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ERROR ANALYSIS OF DGTD FOR LINEAR MAXWELL

EQUATIONS WITH INHOMOGENEOUS INTERFACE

CONDITIONS

BENJAMIN DÖRICH, JULIAN DÖRNER, AND MARLIS HOCHBRUCK

Abstract. In the present paper we consider linear and isotropic Maxwell
equations with inhomogeneous interface conditions. We discretize the problem

with the discontinuous Galerkin method in space and with the leapfrog scheme
in time. An analytical setting is provided in which we show wellposedness of

the problem, derive stability estimates, and exploit this in the error analysis

to prove rigorous error bounds for both the spatial and full discretization. The
theoretical findings are confirmed with numerical experiments.

1. Introduction

Graphene is a monolayer of carbon atoms arranged in a hexagonal lattice and
has demonstrated exceptional thermal, electrical and optical properties, as well
as structural robustness. This makes it an attractive candidate for reinforcement
in materials, as well as for applications in organic electronics and optoelectronics.
There is significant interest in both the scientific community and industrial sec-
tors about graphene. In recent years, numerous other 2D materials have emerged,
with the term referring to crystalline solids that have a reduced thickness, usually
consisting of a single or only a few atomic layers. This unique characteristic gives
them exceptional properties. Another important class of composite 2D materials
are the semiconducting Transition Metal Dichalcogenides (TMDCs) such as MoS2
or WS2 which also come in single layers, albeit with a more complicated unit cell
than graphene. These materials have a wide range of applications, including catal-
ysis, spintronics, and optoelectronics, cf. we refer to the reviews [25,27]. Numerical
simulations are vital for studying such materials.

The optical properties of such materials can be studied by depositing a sheet on
a thin dielectric layer on top of a metal plate and exciting it with light pulses. The
interaction between the pulses and the material is described by Maxwell equations
coupled to quantum mechanical models, see, e.g., [2, 19, 24]. A simpler way of
modelling the interaction of the 2D material in the Maxwell equations is to use
conductivity surfaces or current sheets. Here it is assumed that the material sheet
has zero thickness, thus is truly two-dimensional, and the constitutive equation

Jsurf(ω) = σsurf(ω)E(ω)

holds along the plane of the material in the frequency domain, where σsurf describes
the surface conductivity of the 2D material. We refer to Chapter 1 in [7] for details
about the modelling.

As a first step towards the full model, we consider linear and isotropic time-
dependent Maxwell equations on the cuboidal domain Q composed of two cuboids
Q− and Q+ with a common interface Fint = Q− ∩ Q+, cf. Figure 1. We assume
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Figure 1. Sketch of the domain Q.

that the surface current Jsurf supported on Fint is a given function. After rescaling,
we assume, without loss of generality, that

Q = (−1, 1)× (0, 1)2, Q− = (−1, 0)× (0, 1)2, Q+ = (0, 1)× (0, 1)2.

The governing equations read

∂tH± = −µ−1
± curlE±, div

(
µ±H±

)
= 0,(1.1a)

∂tE± = ε−1
± curlH± − ε−1

± J±, div
(
ε±E±

)
= ρ±,(1.1b)

on Q±, for t ≥ 0. We denote by f± = f
∣∣
Q±

the restriction of a function f ∈
L2(Q). Here, for x ∈ Q±, E(t, x),H (t, x) ∈ R3 denote the electric and magnetic
field, J (t, x) ∈ R3 the volume current density and ρ(t, x) ∈ R the charge density,
respectively. We assume that the material parameters µ±, ε± ≥ δ > 0 are constant
on Q±. The equations are equipped with perfectly conduction boundary conditions

(1.2) µH · ν = 0, E × ν = 0,

on ∂Q, for t ≥ 0 with outer unit normal vector ν, see, e.g., [4, Sec. I.4.2.4]. At the
interface Fint, the conditions

[[µH · nint]]Fint = 0, [[εE · nint]]Fint = ρsurf ,(1.3a)

[[H × nint]]Fint
= Jsurf , [[E × nint]]Fint

= 0,(1.3b)

hold for t ≥ 0, where nint denotes the inner unit normal vector on Fint pointing
from Q− to Q+ and [[f ]]Fint

= f+
∣∣
Fint

− f−
∣∣
Fint

denotes the jump on Fint whenever

the functions f± admit well-defined traces on the interface. Note, that the surface
current Jsurf(t, x) =

(
0, Jsurf,2(t, x), Jsurf,3(t, x)

)
∈ R3 has no components perpen-

dicular to Fint. By ρsurf(t, x) ∈ R we denote the surface charge density, see, e.g.,
for details [4, Sec. I.4.2.2].

Discretization. The discontinuous Galerkin (dG) time-domain method is a well
establish method for Maxwell equations, see, e.g., [14]. We briefly recall the con-
struction of the dG space discretization and refer to Section 3 for details.

Assume that Th is the union of suitable meshes for Q± with elements K and
matching faces at Fint. The set of all element faces F is denoted by Fh. The
broken polynomial space of degree at most k ≥ 1 is defined as

(1.4a) Pk
3(Th) =

{
vh ∈ L2(Q)

∣∣ vh|K ∈ Pk
3(K) for all K ∈ Th

}
,

which are polynomials on every element K and, in general, discontinuous across
element faces F . The vector valued ansatz space for the magnetic and electric field
is given by the broken finite element space of degree k defined as

(1.4b) Vh = Pk
3(Th)3.
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The dG method is a non-conforming method in the sense that a function Uh ∈ Vh

does not admit a curl on the whole domain Q, i.e., Vh ̸⊂ H(curl, Q). Therefore,
we need to introduce a discretized curl operator acting on Vh. One way to do so
is given by means of the central flux discretization, see, e.g., [14]. The notation
is based on [18]. We define the discrete operator curlh :Vh → Vh such that for all
ϕh ∈ Vh it holds

(1.5)

∫
Q

curlhUh · ϕh dx =
∑

K∈Th

∫
K

curlUh · ϕh dx

−
∑

F∈Fh

∫
F

[[Uh × nF ]]F · {{ϕh}}F ds.

Here, [[Uh×nF ]]F denotes the tangential jump of Uh and {{ϕh}}F a weighted average
of ϕh on F defined below (3.1a). The first sum on the right hand side of (1.5) acts
locally on single elements, thus decoupling the action of the curl, while the second
sum couples neighboring elements through tangential jumps. The coupling terms
are referred to as numerical fluxes and they penalize non-zero tangential jumps
across faces. We recall that functions H ∈ H(curl, Q) have zero tangential jumps
across faces, i.e.,

[[H × nF ]]F = 0.

By curlh,0 :Vh → Vh we denote a discrete operator that additionally enforces ho-
mogenous tangential boundary conditions of the electric field (1.2).

In order to incorporate the surface current Jsurf , we follow the idea of (1.5), but
instead of penalizing zero tangential jumps, we apply the inhomogeneous interface
condition (1.3b) for all faces F ∈ F◦

h with F ⊂ Fint, i.e.,

[[H × nF ]]F = Jsurf

∣∣
F
.

Equation (1.5) motivates to define an extension Jsurf,h ∈ Vh via

(1.6)

∫
Q

Jsurf,h · ϕh dx =
∑

F∈Fh,F⊂Fint

∫
F

Jsurf · {{ϕh}} ds

for all ϕh ∈ Vh. Note that Jsurf is defined only on the interface Fint whereas Jsurf,h

is defined on the whole domain Q, with support only on elements adjacent to Fint.
We end up with the following spatially discrete system of differential equations

∂tHh(t) = −µ−1 curlh,0Eh(t),(1.7a)

∂tEh(t) = ε−1 curlhHh(t)− Jh(t)− Jsurf,h(t),(1.7b)

for t ≥ 0. Here, the inhomogeneous interface conditions (1.3b) are incorporated by
Jsurf,h, that acts like an artificial current on the evolution of the electric field. We
refer to Section 3 for the precise definitions.

We integrate the spatially discrete system in time by the second order leapfrog
method. Let τ > 0 be the time step size and tn = nτ for n ∈ N. The fully discrete
scheme then reads

H
n+1/2
h −Hn

h = −τ

2
µ−1 curlh,0E

n
h ,

En+1
h −En

h = τε−1 curlhH
n+1/2
h − τ

2
(Jn

h + Jn+1
h )− τ

2
(Jn

surf,h + Jn+1
surf,h),

Hn+1
h −Hn+1/2

h = −τ

2
µ−1 curlh,0E

n+1
h ,

for n ≥ 0, starting from appropriate initial values
(
H0

h,E
0
h

)
∈ V 2

h . Other time
integration schemes can be applied to (1.7) as well.

It is well known that the explicit leapfrog scheme exhibits a step size restriction,
which is also known as the Courant-Friedrichs-Lewy (CFL) condition. The scheme
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is only stable for time step sizes τ < τCFL, with τCFL ∼ hmin, where hmin denotes
the diameter of the smallest element K ∈ Th.

Contributions of the paper. The challenges associated with interface problems
have been thoroughly investigated from both analytical and numerical perspectives,
albeit within a geometric framework different from the one specified earlier. In
that context, it is assumed that a positive distance exists between the interface and
the domain boundary. For example, wellposedness and regularity of quasilinear
Maxwell equations for such a geometric setting is found in [23]. From a numerical
point of view, finite element methods have been explored in [3] concerning elliptic
and parabolic problems, and in [5, 6] for hyperbolic equations. However, these
results are not applicable to the problem described in (1.1) to (1.3).

In a recent study by Dörich and Zerulla [10], a different technique is employed
to establish wellposedness and regularity for the model problem (1.1) to (1.3).
From a numerical perspective, the discontinuous Galerkin time-domain method was
successfully applied to an interface problem concerned with Graphene sheets in the
above mentioned setting, see, e.g., [28, 29]. There, the focus is on the physical
modelling of such sheets. Their excellent numerical results motivate a thorough
mathematical error analysis.

In this paper, we provide a mathematical framework that is suitable for both,
analysis and numerics of the problem at hand. We prove wellposedness and stability
for the governing equations building up on the techniques in [10]. Transferring
the ideas from analysis, a rigorous spatial and full discretization error analysis is
provided for the numerical scheme. Under suitable regularity conditions on the
exact solution, we prove that the error of the scheme is of second order in time and
of kth order in space with respect to the L2-norm, i.e.,

∥
(
H ,E

)
(tn)− (Hn

h ,E
n
h )∥L2(Q)3×L2(Q)3 ≤ C(τ2 + hk), 0 ≤ tn ≤ T.

