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Abstract

The interaction of light with short light pulses is relevant in optical traps,
optical tweezers, and many other applications. The theoretical description
of such polychromatic light-matter interaction is challenging, and more
so when the object is moving with respect to the light source, albeit with
constant speed. Light sails are futuristic examples where such speed should
reach the relativistic regime. In here, we provide a methodology for the
theoretical and numerical analysis of the interaction of light pulses with
objects moving with constant speed. The methodology allows one, in
particular, to readily compute the transfer of fundamental quantities such
as energy and momentum from the light pulse to the object. As an example,
we compute the transfer of energy and momentum between a given pulse
and a silicon sphere moving at relativistic speeds. The methodology,
however, is valid for generic pulses and objects. Particularizing the
equations to the case of zero speed allows one to treat static or quasi-static
objects. The method is based on the polychromatic T-matrix formalism,
which leverages the many publicly available resources for computing T-
matrices.

∗maxim@vavilin.de
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1 Introduction and summary

The manipulation of matter using light has been an active area of interest in optics
and photonics for decades [1]. The transfer of momentum and angular momentum
from light to matter allows one to exert control over objects, influencing their
motion in optical traps and optical tweezers, which sometimes use short light
pulses [2]. Light pulses are also used to measure particle sizes and refractive
indexes [3], and even to change intrinsic material properties such as magnetization
[4]. Some futuristic proposals aim at using lasers to propel light sails deep into
space [5, 6, 7]. Many of these applications pose a theoretical challenge because the
calculation of the mechanical effects of light-matter interaction is very commonly
done in the monochromatic regime, which covers neither light pulses nor the
frequency changes experienced by light when it interacts with moving objects.

In this article, we provide a methodology for the theoretical and numerical
analysis of the interaction of light pulses with moving objects. For this, we use the
recently developed polychromatic T-matrix formalism [8]. It extends Waterman’s
monochromatic T-matrix formalism [9] to the polychromatic domain, allowing
one to describe scenarios where the light-matter interaction mixes the frequencies
of the incident spectrum. The T-matrix of an object is an operator that maps
incident fields to the corresponding scattered fields, and fully describes the linear
interaction between light and the object. The polychromatic T-matrix method
provides a natural way to treat the interaction of light with objects moving with
constant speed because the method is based on the Poincaré group, the symmetry
group of the Minkowski space-time which includes Lorentz boosts. The Lorentz
boosts are transformations that change the frame of reference to a one moving
with constant speed. Similarly, Lorentz boosts may be used to describe moving
objects. The formalism also gives access to the scalar product that can be used
to efficiently compute the transfer of quantities such as energy and momentum
between the field and the object. The proposed methodology applies to generic
objects, unlike earlier methods that were limited to the relativistic motion of
spherical objects [10, 11, 12]. Given that the polychromatic domain supports the
linear dependence between general time-dependent incident and scattered fields,
the polychromatic T-matrix is suitable for describing time-dependent scattering
in general, and hence it complements existing approaches [13, 14].

The rest of the article is organized as follows. In Sec. 2, the elements of the
polychromatic T-matrix formalism that are essential for this work are shortly
explained: the wave function, the electromagnetic scalar product, and the Lorentz
boost of electromagnetic fields. In Sec. 3, the formulas and the procedure for
analyzing the interaction between a generic light pulse and a generic object
moving at a constant speed are introduced. As an example, the interaction of a
particular light pulse and a relativistically moving silicon sphere is investigated
for a wide variety of speeds, with an emphasis on the transfer of energy and
momentum between the light pulse and the sphere. The analysis is conducted in
both co-moving and laboratory frames. We establish that the quantities in the
laboratory frame should be obtained by transforming the ones obtained in the
object frame, instead of doing the analysis directly in the moving frame. While
we provide the formulas that theoretically allow one to compute the T-matrix of a
moving object, we also demonstrate that, in practice, the multipolar orders of the
light-matter interaction cannot really be truncated without losing information
about the scatterer. Section 4 concludes the article.
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The presented theoretical framework can help in advancing the technology of
devices such as light sails, including the practical optimization of sail designs
and material selection to enhance the efficiency of the propulsion of the devices.
Additionally, it can be used for predicting spectroscopic signals of objects in
relativistic motion, such as, for example, chiral molecules in outer space [15].
Moreover, the application of the methodology for objects at rest provides a
rigorous and simple, yet powerful approach to the study and engineering of
light-matter interaction between generic light pulses and generic objects, with
clear applications to pulsed optical traps and tweezers.

The methodology is computationally friendly. The T-matrix is a popular
computational strategy [16, 17], and there are multiple algorithms to compute
T-matrices of physical scatterers [18, 19]. There is also a variety of publicly
available resources for computing T-matrices [20]. Together with the formulas in
this paper, such resources allow one to readily compute interaction of light with
relativistically moving scatteres. The code that provides the numerical results of
this study is available under https://www.waves.kit.edu/downloads/CRC1173_
Preprint_2024-10_Codes.zip. The code uses the recently released treams
package [21].

