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ROBUST FULLY DISCRETE ERROR BOUNDS FOR THE

KUZNETSOV EQUATION IN THE INVISCID LIMIT

BENJAMIN DÖRICH† AND VANJA NIKOLIĆ‡

Abstract. The Kuznetsov equation is a classical wave model of acoustics that incorpo-
rates quadratic gradient nonlinearities. When its strong damping vanishes, it undergoes
a singular behavior change, switching from a parabolic-like to a hyperbolic quasilinear
evolution. In this work, we establish for the first time the optimal error bounds for
its finite element approximation as well as a semi-implicit fully discrete approximation
that are robust with respect to the vanishing damping parameter. The core of the new
arguments lies in devising energy estimates directly for the error equation where one can
more easily exploit the polynomial structure of the nonlinearities and compensate inverse
estimates with smallness conditions on the error. Numerical experiments are included to
illustrate the theoretical results.

1. Introduction

We consider quasilinear wave equations of the following form:

(1.1) (1 + κ∂tu)∂
2
t u− c2∆u− β∆∂tu+ ℓ∇u · ∇∂tu = f.

This model arises in nonlinear acoustics under the name Kuznetsov equation [24]. It
describes propagation of sound waves through fluids and can be understood as an approx-
imation to the Navier–Stokes–Fourier system of governing equations of sound motion that
is more accurate than Westervelt’s equation [37]. In the context of nonlinear acoustics,
u = u(x, t) in (1.1) is the acoustic velocity potential, c > 0 denotes the speed of sound in
the medium, and κ ∈ R and ℓ ∈ R are the nonlinearity coefficients. The quadratic gradi-
ent nonlinearity (that is, (12ℓ|∇u|

2)t) captures local (non-cumulative) nonlinear effects in
sound propagation, which may be prominent, for example, close to the sound source; see
the discussion in [14, Ch. 3] for more details on modeling.

Equation (1.1) is strongly damped when the parameter β, known in acoustics as the
sound diffusivity, is positive and it exhibits parabolic-like behavior leading to an expo-
nential decay of the energy of the solutions as time grows; see, e.g., [18, 28] for its well-
posedness analysis in this parameter regime. In the case β = 0, however, smooth solutions
are only expected to exist locally in time after which a gradient blow-up is expected; see
the analysis in [9], [19], and numerical experiments conducted in [36]. In practice, sound
diffusivity is small and it may become negligible in certain (inviscid) propagation media.
Investigation of the singular inviscid limit of a Dirichlet boundary-value problem for (1.1)
has been conducted in [19]. However, the questions of stability and asymptotic behavior
of approximate solutions of (1.1) as β → 0+ are open in the field.
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The first aim of the present work is to establish β-robust error bounds for the finite ele-
ment and full discretizations of (1.1). As it turns out, the robust discretization is possible
when using (at least) quadratic finite elements. Secondly, we determine the behavior of
the (semi-)discrete solutions as β → 0+, and the conditions under which it asymptotically
preserves the order of convergence of the exact solution established in [19]. In addition,
we determine how one has to couple the spatial discretization parameter, time step size,
and the damping parameter to allow also linear finite elements in space.

To the best of our knowledge, this is the first work dealing with the robust numerical
analysis of the semi-discrete Kuznetsov equation, and the first work analyzing a fully dis-
crete scheme for it. For the strongly damped Kuznetsov equation (with β > 0 fixed), where
one can exploit the parabolic-like evolution, a priori analysis of a mixed-approximation
has been conducted in [27] and an a priori analysis of a discontinuous Galerkin coupling
for a nonlinear elasto-acoustic problem based on this model has been performed in [29].

In contrast, quasilinear equations of Westervelt type given by

(1.2) (1 + κ1u+ κ2∂tu)∂
2
t u− c2∆u− β∆∂tu+ κ1(∂tu)

2 = f, κ1, κ2 ∈ R
are by now much better understood from the point of view of the numerical analysis as
they do not involve quadratic gradient nonlinearities. Again here, the cases β = 0 and
β > 0 are qualitatively different. Concerning the spatial discretization, the results in
[15] yield optimal order of convergence of space discrete solutions in the energy norm for
β = κ2 = 0. A β-uniform analysis of a mixed approximation of (1.2) with κ1 = 0 has been
conducted in [27]. Fully discrete schemes for (1.2) with β = κ2 = 0 have been analyzed
in [10, 25]. We also point out the works [8, 20, 22, 35], where existence of solutions to
undamped quasilinear and nonlinear evolution equations of this type is established, and
one can find approximation rates of the implicit and semi-implicit Euler methods. Within
an (extended) Kato framework, optimal order for these methods has been determined in
[16] and rigorous error bounds for the time discretization by higher-order Runge-Kutta
methods are derived in [17, 23].

For the strongly damped Westervelt equation with β > 0 fixed and κ2 = 0, optimal
order of convergence of continuous Galerkin methods has been established in [31]. Re-
cently also Westervelt’s equation with time-fractional dissipation instead of −β∆∂tu has
received attention. A time-stepping method for such a model has been analyzed in [2],
and a β-robust finite element analysis for both time-fractional and strongly damped West-
ervelt’s equation has been performed in [30], together with establishing the vanishing β
convergence rates of the approximate solution.

We mention also that other quasilinear wave models have been rigorously investigated
in the literature. In [13], trigonometric integrators have been analyzed for nonlinear wave
equations in the form of

∂2t u = ∂2xu− u+ κa(u)∂2xu+ κg(u, ∂xu)

in one space dimension under periodic boundary conditions. Analysis of different time
stepping schemes for nonlinear hyperbolic problems can also be found in [3, 4, 11, 33], and
two-step methods are considered in [5]. For a class of linearly implicit single-step schemes
as well as a linearly and a fully implicit two-step scheme, optimal error bounds are derived
in [26].

Compared to the available works, the main challenge here comes from treating the
nonlinear term ℓ∇u · ∇∂tu after discretization, in combination with having to guarantee
that the discrete version preserves the non-degeneracy condition:

1 + κ∂tu ≥ γ̃ > 0

and that the bounds are uniform with respect to β. To guarantee β uniformity, we have
to work also with the time-differentiated version of the (semi-)discrete problems, which
introduces (a discrete version of) the term ℓ∇u · ∇∂2t u. A fixed-point argument along the
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lines of existing results on the damped Kuznetsov equation in [27, 29] would then not allow
us to match the order of convergence in the fixed-point iterates. We will instead first show
the existence of a unique approximate solution on a discretization-dependent time interval
and then derive uniform bounds to extend it beyond it, in the spirit of [15]. To tackle the
quadratic gradient nonlinearity, the main idea here is to devise energy estimates directly
for the error equation where one can more easily exploit the polynomial structure of the
nonlinearities so as to mimic the following identity from the continuous setting:

(∇u · ∇∂2t u, ∂2t u)L2(Ω) = −1

2
(∆u ∂2t u, ∂

2
t u)L2(Ω)

and then compensate inverse estimates with smallness conditions on the error. We refer
to Proposition 3.4 for details.

Organization of the exposition. The rest of the manuscript is organized as follows.
We first state our main results in Section 2, both for the spatially semi-discrete and the
fully discrete problem, and present numerical experiments which corroborate the theory.
In Section 3, we conduct the finite element analysis and establish the β-robust optimal
error bounds in the energy norm when using quadratic or higher-order elements as well as
the β-limiting behavior of the finite element solution. Section 4 is dedicated to the stability
and error analysis of a fully discrete problem based on a semi-implicit Euler method for
the time discretization. An extension to linear finite elements is given in Section 5 with
non-robust estimates with respect to β.

Notation. Below we use x ≲ y to denote x ≤ Cy, where C > 0 is a generic constant that
does not depend on the discretization parameters nor on the damping coefficient β, but
may depend on the exact solution and the final time T . We use (·, ·)L2(Ω) to denote the

scalar product in L2(Ω). We omit the temporal domain when writing norms; for example,
∥ ·∥Lp(Lq(Ω)) denotes the norm on Lp(0, T ;Lq(Ω)). We use ∥ ·∥Lp

t (L
q(Ω)) to denote the norm

on Lp(0, t;Lq(Ω)) for some t ∈ (0, T ).

2. Statements of the main results

In this section, we present the main results of this work. To this end, we first discuss
the assumptions on the exact solution. As we are interested in the vanishing β dynamics,
we may assume that β ∈ [0, β̄] for some fixed β̄ > 0.

2.1. Assumptions on the exact solution. Throughout, we assume that the initial data
and source term are sufficiently smooth and small and the final time T > 0 short so that
the initial boundary-value problem

(2.1)


(1 + κ∂tu)∂

2
t u− c2∆u− β∆∂tu+ ℓ∇u · ∇∂tu = f in Ω× (0, T ),

u|∂Ω = 0,

(u, ut)|t=0 = (u0, v0),

has a unique solution in

U =L∞(0, T ;W 2,∞(Ω)) ∩H3(0, T ;Hk+1(Ω) ∩W 1,∞(Ω) ∩H1
0 (Ω)) ∩W 3,∞(0, T ;H2(Ω))

∩H4(0, T ;L2(Ω)),

for k ≥ 2 (or k ≥ 1 in Section 5), with β-uniform bounds:

(2.2) ∥u∥U ≤ C, 1 + κ∂tu ≥ γ̃ > 0 for all (x, t) ∈ Ω̄× [0, T ].

Note that the γ̃-bound in (2.2) guarantees that the leading term in the Kuznetsov equation
does not degenerate. The β-uniform well-posedness analysis of (2.1) with f = 0 can be
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found in [19]. Compared to the results of [19], we require more smoothness from the
solution. More precisely, assuming the domain Ω is sufficiently smooth, the results of [19,
Thm. 6.2] provide uniform well-posedness in the following space:

H3(0, T ;H1
0 (Ω)) ∩W 2,∞(0, T ;H1

0 (Ω) ∩H2(Ω)) ∩W 1,∞(0, T ;H3
♢(Ω)) ∩ L∞(0, T ;H4

♢(Ω)),

where we have denoted

H3
♢(Ω) =

{
u ∈ H3(Ω) : u|∂Ω = 0, ∆u|∂Ω = 0

}
, H4

♢(Ω) = H4(Ω) ∩H3
♢(Ω).

However, we expect that the techniques in [19] can be extended in a relatively straightfor-
ward manner to rigorously prove higher-order uniform well-posedness in U for sufficiently
smooth and small data, as assumed in the present numerical analysis. We also note that
the higher regularity for the strongly damped Kuznetsov equation (i.e., with β > 0) follows
by the results of [21].

Our main contributions concern robust error bounds for a finite element discretization
of (2.1) and a fully discrete scheme, as well as establishing asymptotic-preserving behavior
of respective solutions as β vanishes; we illustrate them in Figure 1.

unh,β uβh uβ

unh,β=0 uβ=0
h uβ=0

h→ 0 , Theorem 2.1

h→ 0 , Theorem 2.1

β → 0
Theorem 2.4

β → 0
Theorem 2.2

β → 0
[19]

τ, h→ 0, Theorem 2.3

τ, h→ 0, Theorem 2.3

Figure 1. Diagram representing the main contributions of this work

2.2. Main results for the finite element discretization. In the present work, we
employ Lagrange finite elements and consider a quasi-uniform triangulation Th and the
space

Vh := {φh ∈ C(Ω) | φh|K ∈ Pk(K) for all K ∈ Th}

of piecewise polynomials of degree k. To conduct the error analysis bellow in a β-uniform
manner, we assume that k ≥ 2. The case k = 1 with non-uniform bounds is treated
separately in Section 5. We introduce the Ritz projection defined for φ ∈ H1(Ω) via

(∇φ,∇φh)L2(Ω) = (∇Rhφ,∇φh)L2(Ω)

for all φh ∈ Vh. Further, we make use of the nodal interpolation operator Ih : C(Ω) → Vh,
and define the discrete Laplacian operator ∆h : Vh → Vh for ψh, φh ∈ Vh via the relation

(∆hψh, φh)L2(Ω) = −(∇ψh,∇φh)L2(Ω).
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With these preparations, we consider the spatially discrete Kuznetsov equation

(2.3a)
((1 + κ∂tuh)∂

2
t uh, φh)L2(Ω) − (c2∆huh, φh)L2(Ω) − (β∆h∂tuh, φh)L2(Ω)

+ ℓ(∇uh · ∇∂tuh, φh)L2(Ω) = (fh, φh)L2(Ω),

for all φh ∈ Vh, supplemented by approximate initial data

(2.3b) (uh, ∂tuh)|t=0 = (u0h, u1h).

Our first main results establishes a priori error bounds for uh in the energy norm that are
uniform with respect to the damping parameter β.

Theorem 2.1 (Robust finite element estimates). Let k ≥ 2 and β ∈ [0, β̄] for some β̄ > 0.
Furthermore, assume that f , fh ∈ H1(0, T ;L2(Ω)) are such that

(2.4) ∥f − fh∥H1(L2(Ω)) ≲ hk

and that the approximate initial data are chosen as

(2.5) uh(0) = Rhu0, ∂tuh(0) = Rhv0,

where u ∈ U is the solution of (1.1) satisfying (2.2), and ∂2t uh(0) is given by

(2.6)

((1 + κ∂tuh(0))∂
2
t uh(0), φh)L2(Ω) − (c2∆huh(0), φh)L2(Ω)

− (β∆h∂tuh(0), φh)L2(Ω) + ℓ(∇uh(0) · ∇∂tuh(0), φh)L2(Ω)

= (fh(0), φh)L2(Ω)

for all φh ∈ Vh. Then, there exists h0 > 0 and a constant C > 0, independent of h and β,
such that for all h ≤ h0, the following error bound holds:

(2.7)

∥∂2t u(t)− ∂2t uh(t)∥2L2(Ω) + ∥∇∂tu(t)−∇∂tuh(t)∥2L2(Ω)

+

∫ t

0
∥∇u(s)−∇uh(s)∥2L6(Ω) ds ≤ Ch2k

for all t ∈ [0, T ].

A non-robust variant of this result for k = 1 is presented later in Theorem 5.1. The
second main result confirms that, in the setting of Theorem 2.1, the finite element solution
preserves the asymptotic behavior as β → 0 of the exact solution established in [19].

Theorem 2.2 (Asymptotic-preserving behavior in the inviscid limit). Under the assump-

tions of Theorem 2.1, for h ∈ (0, h0], the family {uβh}β∈(0,β̄] of finite element solutions

of (2.3) converges in the energy norm to the finite element solution uβ=0
h of the inviscid

semi-discrete problem (i.e., with β = 0) at a linear rate as β → 0. In other words,

∥∂tuβh − ∂tu
β=0
h ∥L∞(L2(Ω)) + ∥∇(uβh − uβ=0

h )∥L∞(L2(Ω)) ≤ Cβ,

where the constant C > 0 is independent of β and h.