Furthermore, the results are underpinned by several numerical examples showing
the sharpness of the estimates with respect to spatial regularity.

Note, that the results are consistent with the case where the surface current
vanishes, i.e., Jsurf = 0. However, new techniques are required for Jsurf ̸= 0. We
address the problems in brief.

One of the challenges is that by the interface condition (1.3b), the state-space
H(curl, Q) ×H0(curl, Q), typically used for the evolution of linear Maxwell equa-
tions, is no longer suitable for the problem described by (1.1) to (1.3). Circum-
venting this, we enlarge the state-space with functions V ∈ L2(Q)3 that only
possess a weak curl on each sub-cuboid, i.e., V± ∈ H(curl, Q±). This causes sev-
eral problems both from an analytical and numerical perspective. Analytically,
C0-semigroup techniques are no longer applicable and numerically, we must han-
dle a non-consistent discretization. Motivated by the treatment of inhomogeneous
Dirichlet boundary conditions, we modify the problem that we can treat it in a
standard way. Nonetheless, since the interface Fint intersects with the boundary,
special care is necessary to treat the perfectly conducting boundary conditions (1.2)
correctly in the modified problem. For this, sophisticated techniques from [10] are
essential to both analysis and numerics.

Structure of the paper. In Section 2, we first introduce a suitable analytical
framework for the problem described by (1.1) to (1.3). We proceed by presenting
the main result of this section concerning an existence and stability result for the
analytical problem. With the strategy of proof outlined, we introduce an important
extension result that is later used frequently. The section is closed with the proof
of the main result.
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Section 3 is concerned with space discretization. We first provide a standard
description of the discontinuous Galerkin method and point out in detail how inho-
mogeneous interface problems are treated. Proceeding that, the main result of this
section provides an error bound on the semi-discretization. The section carries on
with the discussion of an important extension of the semi-discrete scheme utilizing
a nodal interpolation on the interface. The section again closes with the remaining
proofs.

Section 3 is concerned with space discretization. We provide a detailed descrip-
tion of the discontinuous Galerkin method and point out in detail how inhomoge-
neous interface problems are treated. We present the main result of this section
consisting of error bounds for the semi-discretization as well as an important ex-
tension of the semi-discrete scheme utilizing a nodal interpolation on the interface.
The section again closes with the remaining proofs.

The main result of Section 4 is concerned with an error bound on the full dis-
cretization. We first prove stability of the scheme and provide afterwards the proof
of the main result.

In Section 5, we provide three different numerical experiments that confirm our
theoretical findings.

2. Wellposedness

General setting and notation. The volume charge density ρ is determined by
the volume current J through

(2.1) ρ±(t) = ρ±(0) +

∫ t

0

divJ±(s) ds

on Q±, for t ≥ 0. Equation (2.1) is called the continuity relation for electricity. It
is well known that the divergence conditions (1.1a) and (1.1b) and the magnetic
boundary condition in (1.2) hold, if they are valid for t = 0 and (2.1) holds. We
refer to [4, Sec. I.4.1.2] for details.

A similar relation exists for the surface charge density ρsurf . It is determined by
the volume current J and the surface current Jsurf through

(2.2) ρsurf(t) = ρsurf(0) +

∫ t

0

divFint
Jsurf(s)− [[J (s) · nint]]Fint

ds

on Fint, for t ≥ 0, where divFint
denotes the two-dimensional divergence on Fint. It

is shown in [23, Lemma 8.1] that equations (1.3a) are valid for t ≥ 0 if they are
valid for t = 0 and (2.2) holds. Thus, it remains to solve the curl-equations in (1.1)
subject to the boundary conditions (1.2) and the tangential interface conditions
(1.3b).

The speed of light is denoted with c± = (µ±ε±)
−1/2 and we use the notation

η∞ = max{η−, η+}, η ∈ {ε, µ, c}

for piecewise defined constants. We employ the weighted inner L2-products

(2.3) (·, ·)µ = (µ·, ·)L2(Q), (·, ·)ε = (ε·, ·)L2(Q), (·, ·)µ×ε = (·, ·)µ + (·, ·)ε
and their induced norms ∥·∥µ, ∥·∥ε and ∥·∥µ×ε. Note that they are equivalent to
the standard L2(Q)-norm.

The spaces Hs(Q) for s ∈ R denote fractional Sobolev spaces. We write ∥·∥Hs(Q)

and |·|Hs(Q) for their associated norms and semi-norms and refer to [11] for details.
Additionally, we write Hs(Γ) for Sobolev spaces on the boundary Γ = ∂Q.

We introduce the space of functions that exhibit a weak variation curl

H(curl, Q) =
{
V ∈ L2(Q)3

∣∣ curlV ∈ L2(Q)3
}
,
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as well as the subspace that contains functions with a vanishing tangential trace

H0(curl, Q) =
{
V ∈ H(curl, Q)

∣∣ V × ν|Γ = 0
}
.

Since we deal with solutions that lag regularity across the interface Fint, we employ
the notion of piecewise spaces. For s ∈ R we denote the piecewise Sobolev spaces

PHs(Q) =
{
v ∈ L2(Q)

∣∣ v± ∈ Hs(Q±)
}

and we define analogously

PH(curl, Q) =
{
V ∈ L2(Q)3

∣∣ curlV± ∈ L2(Q±)
3
}
.

Note that we use the same symbol for both curl-operators. The following connection
between H(curl, Q) and PH(curl, Q) is a simple corollary of Green’s formula, see
for example [13, Thm. 2.11].

Corollary 2.1. Let V ∈ PH(curl, Q). It holds V ∈ H(curl, Q) if and only if

[[V × nint]]Fint = 0, in H−1/2(Fint).

We define the Maxwell operators acting on the magnetic and electric field re-
spectively as

ĈH :D(ĈH) = PH(curl, Q) → L2(Q)3, H 7→ ε−1 curlH,(2.4a)

CE :D(CE) = H0(curl, Q) → L2(Q)3, E 7→ µ−1 curlE.(2.4b)

The operator acting on the combined field u =
(
H,E

)
is defined as

(2.4c) Ĉ :D(Ĉ) = D(ĈH)×D(CE) → L2(Q)6, Ĉ =

(
0 −CE

ĈH 0

)
.

We emphasize that H(curl, Q) ⊂ PH(curl, Q) and define the restricted operators

CH :D(CH) = H(curl, Q) → L2(Q)3, CH = ĈH|D(CH),(2.4d)

C :D(C) = H(curl, Q)×H0(curl, Q) → L2(Q)6, C = Ĉ|D(C).(2.4e)

Note that operators with a hat are always associated with piecewise domains. We
stick to this notation throughout the paper.

The Maxwell equations now read: seek
(
H(t),E(t)

)
∈ D(ĈH)×D(CE) such that

∂tH = −CEE in [0, T ]×Q,(2.5a)

∂tE = ĈHH − ε−1J in [0, T ]×Q,(2.5b)

H(0) =H0, E(0) = E0 in Q,(2.5c)

[[H × nint]]Fint
= Jsurf on [0, T ]× Fint,(2.5d)

Surface current. The surface current Jsurf , as an tangential trace of the mag-
netic field H , needs to satisfy boundary conditions prescribed by the relation (1.2)
and (2.5d). We want to motivate them in the following. Thus, let Γ = ∂Q. We
define the sub-facets of Γ as

Γ1 =
{
(x1, x2, x3) ∈ Q

∣∣ x1 ∈ {−1, 1}
}
,(2.6a)

Γj =
{
(x1, x2, x3) ∈ Q

∣∣ xj ∈ {0, 1}
}
, for j ∈ {2, 3}.(2.6b)

Furthermore, let S = (0, 1)2. We identify Fint with S in the following and define

(2.6c) S2 =
{
(x2, x3) ∈ S

∣∣ x2 ∈ {0, 1}
}
, S3 =

{
(x2, x3) ∈ S

∣∣ x3 ∈ {0, 1}
}
.

Note that the lower index in (2.6) indicates which axis is fixed.
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We assume that H = (H1, H2, H3) is sufficiently smooth such that we can carry
out the following formal calculations. From (2.5d), we obtain that

(2.7) Jsurf,2 = [[H3]]Fint
, Jsurf,3 = −[[H2]]Fint

, on Fint.

Thus, the perfectly conducting boundary conditions (1.2) of H , prescribe the ho-
mogenous boundary conditions

Jsurf,2|S3 = 0, Jsurf,3|S2 = 0.

This consideration determines half of the boundary conditions of the surface cur-
rent. The other half is determined as follows. In order to proof that there exist
regular solutions, we additionally require the following compatibility condition

Ĉ
(
H,E

)
=

(
−CEE, ĈHH

)
∈ D(Ĉ).

Therefore, we obtain that curlH ∈ H0(curl, Q) and thus curlH × ν = 0 on Γ.
Since we assumed that H is smooth, this can be written as

∂2H3 − ∂3H2 = 0 on Γ2 ∪ Γ3.

Together with (1.2) and (2.7) we obtain the homogenous Neumann boundary con-
ditions on the remaining boundary, i.e.,

∂2Jsurf,2|S3
= 0, ∂3Jsurf,3|S2

= 0, on Fint.

We can include both boundary conditions in the following spaces

D(−∆2) =
{
u ∈ H2(S)

∣∣ u|S2 = 0, ∂2u|S3 = 0
}
,(2.8a)

D(−∆3) =
{
u ∈ H2(S)

∣∣ u|S3
= 0, ∂1u|S2

= 0
}
.(2.8b)

Let j ∈ {2, 3} in the following. The operators (−∆j) :D(−∆j) → L2(S) are self-
adjoint and positive, see, e.g., [15, 26]. This allows to define fractional powers
(−∆j)

γ :D(−∆j)
γ → L2(S) for γ ∈ R.

We require in the following that Jsurf,2(t) and Jsurf,3(t) are elements in certain

powers of D(−∆3) and D(−∆2) respectively. This, however, seems to be an un-
natural choice compared to the usual Sobolev setting. The following remark closes
this gap.

Remark 2.2. The fractional domainsD(−∆j)
γ are associated with certain fractional

Sobolev spaces via interpolation. We briefly state the relations below and refer to
[10, Rem. 2.2] for details. With equivalent norms, it holds

D(−∆2)
1/2 =

{
u ∈ H1(S)

∣∣ u|S2 = 0
}
,

D(−∆3)
1/2 =

{
u ∈ H1(S)

∣∣ u|S3
= 0

}
.