2 Theoretical Framework

Here, we shortly summarize the relevant parts of the recently developed polychromatic
T-matrix formalism [8], as well as the notion of the electromagnetic scalar product
and the transformation rules for the electromagnetic field upon Lorentz boosts.

2.1 Wave function and scalar product

The total electromagnetic field outside of a sphere enclosing a scatterer may be
decomposed into the regular incident and the irregular scattered fields [22]. The
polychromatic incident electromagnetic field Einc(r, t) and can be represented
using its decomposition into multipolar fields

Einc(r, t) =

∫ ∞

0

dk k
∑
λ=±1

∞∑
j=1

j∑
m=−j

fjmλ(k)Rjmλ(k, r, t), (1)

with speed of light c, wavenumber k = ω/c, helicity (circular polarization)
λ = ±1, total angular momentum j = 1 (dipolar fields), j = 2 (quadrupolar
fields) etc., and angular momentum along the z-axis m = −j,−j + 1, . . . j. We
use the complex-valued electric field E(r, t), connected to the real field via
E(r, t) = 2ℜ[E(r, t)].

The complex coefficient function of the decomposition fjmλ(k) is the wave
function of the field in the angular momentum basis and the basis vector fields
are

Rjmλ(k, r, t) =

√
cℏ
ϵ0

k e−ikct

√
π
√
2j + 1

j+1∑
L=j−1

√
2L+ 1 iLjL(kr)C

jλ
L0,1λY

L
jm(r̂), (2)

with reduced Plank’s constant ℏ, permittivity of vacuum ϵ0, spherical Bessel
functions jL(x), Clebsch-Gordan coefficients Cj3m3

j1m1,j2m2
, and vector spherical

3

https://www.waves.kit.edu/downloads/CRC1173_Preprint_2024-10_Codes.zip
https://www.waves.kit.edu/downloads/CRC1173_Preprint_2024-10_Codes.zip


harmonics Y L
jm(r̂) as defined in [23]. The basis vector fields Rjmλ(k, r, t) are

connected to the usual electric (N) and magnetic (M) multipolar fields via

Rjmλ(k, r, t) = −
√

cℏ
ϵ0

1√
2π

k ij
(
e−ikct Njm(kr, r̂) + λ e−ikct Mjm(kr, r̂)

)
(3)

The extra factor of k in the integration measure of Eq. (1) and in the definition
of Eqs. (2,3) are necessary parts of the formalism that follow from the invariant
scalar product and ensure the unitarity of Lorentz transformations [8].

One of the advantages of using the language of wave function is the access to
the invariant scalar product between two free solutions of Maxwell equations
[24], which, with our conventions reads:

⟨f |g⟩ =
∑
λ=±1

∫ ∞

0

dk k

∞∑
j=1

j∑
m=−j

f∗
jmλ(k)gjmλ(k), (4)

which has an equivalent expression in the plane wave basis:

⟨f |g⟩ =
∑
λ=±1

∫
d3k

k
f∗
λ(k)gλ(k). (5)

The wave function coefficients in both bases are connected via the Wigner
D-matrix:

fλ(k) =

∞∑
j=1

j∑
m=−j

√
2j + 1

4π
Dj

mλ(ϕ, θ, 0)
∗ fjmλ(k), (6)

where θ and ϕ are polar and azimuthal angles of k, respectively, namely θ =
arccos (kz/k), and ϕ = arctan2 (ky, kx).

The known action of the symmetry generators on the wave function [25],
gives access to physical quantities contained in the field, for example number of
photons ⟨f |f⟩, energy ⟨f |H|f⟩ and momentum in the z-direction ⟨f |Pz|f⟩ [26, §9,
Chap. 3]. Those will be used in Sec. (3), and are easy to compute numerically.

The scattered electromagnetic field can also be connected to this formalism,
via the decomposition into irregular multipolar fields

Esca(r, t) =

∫ ∞

0

dk k
∑
λ=±1

∞∑
j=1

j∑
m=−j

gjmλ(k)Sjmλ(k, r, t), (7)

where Sjmλ(k, r, t) is defined similarly to Rjmλ(k, r, t) with spherical Bessel
functions jL(kr) substituted with spherical Hankel function of the first type
halved: 1

2h
(+)(kr). The factor 1

2 is necessary for using the same scalar product
formula Eq. (4) to compute quantities contained in the scattered field [8].

2.2 Lorentz boost of electromagnetic field

Lorentz boosts are transformations that relativistically describe the change to a
reference frame that moves with some constant velocity. Throughout the article,
unless stated otherwise, we will use their active counterpart that describes the
movement of the object rather than the movement of the reference frame.

4



A 4-vector of a point in Minkowski space-time is transformed under a Lorentz
boost in the z-direction via [25, Chap. 10]

xµ =


ct
x1

x2

x3

 7→ Lz(ξ)
µ
ν x

ν =


cosh(ξ) 0 0 sinh(ξ)

0 1 0 0
0 0 1 0

sinh(ξ) 0 0 cosh(ξ)



ct
x1

x2

x3

 , (8)

where the boost parameter is called rapidity and is connected to the velocity v via
ξ = arctanh(v/c). Rapidity provides a natural parametrization of boosts, making
many formulas more compact, compared with formulation with v. However, the
speed of the boost will be also used in this text.

