζ(1, ϕ))× ∂ϕζ(1, ϕ)

=
r(1)

ψ(1, ϕ)
(∂ϕxbody(1, ϕ)× ∂τxbody(1, ϕ))

that the unit normal vector is continuous across the interface of Sbody and Send.
Completely analogously, we have

∂ϑρ0(π
2
, ϕ) = − r(0) r′(0)

ψ(0, π
2
− ϕ)

, ∂ϕρ0(π
2
, ϕ) = 0 ,
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and thus

∂ϑxstart(
π
2
, ϕ) = − r(0)

ψ(0, π
2
− ϕ)

(
r′(0) ζ(0, π

2
− ϕ) + ψ(0, π

2
− ϕ) t(0)

)
,

∂ϕxstart(
π
2
, ϕ) = r(0) ∂ϕζ(0, π

2
− ϕ) .

Hence

∂ϑxstart(
π
2
, ϕ)× ∂φxstart(

π
2
, ϕ)

=
r(0)

ψ(0, π
2
− ϕ)

(
∂ϕxbody(1, π

2
− ϕ)× ∂τxbody(1, π

2
− ϕ)

)
,

establishing that the unit normal vector is also continuous across the interface of Sbody and Sstart.

B Proof of Lemma 3.6

We use the linearization formulas

1

x+ h
=

1

x
− h

x2
+ o(h) , h→ 0 ,

1

|x+ h|
=

1

|x|
− x · h
|x|3

+ o(|h|) , h→ 0 .

The second formula gives

t′δ =
z′′δ
|z′δ|
− tδ · z

′′
δ

|z′δ|
tδ = t′ +

1

|z′|
(δ′′ − (δ′′ · t) t)− δ

′ · t
|z′|2

(z′′ − (z′′ · t) t)

− z
′′ · t
|z′|2

(δ′ − (δ′ · t) t)− z′′

|z′|2
· (δ′ − (δ′ · t) t) t+ o (‖δ‖2,∞) ‖δ‖2,∞ → 0 .

From the asymptotic expansions in (11), from (12a) and t′ · t = 0, we have

t′δ · ζδ =

(
t′ +

1

|z′|
δ′′ − δ

′ · t
|z′|2

z′′ − z
′′ · t
|z′|2

δ′
)
· ζ + o (‖δ‖2,∞) (‖δ‖2,∞ → 0) .

Hence, from (14) we obtain the asserted asymptotic perturbation formula for ψδ. By inserting this
expansion in (15) and using the first linearization formula, we obtain

ρ1,(δ,ε) = ρ1 +

(
1− η1

r(1)
− η1

ψ (1, ·)
t′(1) · ζ(1, ·)

)
ε(1)− 1

r′(1)
η1 ε

′(1)

+
η1

ψ (1, ·)

(
t(1) · δ′(1) + r(1)

(
z′′(1) · ζ(1, ·)
|z′(1)|2

t(1) +
z′′(1) · t(1)

|z′(1)|2
ζ(1, ·)

)
· δ′(1)

− r(1)

|z′(1)|
ζ(1, ·) · δ′′(1)

)
+ o (‖δ‖2,∞ + ‖ε‖1,∞) ‖δ‖2,∞ → 0 , ‖ε‖1,∞ → 0 .

This is the asserted asymptotic perturbation formula for ρ1. The formula for ρ0 is obtained analo-
gously.

Finally, from the asymptotic expansions in (11a) we directly obtain the asymptotic expressions
for ξstart and ξend.
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