Let ϵ > 0. It holds{
u ∈ H1/2+ϵ(S)

∣∣ u|S2
= 0

}
⊂ D(−∆2)

1/4 ⊂ H1/2(S),{
u ∈ H1/2+ϵ(S)

∣∣ u|S3 = 0
}
⊂ D(−∆3)

1/4 ⊂ H1/2(S).

Therefore, the space D(−∆j)
1/4 generalizes Dirichlet traces for functions in the

space H1/2(S). A similar interpretation holds for the Neumann traces, i.e.

{u ∈ H3/2+ϵ(S) | u|S2 = 0, ∂2u|S3 = 0 } ⊂ D(−∆2)
3/4 ⊂ H3/2(S),

{u ∈ H3/2+ϵ(S) | u|S3
= 0, ∂2u|S2

= 0 } ⊂ D(−∆3)
3/4 ⊂ H3/2(S).

Motivated by those inclusions, we introduce for γ ∈ R the abbreviation

X γ
j = D(−∆j)

γ/2.

The exponent of Xj agrees with the associated Sobolev regularity.
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Main result. Our first main result states existence, uniqueness and stability un-
der appropriate regularity assumptions in weak variational curl spaces. This is a
variation of the statements in [10].

Theorem 2.3. If u0 ∈ D(Ĉ), J ∈ C0
(
[0, T ], D(CH)

)
+ C1

(
[0, T ], L2(Q)3

)
, and

(Jsurf,2, Jsurf,3) ∈ C1
(
[0, T ],X 1/2

3 ×X 1/2
2

)
∩ C2

(
[0, T ],X−1/2

3 ×X−1/2
2

)
,

then there exists a unique solution

u =
(
H,E

)
∈ C0

(
[0, T ], D(Ĉ)

)
∩ C1

(
[0, T ], L2(Q)6

)
of (2.5). Furthermore, for all t ∈ [0, T ] it holds

(2.11)

∥u(t)∥µ×ε ≲∥u0∥µ×ε + ∥Jsurf(0)∥L2(Fint)3 + ∥Jsurf(t)∥L2(Fint)3

+

∫ t

0

∥J (s)∥L2(Q)3 ds+

∫ t

0

∥∂tJsurf(s)∥L2(Fint)3 ds

+

∫ t

0

∥∥∥(Jsurf,2(s), Jsurf,3(s))∥∥∥
(−∆3)1/4×(−∆2)1/4

ds,

with a constant which is independent of J ,Jsurf and u.

Strategy of proof. It is well known that the operator C :D(C) → L2(Q)6 is the

generator of a unitary C0-semigroup, whereas the operator Ĉ :D(Ĉ) → L2(Q)6 does
not inherit any good properties, see, e.g., [10, Rem. 2.1]. Thus, we aim to construct
an extension JH ∈ PH(curl, Q) that exhibits the correct normal jump on Fint,
i.e., [[JH × nint]]Fint = Jsurf . This enables us to introduce a shifted magnetic field

H̃ =H − JH with a vanishing tangential jump [[H̃ × nint]]Fint
= 0. Therefore, we

are interested in solving the following shifted system: seek
(
H̃(t),E(t)

)
∈ D(CH)×

D(CH) such that

∂tH̃ = −CEE − J̃1 in [0, T ]×Q,(2.12a)

∂tE = CH H̃ − J̃2 in [0, T ]×Q,(2.12b)

H̃(0) = H̃0, E(0) = E0 in Q,(2.12c)

with J̃1 = −∂tJH , J̃2 = −ε−1J + ε−1 curlJH and H̃0 = H0 − JH(0). The
shifted problem (2.12) allows us to use C0-semigroup theory to show existence,
uniqueness and stability. However, we need to make sure that the extension JH is
sufficiently regular in time and space to meet the requirements necessary for (2.12)
to be a wellposed system. This will boil down to certain regularity conditions
for the surface current Jsurf . Additionally, JH needs to satisfy certain boundary
conditions.

Extension. The extension JH is constructed in two steps. We first extend scalar
valued functions from the interface to the whole domain, cf. Lemma 2.4. The
combination of scalar extension then yields the vector valued extension JH in The-
orem 2.5.

Lemma 2.4. There exists a bounded linear operator Φj :X−1/2
j → L2(Q) with the

following properties.

(1) The operator Φj |X 1/2
j

:X 1/2
j → PH1(Q) is bounded.

(2) The operator Φj |X 3/2
j

:X 3/2
j → PH2(Q) is bounded.

(3) For v ∈ X 1/2
j it holds [[Φj(v)]]Fint = v on Fint.

(4) For v ∈ X 1/2
j it holds Φj(v) = 0 on Γj ∪ Γ1.
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Proof. Let χ : [−1, 1] → [0, 1] be a smooth cut-off function with suppχ ⊂ [−3/4, 3/4]

and χ = 1 on [−1/2, 1/2]. For v ∈ X−1/2
j and x ∈ Q we define

Φj(v)(x) =


1

2
χ(x1)(−∆j)

1/4
(
e−x1(−∆j)

1/2

(−∆j)
−1/4v

)
(x2, x3) for x1 > 0,

− Φj(v)(−x1, x2, x3) for x1 < 0.

This defines a linear and bounded map.
The proof of (1) and (2) follows along the lines of [10, Lem. 4.1]. Alternatively,

we give a short proof of (1) in Appendix A.
We proceed with the proof of (4) and show the claim first for v ∈ D(−∆j)

3/4.

Without loss of generality, we assume j = 2. Since v ∈ D(−∆2)
3/4, we conclude

with (2) that Φ2(v) ∈ PH2(Q). The space H2(Q±) embeds continuously into
C0(Q±). Therefore, we obtain

Φ2(v)(x1, 0, ·) = Φ2(x1, 1, ·) = 0

since by construction, for x1 ∈ (−1, 1) \ {0} it holds Φ2(v)(x1, ·) ∈ D(−∆2). This
shows that ∥Φ2(v)∥L2(Γ2) = 0.

Furthermore, due to the cut-off function, it holds ∥Φ2(v)∥L2(Γ1) = 0. The density

of D(−∆2)
3/4 in D(−∆2)

1/2 proves the claim for v ∈ D(−∆2)
1/4.

It remains to prove (3). With a similar argument as above, we can take the
classical limit in the first component and obtain by construction

[[Φj(v)]]Fint
= Φj(v)(0

+, ·, ·)− Φj(v)(0
−, ·, ·) = 1

2
v − (−1

2
v) = v

on Fint. This proves the statement. □

With this we can define the desired extension JH which satisfies the properties
outlined above.

Theorem 2.5. Let Jsurf =
(
0, Jsurf,2, Jsurf,3

)
and

(Jsurf,2, Jsurf,3) ∈ C1
(
[0, T ],X 1/2

3 ×X 1/2
2

)
∩ C2

(
[0, T ],X−1/2

3 ×X−1/2
2

)
.

Then, there exists a function

JH ∈ C1
(
[0, T ], PH1(Q)3

)
∩ C2

(
[0, T ], L2(Q)3

)
such that for t ∈ [0, T ] it holds

(1) [[JH(t)× nint]]Fint
= Jsurf(t) on Fint,

(2) JH(t) · ν = 0 on ∂Q.

Furthermore, the following estimates hold

∥JH(t)∥L2(Q)3 ≲ ∥Jsurf(t)∥L2(S)3 ,

∥∂tJH(t)∥L2(Q)3 ≲ ∥∂tJsurf(t)∥L2(S)3 ,

∥JH(t)∥PH1(Q)3 ≲ ∥(Jsurf,2(t), Jsurf,3(t))∥(−∆3)1/2×(−∆2)1/4 ,

with constants independent of Jsurf .

Proof. Define JH(t) =
(
0,−Φ2

(
Jsurf,3(t)

)
,Φ3

(
Jsurf,2(t)

))
. The statement is an

application of Lemma 2.4. □

Proof of main result. We write (2.12) in the compact form: seek ũ(t) ∈ D(C)
such that

∂tũ(t) = C ũ(t) + j̃(t), for t ∈ [0, T ],(2.13a)

ũ(0) = ũ0,(2.13b)
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with ũ(t) =
(
H̃(t),E(t)

)
, j̃(t) =

(
−∂tJH(t),−ε−1J (t) + ε−1 curlJH(t)

)
, jH(t) =(

JH(t), 0
)
and ũ0 = u0 − jH(0). This problem fits into the framework of Cauchy

problems and standard theorems for existence and stability can be applied.

Lemma 2.6. Let u0 ∈ D(Ĉ) and Jsurf =
(
0, Jsurf,2, Jsurf,3

)
with

(Jsurf,2, Jsurf,3) ∈ C1
(
[0, T ],X 1/2

3 ×X 1/2
2

)
∩ C2

(
[0, T ],X−1/2

3 ×X−1/2
2

)
.

Furthermore, let

J ∈ C0
(
[0, T ], D(CH)

)
+ C1

(
[0, T ], L2(Q)3

)
.

Then, there exists a unique solution

ũ =
(
H̃,E

)
∈ C0

(
[0, T ], D(C)

)
∩ C1

(
[0, T ], L2(Q)6

)
of (2.12) given by

(2.14) ũ(t) = etCũ0 +

∫ t

0

e(t−s)C j̃(s) ds.

Proof. In view of standard results for Cauchy problems, cf. [22, Thm. 4.2.4,
Cor. 4.2.5 ], we need to check the two conditions

ũ0 ∈ D(C), j̃ ∈ C0
(
[0, T ];D(C)

)
+ C1

(
[0, T ];L2(Q)6

)
.

By construction ũ0 ∈ D(Ĉ). Furthermore, by Theorem 2.5 it holds

[[ũ0 × nint]]Fint
= [[u0 × nint]]Fint

− [[jH(0)× nint]]Fint
= 0.

Therefore, we conclude with Corollary 2.1 that ũ0 ∈ D(C). Again by Theorem 2.5,
we see that

ε−1 curlJH , ∂tJH ∈ C1
(
[0, T ];L2(Q)3

)
.

This proves the claim together with the assumption on J . □

We are now able to proof the first main result.

Proof of Theorem 2.3. A straight forward calculation shows that u = ũ+jH solves
(2.5). This solution is unique as a consequence of the uniqueness in Lemma 2.6.