A general Lorentz boost in an arbitrary direction n̂ can be expressed as a
composition of a boost in the z-direction and spacial rotations:

Ln̂(ξ) = R(ϕ, θ, 0)Lz(ξ)R
−1(ϕ, θ, 0). (9)

Here the direction of the boost n̂ is parametrized by polar angle θ = arccos (nz)
and azimuthal angle ϕ = atan2 (ny, nx), with the rotations R parametrized via
Euler angles in zyz-convention R(α, β, γ) = Rz(α)Ry(β)Rz(γ).

For a massless 4-wave vector kµ with kµkµ = 0, or k0 = |k| =: k, the
z-direction boost implies

kµ =


|k|
kx
ky
kz

 7→


cosh(ξ)|k|+ sinh(ξ)kz

kx
ky

sinh(ξ)|k|+ cosh(ξ)kz

 = k̃µ. (10)

The angles and the wave number of the boosted wave vector can be written in
terms of the old ones via

cos(θ̃) =
cos(θ) cosh(ξ) + sinh(ξ)

cosh(ξ) + cos(θ) sinh(ξ)
=

cos(θ) + tanh(ξ)

1 + cos(θ) tanh(ξ)
(11)

k̃ = k(cosh(ξ) + cos(θ) sinh(ξ)) (12)

ϕ̃ = ϕ. (13)

The transformation properties of electric and magnetic fields under the actions
of space-time symmetries are well-known. Specifically, the active Lorentz boost
with velocity v of real-valued electromagnetic fields is defined as [27, Sec. 11.10]

Ẽ(r, t) = γE(r̃, t̃)− γv ×B(r̃, t̃)− γ2v

(γ + 1)c2
v · E(r̃, t̃) (14)

B̃(r, t) = γB(r̃, t̃) +
1

c2
γv × E(r̃, t̃)− γ2v

(γ + 1)c2
v ·B(r̃, t̃) (15)

with inversely transformed space-time point

(
ct̃
r̃

)
= L−1(ξ)

(
ct
r

)
and γ =

(1− v2/c2)−1/2. The passive version of the Lorentz boost, i.e. the boost of the
reference frame instead of the field, differs from Eqs. (14-15) by the substitution
v → −v and should not be confused with the active version.
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The Lorentz boost Lz(ξ) of the wave function in plane wave basis, i.e. its
change when the field is transformed under Eqs. (14)-(15), is [25, Eq. (10.4-22)]

Lz(ξ)fλ(k) = fλ(k
′), (16)

with k′ = L−1
z (ξ)k defined by Eqs. (11-13), but substituting ξ → −ξ to implement

the inverse transformation.
In the angular momentum basis, the action of the boost reads [8, Eq. (79)]:

Lz(ξ)fjmλ(k) =
1

2

√
2j + 1

∞∑
j′=1

√
2j′ + 1

∫ 1

−1

d(cos θ) djmλ(θ) d
j′

mλ(θ
′)fj′mλ(k

′),

(17)

where the djmλ(α) are the small Wigner-matrices as defined in [25], Sec. 7.3, and
with k′ and θ′ given by

k′ = k
(
cosh(ξ)− cos(θ) sinh(ξ)

)
(18)

cos(θ′) =
cos(θ)− tanh(ξ)

1− cos(θ) tanh(ξ)
. (19)

Notably, λ and m are not changed by a boost in the z-direction.
The last formula can be illustrated with an exemplary wave function of a

definite angular momentum. A multipolar pulse is considered, defined by the
wave function fjmλ(k) with j = 2, m = 0 and λ = 1:

f201(k) = e
− (k−k0)2

2(∆k)
2
. (20)

Here, 1
c∆k

= ∆t = 50 fs is a Gaussian time width such that the values of the

function outside of the domain 8.72 µm−1 ≤ k ≤ 9.23 µm−1 are insignificant.
The center wavelength is 2π

k0
= 700 nm. The coefficients f ′

j01(k) = ⟨kj01|f ′⟩ of
the Lorentz boosted field are depicted in Fig. (1). The boosted coefficients have
non-zero components for all j ∈ N, here we plot only the first five.

Apart from the change of the values of the wave function under the Lorentz
boost, one may also observe the spreading of the wave function in the wavenumber
domain. Note that the boosted wave function |f ′⟩ contains both higher and
lower multipolar components than the initial |f⟩.