2.3. Main results for a fully discrete semi-implicit Euler method. Our next results
concern a full discretization of (2.1) based on a semi-implicit Euler method. To present
it, we introduce the discrete derivative ∂τ as follows:

∂τa
n =

1

τ
(an − an−1), n ≥ 1, ∂k+1

τ an = ∂τ∂
k
τ a

n, k ≥ 0 ,(2.8a)

and the notational conventions

∂τa
0 = a0, ∂n+j

τ an = ∂nτ a
n, j ≥ 0 .(2.8b)
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Then for 1 ≤ n ≤ N with (N + 1)τ ≤ T , we consider

(2.9)
((1 + κ∂τu

n
h)∂

2
τu

n+1
h , φh)L2(Ω) − (c2∆hu

n+1
h , φh)L2(Ω) − (β∆h∂τu

n+1
h , φh)L2(Ω)

+ (ℓ∇unh · ∇∂τun+1
h , φh)L2(Ω) = (fn+1

h , φh)L2(Ω),

for all φh ∈ Vh. We set the initial conditions as

u0h := Rhu0, u1h := Rh

(
u0 + τv0 +

τ2

2
w0

)
,(2.10a)

using the approximation w0 ≈ ∂2t u(t0) defined as

w0 = Rh

(
(1 + κv0)

−1
(
c2∆u0 + β∆v0 − ℓ∇u0 · ∇v0 + f

))
,(2.10b)

such that u1h resembles a projected Taylor approximation to u(t1). The quadratic gradient
nonlinearity forces us to assume the following CFL condition:

(2.11) τ ≤ Ch1+d/6+2ε

for some arbitrarily chosen ε > 0. Without loss of generality, we assume ε ∈ (0, 12 − d
12),

such that 1 + d/6 + 2ε < 2.

Theorem 2.3 (Robust fully discrete error bounds). Let k ≥ 2 and β ∈ [0, β̄] for some β̄ >
0, and let the CFL condition (2.11) hold. Furthermore, assume that f, fh ∈ C1(0, T ;L2(Ω))
are such that

(2.12) ∥f − fh∥C1(L2(Ω)) ≲ hk,

and the initial values are chosen as in (2.10). If unh is the solution of (2.9), and the
solution u ∈ U of (1.1) satisfies (2.2), then for for h ≤ h0 and τ ≤ τ0, it holds

∥∂2t u(tn)− ∂2τu
n
h∥2L2(Ω) + ∥∇∂tu(tn)−∇∂τunh∥2L2(Ω)

+ τ
n∑

j=1

∥∇u(tj)−∇ujh∥
2
L6(Ω) ≤ C

(
τ + hk

)2
,

for all n = 2, . . . , N + 1, where the constant C is independent of h, τ , and β.

A non-robust variant of this result for k = 1 is presented later in Theorem 5.3. As in
the semi-discrete case, our fourth main result confirms that, in the setting of Theorem 2.3,
also the fully discrete solution preserves the asymptotic behavior as β → 0 of the exact
solution established in [19].

Theorem 2.4 (Asymptotic-preserving behavior in the inviscid limit). Under the assump-
tions of Theorem 2.3, for h ∈ (0, h0] and n ∈ {2, . . . , N +1} fixed, the family {unh,β}β∈(0,β̄]
of finite element solutions of (2.9) converges in the discrete energy norm to the finite
element solution unh,β=0 of the inviscid fully discrete problem (i.e., with β = 0) at a linear
rate as β → 0. In other words,

∥∂τunh,β − ∂τu
n
h,β=0∥L2(Ω) + ∥∇(unh,β − unh,β=0)∥L2(Ω) ≤ Cβ,

for all n = 1, . . . , N + 1, where the constant C > 0 is independent of β, h, and τ .

2.4. Numerical results. In this section, we illustrate our theoretical findings with three
numerical experiments. We first study the case of a smooth (a priori known) exact solution
u to show the optimality of the derived convergence rates. In the second experiment, we
verify the convergence with respect to the vanishing damping parameter β for given data
without a known solution. Thirdly, we study a more realistic scenario of a traveling
Gaussian pulse. In all experiments, we observe the optimality of our main results.
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Discretization. For the discretization in space with Lagrangian finite elements, we use
the open-source Python tool FEniCSx, (https://fenicsproject.org/); see [6] and [1].
For a stable implementation, we introduce the auxiliary quantity for the discrete derivative

vn+1
h = ∂τu

n+1
h , n ≥ 0.

We reformulate this as an update step

un+1
h =unh + τvn+1

h(2.13)

once we have computed vn+1
h . Note that by (2.10) it holds

v1h = Rh

(
v0 +

τ

2
w0

)
.

With (2.13), we eliminate un+1
h in (2.9) and obtain the following relation for n ≥ 1:

((1 + κvnh)∂τv
n+1
h , φh)L2(Ω) + τc2(∇vn+1

h ,∇φh)L2(Ω) + β(∇vn+1
h ,∇φh)L2(Ω) + ℓ(∇unh · ∇vn+1

h , φh)L2(Ω)

= − c2(∇unh,∇φh)L2(Ω) + (fn+1
h , φh)L2(Ω),

which in turn yields the system

(2.14)

((1 + κvnh)v
n+1
h , φh)L2(Ω) + c2τ2(∇vn+1

h ,∇φh)L2(Ω) + τβ(∇vn+1
h ,∇φh)L2(Ω)

+ τℓ(∇unh · ∇vn+1
h , φh)L2(Ω)

=((1 + κvnh)v
n
h , φh)L2(Ω) − τc2(∇unh,∇φh)L2(Ω) + (fn+1

h , φh)L2(Ω).

Since the mass and stiffness matrix change in each time step, the routines in FEniCSx

assemble the mass and stiffness matrix and use the PETSc linear algebra backend to solve
the linear system (2.14). The codes to reproduce the results are available at

https://doi.org/10.35097/1871.

2.4.1. Smooth solution. In the first example, we consider the domain Ω = [0, 1]× [0, 1] and
choose initial data as

(2.15) u0(x) = csp sin(πx1) sin(πx2), v0(x) = cspctime sin(πx1) sin(πx2), csp, ctime > 0

with the parameters
κ = 0.7, c2 = 1, ℓ = 2,

and vary β ≥ 0. The forcing term f is chosen such that the exact solution is given by

(2.16) u(x, t) = cspe
ctimet sin(πx1) sin(πx2).

In Figure 2, we present the computed error

E(t) = ∥∇∂tu(t)−∇∂tuh(t)∥L2(Ω)

for the semi-discrete method (2.3) at time t = 0.8, using a small time-step size τ =
1.5 · 10−3. We perform experiments for the space and time discretization with elements of
order k = 1, 2, 3.

We observe convergence of order k until a plateau caused by the temporal discretization
is reached. For smaller time-step sizes the plots look qualitatively similar with a lower
plateau. Further, we observe that the plots for β = 0, 10−3, 10−2 have no visible difference,
which is in alignment with Theorem 2.1. Note that the case k = 1 is not covered by
Theorem 2.1, but appears to work well in practice even for β = 0.

In Figure 3, we present the computed error

E(tn) = ∥∇∂tu(tn)−∇∂τunh∥L2(Ω)

for the fully discrete method (2.9) at n = N + 1 with elements of order k = 2 and
h ≈ 1.1 · 10−2. As predicted by Theorem 2.3, we observe convergence or order O(τ)
independent of the damping parameter β.

https://fenicsproject.org/
https://doi.org/10.35097/1871
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10−2 10−1

10−5

10−4

10−3

10−2

10−1

mesh width h

E
(0
.8
)

β = 0

10−2 10−1

10−5

10−4

10−3

10−2

10−1

mesh width h

β = 0.001

10−2 10−1

10−5

10−4

10−3

10−2

10−1

mesh width h

β = 0.01

k = 1 k = 2 k = 3

Figure 2. Convergence of (2.3) with ∥∇∂tu(t)−∇∂tuh(t)∥L2(Ω) at t = 0.8
with the parameters csp = 0.1, ctime = 0.5 in (2.16) for elements of order
k = 1, 2, 3 and τ ≈ 1.5 · 10−3 and damping parameters β = 0, 10−3, 10−2

(from left to right). The dashed lines indicate order O(hk) for k = 1, 2, 3.

10−3 10−2 10−1

10−4

10−3

10−2

step size τ

E
(0
.8
)

β = 0

10−3 10−2 10−1

10−4

10−3

10−2

step size τ

β = 0.001

10−3 10−2 10−1

10−4

10−3

10−2

step size τ

β = 0.01

Figure 3. Convergence of (2.9) with ∥∇∂tu(tn) − ∇∂τunh∥L2(Ω) for n =
N + 1 with the parameters csp = 0.1, ctime = 0.5 in (2.16) with k = 2
and h ≈ 1.1 · 10−2 and damping parameters β = 0, 10−3, 10−2 (from left to
right). The dashed lines indicate order O(τ).

2.4.2. Convergence in the inviscid limit. In the next experiment, we verify the sharpness
of the results in Theorems 2.2 and 2.4. Here, we use the same domain Ω and initial data
as in (2.15), but parameters and source term are chosen as

κ = 0.3, c2 = 1, ℓ = 2, f = 0 ,

with csp = 0.01 and ctime = 1.

Since the estimates only compare the numerical solution, we do not need an exact or a
reference solution. We use k = 2 and compute the difference between (unh,β=0, ∂τu

n
h,β=0)

and (unh,β, ∂τu
n
h,β) in the H1(Ω)× L2(Ω)-norm, i.e.,

E(tn) = ∥∇unh,β=0 −∇unh,β∥L2(Ω) + ∥∂τunh,β=0 − ∂τu
n
h,β∥L2(Ω),
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Figure 4. Convergence of (unh,β=0, ∂τu
n
h,β=0) and (unh,β, ∂τu

n
h,β) in the

H1(Ω) × L2(Ω)-norm at the end time t = 0.8 for different values of h
and τ . The dashed line indicates order O(β).

for different values of β at the end time n = N + 1.
We observe in Figure 4 that for varying values of h and τ , the convergence in β is

uniform of order O(β). Different values of h and τ lead to qualitatively similar pictures,
with a clustering at the dashed line for finer resolutions which confirms the assertions in
Theorems 2.2 and 2.4.

2.4.3. Gaussian pulse. In the last experiment, we simulate the propagation of a Gaussian
pulse on the larger domain Ω = [−4, 4]× [−4, 4]. We use the initial states

u0(x) = −e−|x|2 , v0(x) = 0,

where although u0 is not zero on the boundary of Ω, by the size of the domain it is still
within machine precision. Further, we take the following parameters and source term:

κ = −0.29, c2 = 1, ℓ = 2, f = 0 ,

and vary β ≥ 0. Here we have to choose κ > −0.3 in order to prevent 1 + κ∂τu
n
h < 0

after a short time. Since we do not have an exact solution, we first compute a reference
solution with finer spatial and temporal resolution, i.e., href ≈ 4 · 10−2 and τref = 4 · 10−4.
Due to the larger domain, we have to increase the number of elements by a factor 16, and
hence compute the errors only for a coarser resolution.
In Figure 5, we observe that also in this example we have convergence of optimal order
uniformly in the damping parameter β.

3. Uniform finite element analysis

In this section, we conduct a β-uniform analysis of the semi-discrete problem (2.3a)
with approximate data (2.3b). We begin by discussing the general strategy. Due to the
type of quasilinearity present in the problem and the need to conduct estimates uniformly
in β, one would have to resort to higher-order Sobolev spaces to mimic the approach of
the β-uniform well-posedness analysis of the Kuznetsov equation in [19]. As we cannot
exploit such global spatial smoothness arguments for the approximate solution, we rely
instead on inverse finite element estimates in careful combination with working with a
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β = 0.0 β = 0.001 β = 0.01

Figure 5. Left: Convergence of (2.3) with ∥∇∂tu(t)−∇∂tuh(t)∥L2(Ω) at

t = 0.8 for elements of order k = 2 and τ ≈ 7.8 · 10−4 and damping pa-
rameters β = 0, 10−3, 10−2. The dashed line indicates order O(h2). Right:
Convergence of (2.9) with ∥∇∂tu(tn) − ∇∂τunh∥L2(Ω) for n = N + 1 with

k = 2 and h ≈ 9 · 10−2 and damping parameters β = 0, 10−3, 10−2. The
dashed line indicates order O(τ).

time-differentiated problem given by

(3.1)

((1 + κ∂tuh)∂
3
t uh, φh)L2(Ω) + κ((∂2t uh)

2, φh)L2(Ω) − (c2∆h∂tuh, φh)L2(Ω)

− (β∆h∂
2
t uh, φh)L2(Ω) + ℓ(∇∂tuh · ∇∂tuh, φh)L2(Ω) + ℓ(∇uh · ∇∂2t uh, φh)L2(Ω)

= (∂tfh, φh)L2(Ω).

The “problematic” nonlinear term in (3.1) is the one involving ℓ∇uh ·∇∂2t uh, and it has to
be treated as a right-hand side perturbation. In the literature, error bounds for nonlinear
(wave-type) problems are often established via some variant of a fixed-point argument for
the numerical solution uh which combines existence and error analysis; see, e.g., [26, 31–
33] and the references provided therein. However, such strategies do not transfer easily to
our setting as applying an inverse bound to estimate ∇∂2t uh would prevent the fixed-point
iterates to match in the order of h-convergence.

Our finite element analysis instead builds upon that of [15] to first show that an accurate
approximate solution exists uh on a discretization-dependent time interval [0, t∗h]. We then
derive uniform estimates for

eh = Rhu− uh,

which in turn allow extending the existence interval and optimal error bounds to the whole
time interval [0, T ]. Crucially, with this approach we can exploit the polynomial structure
of the nonlinearity and the fact that

∂2t eh∇∂2t eh =
1

2
∇(∂2t eh)

2

to compensate inverse estimates with smallness conditions on the error eh; see Proposi-
tion 3.4 for details.