It remains to prove stability. Taking norms in (2.14), we obtain

∥ũ(t)∥µ×ε ≤ ∥u0∥µ×ε + ∥JH(0)∥µ

+

∫ t

0

∥∥ε−1J (s)
∥∥
ε
+
∥∥ε−1 curlJH(s)

∥∥
ε
+
∥∥∂tJH(s)

∥∥
µ
ds

≤ ∥u0∥µ×ε +
√
µ∞∥JH(0)∥L2(Q)3

+
1√
δ

∫ t

0

∥J (s)∥L2(Q)3 ds+
√
µ∞

∫ t

0

∥∂tJH(s)∥L2(Q)3 ds

+
1√
δ

∫ t

0

∥∥curlJH(s)
∥∥
L2(Q)3

ds.

By Theorem 2.5, we estimate further

∥ũ(t)∥µ×ε ≲ ∥u0∥µ×ε + ∥Jsurf(0)∥L2(Fint)3

+

∫ t

0

∥J (s)∥L2(Q)3 ds+

∫ t

0

∥∂tJsurf(s)∥L2(Fint)3 ds

+

∫ t

0

∥∥∥(Jsurf,2(s), Jsurf,3(s))∥∥∥
(−∆3)1/4×(−∆2)1/4

ds.

The claim follows with ∥u(t)∥µ×ε ≤ ∥ũ(t)∥µ×ε + ∥jH(t)∥µ×ε. □
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3. Spatial discretization

In this chapter, we introduce a concrete space discretization and derive rigorously
the discrete curl in (1.5) and the discrete extension in (1.6). We first present our two
main results involving rigorous error bounds for the spatially discrete scheme and
an extended scheme. The chapter then proceeds with a spatially discrete analogue
of the stability bound Theorem 2.3 and is concluded with the proofs of the main
results.

Discrete setting. We denote with Th matching simplicial meshes of the domain

Q, generated by a reference element K̂. The subscript h indicates the mesh size
defined as h = maxK∈Th

hK , where hK denotes the diameter of a mesh element K.
Furthermore, we assume that the mesh sequence is shape regular in the sense of
[12, Def. 11.2]. Thus, there exists σ > 0 independent of h such that hK ≤ σρK ,
where ρK denotes the diameter of the largest inscribing ball of K.

We collect the faces F of all mesh elements in the set Fh = F◦
h ∪ F∂

h , where F◦
h

denotes the set of all faces in the interior of Q and F∂
h the set of all faces on the

boundary ∂Q. Refer to [12, Def. 8.10] for a precise definition of mesh faces.
The outer unit normal vector of K is denoted by nK . Every interior face F ∈ F◦

h

intersects two elements KF,l and KF,r. The order of the elements is arbitrary but
fixed. We choose the unit normal nF to F pointing fromKF,l toKF,r. For boundary
faces F ∈ F∂

h , we choose the unit normal nF to F as the outer unit normal vector
nK of the associated element K.

Let F be an interior face and v :Q → R be a function that admits a well-defined
trace on F . The weighted average of v on the face F is defined as

(3.1a) {{v}}ωF =
ωKF,l

(v|KF,l
)
∣∣
F
+ ωKF,r

(v|KF,r
)
∣∣
F

ωKF,l
+ ωKF,r

,

where ω :Q → (0,∞) denotes a positive weight function that is piecewise constant,
i.e., ω|K ≡ ωK for all K ∈ Th. Analogously, we define the jump of v on F as

(3.1b) [[v]]F = (v|KF,r
)
∣∣
F
− (v|KF,l

)
∣∣
F
.

For vector fields, both definitions hold component-wise.
The following assumption is necessary to resolve the interface conditions (1.3).

Assumption 3.1. We assume that every element K ∈ Th lies completely on one
side of the interface Fint, i.e.,

K ∩ Fint = ∅, for all K ∈ Th.
Furthermore, we assume that the unit normal nF for every face F ∈ F◦

h with
F ⊂ Fint points in the same direction as nint, i.e.,

nF · nint = 1, for all F ∈ F◦
h with F ⊂ Fint.

The set of all faces F ∈ F◦
h with F ⊂ Fint is denoted by F int

h .

Similar to the definition of the broken polynomial space (1.4a), we introduce for
s ≥ 0 the broken Sobolev space on Th defined by

(3.2a) Hs(Th) = { v ∈ L2(Q) | u|K ∈ Hs(K) for all K ∈ Th }.
The piecewise semi-norm on Hs(Th) is denoted by |·|Hs(Th) and we define

(3.2b) ∥·∥2Hs(Th)
= ∥·∥2L2(Q) + |·|2Hs(Th)

.

In the following, slightly more regularity of the solution is assumed such that it
admits classical traces on element faces. Therefore, we define the spaces

(3.3a) V̂ H
∗ = D(ĈH) ∩H1(Th), V E

∗ = D(CE) ∩H1(Th), V̂∗ = V̂ H
∗ × V E

∗
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and the restricted spaces

(3.3b) V H
∗ = D(CH) ∩H1(Th), V∗ = V H

∗ × V E
∗ .

Since functions of the approximation space Vh, defined in (1.4a), do not admit a
well-defined curl, we introduce the following spaces containing both the analytical
solution and the approximation

(3.4a) V̂ H
∗,h = V̂ H

∗ + Vh, V E
∗,h = V E

∗ + Vh, V̂∗,h = V̂ H
∗,h × V E

∗,h,

and similarly

(3.4b) V H
∗,h = V H

∗ + Vh, V∗,h = V H
∗,h × V E

∗,h.

Remark 3.2. Note that the results are not specific to matching simplicial meshes
but are also valid for quadrilateral meshes and general meshes as described in
[8, Sec. 1.2]. We omit the details for the sake of presentation.

Spatial discretization. As motivated in the introduction with (1.6), we define
the discrete lift operator

(3.5a) Lint :L
2(Fint)

3 → Vh, (LintV ,ϕh)ε = −
∑

F∈F int
h

(V |F , {{ϕh}}
µc
F )

for ϕh ∈ Vh, and the discrete magnetic Maxwell operator ĈH : V̂ H
∗,h → Vh

(3.5b) (ĈHH,ϕh)ε =
∑

K∈Th

(H, curlϕh)K

−
∑

F∈F∂
h

(H × nF ,ϕh)F −
∑

F∈F◦
h

({{H}}µcF , [[ϕh]]F × nF )F .

Analogously, we define the electric Maxwell operator CE :V E
∗,h → Vh for E ∈ V E

∗,h
and ψh ∈ Vh by

(3.5c) (CEE,ψh)µ =
∑

K∈Th

(E, curlψh)K −
∑

F∈F◦
h

({{E}}εcF , [[ψh]]F × nF )F .

This definition incorporates the perfectly conducting boundary condition for the
electric field. The discrete operator acting on the combined field is defined as

(3.5d) C : V̂∗,h → V 2
h , C =

(
0 −CE

ĈH 0

)
.

Analogously to (2.4d), we define the restrictions

CH :V H
∗,h → Vh, CH = ĈH|V H

∗,h
,(3.5e)

C :V∗,h → V 2
h , C = Ĉ|V∗,h .(3.5f)

The semi-discrete problem now reads: seek
(
Hh(t),Eh(t)

)
∈ V 2

h such that

∂tHh(t) = −CEEh(t) for t ∈ [0, T ],(3.6a)

∂tEh(t) = ĈHHh(t)− Jh(t)− Jsurf,h(t) for t ∈ [0, T ],(3.6b)

Hh(0) =H
0
h, Eh(0) = E

0
h,(3.6c)

where Jsurf,h = LintJsurf , H
0
h = ΠhH

0, E0
h = ΠhE

0 and Jh = Πhε
−1J . We

denote with Πh :L
2(Q) → Pk

3(Th) the broken L2-orthogonal projection defined by

(3.7) (v −Πhv, ϕh)L2(Q) = 0 for all ϕh ∈ P3
k(Th).

For typical properties of this projection, compare [12, Sec. 18.4] or [8, Sec. 1.4.4].
The second main result gives an error bound on the spatially discrete solution

uh =
(
Hh,Eh

)
of (3.6). For a sufficiently regular problem, we obtain convergence

in the mesh parameter h. The proof is given below.
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Theorem 3.3. Let the solution u =
(
H,E

)
of (2.5) satisfy

(3.8) u ∈ C0([0, T ], V̂∗ ∩H1+s(Th)6) ∩ C1([0, T ], L2(Q)6),

with s ≥ 0. Furthermore, let Assumption 3.1 hold. Then, the appropriation uh =(
Hh,Eh

)
defined in (3.6) satisfies

∥u(t)− uh(t)∥µ×ε ≤ Chr∗ , 0 ≤ t ≤ T,

with a constant C > 0 independent of h. Here, r∗ = min{s, k} with k denoting the
polynomial degree of the approximation space defined in (1.4a).

Note, that this agrees with the results obtained for the special case Jsurf = 0,
see, e.g., [14].

Nodal interpolation. The calculation of the lift operator (3.5a) involves the eval-
uation of integrals over mesh faces. In practice, those integrals are approximated
by quadrature formulas. This can be quite expensive, since the evaluation may be
required at every time step. Moreover, if the surface current depends on the solu-
tion itself, i.e., Jsurf = Jsurf(E). The calculation of the lift operator would cause
evaluations of the finite element functions at every quadrature point which is quite
expensive. In such cases, nodal discontinuous Galerkin methods are attractive since
they allow for a fast evaluation of integrals and functions, see, e.g., [8, App. 2] for
a detailed discussion. In the following, we construct a scheme that makes use of
nodal interpolation of Jsurf and provide error bounds.

We specify the construction from Section 3 and choose Nk = dimPk
3 nodes

ΣK̂ = {σK̂,1, . . . , σK̂,Nk
} in the closure of the reference element K̂. Then, the

Lagrange polynomials, defined by θK,i(σK,j) = δij for i, j ∈ {1, . . . ,Nk}, form a
basis of P3

k(K). Thus, we can define for ℓ > 3/2 the local interpolation operator

Ih
K :Hℓ(K) → P3

k(K), Ih
Kv =

Nk∑
j=1

v|K(σK,i)θK,i

and hence, the global interpolation operator by restriction, i.e.,

Ih :Hℓ(Th) → P3
k(Th), Ihv|K = Ih

Kv, for K ∈ Th.

Note, that the interpolation operator acts component-wise for vector fields.
The surface current Jsurf is only supported on the interface Fint and hence we

construct an interpolation operator on the sub-mesh F int
h . Therefore, we need the

following two assumptions.