2.3 Polychromatic T-matrix and S-matrix

Consider the incident and scattered parts of the total polychromatic field outside
a sphere enclosing the scatterer:

Einc(r, t) =

∫ ∞

0

dk k
∑
λ=±1

∞∑
j=1

j∑
m=−j

fjmλ(k)Rjmλ(k, r, t) (21)

Esca(r, t) =

∫ ∞

0

dk k
∑
λ=±1

∞∑
j=1

j∑
m=−j

gjmλ(k)Sjmλ(k, r, t), (22)
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(a) ξ = 0.05 (b) ξ = −0.05

Figure 1: Active Lorentz boost of a wave function in z-direction |f ′⟩ = Lz(ξ) |f⟩
with positive rapidity ξ = 0.05 (a) and negative rapidity ξ = −0.05 (b). The
initial wave function (dashed) describes a multipolar pulse with quantum numbers
j = 2, m = 0, λ = 1, and a Gaussian spectral profile. Wave function of the
boosted field f ′

jmλ(k) = ⟨kjmλ|f ′⟩ is shown for multipolar order up to j = 5.

The polychromatic T-matrix is defined as an operator that maps the wave
function of the incident field onto the wave function of the scattered field:

gjmλ(k) =

∫ ∞

0

dk′ k′
∑

λ′=±1

∞∑
j′=1

j′∑
m′=−j′

T jmλ
j′m′λ′(k, k

′)fj′m′λ′(k′). (23)

A special case of the polychromatic T-matrix is it being diagonal in frequency:

T jmλ
j′m′λ′(k, k

′) =
1

k
δ(k − k′)T jmλ

j′m′λ′(k). (24)

This realizes a usual situation when each frequency component of the incident
field contributes only to the same frequency component of the scattered field.
Equation (118) in Ref. [8] connects the T jmλ

j′m′λ′(k, k′) in Eq. (25) with the
monochromatic T-matrices for the conventions used in the recently released
treams package.

The S-matrix is an alternative setting for formalizing light-matter interaction.
The S-matrix maps incoming fields to outgoing fields. The polychromatic S-
matrix[8, Sec. 3] is defined in our convention as, S = 1+ T , so the coefficients
of the incoming field are equal to the coefficients of the incident field, and the
outgoing part of the field is computed as

hjmλ(k) = fjmλ(k) + (Tf)jmλ(k) (25)

= fjmλ(k) +
∑

λ′=±1

jmax∑
j′=1

j′∑
m′=−j′

T jmλ
j′m′λ′(k)fj′m′λ′(k), (26)

where we use Eq. (23) for the case of a frequency-diagonal T-matrix Eq. (24).
In the S-matrix setting, the incoming and outgoing fields are the total fields

before the interaction starts and after it has stopped, respectively. It is then
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straightforward to write down the change of a given quantity contained in the
field, such as energy or momentum:

⟨∆Γ⟩ = ⟨f |Γ|f⟩ − ⟨h|Γ|h⟩ = ⟨f |Γ− S†ΓS|f⟩, (27)

where Γ is the self-adjoint operator corresponding to the quantity of interest. For
quantities that obey global conservation laws, such as energy, angular momentum,
and linear momentum, the difference ⟨∆Γ⟩ is transferred to the object during
the light-matter interaction.

Equation 27 is the basic equation that we will use to compute the transfer
of energy and linear momentum from a light pulse to a relativistically moving
object. For the rest of the article, we will treat the case of an achiral sphere.
We highlight, however, that the methodology that we present can be applied to
any object whose T-matrix is at hand. T-matrices can be obtained for virtually
any material object, including individual particles of arbitrary shape, (chiral)
molecules, and clusters and periodic arrangements thereof.

3 Interaction between a light pulse and a relativistically
moving silicon sphere

Here we focus on the interaction between light and a moving silicon sphere, in
particular we compute the difference of energy and momentum contained in light
before and after interaction with the sphere. First, the interaction is computed
in the reference frame of the object (the co-moving frame), and later, in the
laboratory frame.

3.1 Co-moving frame of reference

Consider an incident field |f⟩ present in the laboratory frame, defined by the
wave function in the plane wave basis as

f+(k) = A e−
(k−k0)2∆2

t c2

2 e
− θ2

2∆2
θ e−iϕ (28)

f−(k) = 0. (29)

The angles θ, ϕ are the polar and azimuthal angles of the wave vector k. The
time width of the pulse is ∆t = 10 fs, the central wavelength 2π

k0
= 700 nm, and

the polar angle spread ∆θ = 0.1 radians. The constructed pulse is focused along
the z-axis (see Fig. (2)), propagating in the positive z direction with values of
f+(k) ≈ 0 for θ > 0.37. The Gaussian profile makes the wave function negligible
outside of the region 8.1 µm−1 < k < 9.8 µm−1.

We set the normalization constant A = 3.25× 1011 nm to fix the energy of
the pulse to 5 mJ via

⟨f |H|f⟩ =
∑
λ=±1

∫
d3k

k
|fλ(k)|2cℏk = 5× 10−3 J, (30)

where we have used that H|kλ⟩ = ℏck|kλ⟩. Similarly, using that Pz|kλ⟩ =
ℏkz|kλ⟩, the momentum Pz carried by the pulse is

⟨f |Pz|f⟩ =
∑
λ=±1

∫
d3k

k
|fλ(k)|2ℏk cos θ = 1.66× 10−11 kgm s−1. (31)
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Figure 2: Energy density of the incident pulse in the xz-plane, at three different
times.