3.1. Auxiliary results. Before we turn to the proofs of the main results in this section,
we recall the relevant known estimates from the literature that we employ frequently
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within our analysis. We rely on the approximation properties of the Ritz projection for
0 ≤ ℓ ≤ k:

∥φ− Rhφ∥Lp(Ω) + h∥φ− Rhφ∥W 1,p(Ω) ≤ Chℓ+1∥φ∥W ℓ+1,p(Ω), φ ∈W ℓ+1,p(Ω),(3.2)

for all 2 ≤ p ≤ ∞; see, for example, [7, Thm. 8.5.3]. In addition, we have the following
bounds for the interpolant:

∥φ− Ihφ∥Lp(Ω) + h∥φ− Ihφ∥W 1,p(Ω) ≤ Chℓ+1∥φ∥W ℓ+1,p(Ω), φ ∈W ℓ+1,p(Ω),

for 2 ≤ p ≤ ∞ and 1 ≤ ℓ ≤ k.

For φh ∈ Vh also the discrete Sobolev embedding

(3.3) ∥φh∥L∞(Ω) + ∥φh∥W 1,6(Ω) ≤ C∥∆hφh∥L2(Ω)

with a constant C independent of h is heavily used, see for example [10, 12, 34]. Further-
more, we rely on the following inverse estimates:

∥∇φh∥L2(Ω) ≤ Ch−1∥φh∥L2(Ω),(3.4a)

∥∆hφh∥L2(Ω) ≤ Ch−1∥∇φh∥L2(Ω),(3.4b)

∥φh∥L∞(Ω) ≤ Ch−d/p∥φh∥Lp(Ω),(3.4c)

for φh ∈ Vh and p ∈ [1,∞], with constants independent of h.

3.2. Finite element analysis. We begin the analysis by defining the (possibly h-dependent)
time t∗h as follows:

t∗h := sup
{
t ∈ (0, T ] | a unique solution uh ∈ H3(0, t;Vh) of (2.3) exists, and

h−1−d/6∥∂2t eh(s)∥L2(Ω) ≤ C0,

h−1−d/6∥∇∂teh(s)∥L2(Ω) ≤ C0 for all s ∈ [0, t]
}

for some C0 > 0. Our first task is to establish that this set is non-empty. To this end, we
estimate ∥∂2t eh∥L2(Ω) and ∥∇∂teh∥L2(Ω) at initial time.

Lemma 3.1. Under the assumptions of Theorem 2.1, with approximate initial values
chosen to be the Ritz projections of the exact ones as in (2.5) and ∂2t uh(0) determined by
(2.6), the following estimate holds:

∥∂2t eh(0)∥L2(Ω) + ∥∇∂teh(0)∥L2(Ω) ≤ Chk

with a constant C > 0 independent of h and β.

Proof. With our choice of the approximate initial data, eh(0) = ∂teh(0) = 0 and thus
trivially

∥∇∂teh(0)∥L2(Ω) ≤ Chk.

It remains to estimate ∂2t eh(0). We note that the Ritz projection of u satisfies the following
problem at t = 0 :
(3.5)
((1 + κ∂tuh(0))∂

2
tRhu(0), φh)L2(Ω) − (c2∆hRhu(0), φh)L2(Ω) − (β∆h∂tRhu(0), φh)L2(Ω)

+ ℓ(∇uh(0) · ∇∂tRhu(0), φh)L2(Ω) = (fh(0), φh)L2(Ω) + (δh(0), φh)L2(Ω)

for all φh ∈ Vh, with the defect at zero satisfying

(δh(0), φh)L2(Ω) =((1 + κ∂tuh(0))∂
2
tRhu(0)− (1 + κ∂tu(0))∂

2
t u(0), φh)L2(Ω)

+ ℓ(∇uh(0) · ∇∂tRhu(0)− ℓ∇u(0) · ∇∂tu(0), φh)L2(Ω)

+ (f(0)− fh(0), φh)L2(Ω).
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Since ∂2t uh(0) is determined by (2.6), by subtracting (2.6) from (3.5) and using the fact
that eh(0) = ∂teh(0) = 0, we see that ∂2t eh(0) solves

((1 + κ∂tuh(0))∂
2
t eh(0), φh)L2(Ω) = (δh(0), φh)L2(Ω)(3.6)

for all φh ∈ Vh. By the inverse estimates (3.4) and the approximation properties of the
Ritz projection stated in (3.2), we have

∥∂tuh(0)∥L∞(Ω) ≤ ∥v0∥L∞(Ω)+∥v0−Ihv0∥L∞(Ω)+∥Ihv0−Rhv0∥L∞(Ω) ≤ ∥v0∥L∞(Ω)+Ch
1−d/4∥v0∥W 1,4(Ω).

Thus, for sufficiently small h ≤ h0 (relative to v0), we can guarantee that

|κ|∥∂tuh(0)∥L∞(Ω) < 1.

This further implies that there exists γ > 0, independent of h and β, such that

1 + κ∂tuh(0) ≥ γ > 0.(3.7)

By the approximation properties of the Ritz projection, and the accuracy of fh assumed
in (2.4), we have

(3.8) ∥δh(0)∥L2(Ω) ≲ hk.

Therefore, by using φh = ∂2t eh(0) in (3.6) and relying on (3.7) and (3.8), we immediately
obtain

∥∂2t eh(0)∥L2(Ω) ≲ hk,

which concludes the proof. □

We next aim to prove that t∗h > 0 by applying a local version of the Picard–Lindelöf
theorem to the time-differentiated semi-discrete problem.

Lemma 3.2. Under the assumptions of Theorem 2.1, we have t∗h > 0.

Proof. For the purposes of stating the time-differentiated problem in a compact manner,
we introduce the discrete multiplication operator λh = λh(∂tuh) : Vh → Vh defined by

(λhφh, ψh)L2(Ω) = ((1 + κ∂tuh)φh, ψh)L2(Ω)

for φh, ψh ∈ Vh, which is invertible at t = 0 by (3.7). The time-differentiated semi-discrete
problem can then be written as

(3.9) ∂3t uh =
(
λ−1
h

(
c2∆huh + β∆h∂tuh − ℓ∇uh · ∂t∇∂tuh − fh

))
t

and further rewritten as a first-order problem for (uh, ∂tuh, ∂
2
t uh)

T . Unique solvability
then follows by a similar reasoning to that of [15, Lemma 4.2] using a local version of the
Picard–Lindelöf theorem on the open set
(3.10)

Uh = {(uh, ∂tuh, ∂2t uh) ∈ (C([0, t];Vh))
3 : |κ|∥∂tuh(s)∥L∞(Ω) < 1,

h−1−d/6∥∂2t eh(s)∥L2(Ω) < C0,

h−1−d/6∥∇∂teh(s)∥L2(Ω) < C0, s ∈ [0, t]}.

We check first that (uh(0), ∂tuh(0), ∂
2
t uh(0)) ∈ Uh. As concluded in the proof of Lemma 3.1,

for h ≤ h0 small enough, we have

|κ|∥∂tuh(0)∥L∞(Ω) < 1.

By Lemma 3.1, we also have
∥∂2t eh(0)∥L2(Ω) ≲ hk.

Therefore, since ∂teh(0) = 0, for h ≤ h0 and k ≥ 2, we conclude that

h−1−d/6max{∥∂2t eh(0)∥L2(Ω), ∥∇∂teh(0)∥L2(Ω)} = h−1−d/6∥∂2t eh(0)∥L2(Ω) < C0
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and thus (uh(0), ∂tuh(0), ∂
2
t uh(0)) ∈ Uh.

Equation (3.9) rewritten as a first-order system in time is driven by a locally Lipschitz
continuous right-hand side. Indeed, Lipschitz continuity of the right-hand side follows
analogously to the arguments of [15, Lemma 4.2] by the fact that Vh is a finite-dimensional
space and that we can use inverse estimates (3.4) for functions in Vh.

Thus by the local version of the Picard–Lindelöf theorem, a unique solution uh ∈
H3(0, t∗h;Vh) ↪→ C2([0, T ];Vh) of (3.9) supplemented with initial data exists on [0, t̃] for
some t̃ > 0. Time integrating (3.9) and using (2.6) shows that uh solves (2.3a), (2.5). We
therefore conclude that t∗h > 0. □

We have shown that a unique approximate solution exists on [0, t∗h]. The next result
establishes additional uniform bounds on this time interval.

Lemma 3.3. Let the assumptions of Theorem 2.1 hold. On the interval [0, t∗h], the fol-
lowing bound holds for sufficiently small h:

(3.11) ∥uh∥L∞
t (W 1,∞(Ω)) + ∥∇∂tuh∥L∞

t (L∞(Ω)) + ∥∂2t uh∥L∞
t (L∞(Ω)) ≲ 1.

In addition,

(3.12) 1 + κ∂tuh ≥ γ > 0, (x, t) ∈ Ω× [0, t∗h],

where γ > 0 does not depend on h, β, or t∗h.

Proof. Using the stability properties of the Ritz projection in (3.2) and the definition of
t∗h, we obtain the following bound:

∥uh∥W 1,∞(Ω) ≲ ∥Rhu∥L∞(Ω) + ∥∇Rhu∥L∞(Ω) + ∥eh∥W 1,∞(Ω)

≲ ∥u∥W 1,∞(Ω) + h−d/2∥∇eh∥L2(Ω) ≤ C,

since d/2 ≥ 1 + d/6, as well as

∥∂2t uh∥L∞(Ω) ≤ ∥∂2t u∥W 1,∞(Ω) + Ch−d/2∥∂2t eh∥L2(Ω) ≤ C

on [0, t∗h]. Furthermore,

∥∇∂tuh∥L∞(Ω) ≲ ∥∂tRhu∥W 1,∞(Ω)+∥∇∂teh∥L∞(Ω) ≲ ∥∂tu∥W 1,∞(Ω)+h
−d/2∥∇∂teh∥L2(Ω) ≤ C

for all t ∈ [0, t∗h]. The bound (3.12) follows by the solvability of the (differentiated) semi-
discrete problem in Uh; cf. (3.10). □

Our main task in the remaining of this section is to prove that

(3.13) ∥∂2t eh(t∗h)∥L2(Ω) + ∥∇∂teh(t∗h)∥L2(Ω) ≲ hk,

where the error eh = Rhu− uh satisfies

(3.14)

((1 + κ∂tuh)∂
2
t eh, φh)L2(Ω) + κ(∂teh∂

2
tRhu, φh)L2(Ω) − (c2∆heh, φh)L2(Ω)

− (β∆h∂teh, φh)L2(Ω)

= −ℓ(∇uh · ∇∂teh +∇eh · ∇∂tRhu, φh)L2(Ω) + (δh, φh)L2(Ω)

and the defect is given by

(3.15)
(δh, φh)L2(Ω) = ((1 + κ∂tuh)∂

2
tRhu− (1 + κ∂tu)∂

2
t u, φh)L2(Ω)

+ ℓ(∇uh · ∇∂tRhu− ℓ∇u · ∇∂tu, φh)L2(Ω) + (f − fh, φh)L2(Ω)

for all φh ∈ Vh. The bound (3.13) will allow us to extend the existence interval beyond
[0, t∗h].

To prove (3.13), we use a two-step testing procedure. In the first step, we test the
time-differentiated error equation with ∂2t eh.
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Proposition 3.4. Let the assumptions of Theorem 2.1 hold. For t ∈ [0, t∗h], it holds

(3.16)

∥∂2t eh(t)∥2L2(Ω) + ∥∇∂teh(t)∥2L2(Ω) + β

∫ t

0
∥∇∂2t eh∥2L2(Ω)

≲ ∥∂2t eh(0)∥2L2(Ω) +

t∫
0

(
∥∇∂teh(s)∥2L2(Ω) + ∥∂2t eh(s)∥2L2(Ω) + ∥∂tδh(s)∥2L2(Ω)

)
ds

+ α

∫ t

0
∥∆heh(s)∥2L2(Ω) ds.

for all t ∈ [0, t∗h] and α > 0, with the hidden constant independent of h, t∗h, and β.

Proof. As announced, we test the time-differentiated error equation with φh = ∂2t eh(t):

((1 + κ∂tuh)∂
3
t eh, ∂

2
t eh)L2(Ω) + κ(∂2t uh∂

2
t eh, ∂

2
t eh)L2(Ω) + κ(∂2t eh∂

2
tRhu, ∂

2
t eh)L2(Ω)

+ κ(∂teh∂
3
tRhu, ∂

2
t eh)L2(Ω) − (c2∆h∂teh, ∂

2
t eh)L2(Ω) − (β∆h∂

2
t eh, ∂

2
t eh)L2(Ω)

= − ℓ(∇∂tuh · ∇∂teh +∇∂teh · ∇∂tRhu, ∂
2
t eh)L2(Ω) − ℓ(∇uh · ∇∂2t eh +∇eh · ∇∂2tRhu, ∂

2
t eh)L2(Ω)

+ (∂tδh, ∂
2
t eh)L2(Ω)

for all t ∈ [0, t∗h]. Using integration by parts in time and Young’s inequality yields the
following estimate:

(3.17)

∂t∥(1 + κ∂tuh)
1/2∂2t eh∥2L2(Ω) + c2∂t∥∇∂teh∥2L2(Ω) + β∥∇∂2t eh∥2L2(Ω)

≲ ∥∂2t uh∂2t eh∥2L2(Ω) + ∥∂2t eh∂2tRhu∥2L2(Ω) + ∥∂teh∂3tRhu∥2L2(Ω) + ∥∂teh∥2L2(Ω)

+ ℓ2∥∇∂tuh · ∇∂teh∥2L2(Ω) + ℓ2∥∇∂teh · ∇∂tRhu∥2L2(Ω)

+ ℓ(∇uh · ∇∂2t eh, ∂2t eh)L2(Ω) + ℓ2∥∇eh · ∇∂2tRhu∥2L2(Ω) + ∥∂tδh∥2L2(Ω)

for 0 ≤ t ≤ t∗h. We can rely on the bounds on uh obtained in Lemma 3.3 to further estimate
the right-hand side terms. First, using also the embedding H1(Ω) ↪→ Lp(Ω), p ∈ [1, 6], we
estimate the first three terms on the right-hand side of (3.17) as follows:

∥∂2t uh∂2t eh∥2L2(Ω) + ∥∂2t eh∂2tRhu∥2L2(Ω) + ∥∂teh∂3tRhu∥2L2(Ω)

≲ ∥∂2t uh∥2L∞(Ω)∥∂
2
t eh∥2L2(Ω) + ∥∂2t eh∥2L2(Ω)∥∂

2
tRhu∥2L∞(Ω) + ∥∂teh∥2L6(Ω)∥∂

3
tRhu∥2L3(Ω)

≲ ∥∂2t eh∥2L2(Ω) + ∥∂teh∥2H1(Ω),

where we have employed ∥∂2t uh(t)∥L∞(Ω) ≲ 1 on [0, t∗h]. Next, we can bound the ℓ2 terms
in the following manner using (3.11):

(3.18) ℓ2∥∇∂tuh · ∇∂teh∥2L2(Ω) ≲ ∥∇∂tuh∥2L∞(Ω)∥∇∂teh∥
2
L2(Ω) ≲ ∥∇∂teh∥2L2(Ω).