Assumption 3.4 ([12, Ass. 20.1]). Let F̂ be a face of the reference element K̂ and

denote with ΣF̂ the nodes that are located on F̂ , i.e., ΣF̂ = ΣK̂ ∩ F̂ . We assume

that for any p ∈ Pk
3(K̂) it holds p|F̂ ≡ 0 if and only if p(σ) = 0 for all σ ∈ ΣF̂ .

We also need to make sure how the nodes of neighboring elements come in contact
with each other.

Assumption 3.5 ([12, Ass. 20.3]). For any face F ∈ F◦
h it holds

ΣKF,l
∩ F = ΣKF,r

∩ F =: ΣF .

We write again ΣF = {σF,1, . . . , σF,Nk
}.

Remark 3.6. These assumptions ensure that the triple (F,Pk
2(F ),ΣF )F∈F int

h
is again

a finite element for Fint in the sense of [12, Def. 5.2], see [12, Lem. 20.2] for details.
Note that the usual Pk and Qk nodal Lagrange elements satisfy both assumptions,
see [12, Sec. 20.2] for details.
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Given Assumptions 3.4 and 3.5, we are able to define for κ > 1 the local inter-
polation operator

IhF :Hκ(F ) → Pk
2(F ), IhF v =

Nk∑
j=1

v|F (σF,j)θF,j

and the global interpolation operator

Ih :Hκ(F int
h ) → Pk

2(F int
h ), Ihv|F = IhF v, for F ∈ F int

h .

The problem now reads: seek
(
Ȟ(t), Ě(t)

)
∈ V 2

h such that

∂tȞh(t) = −CE Ěh(t) for t ∈ [0, T ],(3.9a)

∂tĚh(t) = ĈH Ȟh(t)− Jh(t)− J̌surf,h(t) for t ∈ [0, T ],(3.9b)

Ȟh(0) =H
0
h, Ěh(0) = E

0
h,(3.9c)

with J̌h = LintI
hJsurf . Note, that the semi-discrete solutions of (3.6) and (3.9) only

differ in the fact that we use nodal interpolation under the lift operator. Our third
main result is concerned with the error introduced by this additional approximation.
The proof is given below.

Theorem 3.7. Let Assumptions 3.1, 3.4, and 3.5 hold and further let the solution
u =

(
H,E

)
of (2.5) satisfy

(3.10) u ∈ C0([0, T ], V̂∗ ∩H1+s(Th)6) ∩ C1([0, T ], L2(Q)6),

with s > 1/2. For the approximations uh defined in (3.6) and ǔh defined in (3.9)
it holds

∥uh(t)− ǔh(t)∥µ×ε ≤ Chmin{s,k+1/2}

with a constant C > 0 which is independent of h. Here, k denotes the polynomial
degree of the approximation space (1.4a).

The following corollary follows immediately from Theorems 3.3 and 3.7.

Corollary 3.8. Under the assumptions of Theorem 3.7 it holds

∥u(t)− ǔh(t)∥µ×ε ≤ Chr∗ ,

a constant C > 0 which is independent of h. Here, r∗ = min{s, k} with k denoting
the polynomial degree of the approximation space (1.4a).

Stability. We proceed by proving a discrete analogue to the stability bound (2.11).
The broken L2-projection Πh, defined in (3.7), has the following piecewise ap-

proximation properties, see, e.g., [12, Sec. 18.4].

Lemma 3.9. For all K ∈ Th and all v ∈ H1+s(K) with s ≥ 0 it holds

∥v −Πhv∥L2(K) ≤ Chr∗+1
K |v|Hr∗+1(K),(3.11a)

∥v −Πhv∥L2(F ) ≤ Ch
r∗+1/2
K |v|Hr∗+1(K),(3.11b)

with constants C > 0 that are independent of hK . Here, r∗ = min{s, k} with k
denoting the polynomial degree of the approximation space (1.4a).

The following lemma shows an important relation between the Maxwell operators
(2.4) and their discrete counterparts (3.5).

Lemma 3.10. (1) The operators CH,CE are consistent, i.e., for u = (H,E) ∈
V∗ it holds

Πh CHH = CHH,

Πh CEE = CEE.
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(2) The operator ĈH is non-consistent, i.e., for H̃ ∈ V̂ H
∗ it holds

Πh ĈH H̃ = ĈH H̃ −Lint([[H̃ × nint]]Fint
).

The result (1) is stated in [18, Sec. 2.3]. Thus, we only prove (2) involving the
new domain special to the inhomogeneous interface problem.

Proof. Let ϕh ∈ Vh. With integration by parts, we obtain

(ĈH H̃,ϕh)ε =
∑

K∈Th

(H̃, curlϕh)K −
∑

F∈F∂
h

(H̃ × nF ,ϕh)F

+
∑

F∈F◦
h

([[H̃]]F × nF , {{ϕh}}µc)F

−
∑

F∈F◦
h

({{H̃}}µcF , [[ϕh]]F × nF )F .

Thus, with definitions (3.5a) and (3.5b), we see that

(ĈH H̃,ϕh)ε = (ĈH H̃,ϕh)ε − (Lint

(
[[H̃]]Fint

× nint

)
,ϕh)ε.

This proves the statement since (ĈH H̃,ϕh)ε = (Πh ĈH H̃,ϕh)ε by definition of the
projection (3.7). □

Lemma 3.11. Let u ∈ V̂∗,h ∩H1+s(Th)6 for s ≥ 0. It holds

∥Ĉ(u−Πhu)∥µ×ε ≤ Chr∗ |u|Hr∗+1(Th)6

with a constant C > 0 which is independent of h and u. Here, r∗ = min{s, k} and
k denotes the polynomial degree of the approximation space (1.4a).

A proof of this statement is included in [18, eq. (5.5)]. We emphasize that all
estimates there hold since they are local to every element K ∈ Th and, thus, do not

depend on the domain D(Ĉ).
The following Lemma is essential for the wellposedness of the semi-discrete prob-

lem. A proof is provided in in [18, Lem. 2.2].

Lemma 3.12. The operator Ĉ is skew-adjoint on V 2
h with respect to the inner

product (·, ·)µ×ε, i.e., for uh,vh ∈ V 2
h it holds

(Ĉuh,vh)µ×ε = −(uh, Ĉvh)µ×ε.

We infer from the skew-adjointness that Ĉ is a generator of a unitary C0-
semigroup on V 2

h . Therefore, the semi-discrete problem (3.6) has a unique solution
uh(t) =

(
Hh(t),Eh(t)

)
∈ V 2

h given by the variation-of-constants formula

uh(t) = et Ĉu0
h +

∫ t

0

e(t−s) Ĉ
(
jh(s) + jsurf,h(s)

)
ds,

with u0
h =

(
H0

h,E
0
h

)
, jh = (0,−Jh) and jsurf,h = (0,−Jsurf,h).

The following stability bound holds true for the semi-discrete problem. We
emphasize, that is an discrete analogue to (2.11).

Theorem 3.13. Under Assumption 3.1 and the assumptions of Theorem 2.3, the
numerical solution uh =

(
Hh,EH

)
of (3.6) is stable, i.e., for t ∈ [0, T ] it holds

∥uh(t)∥µ×ε ≲ ∥u0∥µ×ε + ∥Jsurf(0)∥L2(Fint)3 + ∥Jsurf(t)∥L2(Fint)3

+

∫ t

0

∥J (s)∥L2(Q)3 ds+

∫ t

0

∥∂tJsurf(s)∥L2(Fint)3 ds

+

∫ t

0

∥∥∥(Jsurf,2(s), Jsurf,3(s))∥∥∥
(−∆3)1/4×(−∆2)1/4

ds,
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with a constant which is independent of h and u.

Proof. We proceed similar to the proof of Theorem 2.3 and introduce a shifted
semi-discrete solution ũh(t) = uh(t)−ΠhjH(t), where jH(t) =

(
JH(t), 0

)
denotes

the extension of Theorem 2.5. Thus, the shifted solution solves

∂tũh(t) = Ĉuh(t) + jh(t) + jsurf,h(t)−Πh∂tjH(t)

= Ĉ ũh(t) + ĈΠhjH(t) + jh(t) + jsurf,h(t)−Πh∂tjH(t)

By Lemma 3.10 it holds

Πh Ĉ jH(t) = Ĉ jH(t)−
(
0,Lint

(
[[JH(t)× nint]]Fint

))
= Ĉ jH(t) + jsurf,h(t).

Therefore, we obtain ∂tũh(t) = Ĉ ũh(t) + r̃h(t), with

r̃h(t) = − Ĉ
(
I −Πh

)
jH(t) + Πh

(
j(t) + Ĉ jH(t)− ∂tjH(t)

)
.

We emphasize that r̃h(t) ∈ V 2
h and thus write the solution by means of the

variations-of-constants formula as

ũh(t) = et Ĉ
(
u0
h −ΠhjH(0)

)
+

∫ t

0

e(t−s) Ĉr̃h(s) ds.

Furthermore, since Ĉ generates a unitary C0-semigroup on V 2
h , we obtain that

∥ũh(t)∥µ×ε ≤ ∥u0∥µ×ε + ∥jH(0)∥µ×ε +

∫ t

0

∥r̃h(s)∥µ×ε ds

It remains to bound ∥r̃h(s)∥µ×ε. By Theorem 2.5, it holds JH(s) ∈ PH1(Q)3 and
thus, by Lemma 3.11 with s = 0, we conclude that

∥Ĉ
(
I −Πh

)
jH(s)∥µ×ε ≤ C|JH(s)|H1(Th)3 = C|JH(s)|PH1(Q)3 .

The right-hand side can be further estimated with Theorem 2.5, and we obtain

∥Ĉ
(
I −Πh

)
jH(s)∥µ×ε ≤ C∥(Jsurf,2(s), Jsurf,3(s))∥(−∆3)1/4×(−∆2)1/4 .

The remaining parts of r̃h(s) can be bounded analogously by Theorem 2.5. This
proves the claim similar to Theorem 2.3. □

Error analysis. We proceed by proving the main error bounds of this section.

Proof of Theorem 3.3. We define the error e(t) = u(t)−uh(t), where u(t) denotes
the solution of (2.5) and uh(t) denotes the semi-discrete solution of (3.6). We split
the error into e(t) = eΠ(t)− eh(t) with

eΠ(t) = u(t)−Πhu(t),(3.12a)

eh(t) = uh(t)−Πhu(t).(3.12b)

Thus, eΠ(t) denotes the best approximation error and and eh(t) the dG-error. By
(2.5) and Lemma 3.10, it holds

(3.13) ∂tΠhu(t) = Πh

(
Ĉ u(t) + j

)
= Ĉu(t) + jh(t) + jsurf,h(t).