We assume that the pulse interacts with a silicon sphere that moves along
the z-axis at some constant speed v = c tanh ξ, away or towards the pulse. In the
co-moving frame the object is stationary, it is described by its frequency-diagonal
T-matrix, and perceives the incident field to be Lorentz boosted in the opposite
direction |f ′⟩ = Lz(−ξ) |f⟩.

We are after the quantities:

⟨∆H⟩obj = ⟨f ′|H − S†HS|f ′⟩, and

⟨Pz⟩obj = ⟨f ′|Pz − S†PzS|f ′⟩,
(32)

where the obj superscript denotes that they are computed in the reference
frame co-moving with the object. In the light sail application, the energy and
momentum transferred to the object in its own reference frame are crucial
quantities to understand the amount of heating and acceleration caused by the
pulse, respectively.

The numerical computations are conducted for the span of rapidities −1.1 ≤
ξ ≤ 1.1 or, equivalently, −0.8 ≤ v/c ≤ 0.8. Positive v corresponds to the sphere
moving in the positive z-direction, and negative v to the movement in the negative
direction. For each velocity the transformed field has significant components in
different parts of the frequency spectrum. If the pulse in the laboratory frame is
completely described on the wave number domain kmin ≤ k ≤ kmax, then the
optical properties of the object should be, in general, known in the wave number
region e−|ξ|kmin ≤ k ≤ e|ξ|kmax. Figure (3a) depicts the optical properties of
silicon [28] on the total wave number band required for computation in the
chosen range of velocities. The maximal multipole order of the T-matrix that
is required for the precise scattering simulation needs to be determined as well.
Figure (3b) illustrates Frobenius norms of the monochromatic silicon T-matrices
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∥T (k)∥ =
√

Trace[T †(k)T (k)] (33)

at different maximal multipole orders on the same wavenumber domain, motivating
the truncation order to be jmax = 5.

(a) (b)

Figure 3: (a) In black: refractive index n(k) and extinction coefficient κ(k) of
Silicon [28] as functions of wavenumber on the whole domain required for the
computation. In red: photon density per wavenumber of the considered pulse
as perceived by the object moving with three speeds v. The negative sign of v
corresponds to the movement toward the pulse. (b) Interaction cross-section
of a silicon sphere with radius 150 nm as a function of wavenumber, computed
via the Frobenius norm of the monochromatic T-matrix for different maximal
multipolar orders jmax. The brown line corresponding to jmax = 6 completely
covers the purple line of jmax = 5, bringing no additional precision.

The transfer of energy and momentum in the z-direction between the field
and the object are computed in the same manner as in the stationary case [8,
29], but with fields boosted in the direction opposite to the movement of the
object Lz(−ξ) |f⟩. It is important to note, that the wave function |f⟩ is defined
analytically in the plane wave basis and that it has significant angular momentum
components beyond the jmax found for the object at rest (Fig. 3b). Such j > jmax

components in the laboratory frame can produce j ≤ jmax components in the
frame of the object [Eq. (17)]. It is therefore required that the Lorentz boost
should be applied before the truncation of the maximal multipolar order in the
wave function of the incident field. In practice, one boosts fields in the plane
wave basis via Eq. (16), which loses no information about the wave function.
Only after this transformation the relevant (up to jmax) angular momentum
components fjmλ(k) = ⟨kjmλ|Lξ(z)|f⟩ should be extracted and used for the
interaction with the scatterer. Schematically, the recipe can be formulated as

fλ(k)
Boost−−−−−−−−−−−−→

to co-moving frame
f ′
λ(k)

Basis−−−−→
change

f ′
jmλ(k)

T-matrix−−−−−−→
truncated

g′jmλ(k), (34)

where the last step may be equivalently substituted with the action of the
S-matrix truncated at the same maximal multipolar order as the T -matrix.
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(a) (b)

Figure 4: The red lines show the transfer of (a) energy and (b) momentum in
the z-direction from the electromagnetic pulse |f⟩ to the silicon sphere that
moves at different velocities along the z-axis, computed in the reference frame of
the sphere. For the reference, the grey lines show (a) absorption and (b) total
interaction cross-section of the silicon sphere is given, evaluated at wave number
corresponding to the Doppler-shifted peak of the spectrum of the pulse. A
positive sign of v/c corresponds to the sphere moving in the positive z-direction
of the laboratory frame.

The results for the transfer of energy and momentum using the expressions in
(32) are depicted in Fig. (4). For comparison, in grey, the rotationally averaged
absorption and scattering cross-sections

σaver
abs (kp) =

4π

k2
Trace

[
1− S†(kp)S(kp)

]
(35)

σaver
sca (kp) =

4π

k2
Trace

[
T †(kp)T (kp)]. (36)

of the silicon sphere at rest are presented, evaluated at wave numbers corresponding
to the Doppler shifted peak of the spectrum of the pulse. For each velocity, the
center wavelength of the pulse k0 shifts as

kp ≈ k0(cosh(ξ)− cos(0) sinh(ξ)) (37)

= k0 e
−ξ = k0 e

− arctanh v/c, (38)

where the approximation holds because the incident pulse is focused along the
positive z-axis. The pulse interacts with the sphere in the wave number domain
around the new center wavelength, which makes the interaction stronger or
weaker depending on the velocity. The shape of the energy transfer reflects the
absorption profile, as expected. The shape of the momentum transfer ∆Pz can
be compared to the profile of the averaged scattering cross-section, since the
latter, in contrast to the average absorption, contains the scattering contribution.