Similarly, using (3.2),

ℓ2∥∇∂teh · ∇∂tRhu∥2L2(Ω) ≲ ∥∇∂teh∥2L2(Ω)∥∇∂tRhu∥2L∞(Ω) ≲ ∥∂tu∥2W 1,∞(Ω)∥∇∂teh∥
2
L2(Ω),

and
(3.19)

ℓ2∥∇eh · ∇∂2tRhu∥2L2(Ω) ≲ ∥∇eh∥2L2(Ω)∥∇∂
2
tRhu∥2L∞(Ω) ≲ ∥∂2t u∥2W 1,∞(Ω)∥∇eh∥

2
L2(Ω).

The most salient point of the proof lies in estimating the term ℓ(∇uh ·∇∂2t eh, ∂2t eh)L2(Ω) in
(3.17). To bound this term, we split the scalar product into three components by involving
the exact solution:
(3.20)
(∇uh · ∇∂2t eh, ∂2t eh)L2(Ω)

= (∇u · ∇∂2t eh, ∂2t eh)L2(Ω) − (∇(u− Rhu) · ∇∂2t eh, ∂2t eh)L2(Ω) − (∇eh · ∇∂2t eh, ∂2t eh)L2(Ω).
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We can then use the fact that

∂2t eh∇∂2t eh =
1

2
∇(∂2t eh)

2

and integration by parts to rewrite the first term on the right-hand side of (3.20) as

(∇u · ∇∂2t eh, ∂2t eh)L2(Ω) = −1

2
(∆u ∂2t eh, ∂

2
t eh)L2(Ω).

Employing Hölder’s and Young’s inequalities in (3.20) then yields
(3.21)
(∇uh · ∇∂2t eh, ∂2t eh)L2(Ω)

= − 1

2
(∆u ∂2t eh, ∂

2
t eh)L2(Ω) − (∇(u− Rhu) · ∇∂2t eh, ∂2t eh)L2(Ω) − (∇eh · ∇∂2t eh, ∂2t eh)L2(Ω)

≲ ∥∆u∥L∞(Ω)∥∂2t eh∥2L2(Ω) +
(
∥u− Rhu∥W 1,∞(Ω)

)
∥∇∂2t eh∥L2(Ω)∥∂2t eh∥L2(Ω)

− (∇eh · ∇∂2t eh, ∂2t eh)L2(Ω)

≲
(
∥∆u∥L∞(Ω) + h−1∥u− Rhu∥W 1,∞(Ω)

)
∥∂2t eh∥2L2(Ω) − (∇eh · ∇∂2t eh, ∂2t eh)L2(Ω),

where we have also used the inverse estimate (3.4) on ∥∇∂2t eh∥L2(Ω) in the last line. After
integrating in time, we can estimate the last term on the right-hand side of (3.21) as
follows: ∫ t

0
∥eh(s)∥W 1,∞(Ω)∥∇∂2t eh(s)∥L2(Ω)∥∂2t eh(s)∥L2(Ω) ds

≲ h−1−d/6

∫ t

0
∥eh(s)∥W 1,6(Ω)∥∂2t eh(s)∥L2(Ω)∥∂2t eh(s)∥L2(Ω) ds

≲
(
max

s∈[0,t∗h]
h−1−d/6∥∂2t eh(s)∥L2(Ω)

) ∫ t

0
∥∆heh(s)∥L2(Ω)∥∂2t eh(s)∥L2(Ω) ds

≤ α

∫ t

0
∥∆heh(s)∥2L2(Ω) ds+ Cα

∫ t

0
∥∂2t eh(s)∥2L2(Ω) ds

for any α > 0, where we used the definition of t∗h. From (3.21), relying also on the estimate

h−1∥u(t)− Rhu(t)∥W 1,∞(Ω) ≲ h−1h∥u(t)∥W 2,∞(Ω) ≲ ∥u(t)∥W 2,∞(Ω), t ∈ [0, T ],

(which holds by (3.2)), we then have

ℓ

∫ t

0
(∇uh · ∇∂2t eh, ∂2t eh)L2(Ω) ds

≲
∫ t

0
∥u(s)∥W 2,∞(Ω)∥∂2t eh(s)∥2L2(Ω) ds+ α

∫ t

0
∥∆heh(s)∥2L2(Ω) ds+ Cα

∫ t

0
∥∂2t eh(s)∥2L2(Ω) ds

for any α > 0. Integrating over (0, t) in (3.17) and using this estimate together with
(3.18)–(3.19) yields (3.16). □

Note that we cannot yet control the ∆heh term on the right-hand side of (3.16). There-
fore, in the second step, we additionally test the error equation (3.14) with −∆heh.

Proposition 3.5. Let the assumptions of Theorem 2.1 hold. For t ∈ [0, t∗h], it holds

(3.22)

∥∂2t eh(t)∥2L2(Ω) + ∥∇∂teh(t)∥2L2(Ω) + β∥∆heh(t)∥2L2(Ω) +
c2

4

∫ t

0
∥∆heh(s)∥2L2(Ω) ds

≤ C∥∂2t eh(0)∥2L2(Ω) + C

t∫
0

(
∥∇∂teh(s)∥2L2(Ω) + ∥∂2t eh(s)∥2L2(Ω) + ∥∂tδh(s)∥2L2(Ω)

+ ∥δh(s)∥2L2(Ω) + ∥∇∂teh(s)∥2L2(Ω) + ∥∇eh(s)∥2L2(Ω)

)
ds
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for all t ∈ [0, t∗h], with a constant C > 0 independent of h, t∗h, and β.

Proof. Testing the error equation (3.14) with φh = −∆heh, integrating over (0, t), and
using eh(0) = 0 yields
(3.23)

c2
∫ t

0
∥∆heh(s)∥2L2(Ω) ds+ β∥∆heh(t)∥2L2(Ω)

=

∫ t

0
((1 + κ∂tuh)∂

2
t eh + κ∂teh∂

2
tRhu+ ℓ∇uh · ∇∂teh +∇eh · ∇∂tRhu− δh,∆heh)L2(Ω) ds.

We use Young’s inequality to bound the right-hand side:
(3.24)∫ t

0
((1 + κ∂tuh)∂

2
t eh + κ∂teh∂

2
tRhu+ ℓ∇uh · ∇∂teh +∇eh · ∇∂tRhu− δh,∆heh)L2(Ω) ds

≤ 1

2c2
∥(1 + κ∂tuh)∂

2
t eh + κ∂teh∂

2
tRhu+ ℓ∇uh · ∇∂teh +∇eh · ∇∂tRhu− δh∥2L2

t (L
2(Ω))

+
c2

2
∥∆heh∥2L2

t (L
2(Ω))

We can conclude similarly to before by using (3.18)–(3.19) that

∥(1 + κ∂tuh)∂
2
t eh + κ∂teh∂

2
tRhu+ ℓ∇uh · ∇∂teh +∇eh · ∇∂tRhu− δh∥L2

t (L
2(Ω))

≲ ∥∂2t eh∥L2
t (L

2(Ω)) + ∥∇∂teh∥L2
t (L

2(Ω)) + ∥∇eh∥L2
t (L

2(Ω)) + ∥δh∥L2
t (L

2(Ω))

for t ∈ [0, t∗h]. Using absorption via the c2 term in (3.23), we arrive at

(3.25)

c2

2

∫ t

0
∥∆heh(s)∥2L2(Ω) ds+ β∥∆heh(t)∥2L2(Ω)

≲
∫ t

0

(
∥∂2t eh(s)∥2L2(Ω) + ∥δh(s)∥2L2(Ω) + ∥∇∂teh(s)∥2L2(Ω) + ∥∇eh(s)∥2L2(Ω)

)
ds.

Then adding estimates (3.16) and (3.25) and choosing α > 0 small enough (independently
of h, t∗h, and β) so that the corresponding term can be absorbed by the left-hand side
leads to (3.22). □

To show (3.13), it remains to estimate the defect terms on the right-hand side of (3.22).

Lemma 3.6. Let the assumptions of Theorem 2.1 hold. On [0, t∗h], the defect satisfies the
following bounds:
(3.26)

∥δh∥L2
t (L

2(Ω)) ≤C(u)
(
hk + ∥∂teh∥L2

t (L
2(Ω)) + ∥∇eh∥L2

t (L
2(Ω))

)
,

∥∂tδh∥L2
t (L

2(Ω)) ≤C(u)
(
hk + ∥∂teh∥L∞

t (L2(Ω)) + ∥∂2t eh∥L2
t (L

2(Ω)) + ∥∇eh∥L∞
t (L2(Ω))

+ ∥∇∂teh∥L2
t (L

2(Ω))

)
,

where C(u) = C(1 + ∥u∥H3(W 1,∞(Ω)))∥u∥H3(Hk+1(Ω)) does not depend on h or β.

Proof. We can rewrite the equation for the defect in (3.15) as follows:

(δh, φh)L2(Ω) =((1 + κ∂tRhu)(∂
2
tRhu− ∂2t u) + κ(∂tRhu− ∂tu)∂

2
t u, φh)L2(Ω)

− κ(∂teh ∂
2
tRhu, φh)L2(Ω) + (ℓ∇Rhu · ∇∂tRhu− ℓ∇u · ∇∂tu, φh)L2(Ω)

− ℓ(∇eh · ∇∂tRhu, φh)L2(Ω) + (f − fh, φh)L2(Ω).
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Using estimate (3.2) for the Ritz projection several times and the assumption on f − fh,
we arrive at the first bound in (3.26).

The time-differentiated defect solves

(∂tδh, φh)L2(Ω) = ((1 + κ∂tRhu)(∂
3
tRhu− ∂3t u) + κ∂2tRhu(∂

2
tRhu− ∂2t u)

+ κ(∂2tRhu− ∂2t u)∂
2
t u+ κ(∂tRhu− ∂tu)∂

3
t u− κ∂2t eh ∂

2
tRhu− κ∂teh ∂

3
tRhu

+ ℓ∇∂tRhu · ∇∂tRhu− ℓ∇∂tu · ∇∂tu+ ℓ∇Rhu · ∇∂2tRhu− ℓ∇u · ∇∂2t u
− ℓ∇∂teh · ∇∂tRhu− ℓ∇eh · ∇∂2tRhu+ ∂t(f − fh), φh)L2(Ω)

for all φh ∈ Vh. We can similarly bound ∂tδh in L2(0, t∗h;L
2(Ω)) using the stability and

approximation properties (3.2) of the Ritz projection to arrive at the second estimate in
(3.26). □

We now have all the ingredients to prove our first main result on the robust finite element
bounds stated in Theorem 2.1.

Proof of Theorem 2.1. Using the bounds derived in Lemma 3.6 on the defect in (3.22),
together with

∥∂teh∥L∞
t (L2(Ω)) ≤

√
T∥∂2t eh∥L2

t (L
2(Ω)), ∥∇eh∥L∞

t (L2(Ω)) ≤
√
T∥∇∂teh∥L2

t (L
2(Ω))

(since eh(0) = ∂teh(0) = 0) and Lemma 3.1, by employing Grönwall’s inequality, we arrive
at

(3.27) ∥∂2t eh(t)∥2L2(Ω) + ∥∇∂teh(t)∥2L2(Ω) +

∫ t

0
∥∆heh(s)∥2L2(Ω) ds ≤ Ch2k

for all t ∈ [0, t∗h]. Therefore, estimate (3.13) holds. In turn, we conclude that for h ≤ h0
and k ≥ 2, the following estimate holds:

h−1−d/6max{∥∂2t eh(t∗h)∥L2(Ω), ∥∇∂teh(t∗h)∥L2(Ω)} < C0.

Along the previous lines of reasoning, we also have |κ|∥∂tuh(t∗h)∥L∞(Ω) < 1. Altogether,
we have shown that

(uh(t
∗
h), ∂tuh(t

∗
h), ∂

2
t uh(t

∗
h)) ∈ Uh

which means that the solution can be extended beyond t∗h. Hence, we can conclude that
t∗h = T . Since the constant in (3.27) does not depend on t∗h, the bound on eh is valid on
[0, T ].

Then writing the overall error as

u− uh = (u− Rhu) + eh,

and using the approximation property of the Ritz projection (3.2) yields the bound in
(2.7). □

3.3. The inviscid limit of the finite element solutions. By using the established β-
uniform finite element error bound in Theorem 2.1, we can also determine the asymptotic

properties of the semi-discrete solution as β → 0. The difference ūh = uβ=0
h − uβh of the

semi-discrete solutions uβ=0
h of the undamped

((1 + κ∂tu
β=0
h )∂2t u

β=0
h − c2∆hu

β=0
h + ℓ∇uβ=0

h · ∇∂tuβ=0
h , φh)L2(Ω) = (fh, φh)L2(Ω),

and uβh of the damped problem

((1 + κ∂tu
β
h)∂

2
t u

β
h − c2∆hu

β
h − β∆h∂tu

β
h + ℓ∇uβh · ∇∂tuβh, φh)L2(Ω) = (fh, φh)L2(Ω)
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solves
(3.28)

((1 + κ∂tu
β=0
h )∂2t ūh + κ∂tūh∂

2
t u

β
h − c2∆hūh + ℓ∇ūh · ∇∂tuβh+ℓ∇u

β=0
h · ∇∂tūh, φh)L2(Ω)

= −β(∆h∂tu
β
h, φh)L2(Ω)

for all φh ∈ Vh on [0, T ]. We next prove the statement of Theorem 2.2 on the inviscid
limit of the finite element solutions.

Proof of Theorem 2.2. The proof follows by testing the difference equation (3.28) with
∂tūh. We can rely on the identity∫ t

0
((1 + κ∂tu

β=0
h )∂2t ūh, ∂tūh)L2(Ω) ds

=
1

2
((1 + κ∂tu

β=0
h )∂tūh(t), ∂tūh(t))L2(Ω) −

1

2

∫ t

0
(κ∂2t u

β=0
h ∂tūh, ∂tūh)L2(Ω) ds

and the estimate∫ t

0
(κ∂tu

β=0
h ∂2t u

β
h, ∂tūh)L2(Ω) ds ≲ ∥∂2t u

β=0
h ∥L∞(L∞(Ω))∥∂tūh∥2L2(L2(Ω)).