Since uh(t) solves (3.6), i.e.,

∂tuh(t) = Ĉuh(t) + jh(t) + jsurf,h(t), t ∈ [0, T ], uh(0) = Πhu
0,

we see that the dG-error solves the initial value problem

(3.14) ∂teh(t) = Ĉ eh(t) + dπ(t), t ∈ [0, T ], eh(0) = 0,

with the defect dπ(t) = − Ĉ eΠ(t). We can write the solution of (3.14) with the
variation-of-constants formula and obtain

eh(t) =

∫ t

0

e(t−s) Ĉdπ(s) ds.
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Since Ĉ is the generator of a unitary C0-semigroup on V 2
h , we conclude with

Lemma 3.11 that

∥eh(t)∥µ×ε ≤
∫ t

0

∥dπ(s)∥µ×ε ds ≤ Chr∗

∫ t

0

|u(s)|Hr∗+1(Th)6 ds

with a constant independent of h and u. Together with the approximation proper-
ties of Lemma 3.9, we obtain

∥e(t)∥µ×ε ≤ ∥eΠ(t)∥µ×ε + ∥eh(t)∥µ×ε

≤ C̃hr∗+1|u(t)|Hr∗+1(Th)6 + Chr
∗

∫ t

0

|u(s)|Hr∗+1(Th)6 ds,

which proves the claim. □

Remark 3.14. Note, that the stability result of Theorem 3.13 is not used in the
proof of Theorem 3.3. The reason for that is the fact that the lifted surface current
appears in (3.13) due to Lemma 3.10 (2). Thus, there is no contribution of the sur-
face current in the defect. This, on the other hand, assumes that the lifted surface
current can be calculated exactly which is not feasible in practice, cf. Section 3.

The following section deals with errors introduced due to nodal interpolation on
the interface.

Interpolation error. The following local estimates for the nodal interpolation
hold, compare for example [12, Thm. 11.13].

Lemma 3.15. For all K ∈ Th and all v ∈ H1+s(K) with s > 1/2 it holds

(3.15) ∥v − Ihv∥L2(K) ≤ Chr∗+1
K |v|Hr∗+1(K)

with a constant C > 0 which is independent of hK . Here, r∗ = min{s, k} and k
denotes the polynomial degree of the approximation space (1.4a).

In order to obtain approximation properties for the local interpolation operator
Ih on the sub-mesh, we need to ensure that F int

h does not degenerate, i.e., that the
sub-mesh is again shape regular. Recall the following notation. For F ∈ F int

h , we
denote with hF the largest diameter of F and with ρF the diameter of the largest
inscribing ball of F . It is clear from the definition that hF ≤ hK . Furthermore,
[20, Thm. 10, (10)] shows that ρK ≤ ρF , i.e., the diameter of the largest inscribing
ball of K is always less or equal to the diameter of the largest inscribing ball of F .
Therefore,

hK ≤ σρK =⇒ hF ≤ σρF ,

i.e., the sub-mesh F int
h inherits the shape regularity from Th. We interfere again

from [12, Thm. 11.13] the following approximation properties.

Lemma 3.16. For all F ∈ F int
h and all w ∈ H1+s(F ) with s > 0 it holds

(3.16) ∥w − Ihw∥L2(F ) ≤ Chr∗+1
F |w|Hr∗+1(F )

with a constant C > 0 which is independent of hF . Here, r∗ = min{s, k} and k
denotes the polynomial degree of the approximation space (1.4a).

Similar to Lemma 3.11, we obtain an approximation result under the discrete
lift operator.

Lemma 3.17. Let V ∈ H1+s(F int
h )3 with s > 0. Under Assumption 3.1, it holds

∥Lint

(
V − IhV

)
∥ε ≤ Chr∗+1/2|V |Hr∗+1(F int

h )3

with a constant C > 0 which is independent of h and V . Here, r∗ = min{s, k} and
the polynomial degree of approximation space (1.4a) is denoted with k.
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Proof. Let ϕh ∈ Vh. By the defintion of the discrete lift operator (3.5a) and the
Cauchy-Schwarz inequality it holds

(3.17) |(Lint

(
V − IhV

)
,ϕh)ε| ≤

( ∑
F∈F int

h

ω−1
F ∥V − IhV ∥2L2(F )

)1/2

·
( ∑

F∈F int
h

ωF ∥{{ϕh}}εc∥2L2(F )

)1/2

with the weight ωF = min{hKF,l
, hKF,r

}. By Lemma 3.16, we obtain the estimate

(3.18) ω−1
F ∥V − IhV ∥2L2(F ) ≤ C2ω−1

F h2r∗+2
F |V |2Hr∗+1(F )

Since by definition hF ≤ max{hKF,l
, hKF,r

}, we obtain with the shape regularity
that

(3.19) hF ≤ max{hKF,l
, hKF,r

} ≤ σρF ≤ σmin{hKF,l
, hKF,r

} ≤ σωF .

Therefore, we lose one hF in (3.18) due to the weight ωF and end up with the
estimate

ω−1
F ∥V − IhV ∥2L2(F ) ≤ C2σh2r∗+1

F |V |2Hr∗+1(F )

With the discrete trace inequality [12, Lem. 12.8], we further estimate

(3.20) ∥{{ϕh}}εc∥2L2(F ) ≤ 2C2c2∞µ∞
(
h−1
KF,l

∥ϕh|KF,l
∥2ε,KF,l

+ h−1
KF,r

∥ϕh|KF,r
∥2ε,KF,r

)
with a constant C > 0 which is independent of F,KF,l and KF,r, but depends on
the polynomial degree k.

Multiplication of (3.20) with ωF proves the statement together with (3.18) and
(3.17). □

With Lemma 3.17, we have all ingredients to prove the second main result of
this section.

Proof of Theorem 3.7. Since H ∈ C0([0, T ], V̂ H
∗ ∩H1+s(Th)3) with s > 1/2, we

conclude by [12, Thm. 3.10] that

(3.21) Jsurf = [[H × nint]]Fint
∈ C0([0, T ], H1+κ(F int

h )3)

with κ = s− 1/2 > 0.
We write (3.9) in vector form, i.e., ǔh(t) =

(
Ȟh(t), Ěh(t)

)
such that

(3.22) ∂tǔh(t) = Ĉ ǔh(t) + jh(t) + ǰsurf,h(t), for t ∈ [0, T ], ǔh(0) = u
0
h,

with jh =
(
0,−Jh

)
, ǰsurf,h =

(
0,−J̌surf,h

)
and ǔ0

h =
(
Ȟ0

h, Ě
0
h

)
.

Writing ěh(t) = uh(t)− ǔh(t) and subtracting (3.6) and (3.22), we obtain

(3.23) ∂těh(t) = Ĉ ěh(t) + ďh(t), for t ∈ [0, T ], ěh(0) = 0,

with a defect ďh(t) = jsurf,h(t)− ǰsurf,h(t).
We can write the solution of (3.23) with the variations-of-constants formula and

obtain with Lemma 3.17 the estimate

∥ěh(t)∥µ×ε ≤ Chmin{κ,k}+1/2

∫ t

0

|Jsurf(s)|H1+κ(F int
h )3 ds.

This proves the claim since κ+ 1/2 = s. □
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4. Full discretization

In time, we discretize (3.6) with the explicit leapfrog scheme with step size τ > 0
and set tn = nτ for n ∈ N. The fully discrete scheme reads

H
n+1/2
h −Hn

h = −τ

2
CEE

n
h ,(4.1a)

En+1
h −En

h = τ ĈHH
n+1/2
h − τ

2
(Jn

h + Jn+1
h )− τ

2
(Jn

surf,h + Jn+1
surf,h),(4.1b)

Hn+1
h −Hn+1/2

h = −τ

2
CEE

n+1
h ,(4.1c)

for n ≥ 0 andH0
h = ΠhH

0, E0
h = ΠhE

0. It is well-known that the leapfrog scheme
is stable if for some θ ∈ (0, 1), the CFL condition

(4.2) τ < τCFL =
2θ

∥ĈH CE∥ε
≲ θ min

K∈Th

hK

is satisfied. Here, ∥·∥ε denotes the induced operator norm, cf. (2.3). For more
details on the constant within the CFL condition, we refer to [18, eq. (2.35)].

The main result of this section is the following bound on the full discretization
error.

Theorem 4.1. Let Assumption 3.1 hold and further let the solution u =
(
H,E

)
of (2.5) satisfy

(4.3) u ∈ C0([0, T ], V̂∗ ∩H1+s(Th)6) ∩ C3([0, T ], L2(Q)6),

with s ≥ 0 and assume that the CFL condition (4.2) holds. Then, the approxima-
tions un

h =
(
Hn

h ,E
n
h

)
defined in (4.1) with approximation space (1.4) satisfies

∥u(tn)− un
h∥µ×ε ≤ C(hr∗ + τ2), 0 ≤ tn ≤ T.

Here, r∗ = min{s, k} and C > 0 is a constant which is independent of h and τ .

Remark 4.2. Note, that the interface condition does not induce an additional step
size restriction, since the CFL condition (4.2) coincides with that for problems on
the full domain Q.

Remark 4.3. We note that in order to prove the regularity assumptions on u in
Theorem 4.1 certain compatibility conditions have to be satisfied at the initial time.
Assuming that the solution is sufficiently smooth, we obtain from (1.3b)

∂tJsurf = [[∂tH × nint]]Fint = −[[µ−1 curlE × nint]]Fint ,

∂2
t Jsurf = −[[µ−1 curl ∂tE × nint]]Fint

= −[[µ−1 curl ε−1 curlH × nint]]Fint
.

The reader should refer to [10, Thm. 2.4-2.6] for a thorough treatment.

Our analysis is inspired by [18], where the locally implicit method for linear
Maxwell equations is considered. With the discrete Maxwell operators from (3.5)
and un

h =
(
Hn

h ,E
n
h

)
, we write (4.1) in the following one-step formulation

(4.4a) R̂−u
n+1
h = R̂+u

n
h +

τ

2

(
jn+1
h + jnh

)
+

τ

2

(
jn+1
surf,h + jnsurf,h

)
for n ≥ 0 with operators

(4.4b) R̂± :V 2
h → V 2

h , R̂± = I ± τ

2
Ĉ−τ2

4
D̂

and perturbation operator

(4.4c) D̂ :V 2
h → V 2

h , D̂ =

(
0 0

0 ĈH CE

)
.
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For D̂ = 0, the scheme (4.4) is equivalent to the Crank–Nicolson method and thus,
one can interpret the leapfrog scheme as perturbation of it. We further use the

operator R̂ :V 2
h → V 2

h , defined as R̂ = R̂
−1

− R̂+.