The number of equidistant discretization points for the wave function in the
plane wave basis fλ(k) is Nk = 200, Nθ = 200, Nϕ = 100. Boosts in the plane
wave basis Eq. (16) consist in changing the assignment of the initial values to
the new domain points (k′(θ), θ′, ϕ′) according to Eqs. (11-13). The domain
stops being rectangular and equidistant in k and θ. After extracting the required
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angular momentum components of the boosted wave function, one must use
the T-matrix that corresponds to the new wave number domain. This allows
computation of outgoing coefficients via Eq. (25). The final result is evaluated
for rapidities between ξmin = −1 and ξmax = 1 in equidistant steps for Nξ = 400
points.

3.2 Laboratory frame of reference

Now the transfer of quantities is computed in the laboratory frame of reference.
We use the transformation properties of generators responsible for the corresponding
quantities: H = cP 0 for energy and Pz = P 3 for momentum in the z-direction:

Lz(ξ)HL−1
z (ξ) = cosh(ξ)H + sinh(ξ)Pzc (39)

Lz(ξ)PzL
−1
z (ξ) = sinh(ξ)H/c+ cosh(ξ)Pz, (40)

which implies the connection between the scalar product values in two frames to
be

⟨∆H⟩lab = cosh(ξ) ⟨∆H⟩obj − sinh(ξ) ⟨∆Pz⟩obj c (41)

⟨∆Pz⟩lab = − sinh(ξ) ⟨∆H⟩obj /c+ cosh(ξ) ⟨∆Pz⟩obj . (42)

The transfer of energy and momentum in the laboratory frame is shown in
Fig. (5).

(a) (b)

Figure 5: Loss of the (a) energy and (b) momentum in the z-direction from
the electromagnetic pulse |f⟩ when scattered by a silicon sphere that moves at
different velocities along the z-axis, as observed in the laboratory frame. The
positive sign of v/c corresponds to the sphere moving in positive z-direction

A notable phenomenon can be observed for some regions of negative v, when
the object moves towards the pulse. In the laboratory frame of reference, the
energy of the electromagnetic field increases. We note that, in contrast, this
does not happen in the frame of reference of the object (see Fig. 4a). In a
first order approximation, the phenomenon can be attributed to the Doppler
effect. Assuming now a monochromatic illumination for simplicity, one readily
appreciates that the Doppler effect can increase the energy as measured in
the laboratory frame, because when the object moves towards the source, the
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frequency of the scattered field coming back to the source will be larger than the
one emitted by the source. For the more complicated case of the polychromatic
pulse, one can apply the previous argument to each of the frequencies composing
the spectrum. A more detailed analysis, which we do not perform here, would
take into account the absorption of energy by the material and the directionality
of the scattering.

3.3 Polychromatic T-matrix of the moving silicon sphere

The scattering in the laboratory reference frame can also be described via the
boosted T-matrix, which acts on the incident field |f⟩ that is defined in the
laboratory frame. In this section we numerically compute the Lorentz boosted
T-matrix of the silicon sphere and use it to compute the transfer of momentum
in the laboratory frame.

The matrix element of the Lorentz boost in angular momentum basis is [8,
Sec. 2.2.1]

⟨k′j′m′λ′|Lz(ξ)|kjmλ⟩ =

= δλ′λδm′mΘ
(
|ξ| − |ln(k′/k)|

)√2j′ + 1
√
2j + 1

2k′k sinh(|ξ|)
dj

′

mλ(θ
′)djmλ(θ), (43)

which can be used to transform T-matrices via T̃ = Lz(ξ)TL
−1
z (ξ). The result

of the application is (see App. A):

T̃ j1m1λ1

j2m2λ2
(k1, k2) =

∫ k1e
|ξ|

k1e−|ξ|
dk′2 k

′
2

∞∑
j′1=1

∞∑
j′2=1

T
j′1m1λ1

j′2m2λ2
(k′2)×

× 1

2

√
2j1 + 1

√
2j′1 + 1

1

k1k′1|sinh ξ|
dj1m1λ1

(θ) d
j′1
m1λ1

(θ′)

× 1

2

√
2j′2 + 1

√
2j2 + 1

Θ
(
|ξ| − |ln(k′2/k2)|

)
k′2k2|sinh ξ|

dj2m2λ2
(θ2) d

j′2
m2λ2

(θ′2), (44)

with

cos θ =
k1 cosh ξ − k′2

k1 sinh ξ
, cos θ′ =

k1 − k′2 cosh ξ

k′2 sinh ξ
, (45)

cos θ2 = −k′2 − k2 cosh ξ

k2 sinh ξ
, cos θ′2 = −k′2 cosh ξ − k2

k′2 sinh ξ
. (46)

One may see that Lorentz boost of the frequency-diagonal T-matrix of the
silicon sphere makes it non-diagonal in frequency, as expected for moving objects.
The element of the boosted T-matrix with j1,2 = 1, m1,2 = 1, λ1,2 = 1, as a
function of incident wave number k1 and scattered wave number k2 is illustrated
in Fig. (6), computed for rapidity ξ = 0.025 and 0.05.