We note that thanks to the previous analysis and the assumptions on the exact solution
the following uniform bound holds :

∥∂2t u
β=0
h ∥L∞(L∞(Ω)) ≲ ∥∂2t uβ=0∥L∞(L∞(Ω)) + h−d/2∥∂2t e

β=0
h ∥L∞(L2(Ω)) ≤ C.

To estimate the ℓ terms, we rely on a rewriting with the help of the exact solution and
integration by parts in space:∫ t

0
(ℓ∇ūh · ∇∂tuβh + ℓ∇uβ=0

h · ∇∂tūh, ∂tūh)L2(Ω) ds

=

∫ t

0

{
(ℓ∇ūh · ∇∂tuβh, ∂tūh)L2(Ω) +

1

2
(ℓ∆uβ=0∂tūh, ∂tūh)L2(Ω) − (ℓ∇(uβ=0 − uβ=0

h ) · ∇∂tūh, ∂tūh)L2(Ω)

}
ds.

We can further transform the last term on the right by decomposing it via the Ritz
projection:∫ t

0
(ℓ∇(uβ=0 − uβ=0

h ) · ∇∂tūh, ∂tūh)L2(Ω) ds

=

∫ t

0
(ℓ∇(uβ=0 − Rhu

β=0) · ∇∂tūh, ∂tūh)L2(Ω) + (ℓ∇eβ=0
h · ∇∂tūh, ∂tūh)L2(Ω) ds

≤ Ch∥uβ=0∥L∞(W 2,∞(Ω))h
−1∥∂tūh∥2L2(L2(Ω)) +

∫ t

0
|(ℓ∇eβ=0

h · ∇∂tūh, ∂tūh)L2(Ω)|ds.

Furthermore, in the last term, we have for any α1 > 0∫ t

0
|(∇eβ=0

h · ∇∂tūh, ∂tūh)L2(Ω)|ds

≲
∫ t

0
h−1−d/6∥∆he

β=0
h ∥L2(Ω)∥∂tūh∥2L2(Ω) ds

≲ max
s∈[0,t]

∥∂tūh(s)∥L2(Ω)h
−1−d/6

(∫ t

0
∥∆he

β=0
h ∥2L2(Ω) ds

)1/2(∫ t

0
∥∂tūh(s)∥2L2(Ω) ds

)1/2
≤ α1 max

s∈[0,t]
∥∂tūh(s)∥2L2(Ω) + Cαh

k−1−d/6∥∂tūh(s)∥2L2(L2(Ω)),
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where we have used the uniform bound on ∥∆he
β=0
h ∥L2(L2(Ω)) by Theorem 2.1. Thanks

also to the (assumed) uniform bound on ∥uβ=0∥L∞(W 2,∞(Ω)), we arrive at an estimate of
the form

∥∂tūh(t)∥2L2(Ω) + ∥∇ūh(t)∥2L2(Ω)

≲β
∣∣∣∫ t

0
(∇∂tuβh,∇∂tūh)L2(Ω) ds

∣∣∣+ α1 max
s∈[0,t]

∥∂tūh(s)∥2L2(Ω) + ∥∂tūh∥2L2
t (L

2(Ω)) + ∥∇ūh∥2L2
t (L

2(Ω)).

Observe that we cannot absorb ∇∂tūh by the left-hand side. In the β term above we thus
integrate by parts in time:

β
∣∣∣∫ t

0
(∇∂tuβh,∇∂tūh)L2(Ω) ds

∣∣∣ = β
∣∣∣(∇∂tuβh(t),∇ūh(t))L2(Ω) −

∫ t

0
(∇∂2t u

β
h,∇ūh)L2(Ω) ds

∣∣∣.
We can then rely on the uniform bounds

(3.29)
∥∇∂tuβh∥L∞(L2(Ω)) ≲∥∇∂tuβ∥L∞(L∞(Ω)) + h−1∥∂teh∥L∞(L2(Ω)) ≤ C,

∥∇∂2t u
β
h∥L2(L2(Ω)) ≲∥∇∂2t uβ∥L2(L∞(Ω)) + h−1∥∂2t eh∥L2(L2(Ω)) ≤ C,

and Young’s inequality to obtain
(3.30)
∥∂tūh(t)∥2L2(Ω) + ∥∇ūh(t)∥2L2(Ω)

≲β2 + α1 max
s∈[0,t]

∥∂tūh(s)∥2L2(Ω) + α2 max
s∈[0,t]

∥∇ūh(s)∥2L2(Ω) + ∥∂tūh∥2L2
t (L

2(Ω)) + ∥∇ūh∥2L2
t (L

2(Ω))

for any α1, α2 > 0. From (3.30) by taking the maximum over t ∈ (0, t̃) for some t̃ < T ,
choosing α1,2 > 0 small enough (independently of h and β) so that the corresponding
terms can be absorbed, and then applying Grönwall’s inequality, we arrive at

∥∂tūh∥2L∞(L2(Ω)) + ∥∇ūh∥2L∞(L2(Ω)) ≲ β2,

as claimed. □

We note that this result matches the convergence order of the exact solutions of the
damped Kuznetsov equation as β → 0; see [19, Thm. 7.1].

4. Robust semi-implicit time discretization

We now turn our attention to the analysis of a fully discrete scheme given by (2.9) with
the aim of proving Theorems 2.3 and 2.4. We first collect several useful results when using
the discrete derivatives ∂τ defined in (2.8). We state relations which mimic the product
rule:

(4.1)
∂τ

(
an+1bn+1

)
=

(
∂τa

n+1
)
bn+1 + an

(
∂τ b

n+1
)

=
(
∂τa

n+1
)
bn + an+1

(
∂τ b

n+1
)
,

the integration by parts formula:

τ

N∑
n=1

an+1 ∂τ b
n+1 = aN+1bN+1 − a1b1 − τ

N∑
n=1

∂τa
n+1bn+1,(4.2)

as well as the fundamental theorem of calculus:

(4.3) ∥aN∥2L2(Ω) − ∥a0∥2L2(Ω) ≤ 2τ
N∑
j=1

(aj , ∂τa
j)L2(Ω);

see, e.g., [16]. However due to the nonlinear structure in the highest order term, we need
the following extension of (4.3).
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Lemma 4.1. Let max
j=1,...,N

∥ωj∥L∞(Ω)+∥∂τωj∥L∞(Ω) ≤ Cω be uniformly bounded from above

and from below with min
j=1,...,N

ωj ≥ α > 0. Then, it holds

∥aN∥2L2(Ω) ≲ ∥a0∥2L2(Ω) + τ

N∑
j=1

(ωja
j , ∂τa

j)L2(Ω) + ∥aj∥2L2(Ω),

with constants that only depend on Cω and α.

Proof. Simply setting ãj =
√
ωjaj in (4.3) and using (4.1) leads to the claim. □

In addition, we need the following error bounds in the defects. We state the result here in
a general form, but postpone the proof to the Appendix A.

Lemma 4.2. Let m ≥ 0 and u ∈ Hm+1(0, T ;Hk(Ω)). Then, for 0 ≤ ℓ ≤ m, it holds

∥∂ℓτu(tn)∥Hk(Ω) ≤ C∥u∥Hℓ+1(Hk(Ω))

with a constant C independent of τ , and for 0 ≤ ℓ1, ℓ2 ≤ m it holds

∥∂m−ℓ1
τ ∂ℓ1t u(tn)− ∂m−ℓ2

τ ∂ℓ2t u(tn)∥2Hk(Ω) ≤ Cm τ

∫ tn

tn−m

∥∂m+1
t u(s)∥2Hk(Ω) ds

with a constant Cm that only depends on m. If u ∈ Hm+2(0, T ;Hk(Ω)), then we further
have

∥∂m−ℓ1
τ ∂ℓ1t u(tn)− ∂m−ℓ2

τ ∂ℓ2t u(tn)∥Hk(Ω) ≤ Cτ∥u∥Hm+2(Hk(Ω)).

These identities will be used throughout the proofs in the following section. Analogously
to the approach in the finite element analysis, we define the fully discrete error by

(4.4) enh := Rhû
n − unh

with ûn = u(tn), and proceed to investigate it.

Proposition 4.3. Under the assumptions of Theorem 2.3, for all n = 2, . . . N + 1, the
approximation unh defined in (2.9) exists and the error defined in (4.4) satisfies

(4.5) ∥∂2τ enh∥2L2(Ω) + ∥∇∂τenh∥2L2(Ω) + τ
n∑

j=1

∥∆he
j
h∥

2
L2(Ω) ≤ C

(
τ + hk

)2
,

as well as

(4.6)

h−1−d/6−ε∥∂2τ enh∥L2(Ω) ≤ C0,

h−1−d/6−ε∥∇∂τenh∥L2(Ω) ≤ C0,

h−1−d/6−ε
(
τ

n∑
j=1

∥∆he
j
h∥

2
L2(Ω)

)1/2 ≤ C0,

with some constants C, C0 > 0 that are independent of h, τ , n, and β.

The rest of Section 4 is devoted to the proof of Proposition 4.3 which we conduct via
induction over n. In Section 4.1, we first show that the statement holds in the case n = 2
as induction basis. In the following Section 4.2, we perform the step from n to n + 1 to
conclude that the statement of Proposition 4.3 holds. Then Theorem 2.3 will follow in a
straightforward manner.
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4.1. Induction basis. This part is dedicated to the induction base n = 2. We first study
the error induced by the initial values for e1h, and then proceed to bound e2h in a series of
lemmas. To keep the presentation short, we formulate several of them such that they also
apply to the induction step, assuming that the bounds in Proposition 4.3 already hold up
to some n ≥ 2.

Lemma 4.4. Let the assumptions of Theorem 2.3 hold, and let the initial values be defined
by (2.10). Then, e0h = 0 and

∥∂2τ e1h∥L2(Ω) + τ−1∥∂τ∇e1h∥L2(Ω) + τ−2∥∆he
1
h∥L2(Ω) ≲ τ + hk,

where the constant is independent of h, τ and β.

Proof. Recalling that by (2.8) we have ∂2τ e
1
h = ∂τe

1
h, the estimate directly follows from the

definitions of u0h, u
1
h, and w0 in (2.10). □

Along the lines of Lemma 3.3 in Section 3, we next derive some useful bounds on the
numerical solution.

Lemma 4.5. Let the assumptions of Theorem 2.3 hold. If the assertions of Proposition 4.3
hold for up to n, then the following bound holds for j = 1, . . . , n:

∥ujh∥W 1,∞(Ω) + ∥∇∂τujh∥L∞(Ω) + ∥∂2τu
j
h∥L∞(Ω) ≲ 1,

and, in addition,

(4.7) 1 + κ∂τu
j
h ≥ γ > 0, j = 1, . . . n,

where the constant γ does not depend on h, τ , n, or β.

In the next steps, we derive the equation solved by en+1
h . To this end, we insert the

projected exact solution Rhû
n into (2.9) to obtain for n ≥ 1

((1 + κ∂τu
n
h)∂

2
τRhû

n+1 − c2∆hRhû
n+1 − β∆h∂τRhû

n+1 + ℓ∇unh · ∇∂τRhû
n+1, φh)L2(Ω)

= (fn+1
h + δn+1

h , φh)L2(Ω),

with defect δn+1
h given below in (4.12). This leads us to the error equation:

(4.8)
((1 + κ∂τu

n
h)∂

2
τ e

n+1
h − c2∆he

n+1
h − β∆h∂τe

n+1
h + ℓ∇unh · ∇∂τen+1

h , φh)L2(Ω)

= (δn+1
h , φh)L2(Ω)

for n ≥ 1. In the fully discrete case, we cannot use a Picard–Lindelöf theorem, and hence
we explicitly have to show the existence of the approximation un+1

h . By (4.4), it is sufficient

to show the unique solvability of (4.8) or, in other words, existence of a unique en+1
h . By

multiplying (4.8) with τ2 and solving for en+1
h , we rewrite the problem as a linear system

of the form

(Rnen+1
h , φh)L2(Ω) = (f̃n, φh)L2(Ω),(4.9a)

where

Rn = (1 + κ∂τu
n
h)I− c2τ2∆h − τβ∆h + τℓ∇unh · ∇,

(4.9b)

f̃n = 2(1 + κ∂τu
n
h)e

n
h + (1 + κ∂τu

n
h)e

n−1
h − τβ∆h∂τe

n
h + τℓ∇unh · ∇∂τenh + τ2δn+1

h ,(4.9c)

and I is the identity operator. This rewriting enables us to prove the following existence
result.
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Lemma 4.6. Let the assumptions of Theorem 2.3 hold.

(a) There exists a unique solution u2h of (2.9) for n = 2.

(b) If the assertions of Proposition 4.3 hold for up to n, then there exists a unique
solution un+1

h of (2.9).

Proof. Since we consider a finite dimensional solution space, it is sufficient to show injec-
tivity of Rn. We only present the proof of part (b) as part (a) can be proven along the
same lines. For φh ∈ Vh, by using the lower bound in (4.7), we compute

(Rnφh, φh)L2(Ω)

=((1 + κ∂τu
n
h)φh, φh)L2(Ω) +

(
τ2c2 + τβ

)
∥∇φh∥2L2(Ω) + τℓ(∇unh · ∇φh, φh)L2(Ω)

≥ γ∥φh∥2L2(Ω) +
(
τ2c2 + τβ

)
∥∇φh∥2L2(Ω) − τℓ|(∇unh · ∇φh, φh)L2(Ω)| ,

and thus it holds

γ∥φh∥2L2(Ω) +
(
τ2c2 + τβ

)
∥∇φh∥2L2(Ω) ≤ (Rnφh, φh)L2(Ω) + τℓ|(∇unh · ∇φh, φh)L2(Ω)|.

We expand the last term and rely on inverse estimates (3.4) and the discrete embedding
(3.3) to obtain

(4.10)

τ |(∇unh · ∇φh, φh)L2(Ω)|
= τ | − (∆ûnφh, φh)L2(Ω) + (∇

(
Rhû

n − ûn)∇φh, φh)L2(Ω) − (∇enh∇φh, φh)L2(Ω)|

≤Cτ
(
1 + hk−1

)
∥φh∥2L2(Ω) + τh−1−d/6∥∆he

n
h∥L2(Ω)∥φh∥2L2(Ω).

We absorb the first term for τ sufficiently small, and estimate the second term with the
C0 bound in (4.6) and the CFL condition (2.11)

τh−1−d/6∥∆he
n
h∥L2(Ω) ≤ τ1/2h−1−d/6

(
τ

n∑
j=1

∥∆he
j
h∥

2
L2(Ω)

)1/2 ≤ C0h
ετ1/2.