Note, that for the special choice of Ci
H = 0 and Ci

E = 0 in [18, eq. (2.34)], one
obtains the leapfrog scheme on the whole spatial domain. Thus, we can use bounds
on the operators in (4.4) from that work.

Stability. The following theorem provides stability for the fully discrete scheme
and is a discrete analogue of the bound provided in Theorem 2.3 for the exact
solution.

Theorem 4.4. Assume that the CFL condition (4.2), Assumption 3.1, and the
assumptions of Theorem 2.3 are satisfied. Then, the fully discrete scheme (4.1) is
stable, i.e., for all n ≥ 0 it holds

∥un
h∥µ×ε ≲ ∥u0∥µ×ε + ∥Jsurf(t0)∥L2(Fint)3 + ∥Jsurf(tn)∥L2(Fint)3

+
τ

2

n−1∑
ℓ=0

∥J (tℓ+1) + J (tℓ)∥L2(Q)3

+

∫ tn

t0

∥∂tJsurf(s)∥L2(Fint)3 ds

+
τ

2

n−1∑
ℓ=0

∥∥∥(Jsurf,2(tℓ+1) + Jsurf,2(tℓ),

Jsurf,3(tℓ+1) + Jsurf,3(tℓ)
)∥∥∥

(−∆3)1/4×(−∆2)1/4
,

with a constant which is independent of h, τ and u.

Proof. The proof relies on the same arguments as in Theorems 2.3 and 3.13. Hence,
we introduce the shifted field

(4.5) ǔn
h = un

h −Πhj
n
H ,

where jnH =
(
Jn
H , 0

)
denotes the extension from Theorem 2.5. The shifted variables

satisfy the recursion

(4.6)
R̂−ǔ

n+1
h = R̂+ǔ

n
h +

τ

2

(
jn+1
h + jnh

)
+

τ

2

(
jn+1
surf,h + jnsurf,h

)
+ R̂+Πhj

n
H − R̂−Πhj

n+1
H .

Next, we study the action of R̂± on Πhj
ℓ
H for ℓ ≥ 0. Since the second component

of jℓH is zero, it holds D̂Πhj
ℓ
H = 0. Thus, (4.4b) yields

R̂±Πhj
ℓ
H = Πhj

ℓ
H ± τ

2
ĈΠhj

ℓ
H

= Πhj
ℓ
H ± τ

2
Ĉ
(
Πh − I

)
jℓH ± τ

2
Πh Ĉ jℓH ∓ τ

2
jℓsurf,h.

Here, the second identity follows from Theorem 2.5 and Lemma 3.10. Inserting this
into (4.6) leads to

(4.7) R̂−ǔ
n+1
h = R̂+ǔ

n
h + řnh

with the remaining terms

řnh =
τ

2

(
jn+1
h + jnh

)
−Πh(j

n+1
H − jnH)

+
τ

2
Πh Ĉ(jn+1

H + jnH) +
τ

2
Ĉ
(
Πh − I

)
(jn+1

H + jnH).
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Solving the recursion (4.7), we obtain

ǔn
h = R̂

n
ǔ0
h +

n−1∑
ℓ=0

R̂
n−1−ℓ

R̂
−1

− řℓh.

By [9, Lem. 11.14] we have

(4.8a) ∥R̂
−1

− ∥µ×ε ≤
√
1 + θ2 + θ4

and by [18, Lem. 4.2] it holds

(4.8b) ∥R̂
m
∥µ×ε ≤ Cstb = (1− θ2)−1/2, m = 0, 1, . . . .

Together with (4.5) we infer

∥un
h∥µ×ε ≤ Cstb

(
∥u0

h∥µ×ε + ∥Πhj
0
H∥µ×ε +

√
3

n−1∑
ℓ=0

∥řℓh∥µ×ε

)
+ ∥Πhj

n
H∥µ×ε.

The remainders ∥řℓh∥µ×ε are bounded in the same way as in the proof of Theo-
rem 3.13. □

Error analysis. As usual, we split the full discretization error into

(4.9) un − un
h = un −Πhu

n +Πhu
n − un

h = enΠ + enh.

Here, enΠ = un − Πhu
n is the best approximation error and enh = Πhu

n − un
h is

the dG-leapfrog-error at time tn. Since the best approximation error is covered
by projection results, cf. Lemma 3.9, we determine the defect dn by inserting the
projected exact solution into the scheme (4.4a), i.e.,

(4.10) R̂−Πhu
n+1 = R̂+Πhu

n +
τ

2

(
jn+1
h + jnh

)
+

τ

2

(
jn+1
surf,h + jnsurf,h

)
− dn.

This allows us to infer the error recursion for the dG-leapfrog scheme.

Lemma 4.5. Let the assumptions of Theorem 4.1 be satisfied. Then, the dG-
leapfrog-error enh defined in (4.9) satisfies the error recursion

(4.11a) R̂−e
n+1
h = R̂+e

n
h + dn, dn = dnΠ + δn +

(
R̂− − R̂+

)
dnh

with

dnΠ = −τ

2
Ĉ
(
I −Πh

)
(un+1 + un)− τ2

4
D̂
(
I −Πh

)
(un+1 − un),(4.11b)

δn = τ2Πh

∫ tn+1

tn

(s− tn)(tn+1 − s)

2τ2
∂3
tu(s) ds,(4.11c)

dnh = −τ

4

(
Πh

(
∂tH

n+1 − ∂tH
n
)

0

)
.(4.11d)

Proof. With the fundamental theorem of calculus and the error estimate of the
trapazoidal rule, we obtain

un+1 − un =
τ

2
Ĉ
(
un+1 + un

)
+

τ

2

(
jn+1 + jn

)
− τ2

∫ tn+1

tn

(s− tn)(tn+1 − s)

2τ2
∂3
tu(s) ds.

Projecting both sides onto V 2
h and using Lemma 3.10, we infer that

Πhu
n+1 − τ

2
Ĉun+1 = Πhu

n +
τ

2
Ĉun +

τ

2

(
jn+1
h + jnh

)
+

τ

2

(
jn+1
surf,h + jnsurf,h

)
− δn.

Writing Ĉ = ĈΠh + Ĉ(I −Πh) and comparing with (4.10) gives

dn = δn − τ

2
Ĉ
(
I −Πh

)(
un+1 + un

)
+

τ2

4
D̂Πh

(
un+1 − un

)
.
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Moreover, as in [18, eq. (5.21)], we can write

τ2

4
D̂Πh

(
un+1 − un

)
=− τ2

4
D̂
(
I −Πh

)(
un+1 − un

)
− τ

4

(
R̂− − R̂+

)(
Πh

(
∂tH

n+1 − ∂tH
n
)

0

)
.

This proves the claim. □

With this representation of the defect, we are able prove the main result of this
section.

Proof of Theorem 4.1. The proof proceeds in three steps and makes use of a generic
constant C which is independent of h and τ . First, we bound the projection error
enΠ. Second, we solve the error recursion for the dG-leapfrog-error and estimate the
defects separately. The claim then follows in a third step via the application of the
triangle inequality.

Lemma 3.9 directly implies

(4.12) ∥enΠ∥µ×ε = ∥un −Πhu
n∥µ×ε ≤ Chr∗+1|un|Hr∗+1(Th).

With Lemma 4.5, the error recursion (4.11a), and the discrete variation-of-
constants formula we conclude

enh =

n−1∑
ℓ=0

R̂
n−1−ℓ

R̂
−1

− dℓΠ +

n−1∑
ℓ=0

R̂
n−1−ℓ

R̂
−1

− δℓ +

n−1∑
ℓ=0

R̂
n−1−ℓ(

I − R̂
)
dℓh.

To bound the first term on the right-hand side we use Lemma 3.11 to see

∥dnΠ∥µ×ε ≤ Chr∗
τ

2

(
|un+1 + un|Hr∗+1(Th)6 + |En+1 −En|Hr∗+1(Th)3

)
.

Utilizing (4.8) shows

n−1∑
ℓ=0

∥R̂
n−1−ℓ

R̂
−1

− dℓΠ∥µ×ε ≤ Cstb

√
3

n−1∑
ℓ=0

τ

2
∥dℓΠ∥µ×ε ≤ Chr∗ .

For the second term, we obtain

n−1∑
ℓ=0

∥R̂
n−1−ℓ

R̂
−1

− δℓ∥µ×ε ≤ Cτ2
∫ tn

t0

∥∂3
tu(s)∥µ×ε ds.

Hence, it remains to bound the third term. Using summation-by-parts, we infer

n−1∑
ℓ=0

R̂
n−1−ℓ(

I − R̂
)
dℓh = −R̂

n
d0h + dn−1

h +

n−2∑
ℓ=0

R̂
n−1−ℓ

(dℓ+1
h − dℓh).

We estimate all terms separately. Again, using (4.11d) and the fundamental theo-
rem of calculus implies

∥R̂
n
d0h∥µ×ε ≤ Cτ

∫ t1

t0

∥∂2
tH (s)∥µ ds ≤ Cτ2 max

s∈[t0,t1]
∥∂2

tH (s)∥µ

and

∥dnh∥µ×ε ≤ Cτ2 max
s∈[tn−1,tn]

∥∂2
tH (s)∥µ.

For the third sum, the fundamental theorem is used twice in order to exploit the
difference of the defects. We obtain

τ

4
Πh

(
(∂tH

ℓ+2 − 2∂tH
ℓ−1 + ∂tH

ℓ
)
=

τ2

4

∫ tℓ+2

tℓ

(
1− |tℓ+1 − s|

τ

)
Πh∂

3
tH (s) ds.
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Thus, we end up with the bound

n−2∑
ℓ=0

∥R̂
n−1−ℓ

(dℓ+1
h − dℓh)∥µ×ε ≤ Cτ2

∫ tn−1

t1

∥∂3
tH (s)∥µ ds.

Combining all estimates, we have shown that

∥enh∥µ×ε ≤ C(hr∗ + τ2).

Together with (4.12) this proves the claim. □

5. Numerical experiments

In this section, we present several numerical experiments that underline our
theoretical findings. The software was build with the Maxwell toolbox TiMaxdG1

which is build upon the finite element library deal.II2 [1]. The full software with
executables for reproduction purposes can be found under

https://gitlab.kit.edu/kit/ianm/ag-numerik/projects/b10/

dgtd-interface-problem.