We compute the difference of momentum between the outgoing and incoming
fields similar to the stationary case

⟨∆Pz⟩ = ⟨f |Pz|f⟩ − ⟨h|Pz|h⟩ , (47)
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(a) ξ = 0.025

(b) ξ = 0.05

Figure 6: Elements of the polychromatic T-matrix for the silicon sphere moving
with different boost parameters ξ = arctanh(v/c). The real part of the T-matrix
element is shown on the left and the imaginary part is on the right. The higher
the velocity, the wider the spreading of the scattered wave number for a fixed
incident wave number.
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but now the computation of the outgoing field involves integration over the
incident wave number:

hjmλ(k) = fjmλ(k) +

∫ ∞

0

dk′ k′
∑

λ′=±1

jmax∑
j′=1

j∑
m′=−j

T̃ jmλ
j′m′λ′(k, k

′)fj′m′λ′(k′). (48)

The integral in k′ can be truncated to the region of a significant part of the
Gaussian wave number profile of |f⟩.

Finally, the transfer of momentum is computed for a number of velocities
v/c = 0.00001, 0.025, 0.05, 0.075, 0.1 and 0.125. The results are depicted in
Fig. (7), next to the reference computed in the last section. The transfer via the
boosted T-matrix in the lab frame fails for higher velocities, when the chosen
jmax = 6 cannot account completely for the scattering.

Figure 7: Transfer of momentum Pz between the electromagnetic pulse |f⟩
and the moving silicon sphere in the laboratory frame, computed via the
polychromatic T-matrix (black) and via transformed quantities from the co-
moving frame (blue) as reference.

We note that the T-matrix of the moving object has significant elements for
all values of total angular momentum j, because the interaction may happen
arbitrarily far from the origin of the reference frame. Therefore, the range of the
multipolar order can not be truncated without loss of the information about the
scatterer. This contrasts sharply with the possibility of such lossless truncation
for the T-matrix of a stationary object. Practically, this means that the value of
jmax in Eq. (48) is dictated by the character of the incident field. In particular,
jmax should encompass a region around the origin large enough to completely
account for the spatial domain of the interaction between the field and the
scatterer. For example, consider an interaction of a localized pulse hitting a
moving object when they both are near the origin of the reference frame. A
smaller jmax is required in this case compared to the interaction of the same
moving object with a pulse designed to hit the object further from the origin.
Similarly, it is impossible to find a jmax to completely describe the interaction
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of an ideal plane wave with a moving object, since there will be points in space,
where the interaction is happening, and that are arbitrarily far from the origin.
Computations in the co-moving frame may always be conducted with the jmax

dictated by the object’s finite size and not the pulse. This makes it beneficial
to compute quantities in the co-moving frame as depicted in Eq. (34), and to
transform them to the laboratory frame if needed, as in Eq. (42).

4 Conclusions

We have applied the polychromatic T-matrix formalism to the interaction between
light and relativistically moving objects. While the exemplary calculations are
performed for a particular light pulse and a silicon sphere, the formulas and the
procedure contained in this article apply to generic polychromatic illuminations
and generic objects. The transfer of energy and momentum between the pulse
and the silicon sphere, which is in constant uniform motion, has been computed
for a large range of velocities via switching to the co-moving frame of reference,
where the T-matrix of the object at rest is used. We have compared this method
to the direct use of the Lorentz boosted T-matrix in the laboratory frame, where
we computed the polychromatic T-matrix of a moving silicon sphere. The second
method is found to be rather impractical because the interaction may happen
arbitrarily far from the origin of the reference frame, and then, the multipolar
orders of the light-matter interaction cannot really be truncated without losing
information about the scatterer. One may, however, obtain any desired quantity
in the laboratory frame by suitably transforming the one obtained in the object
frame, as we have shown in the article.

The presented theoretical framework can be applied to light sails, including
the practical optimization of sail designs and material selection to enhance the
efficiency of the propulsion of the devices. Moreover, the application of the
methodology to objects at rest has immediate applications to pulsed optical
traps and tweezers.

The many publicly available resources for computing T-matrices [20] make
our approach computationally friendly. The codes use the recently released
treams package [21].

5 Acknowledgments

This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – Project-ID 258734477 – SFB 1173. J. D. Mazo–
Vásquez is part of the Max Planck School of Photonics, supported by the German
Federal Ministry of Education and Research (BMBF), the Max Planck Society,
and the Fraunhofer Society.