Hence, this term can also be absorbed, such that we obtain for some α > 0

(4.11) ∥φh∥2L2(Ω) +
(
τ2c2 + τβ

)
∥∇φh∥2L2(Ω) ≤ α(Rnφh, φh)L2(Ω),

where α is independent of h, τ , n, and β. □

The following lemma provides an estimate of the defect. Again here, we state it in its
full generality to be used not only for proving the induction basis n = 2 but also later for
completing the induction step.

Lemma 4.7. Let the assumptions of Theorem 2.3 hold. If the assertions of Proposition 4.3
hold for up to n, then

τ
n∑

j=1

∥δj+1
h ∥2L2(Ω) ≤ C(u, f)

(
hk + τ

)2
+ τ

n∑
j=1

(
∥∂τejh∥

2
L2(Ω) + ∥∇ejh∥

2
L2(Ω)

)
,

and

τ
n∑

j=1

∥∂τδj+1
h ∥2L2(Ω) ≤ C(u, f)

(
hk + τ

)2
+ τ

n∑
j=1

(
∥∂τejh∥

2
L2(Ω) + ∥∂2τ e

j
h∥

2
L2(Ω) + ∥∇ejh∥

2
L2(Ω) + ∥∂τ∇ejh∥

2
L2(Ω)

)
with constants independent of h, τ , n, and β.
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Proof. It is straightforward to check that the defect in (4.8) is given by

(4.12)

δn+1
h = (1 + κ∂τRhû

n)∂2τRhû
n+1 − (1 + κ∂tû

n+1)∂2t û
n+1 − κ∂τe

n
h∂

2
τRhû

n+1

+ β
(
∆∂tû

n+1 −∆∂τ û
n+1

)
+ f(tn+1)− fn+1

h

+ ℓ∇Rhû
n · ∇∂τRhû

n+1 − ℓ∇ûn+1 · ∇∂tûn+1 − ℓ∇enh · ∇∂τRhû
n+1.

Most of the terms were already estimated in Lemma 3.6. Using also the estimates provided
in Lemma 4.2 and the approximation properties of fnh assumed in (2.12), we obtain the
first bound. Using the product rule (4.1) several times, by the same strategy, we arrive at
the second bound for ∂τδ

n+1
h . □

With this preparation, we can show that estimates (4.5) and (4.6) hold for n = 2 and
thus complete the induction basis.

Lemma 4.8. Let the assumptions of Theorem 2.3 hold, and let the initial values be defined
by (2.10). Then, the error e2h satisfies the following bounds

∥∂2τ e2h∥L2(Ω) + ∥∂τ∇e2h∥L2(Ω) + ∥∆he
2
h∥L2(Ω) ≲ τ + hk ,

with a constant independent of h, τ , and β.

Proof. We employ the estimate (4.11) in Lemma 4.6 and use n = 1 in (4.9) to obtain

∥e2h∥L2(Ω) + τ∥∇e2h∥L2(Ω) ≲ ∥R1e2h∥L2(Ω)

≲ ∥e1h∥L2(Ω) + ∥e0h∥L2(Ω) + τβ∥∆h∂τe
1
h∥L2(Ω)

+ τ∥∇∂τe1h∥L2(Ω) + τ2∥δ2h∥L2(Ω)

≲ τ2
(
τ + hk),

where we have used e0h = 0, Lemma 4.4, and for estimating the defect, Lemma 4.2 with
0 ≤ m ≤ 2. The first two terms can then be bounded using

∥∂τ∇e2h∥L2(Ω) ≤ τ−1
(
∥∇e2h∥L2(Ω) + ∥∇e1h∥L2(Ω)

)
,

∥∂2τ e2h∥L2(Ω) ≤ τ−2
(
∥e2h∥L2(Ω) + 2∥e1h∥L2(Ω) + ∥e0h∥L2(Ω)

)
.

Using the inverse estimate (3.4) and the CFL condition (2.11), we additionally have

∥∆he
2
h∥L2(Ω) ≲ h−2∥e2h∥L2(Ω) ≲ τ−2∥e2h∥L2(Ω),

and conclude the desired bound. □

We thus conclude that estimate (4.5) holds for n = 2. Estimates (4.6) for n = 2 then
directly follow by exploiting the CFL condition in (2.11). Altogether, we conclude that
the statement of Proposition 4.3 holds for n = 2.

4.2. Completing the induction step. We next perform the induction step needed to
prove estimates (4.5) and (4.6). Note that by Lemma 4.6, we have already shown the
existence of un+1

h . To prove (4.5), we proceed similarly to Propositions 3.4 and 3.5 in two

testing steps. First, we test the equation for ej+1
h with −∆he

j+1
h in Proposition 4.9, and

then test the discretely differentiated version with ∂2τ e
j+1
h in Proposition 4.10.
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Proposition 4.9. Let the assumptions of Theorem 2.3 hold. If the assertions of Proposi-
tion 4.3 hold up to n, then

(4.13)

τ
n∑

j=1

∥∆he
j+1
h ∥2L2(Ω) + β∥∆he

n+1
h ∥2L2(Ω)

≲ β∥∆he
1
h∥2L2(Ω) + τ

n∑
j=1

(
∥∂2τ e

j+1
h ∥2L2(Ω) + ∥∇∂τej+1

h ∥2L2(Ω) + ∥δj+1
h ∥2L2(Ω)

)
,

with constants independent of h, τ , n and β.

Proof. As announced, we test the error equation for ej+1
h with φh = −∆he

j+1
h to obtain

c2∥∆he
j+1
h ∥2L2(Ω) + β(∆h∂τe

j+1
h ,∆he

j+1
h )L2(Ω)

= ((1 + κ∂τu
j
h)∂

2
τ e

j+1
h ,∆he

j+1
h )L2(Ω) + (ℓ∇ujh · ∇∂τe

j+1
h ,∆he

j+1
h )L2(Ω) + (δj+1

h ,∆he
j+1
h )L2(Ω).

Note that since the assertions of Proposition 4.3 hold up to n, we can rely on the uniform
bounds stated in Lemma 4.5. Thus, summing from 1 to n, using Lemma 4.1 as well as
Young’s inequality and the uniform bounds in Lemma 4.5, leads to estimate (4.13). □

We next need a discretely differentiated version of the error equation (4.8), analogously
to (3.1). We use the discrete product rule (4.1) to obtain

((1 + κ∂τu
n
h)∂

3
τ e

n+1
h + κ∂2τu

n
h∂

2
τ e

n
h − c2∆h∂τe

n+1
h − β∆h∂

2
τ e

n+1
h(4.14)

+ ℓ∇unh · ∇∂2τ en+1
h + ℓ∇∂τunh · ∇∂τenh, φh)L2(Ω) = (∂τδ

n+1
h , φh)L2(Ω),

for n ≥ 2. Further, we introduce the notation

∥ajh∥ℓ∞(1, n, L2(Ω)) := max
j=1,...,n

∥ajh∥L2(Ω),

which allows us to formulate the next proposition.

Proposition 4.10. Let the assumptions of Theorem 2.3 hold. If the assertions of Propo-
sition 4.3 hold for up to n, then for any α > 0 it holds

(4.15)

∥∂2τ en+1
h ∥2L2(Ω) + ∥∂τ∇en+1

h ∥2L2(Ω) + τβ
n∑

j=2

∥∇∂2τ e
j+1
h ∥2L2(Ω)

≲ α ∥∂2τ e
j
h∥

2
ℓ∞(2, n+1, L2(Ω)) + ∥∂2τ e2h∥2L2(Ω) + ∥∂τ∇e2h∥2L2(Ω)

+ τ
n∑

j=2

(
∥∂2τ e

j+1
h ∥2L2(Ω) + ∥∇∂τej+1

h ∥2L2(Ω) + ∥∂τδj+1
h ∥2L2(Ω)

)
,

with constants independent of h, τ , n and β.

Proof. We test the discretely differentiated error for ej+1
h with φh = ∂2τ e

j+1
h to obtain

((1 + κ∂τu
j
h)∂

3
τ e

j+1
h , ∂2τ e

j+1
h )L2(Ω) + c2(∇∂τej+1

h ,∇∂2τ e
j+1
h )L2(Ω) + β∥∇∂2τ e

j+1
h ∥2L2(Ω)

≤ κ|(∂2τu
j
h∂

2
τ e

j
h, ∂

2
τ e

j+1
h )L2(Ω)|+ ℓ|(∇ujh · ∇∂

2
τ e

j+1
h , ∂2τ e

j+1
h )L2(Ω)|

+ ℓ|(∇∂τujh · ∇∂τe
j
h, ∂

2
τ e

j+1
h )L2(Ω)|+ |(∂τδj+1

h , ∂2τ e
j+1
h )L2(Ω)|

≲ ∥∂2τ e
j
h∥

2
L2(Ω) + ∥∇∂τej+1

h ∥2L2(Ω) + ∥∂τδj+1
h ∥2L2(Ω) + |ℓ(∇ujh · ∇∂

2
τ e

j+1
h , ∂2τ e

j+1
h )L2(Ω)|,
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where we have also used the uniform bounds on unh stated in Lemma 4.5 in the last line.
We sum these inequalities from j = 2, . . . , n and use Lemma 4.1 to conclude that

(4.16)

∥∂2τ en+1
h ∥2L2(Ω) + ∥∂τ∇en+1

h ∥2L2(Ω) + τ
n∑

j=2

β∥∇∂2τ en+1
h ∥2L2(Ω)

≲ τ
n∑

j=2

(
∥∂2τ e

j+1
h ∥2L2(Ω) + ∥∇∂τej+1

h ∥2L2(Ω) + ∥∂τδj+1
h ∥2L2(Ω)

)
+ ∥∂2τ e2h∥2L2(Ω)

+ ∥∂τ∇e2h∥2L2(Ω) + τ
n∑

j=2

|(∇ujh · ∇∂
2
τ e

j+1
h , ∂2τ e

j+1
h )L2(Ω)|.

It remains to bound the last term. To this end, we use the expansion from (4.10) to obtain

τ
n∑

j=2

|(∇ujh · ∇∂
2
τ e

j+1
h , ∂2τ e

j+1
h )L2(Ω)|

≲ τ
n∑

j=2

(
∥∂2τ e

j+1
h ∥2L2(Ω) + ∥∇∂τej+1

h ∥2L2(Ω)

)
+ h−1−d/6τ

n∑
j=2

∥∆he
j
h∥L2(Ω)∥∂2τ e

j+1
h ∥2L2(Ω).

Since the assertions of Proposition 4.3 hold up to n, by the C0 bounds in (4.6) and Young’s
inequality, we have

h−1−d/6τ

n∑
j=2

∥∆he
j
h∥L2(Ω)∥∂2τ e

j+1
h ∥2L2(Ω)

≲ ∥∂2τ e
j
h∥ℓ∞(2, n+1, L2(Ω))h

−1−d/6
(
τ

n∑
j=2

∥∆he
j
h∥

2
L2(Ω)

)1/2(
τ

n∑
j=2

∥∂2τ e
j+1
h ∥2L2(Ω)

)1/2
≲α∥∂2τ e

j
h∥

2
ℓ∞(2, n+1, L2(Ω)) + τ

n∑
j=2

∥∂2τ e
j+1
h ∥2L2(Ω),

where α > 0 can be chosen arbitrarily. Employing this bound in (4.16) leads to (4.15). □

We now combine all previous results in this section to arrive at the statement of Propo-
sition 4.3.

Proof of Proposition 4.3. Recall that the statement of Proposition 4.3 holds for n = 2 by
the results of Section 4.1. We complete the induction step by showing the existence and
proving the estimates (4.5) and (4.6). Since the assertions in Proposition 4.3 are assumed
to hold up to n, by Lemma 4.6 we have existence of the solution un+1

h of (2.9). In addition,
by Proposition 4.9 and Proposition 4.10, we have

∥∂2τ en+1
h ∥2L2(Ω) + ∥∂τ∇en+1

h ∥2L2(Ω) + τ
n∑

j=1

∥∆he
j+1
h ∥2L2(Ω) + βτ

n∑
j=2

∥∇∂2τ e
j+1
h ∥2L2(Ω)

+ β∥∆he
n+1
h ∥2L2(Ω)

≲ α∥∂2τ e
j
h∥

2
ℓ∞(2, n+1, L2(Ω)) + τ

n∑
j=1

(
∥∂2τ e

j+1
h ∥2L2(Ω) + ∥∇∂τej+1

h ∥2L2(Ω)

)
+ ∥∂2τ e2h∥2L2(Ω) + ∥∂τ∇e2h∥2L2(Ω) + β∥∆he

1
h∥2L2(Ω) + τ

n∑
j=1

(
∥δj+1

h ∥2L2(Ω) + ∥∂τδj+1
h ∥2L2(Ω)

)



26 BENJAMIN DÖRICH† AND VANJA NIKOLIĆ‡

with the hidden constant independent of h, τ , n, and β. From here using Lemmas 4.4, 4.7,
and 4.8, together with

∥ejh∥L2(Ω) ≲ ∥∇ejh∥L2(Ω), ∥∇ejh∥
2
L2(Ω) ≤ Tτ

j∑
k=1

∥∇∂τejh∥
2
L2(Ω),

due to e0h = 0, we infer for m = n+ 1

∥∂2τ emh ∥2L2(Ω) + ∥∂τ∇emh ∥2L2(Ω) + τ
m−1∑
j=1

∥∆he
j+1
h ∥2L2(Ω) + βτ

m−1∑
j=2

∥∇∂2τ e
j+1
h ∥2L2(Ω)

+ β∥∆he
m
h ∥2L2(Ω)

≲ α∥∂2τ e
j
h∥

2
ℓ∞(2,m, L2(Ω)) +

(
τ + hk

)2
+ τ

m−1∑
j=1

(
∥∂2τ e

j+1
h ∥2L2(Ω) + ∥∇∂τej+1

h ∥2L2(Ω)

)
for any α > 0. It is straightforward to prove that analogous estimates hold for m ≤ n.
Therefore, taking the maximum of this inequality over m = 2, . . . , n + 1 and choosing α
sufficiently small, together with a Grönwall argument yields the error estimate stated in
(4.5) with a constant independent of n.

We then use the bound in (4.5), which is uniform in n, and the CFL condition in (2.11)
to obtain estimates in (4.6). This step closes the induction argument. □

The statement of Theorem 2.3 now follows immediately.