All experiments are conducted in transverse electric (TE) polarization, i.e., H1 =
H2 = E3 = 0, to reduce the computational effort, with material parameters µ± =
ε± = 1. Thus, we solve the system

∂tH3,± = −∂1E2,± + ∂2E1,±, in Q±,(5.1a)

∂tE1,± = ∂2H3,± − J1,±, in Q±,(5.1b)

∂tE2,± = −∂1H3,± − J2,±, in Q±,(5.1c)

H3(0) = H0
3 , E1(0) = E0

1 , E2(0) = E0
2 , in Q,(5.1d)

[[H3]]Fint = J1,surf , on Fint.(5.1e)

Cavity solution. In this experiment, we use the well-known cavity solution, cf.
[16, Sec. 6], to construct a regular reference solution of the interface problem (2.5).
On each cuboid Q−, Q+ we make the ansatz

H3,±(x1, x2, t) =
1

ω± (k±1 A2 − k2A
±
1 ) cos (k2x2) cos (k

±
1 (x1 + 1)) sin (ω±t),(5.2a)

E1,±(x1, x2, t) = −A±
1 sin (k2x2) sin (k

±
1 (x1 + 1)) cos (ω±t),(5.2b)

E2,±(x1, x2, t) = −A2 cos (k2x2) sin (k
±
1 (x1 + 1)) cos (ω±t),(5.2c)

with spatial wave numbers

(5.2d) k±1 =
πk±

2
, k2 = πm, k±,m ∈ N,

temporal wave numbers

(5.2e) ω± =

√(
k±1

)2
+ k22,

and amplitudes

(5.2f) A±
1 = −A2

k2

k±1
, A2 ∈ R.

We choose the data such that

Jsurf(x2, t) = lim
x1→0+

H3,+(x1, x2, t)− lim
x1→0−

H3,−(x1, x2, t),(5.3a)

J1,± = J2,± = 0.(5.3b)

1https://gitlab.kit.edu/kit/ianm/ag-numerik/projects/dg-maxwell/timaxdg
2https://www.dealii.org

https://gitlab.kit.edu/kit/ianm/ag-numerik/projects/dg-maxwell/timaxdg
https://www.dealii.org
https://gitlab.kit.edu/kit/ianm/ag-numerik/projects/b10/dgtd-interface-problem
https://gitlab.kit.edu/kit/ianm/ag-numerik/projects/b10/dgtd-interface-problem
https://gitlab.kit.edu/kit/ianm/ag-numerik/projects/dg-maxwell/timaxdg
https://www.dealii.org
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Figure 2. Error in the L2-norm of the cavity solution (5.2) plot-
ted against the mesh size for a fixed time-step width τ = 1 · 10−4.
The dotted lines correspond to the lift defined in (3.5a), and the
circled lines to the interpolation in (3.9).

The remaining constants are chosen such that Jsurf ̸= 0. In our simulation we used
the specific values

k− = 2, k+ = 4, m = 1, A2 = 1.

We chose a mesh sequence of 20 meshes with mesh sizes in the range of 1 · 10−1

and 1 · 10−2, a fixed time-step width τ = 1 · 10−4, and polynomial degrees between
one and four. For each mesh size, we calculated two different numerical solutions
differing in the treatment of the surface current (5.3a). One series of simulations is
done with the lifting defined in (3.5a) and one series is done with the interpolation
of the surface current described in (3.9). At several time steps, we calculated the
L2-error against the reference solution (5.2). Figure 2 depicts the different mesh
sizes on the x-axis and the maximal L2-error obtained on the y-axis. We observe
for k-th order ansatz polynomials k-th order spatial convergence until a plateau is
reached where the error of the time discretization dominates. This agrees with both,
Theorem 3.3 and Corollary 3.8 Additionally, Figure 2 shows that the interpolation
of the surface current leads to the same spatial error. This is expected since the
surface current (5.3a) is smooth.

Low regularity surface current. The aim of this experiment is to show the
effect of spatial regularity of surfaces currents on the spatial convergence order. We
follow the ideas in [17] and construct for α ≥ 0 trigonometric polynomials

(5.4) fα(x) =

M/2∑
j=−M/2+1

να,je
ijx, x ∈ [−π, π], M = 2m,m ∈ N,

with coefficients
να,0 = νM/2 = 0,

να,j =
i · rj

(1 + j2)
1
2 (

1
2+α)

for j = 1, . . . ,
M

2
− 1,

να,j = −να,j+M/2 for j = −M

2
+ 1, . . . ,−1.

The factors (rj)
M/2−1
j=1 are uniformly sampled numbers from the interval [−1, 1].

In the limit M → ∞, the sequence of trigonometric polynomials converges to a
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Figure 3. Illustration of discrete regularity: the norm ∥fα∥Hη ,
for fα given in (5.4), for different values of α and η plotted against
the number M of Fourier modes.

function in the Sobolev space Hα
per(−π, π) with norm

∥g∥2α = 2π
∑
j∈Z

(1 + j2)α|ĝj |2, g(x) =
∑
j∈Z

ĝje
ijx.

The coefficients are chosen in such a way that the trace of fα vanishes on the
boundary {−π, π} and, thus, satisfy homogenous Dirichlet boundary conditions.
By construction, the norm ∥fα∥η is bounded uniformly in M for η ≤ α and grows
otherwise. Figure 3 demonstrates this behavior. The surface current is defined as

Jsurf(t, x2) =
1

∥fα∥0
fα(2πx2 − π) sin(πt)2

for x2 ∈ [0, 1] and t ∈ [0, T ].
In our experiment, we chose M = 2m for m = 22 and a series of regularity

coefficients α ∈ [0, 4]. For every α, we calculated a reference solution on fine
mesh with polynomial degree kref = 3, mesh size href = 1 · 10−3, and step size
τref = 5 · 10−5. We then compared the L2-error of a sequence of solutions on 8
different meshes with mesh sizes in the range between 1·10−1 and 5·10−3 at the end
time T = 1 against the reference solution and estimated the order of convergence
(EOC). The experiment was performed for first and second order polynomials with
the fixed time step size τ = 2.5 · 10−4.

Figure 4 shows the dependence of the convergence order on the spatial regularity
of the surface current. For α < 1/2 little to no convergence is observed. The order
then grows linearly for α ∈ [0.5, 1.5] until it stagnates.

This agrees with Theorem 3.3 provided that one can improve on the results in
[10, Sec. 2] to solutions with piecewise regularity PHs(Q) for s = min{α+1/2, 2},
α > 1/2. In particular, looking at the proofs one would expect that the regularity
requirements on Jsurf can be reduced by one order of Sobolev regularity.

Polynomial solution. In this example, we investigate the temporal errors by con-
structing a polynomial solution which does not create spatial errors. We construct
a solution that is polynomial in space in order to isolate the error introduced by
time discretization. The ansatz polynomials in space are given by

(5.5a) q−(x1) = 2 + x1, q+(x1) = −1 + x1, r(x2) = x2(1− x2)
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Figure 4. Plot of the estimated order of convergence against the
discrete regularity parameter α. For each α, we computed approx-
imations using 8 different mesh sizes between 1 · 10−1 and 5 · 10−3

with a fixed time step size τ = 2.5 · 10−4. They are then compared
to a reference solution computed with kref = 3, href = 1 · 10−3 and
τref = 5 · 10−5.

and the ansatz function in time by

(5.5b) p(t) = sin(2πt).

We define on Q± the fields

H3,±(x1, x2, t) = p(t)q±(x1)r
′(x2),(5.5c)

E1,±(x1, x2, t) = p′(t)q±(x1)r(x2),(5.5d)

E2,±(x1, x2, t) = 0(5.5e)

and define the surface current again as

(5.5f) Jsurf(x2, t) = lim
x1→0+

H3,+(x1, x2, t)− lim
x1→0−

H3,−(x1, x2, t).

Additionally, we define the volume current on Q± as

J1,±(x1, x2, t) = p(t)q±(x1)r
′′(x2),(5.5g)

J2,±(x1, x2, t) = −p(t)q′±(x1)r
′(x2).(5.5h)

We chose a mesh sequence with 5 different mesh sizes between 5 · 10−1 and
5 · 10−2. For every mesh in the sequence, we compared the L2-error between the
reference solution and the numerical scheme at several time steps for a total of 40
different time step sizes in the range between 1 · 10−1 and 1 · 10−4. Throughout all
calculations, we used a polynomial degree of 3 in order to discretize the reference
solution exactly in space. Figure 5 shows on the x-axis the time stepsize τ and the
maximal L2-error on y-axis. The method converges with second order in time if
the CFL condition (4.2) is satisfied.
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Appendix A. Extension

Proof of Lemma 2.4 (1). Let v ∈ X 1/4
j . It holds

|Φj(v)|2H1(Q2)
=

∫ 1

0

∥∂x1Φj(v)(x1, ·)∥2L2(S) dx1 +

∫ 1

0

|Φj(v)(x1, ·)|2H1(S) dx1

≤
∫ 1

0

∥∂x1Φj(v)(x1, ·)∥2L2(S) dx1 + C

∫ 1

0

∥Φj(v)(x1, ·)∥2(−∆j)1/2
dx1,

where we used that the H1(S)-norm is equivalent to the graph norm of (−∆j)
1/2,

see, e.g., Remark 2.2. For x1 > 0, we obtain

∂x1
Φj(v)(x) =

1

2

(
χ′(x1)− χ(x1)(−∆j)

1/2
)(

e−x1(−∆j)
1/2

v
)
(x2, x3).

Hence, it holds

|Φj(v)|2H1(Q2)
≤ C

∫ 1

0

∥e−x1(−∆j)
1/2

v∥2(−∆j)1/2
dx1.

Proposition 6.2 in [21] implies the estimate∫ 1

0

∥(−∆j)
1/2e−x1(−∆j)

1/2

v∥2L2(S) dx1 ≤ C∥v∥(−∆j)1/4 .

We therefore concluded that (1) holds. □
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28 BENJAMIN DÖRICH, JULIAN DÖRNER, AND MARLIS HOCHBRUCK

[4] R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and

technology. Vol. 1, Springer-Verlag, Berlin, 1990. Physical origins and classical methods, With

the collaboration of Philippe Bénilan, Michel Cessenat, André Gervat, Alain Kavenoky and
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vol. 49, Birkhäuser/Springer, Cham, 2023. MR4592531
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