16



A Lorentz boost of frequency-diagonal T-matrix

The matrix element of the Lorentz boost in angular momentum basis is [8, Sec.
2.2.1]:

⟨k′j′m′λ′|Lz(ξ)|kjmλ⟩ =

= δλ′λδm′mΘ
(
|ξ| − |ln(k′/k)|

)√2j′ + 1
√
2j + 1

2k′k sinh(|ξ|)
dj

′

mλ(θ
′)djmλ(θ), (49)

which can be used to transfrom T-matrices via T̃ = Lz(ξ)TL
−1
z (ξ):

T̃ j1m1λ1

j2m2λ2
(k1, k2) = ⟨k1j1m1λ1|Lz(ξ)T L−1

z (ξ)|k2j2m2λ2⟩ (50)

=

∫ ∞

0

dk′1 k
′
1

∫ ∞

0

dk′2 k
′
2

∞∑
j′1=1

∞∑
j′2=1

T
j′1m1λ1

j′2m2λ2
(k′1, k

′
2)× (51)

× 1

2

√
2j1 + 1

√
2j′1 + 1

Θ
(
|ξ| − |ln(k1/k′1)|

)
k1k′1|sinh ξ|

dj1m1λ1
(θ1) d

j′1
m1λ1

(θ′1) (52)

× 1

2

√
2j′2 + 1

√
2j2 + 1

Θ
(
|ξ| − |ln(k′2/k2)|

)
k′2k2|sinh ξ|

d
j′2
m2λ2

(θ′2) d
j2
m2λ2

(θ2), (53)

where θ1,2, θ
′
1,2 are defined via

cos θ1 =
k1 cosh ξ − k′1

k1 sinh ξ
, cos θ′1 =

k1 − k′1 cosh ξ

k′1 sinh ξ
, (54)

cos θ′2 = −k′2 cosh ξ − k2
k′2 sinh ξ

, cos θ2 = −k′2 − k2 cosh ξ

k2 sinh ξ
. (55)

Since the T-matrix of the sphere is diagonal in frequency, this general expression
can be simplified. Using

T j1m1λ1

j2m2λ2
(k1, k2) = T j1m1λ1

j2m2λ2
(k2)

1

k2
δ(k1 − k2), (56)

the transformed T-matrix is written as

T̃ j1m1λ1

j2m2λ2
(k1, k2) = (57)

=

∫ ∞

0

dk′1 k
′
1

∫ ∞

0

dk′2 k
′
2

∞∑
j′1=1

∞∑
j′2=1

T
j′1m1λ1

j′2m2λ2
(k′2)

1

k′2
δ(k′1 − k′2)×

× 1

2

√
2j1 + 1

√
2j′1 + 1

Θ
(
|ξ| − |ln(k1/k′1)|

)
k1k′1|sinh ξ|

dj1m1λ1
(θ1) d

j′1
m1λ1

(θ′1)

× 1

2

√
2j′2 + 1

√
2j2 + 1

Θ
(
|ξ| − |ln(k′2/k2)|

)
k′2k2|sinh ξ|

d
j′2
m2λ2

(θ′2) d
j2
m2λ2

(θ2). (58)
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Integration over the wave number eliminates k1 and one of the Heaviside functions
truncates the integral in k2:

T̃ j1m1λ1

j2m2λ2
(k1, k2) =

∫ ∞

0

dk′2 k
′
2

∞∑
j′1=1

∞∑
j′2=1

T
j′1m1λ1

j′2m2λ2
(k′2)×

× 1

2

√
2j1 + 1

√
2j′1 + 1

Θ
(
|ξ| − |ln(k1/k′2)|

)
k1k′1|sinh ξ|

dj1m1λ1
(θ) d

j′1
m1λ1

(θ′)

× 1

2

√
2j′2 + 1

√
2j2 + 1

Θ
(
|ξ| − |ln(k′2/k2)|

)
k′2k2|sinh ξ|

d
j′2
m2λ2

(θ′2) d
j2
m2λ2

(θ2) (59)

=

∫ k1e
|ξ|

k1e−|ξ|
dk′2 k

′
2

∞∑
j′1=1

∞∑
j′2=1

T
j′1m1λ1

j′2m2λ2
(k′2)×

× 1

2

√
2j1 + 1

√
2j′1 + 1

1

k1k′1|sinh ξ|
dj1m1λ1

(θ) d
j′1
m1λ1

(θ′)

× 1

2

√
2j′2 + 1

√
2j2 + 1

Θ
(
|ξ| − |ln(k′2/k2)|

)
k′2k2|sinh ξ|

dj2m2λ2
(θ2) d

j′2
m2λ2

(θ′2), (60)

with

cos θ =
k1 cosh ξ − k′2

k1 sinh ξ
, cos θ′ =

k1 − k′2 cosh ξ

k′2 sinh ξ
, (61)

cos θ2 = −k′2 − k2 cosh ξ

k2 sinh ξ
, cos θ′2 = −k′2 cosh ξ − k2

k′2 sinh ξ
(62)
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