Proof of Theorem 2.3. Using the embedding in (3.3) and the best approximation proper-
ties of the Ritz projection in (3.2), we obtain the claimed estimate. □

4.3. The inviscid limit of the fully discrete solution. We next study the limiting
behavior of the fully discrete problem as β → 0 and prove Theorem 2.4. Similarly to
Section 3.3, we emphasize the β dependence of the fully discrete solution by using the
notation unh,β when β ∈ (0, β̄] and unh,β=0 in the inviscid case β = 0.

We define the quantity

ūnh = unh,β=0 − unh,β,

and estimate it to arrive at Theorem 2.4.

Proof of Theorem 2.4. By subtracting the equation for uj+1
h,β from the equation for uj+1

h,β=0,

we conclude that ūj+1
h satisfies

((1 + κ∂τu
j
h,β=0)∂

2
τ ū

j+1
h − c2∆hū

j+1
h , φh)L2(Ω)

=(−κ∂τ ūjh∂
2
τu

j+1
h,β − ℓ∇ujh,β=0 · ∇∂τ ū

j+1
h − ℓ∇ūjh · ∇∂τu

j+1
h,β − β∆h∂τu

j+1
h,β , φh)L2(Ω)

for j = 1, . . . , n. We test this problem with φh = ∂τ ū
j+1
h , sum from j = 1, . . . , n, and use

Lemma 4.1 to obtain

(4.17)

∥∂τ ūn+1
h ∥2L2(Ω) + ∥∇ūn+1

h ∥2L2(Ω)

≲ τ
n∑

j=1

(
∥∂τ ūj+1

h ∥2L2(Ω) + ∥∇ūj+1
h ∥2L2(Ω)

)
+ |ℓ(∇unh,β=0 · ∇∂τ ū

j+1
h , ∂τ ū

j+1
h )L2(Ω)|

+ |βτ
n∑

j=1

(∇∂τuj+1
h,β ,∇∂τ ū

j+1
h )L2(Ω)|,
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where we have also used the uniform bounds on un+1
h,β guaranteed by Lemma 4.5. We

proceed to estimate the right-hand side terms. Using the expansion in (4.10), we estimate

τ

n∑
j=1

|ℓ(∇unh,β=0 · ∇∂τ ū
j+1
h , ∂τ ū

j+1
h )L2(Ω)|

≲ τ
n∑

j=1

∥∂τ ūj+1
h ∥2L2(Ω) + ∥∂τ ūjh∥ℓ∞(2, n+1, L2(Ω))h

−1−d/6τ
n∑

j=1

∥∆he
j
h,β=0∥L2(Ω)∥∂τ ū

j+1
h ∥L2(Ω)

≲ τ
n∑

j=1

∥∂τ ūj+1
h ∥2L2(Ω) + α1∥∂τ ūjh∥ℓ∞(2, n+1, L2(Ω))

for any α1 > 0. It remains to bound the term involving β in (4.17) to set up a Grönwall
argument. To this end, we employ the summation by parts formula (4.2) to obtain

|βτ
n∑

j=1

(∇∂τuj+1
h,β ,∇∂τ ū

j+1
h )L2(Ω)|

= |β
(
(∇∂τun+1

h,β ,∇ū
n+1
h )L2(Ω) − (∇∂τu1h,β,∇ū1h)L2(Ω)

)
− βτ

n∑
j=1

(∂2τ∇u
j+1
h,β ,∇ū

j+1
h )L2(Ω)|

≲β2
(
∥∇∂τun+1

h,β ∥2L2(Ω) + ∥∇∂τu1h,β∥2L2(Ω) + τ

n∑
j=1

∥∂2τ∇u
j+1
h,β ∥2L2(Ω)

)
+ ∥∇ū1h∥2L2(Ω)

+ α2∥∇ūn+1
h ∥2L2(Ω) + τ

n∑
j=1

∥∇ūj+1
h ∥2L2(Ω)

for any α2 > 0, where we have also relied on the C0 bounds given in (4.6). Similarly to
the reasoning in Section 3, by Lemma 4.5 we have uniform bounds for the first two terms
multiplied with β2 on the right-hand side, and we can proceed similarly to (3.29) to bound
the third term. Further, by (2.10), it holds

∥∇ū1h∥L2(Ω) =
βτ2

2
∥Rh(1 + κv0)

−1∆v0∥L2(Ω) ≲ C(∥u∥U ) · τ2β

and we can conclude by reducing α2 that

∥∂τ ūn+1
h ∥2L2(Ω) + ∥∇ūn+1

h ∥2L2(Ω)

≤ Cβ2 + Cα1∥∂τ ūjh∥
2
ℓ∞(2, n+1, L2(Ω)) + Cτ

n∑
j=1

(
∥∂τ ūjh∥

2
L2(Ω) + ∥∇ūjh∥

2
L2(Ω)

)
.

We now take the maximum of this inequality over n = 2, . . . , N +1, and for small enough
α1 apply a Grönwall argument to obtain

max
n=1,...,N+1

∥∂τunh,β − ∂τu
n
h,β=0∥L2(Ω) + max

n=1,...,N+1
∥∇(unh,β − unh,β=0)∥L2(Ω) ≤ Cβ,

as claimed. □

We see that, under the assumptions of Theorem 2.3, also the fully discrete problem
preserves the asymptotic behavior of the exact and semi-discrete solutions as β → 0.

5. Non-robust estimates for linear finite elements

In this final section, we extend the results presented in Section 2 to the case of linear
finite elements, i.e., k = 1. We can prove the qualitatively same error bounds with
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constants that do not depend on the damping parameter β > 0, as long as we couple the
discretization parameters with the damping parameter correctly.

5.1. Semi-discretization. We first consider the error bound for the semi discretization
in space, and state a variant of Theorem 2.1 that takes β > 0 into account. We first state
our theorem, and devote the rest of this section to its proof. Since several arguments are
unchanged compared to Section 3, we only present the key estimates here.

Theorem 5.1 (Non-robust finite element estimates). Let the assumptions of Theorem 2.1
hold, but replace the assumptions on k and β with k ≥ 1 and β > 0, satisfying the relation

(5.1) hk−d/6−2ε ≤ C1

√
β,

for some C1, ε > 0 which are independent of h and β. Then there exists h0 > 0 and a
constant C > 0, independent of h and β, such that for all h ≤ h0, the following error
bound holds:
(5.2)

∥∂2t u(t)− ∂2t uh(t)∥2L2(Ω) + ∥∇∂tu(t)−∇∂tuh(t)∥2L2(Ω) +

∫ t

0
∥∇u(s)−∇uh(s)∥2L6(Ω) ds ≤ Ch2k

for all t ∈ [0, T ].

The key idea of the proof remains the same as before, and hence analogously to Section 3,
we work on the time interval [0, t∗h,β] with

(5.3)

t∗h,β := sup
{
t ∈ (0, T ] | a unique solution uh ∈ H3(0, t;Vh) of (2.3) exists, and

β−1/2h−d/6−ε∥∂2t eh(s)∥L2(Ω) ≤ C0,

β−1/2h−d/6−ε∥∇∂teh(s)∥L2(Ω) ≤ C0,

h−d/6−ε∥∆heh(s)∥L2(Ω) ≤ C0 for all s ∈ [0, t]
}
,

for some fixed C0 > 0 and ε as in (5.1). We then conduct the error analysis on this
interval, with the aim of later extending t∗h,β to T , analogously to before. By arguing as in

Lemma 3.1, we can prove that t∗h,β > 0, as well as obtain the correct estimates for eh(0),

∂teh(0), and ∂
2
t eh(0). We omit those details here.

Lemma 5.2. Let the assumptions of Theorem 5.1 hold. Then, we have

(5.4) 1 + κ∂tuh ≥ γ > 0, (x, t) ∈ Ω× [0, t∗h],

where γ does not depend on h, β, or t∗h,β.

Proof. Using the stability properties of the Ritz projection stated in (3.2), we obtain

∥∂tuh(t)∥L∞(Ω) ≲ ∥∂tu(t)∥L∞(Ω) + ∥(I− Rh)∂tu(t)∥L∞(Ω) + h−d/6∥∇∂teh(t)∥L2(Ω)

≤ ∥∂tu(t)∥L∞(Ω) + Chk + Cβ1/2hε

for all t ∈ [0, t∗h]. Hence we have the uniform lower bound in (5.4) that guarantees non-
degeneracy as well as uniform boundedness of ∥∂tuh∥L∞(L∞(Ω)). □

We are now ready to derive the relevant estimates and prove the error bound in (5.2).
Before, we briefly comment on the changes compared to Section 3.

By the bounds in Propositions 3.4 and 3.5, one obtains

(5.5) β

∫ t

0
∥∇∂2t eh(s)∥2L2(Ω) ds+ β∥∆heh(t)∥2L2(Ω) ≤ Ch2k.
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However, in order to stay uniform in β, these bounds were not exploited in the analy-
sis of Section 3. If we consider now fixed β > 0, this enables us to employ (5.5) while
paying with inverse powers of β via Young’s inequality. The coupling condition in (5.3)
allows us to close the proof even for k = 1. More details can be found in the following proof.

Proof of Theorem 5.1. Below whenever the temporal argument is skipped, we assume that
the given (in)equality holds for all t ∈ [0, t∗h,β]. We proceed in two steps.

(a) Starting from the estimate in (3.17) and using the uniform lower bound in (5.4), we
obtain

∂t∥(1 + κ∂tuh)
1/2∂2t eh∥2L2(Ω) + c2∂t∥∇∂teh∥2L2(Ω) + β∥∇∂2t eh∥2L2(Ω)

≲ ∥∂2t uh∂2t eh∥2L2(Ω) + ℓ|(∇∂tuh · ∇∂teh, ∂2t eh)L2(Ω)|+ ℓ|(∇uh · ∇∂2t eh, ∂2t eh)L2(Ω)|
+ ∥∂2t eh∥2L2(Ω) + ∥∇∂teh∥2L2(Ω) + ∥∂tδh∥2L2(Ω)

and have to treat the terms involving uh separately. Now exploiting β > 0, we estimate

∥∂2t uh∂2t eh∥2L2(Ω) ≲ ∥∂2t eh∂2t eh∥2L2(Ω) + ∥∂2tRhu ∂
2
t eh∥2L2(Ω)

≲ ∥∂2t eh∥2L3(Ω)∥∂
2
t eh∥2L6(Ω) + ∥∂2t eh∥2L2(Ω)

≲
(
β−1h−d/3∥∂2t eh∥2L2(Ω)

)
β∥∂2t∇eh∥2L2(Ω) + ∥∂2t eh∥2L2(Ω)

≤ β

4
∥∂2t∇eh∥2L2(Ω) + C∥∂2t eh∥2L2(Ω),

where we have used the C0 bounds in (5.3) in the last step. Next, we estimate

|(∇∂tuh · ∇∂teh, ∂2t eh)L2(Ω)|
≲ ∥∇∂teh∥2L2(Ω)∥∂

2
t eh∥L∞(Ω) + ∥∇∂tRh∥L∞(Ω)∥∇∂teh∥L2(Ω)∥∂2t eh∥L2(Ω)

≲ β−1/2∥∇∂teh∥2L2(Ω)β
1/2h−d/6∥∇∂2t eh∥L2(Ω) + ∥∇∂teh∥L2(Ω)∥∂2t eh∥L2(Ω).

We further estimate the first term in the last line above by using the C0 bounds in (5.3)
for h ≤ h0:

β−1/2h−d/6∥∇∂teh∥2L2(Ω)β
1/2∥∇∂2t eh∥L2(Ω)

=
(
β−1/2h−d/6∥∇∂teh∥L2(Ω)

)
β1/2∥∇∂2t eh∥L2(Ω)∥∇∂teh∥L2(Ω)

≤ β

4
∥∇∂2t eh∥2L2(Ω) + C∥∇∂teh∥2L2(Ω).

Next, proceeding as in (3.21) results in

|(∇uh · ∇∂2t eh, ∂2t eh)L2(Ω)| ≲ ∥∂2t eh∥2L2(Ω) + (∇eh · ∇∂2t eh, ∂2t eh)L2(Ω),

and further with the discrete embedding (3.3) we have

|(∇eh · ∇∂2t eh, ∂2t eh)L2(Ω)| ≤ ∥∇eh∥L∞(Ω)∥∇∂2t eh∥L2(Ω)∥∂2t eh∥L2(Ω)

≲ ∥∇eh∥L6(Ω)β
1/2∥∇∂2t eh∥L2(Ω)

(
β−1/2h−d/6∥∂2t eh∥L2(Ω)

)
≤ CC2

0h
2ε∥∆heh∥2L2(Ω) +

β

4
∥∇∂2t eh∥2L2(Ω),
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where we have used the C0 bounds in (5.3). For h ≤ h0, we have thus again derived (3.16)
with constants independent of h and β.

(b) Testing the error equation (3.14) with φh = −∆eh yields with Young’s inequality

c2∥∆heh∥2L2(Ω) + β∂t∥∆heh∥2L2(Ω)

≤ c2

4
∥∆heh∥2L2(Ω) + C

(
∥∂teh∥2L2(Ω) + ∥∂2t eh∥2L2(Ω) + ∥δh∥2L2(Ω) + (ℓ∇uh · ∇∂teh,∆heh)L2(Ω)

)
;

cf. (3.24). The last term is here estimated via

|(ℓ∇uh · ∇∂teh,∆heh)L2(Ω)|
≤ |(ℓ∇eh · ∇∂teh,∆heh)L2(Ω)|+ |(ℓ∇Rhu · ∇∂teh,∆heh)L2(Ω)|

≲
(
h−d/6∥∆heh∥L2(Ω)

)
∥∇∂teh∥L2(Ω)∥∆heh∥L2(Ω) + ∥∇∂teh∥2L2(Ω) +

c2

4
∥∆heh∥2L2(Ω)

≲ ∥∇∂teh∥2L2(Ω) +
c2

2
∥∆heh∥2L2(Ω),

where we have relied in the last step on the last C0 bound in (5.3). We absorb the
∥∆heh∥2L2(Ω) terms and conclude as before by Grönwall’s inequality that

∥∂2t eh(t)∥2L2(Ω) + ∥∇∂teh(t)∥2L2(Ω) + β∥∆heh(t)∥2L2(Ω) + β

∫ t

0
∥∇∂2t eh(s)∥2L2(Ω) ds

+

∫ t

0
∥∆heh(s)∥2L2(Ω) ds ≤ Ch2k

on [0, t∗h,β]. Thanks to this uniform bound, we can reason as in Section 3 to close again

the arguments with (5.1) and obtain t∗h,β = T . □

5.2. Non-robust estimates for a full discretization. Our last main result for the full
discretization is a variant of Theorem 2.3 in the case of fixed β > 0. The strategy of the
proof is similar to the one on Section 4. In order to compensate the inverse powers of β,
we have to assume the following coupling:

(5.6) τ ≤ C1β
1/2hd/6+2ε, hk−d/6−2ε ≤ C1β

1/2 ,

for constants C1, ε > 0 which are independent of h, τ , and β.

Theorem 5.3 (Non-robust fully discrete error bounds). Let the assumptions of Theo-
rem 2.3 hold, but replace the conditions on k and β with k ≥ 1 and 0 < β ≤ β̄. Under the
coupling conditions (5.6), for h ≤ h0 and τ ≤ τ0, it holds

∥∂2t u(tn)− ∂2τu
n
h∥2L2(Ω) + ∥∇∂tu(tn)−∇∂τunh∥2L2(Ω)

+ τ

n∑
j=1

∥∇u(tn)−∇unh∥2L6(Ω) ≤ C
(
τ + hk

)2
,

where the constant C > 0 is independent of h, τ , and β.

In order to prove the result, we set up an induction argument as before, and show that
for n = 2, . . . , N + 1 the solution unh exists, and similarly to (4.5), it holds
(5.7)

∥∂2τ enh∥2L2(Ω) + ∥∇∂τenh∥2L2(Ω) + β∥∆he
n+1
h ∥2L2(Ω) + τ

n∑
j=1

∥∆he
j
h∥

2
L6(Ω) ≤ C

(
τ + hk

)2
,
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as well as, analogously to (4.6),

(5.8)

β−1/2h−d/6−ε∥∂2τ enh∥L2(Ω) ≤ C0,

β−1/2h−d/6−ε∥∇∂τenh∥L2(Ω) ≤ C0,

h−d/6−ε∥∆he
n
h∥L2(Ω) ≤ C0,

β−1/2h−d/6−ε
(
τ

n∑
j=1

∥∆he
j
h∥

2
L2(Ω)

)1/2 ≤ C0,

with some constants C, C0 > 0 that are independent of h, τ , n, and β and ε chosen as in
(5.6).

Lemma 5.4. Under the assumptions of Theorem 5.3, the assertions of Lemma 4.4,
Lemma 4.6, Lemma 4.7, and Lemma 4.8 hold true, and in particular (5.7) and (5.8)
hold for n = 2.

Proof. The bounds in Lemmas 4.4 and 4.8 directly follow from the conditions in (5.6). For
the existence statement in Lemma 4.6, we estimate the term in (4.10) now via

τ |(∇unh · ∇φh, φh)L2(Ω)| ≲ τh−d/6∥∆he
n
h∥L2(Ω)∥∇φh∥L2(Ω)∥φh∥L2(Ω) + τ∥φh∥2L2(Ω)

≤α
(
∥φh∥2L2(Ω) + τ2∥∇φh∥2L2(Ω)

)
for any α > 0, where we have used (5.8) in the last step. □

Further, we have the crucial result in the leading nonlinear term which prevents degen-
eracy of the problem also for k = 1.

Lemma 5.5. Let the assumptions of Theorem 5.1 hold. If the estimates (5.7) and (5.8)
hold up to n ≥ 2, then we have

(5.9) 1 + κ∂τu
j
h ≥ γ > 0, j = 2, . . . , n,

where γ does not depend on h, τ β, or n.

Proof. Along the lines of Lemma 5.2, we have

∥∂τujh∥L∞(Ω) ≲ ∥∂τ ûj∥L∞(Ω) + ∥(I− Rh)∂τ û
j∥L∞(Ω) + h−d/6∥∂teh∥L6(Ω)

≤ ∥∂tu∥L∞(L∞(Ω)) + Chk + Cβ1/2hε

and hence the lower bound in (5.9) follows as well as boundedness of ∥∂τuh∥L∞(Ω). □

With this result, we can prove the principal result on a non-robust fully discrete bound.
As already explained in Section 5.1, the appearance of the inverse powers of β comes in
by exploiting the following bounds from Proposition 4.9 and 4.10:

β∥∆he
n+1
h ∥2L2(Ω) + τβ

n∑
j=2

∥∇∂2τ e
j+1
h ∥2L2(Ω) ≤ C

(
τ + hk

)2
,

and applying the relations in (5.6).

Proof of Theorem 5.3. We conduct the proof in two testing steps.
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(a) We proceed as in Proposition 4.10 and test the differentiated error equation (4.14)

with φh = ∂2τ e
j+1
h to obtain

((1 + κ∂τu
j
h)∂

3
τ e

j+1
h , ∂2τ e

j+1
h )L2(Ω) + c2(∇∂τej+1

h ,∇∂2τ e
j+1
h )L2(Ω) + β∥∇∂2τ e

j+1
h ∥2L2(Ω)

≤ κ|(∂2τu
j
h∂

2
τ e

j
h, ∂

2
τ e

j+1
h )L2(Ω)|+ ℓ|(∇ujh · ∇∂

2
τ e

j+1
h , ∂2τ e

j+1
h )L2(Ω)|

+ ℓ|(∇∂τujh · ∇∂τe
j
h, ∂

2
τ e

j+1
h )L2(Ω)|+ ∥∂2τ e

j+1
h ∥2L2(Ω) + ∥∂τδj+1

h ∥2L2(Ω),

and estimate the three terms separately. We use the C0 bounds in (5.8) to conclude

κ(∂2τu
j
h∂

2
τ e

j
h, ∂

2
τ e

j+1
h )L2(Ω)

≲
(
β−1/2h−d/6∥∂2τ e

j
h∥L2(Ω)

)
∥∂2τ e

j
h∥L2(Ω)β

1/2∥∇∂2τ e
j+1
h ∥L2(Ω) + ∥∂2τ e

j
h∥

2
L2(Ω) + ∥∂2τ e

j+1
h ∥2L2(Ω)

≤ β

4
∥∇∂2τ e

j+1
h ∥2L2(Ω) + C∥∂2τ e

j
h∥

2
L2(Ω) + C∥∂2τ e

j+1
h ∥2L2(Ω),

and absorb the β term by the left-hand side β term. We sum from j = 2, . . . , n and obtain
by the expansion in (4.10)

τ
n∑

j=2

|ℓ(∇ujh · ∇∂
2
τ e

j+1
h , ∂2τ e

j+1
h )L2(Ω)|

≲h−d/6β−1/2
(
τ

n∑
j=2

∥∆he
j
h∥

2
L2(Ω)

)1/2(
τβ

n∑
j=2

∥∇∂2τ e
j+1
h ∥2L2(Ω)

)1/2∥∂2τ ejh∥ℓ∞(2, n+1, L2(Ω))

+ τ

n∑
j=2

∥∂2τ e
j
h∥

2
L2(Ω)

≤α1∥∂2τ e
j
h∥ℓ∞(2, n+1, L2(Ω)) +

β

4
τ

n∑
j=2

∥∇∂2τ e
j+1
h ∥2L2(Ω) + Cτ

n∑
j=2

∥∂2τ e
j+1
h ∥2L2(Ω)

for any α1 > 0 by the bounds in (5.8) for h ≤ h0 and τ ≤ τ0. Finally, we estimate

|ℓ(∇∂τujh · ∇∂τe
j
h, ∂

2
τ e

j+1
h )L2(Ω)| ≤ |ℓ(∇∂τejh · ∇∂τe

j
h, ∂

2
τ e

j+1
h )L2(Ω)|

+ ∥∇∂τej+1
h ∥2L2(Ω) + ∥∂2τ e

j+1
h ∥2L2(Ω)

and with this, by the C0 bounds in (5.8),

|ℓ(∇∂τejh · ∇∂τe
j
h, ∂

2
τ e

j+1
h )L2(Ω)| ≲ ∥∇∂τejh∥L2(Ω)∥∇∂τe

j
h∥L2(Ω)h

−d/6∥∇∂2τ e
j+1
h ∥L2(Ω)

≤ β

4
∥∇∂2τ e

j+1
h ∥2L2(Ω) + C∥∇∂τejh∥

2
L2(Ω).

Lemma 4.1 then yields (4.15).

(b) We then test (4.8) with φh = −∆he
j+1
h to obtain

c2∥∆he
j+1
h ∥2L2(Ω) + β(∆h∂τe

j+1
h ,∆he

j+1
h )L2(Ω)

= ((1 + κ∂τu
j
h)∂

2
τ e

j+1
h ,∆he

j+1
h )L2(Ω) + (ℓ∇ujh · ∇∂τe

j+1
h ,∆he

j+1
h )L2(Ω) + (δj+1

h ,∆he
j+1
h )L2(Ω)

≤ c2

4
∥∆he

j+1
h ∥2L2(Ω) + C

(
∥∇∂τej+1

h ∥2L2(Ω) + ∥∂2τ e
j+1
h ∥2L2(Ω) + ∥δj+1

h ∥2L2(Ω) + |(ℓ∇ejh · ∇∂τe
j+1
h ,∆he

j+1
h )L2(Ω)|

)
.

For the last term, we use the C0 bound in (5.8) on ∥∆he
j
h∥L2(Ω) to conclude that

|(ℓ∇ejh · ∇∂τe
j+1
h ,∆he

j+1
h )L2(Ω)| ≲ h−d/6∥∆he

j
h∥L2(Ω)∥∇∂τe

j
h∥L2(Ω)∥∆he

j+1
h ∥L2(Ω)

≤ C∥∇∂τejh∥
2
L2(Ω) +

c2

4
∥∆he

j+1
h ∥2L2(Ω).
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We can absorb the ∥∆he
j+1
h ∥2L2(Ω) terms by the left-hand side and reason as in the proof of

Proposition 4.3 to arrive at (5.7). The coupling in (5.6) then implies (5.8), and the claim
follows by induction. □

Appendix A. Estimates for discrete derivatives

In order to keep the presentation self-contained, we include the proof of Lemma 4.2 here
in the appendix.

Proof of Lemma 4.2. For the sake of readability, we just consider a generic norm a and
assume without loss of generality ℓ1 ≤ ℓ2 to obtain

∥∂m−ℓ1
τ ∂ℓ1t û

n − ∂m−ℓ2
τ ∂ℓ2t û

n∥ = ∥∂m−ℓ2
τ

(
∂ℓ2−ℓ1
τ ∂ℓ1t û

n − ∂ℓ2t û
n
)
∥.

Applying the fundamental theorem of calculus ℓ-times gives

∂ℓτ û
n =

1

τ ℓ

∫ τ

0
. . .

∫ τ

0
∂ℓtu(tn−ℓ + σ1 + . . .+ σℓ) dσ1 . . . dσℓ ,

and similarly

∂τ û
k − ∂tû

k = −τ
∫ 1

0

∫ 1

s
∂2t u(tk−1 + τη) dη ds.

With the estimate∣∣∫ 1

0
. . .

∫ 1

0
u(σ1 + . . .+ σℓ) dσ1 . . . dσℓ

∣∣ ≤ ∫ ℓ

0
|u(σ1)|dσ1,

we may write

∂m−ℓ2
τ

(
∂ℓ2−ℓ1
τ ∂ℓ1t û

n − ∂ℓ2t û
n
)
=

ℓ2−1∑
j=ℓ1

(∂τ − ∂t)
(
∂m−1−j
τ ∂jt û

n
)

= −τ
ℓ2−1∑
j=ℓ1

∫ 1

0
. . .

∫ 1

0

∫ 1

0

∫ 1

s
∂m+1
t u(tn−(m−j) + τ(η + σ1 + . . .+ σm−1−j)) dη ds dσ1 . . . dσm−1−j

and hence

∥∂m−ℓ2
τ

(
∂ℓ2−ℓ1
τ ∂ℓ1t û

n − ∂ℓ2t û
n
)
∥

≤ τ

ℓ2−1∑
j=ℓ1

∫ 1

0
. . .

∫ 1

0
∥∂m+1

t u(tn−(m−j) + τ(η + σ1 + . . .+ σm−1−j))∥dη dσ1 . . . dσm−1−j

≤ τ

ℓ2−1∑
j=ℓ1

∫ m−j

0
∥∂m+1

t u(tn−(m−j) + τη)∥ dη

≤ τm

∫ m

0
∥∂m+1

t u(tn−m + τη)∥ dη

and with this

∥∂m−ℓ2
τ

(
∂ℓ2−ℓ1
τ ∂ℓ1t û

n − ∂ℓ2t û
n
)
∥2 ≤ τm3

∫ tn

tn−m

∥∂m+1
t u(s)∥2 ds,

which concludes the proof. □
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[10] B. Dörich, Strong norm error bounds for quasilinear wave equations under weak
CFL-type conditions, Found. Comput. Math. (accepted), (2024).

[11] R. E. Ewing, On efficient time-stepping methods for nonlinear partial differential
equations, Comput. Math. Appl., 6 (1980), pp. 1–13.

[12] H. Fujita, N. Saito, and T. Suzuki, Operator theory and numerical methods,
vol. 30 of Studies in Mathematics and its Applications, North-Holland Publishing
Co., Amsterdam, 2001.

[13] L. Gauckler, J. Lu, J. L. Marzuola, F. Rousset, and K. Schratz, Trigono-
metric integrators for quasilinear wave equations, Math. Comp., 88 (2019), pp. 717–
749.

[14] M. F. Hamilton and D. T. Blackstock, Nonlinear acoustics, vol. 237, Academic
press San Diego, 1998.

[15] M. Hochbruck and B. Maier, Error analysis for space discretizations of quasilin-
ear wave-type equations, IMA J. Numer. Anal., 42 (2022), pp. 1963–1990.
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[19] B. Kaltenbacher and V. Nikolić, Parabolic approximation of quasilinear wave
equations with applications in nonlinear acoustics, SIAM J. Math. Anal., 54 (2022),
pp. 1593–1622.

[20] S. Kanda, Convergence of difference approximations and nonlinear semigroups, Proc.
Amer. Math. Soc., 108 (1990), pp. 741–748.



ROBUST FULLY DISCRETE ERROR BOUNDS FOR THE KUZNETSOV EQUATION 35

[21] S. Kawashima and Y. Shibata, Global existence and exponential stability of small
solutions to nonlinear viscoelasticity, Comm. Math. Phys., 148 (1992), pp. 189–208.

[22] Y. Kobayashi, Difference approximation of Cauchy problems for quasi-dissipative
operators and generation of nonlinear semigroups, J. Math. Soc. Japan, 27 (1975),
pp. 640–665.
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[31] V. Nikolić and B. Wohlmuth, A priori error estimates for the finite element
approximation of Westervelt’s quasi-linear acoustic wave equation, SIAM J. Numer.
Anal., 57 (2019), pp. 1897–1918.
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