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PINNING IN THE EXTENDED LUGIATO-LEFEVER EQUATION

LUKAS BENGEL, DMITRY PELINOVSKY, AND WOLFGANG REICHEL

ABSTRACT. We consider a variant of the Lugiato-Lefever equation (LLE), which is a nonlin-
ear Schrödinger equation on a one-dimensional torus with forcing and damping, to which
we add a first-order derivative term with a potential εV(x). The potential breaks the trans-
lation invariance of LLE. Depending on the existence of zeroes of the effective potential Veff,
which is a suitably weighted and integrated version of V, we show that stationary solutions
from ε = 0 can be continued locally into the range ε 6= 0. Moreover, the extremal points
of the ε-continued solutions are located near zeros of Veff. We therefore call this phenome-
non pinning of stationary solutions. If we assume additionally that the starting stationary
solution at ε = 0 is spectrally stable with the simple zero eigenvalue due to translation in-
variance being the only eigenvalue on the imaginary axis, we can prove asymptotic stability
or instability of its ε-continuation depending on the sign of V′eff at the zero of Veff and the
sign of ε. The variant of the LLE arises in the description of optical frequency combs in a
Kerr nonlinear ring-shaped microresonator which is pumped by two different continuous
monochromatic light sources of different frequencies and different powers. Our analytical
findings are illustrated by numerical simulations.

1. INTRODUCTION

The Lugiato-Lefever equation [19] is the most commonly used model to describe elec-
tromagnetic fields inside a resonant cavity that is pumped by a strong continuous laser
source. Inside the cavity the electromagnetic field propagates and suffers losses due to
curvature and/or material imperfections. Most importantly, the cavity consists of a Kerr-
nonlinear material so that triggered by modulation instability the field may experience a
nonlinear interaction of the pumped and resonantly enhanced modes of the cavity. Under
appropriate driving conditions of the resonant cavity and the laser, a stable Kerr-frequency
comb may form in the cavity, which is a spatially localized and spectrally broad waveform.

Since their discovery by the 2005 noble prize laureate Theodor Hänsch, frequency combs
have seen an enormously wide field of applications, e.g., in high capacity optical commu-
nications [22], ultrafast optical ranging [32], optical frequency metrology [33], or spec-
troscopy [29, 35]. The Lugiato-Lefever equation (LLE) is an amplitude equation for the
electromagnetic field inside the cavity derived by means of the slowly varying envelope
approximation.

In the following we assume that the cavity is a ring-shaped microresonator with normal-
ized perimeter 2π. Using dimensionless quantities and writing u(x, t) = ∑k∈Z uk(t)eikx
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for the slowly varying and 2π-periodic amplitude of the electromagnetic field, the LLE in
its original form [19] reads as

(1.1) i∂tu = −d∂2
xu + (ζ − iµ)u− |u|2u + i f0, (x, t) ∈ T×R,

where T is a circle of length 2π. The dispersion relation for the k-th Fourier mode of the
resonator is given in the form ωk = ω0 + d1k + d2k2 with d := 2

κ d2 being the normalized
dispersion coefficient and κ > 0 being the cavity decay rate. The detuning value ζ repre-
sents the off-set between the laser frequency ωp0 and the closest resonance frequency ω0 of
the zero-mode k0 = 0 of the resonator, and the value µ quantifies the damping coefficient.
Finally, f0 stands for pump strength with power | f0|2.

More recently, novel pumping schemes have been discussed [31], where instead of one
monochromatic laser pump one uses a dual laser pump with two different frequencies as
a source term. Using again dimensionless quantities the resulting equation is given by

(1.2) i∂tu = −d∂2
xu + (ζ − iµ)u− |u|2u + i f0 + i f1ei(k1x−ν1t), (x, t) ∈ T×R,

cf. [10, 11, 31] for a detailed derivation. In contrast to (1.1) there is now a second source
term with pump strength f1 and k1 stands for the second pumped mode (the first pumped
mode is again k0 = 0). This gives rise to two detuning variables ζ = 2

κ (ω0 − ωp0), ζ1 =
2
κ (ωk1 − ωp1) and they define ν1 = ζ − ζ1 + dk2

1. One of the main outcomes of [11] is that
the stationary states of (1.2) are far more localized than the stationary states of (1.1), and
the best results can be achieved when f0 = f1 among all power distributions such that
f 2
0 + f 2

1 is kept constant.
However, there are cases where a power distribution | f0| � | f1| is more adequate in

physical experiments. In this case, it is shown in Appendix A that one can derive from
(1.2) the perturbed LLE in the form

(1.3) i∂tu = −d∂2
xu + iεV(x)∂xu + (ζ − iµ)u− |u|2u + i f0, (x, t) ∈ T×R,

where in the physical context V(x) = ω1 − 2dk2
1

f1
f0

cos(x) and ε = 1. However, if ω1 and
k2

1 f1/ f0 are small, we will consider (1.3) as the perturbed LLE with ε ∈ R being small and
V ∈ C1([−π, π], R) being a generic periodic potential. Recall that (1.3) is already set in a
moving coordinate frame. In its stationary form the equation becomes

(1.4) − du′′ + iεV(x)u′ + (ζ − iµ)u− |u|2u + i f0 = 0, x ∈ T.

The main questions addressed in this paper are the existence and stability of the station-
ary solution of (1.3). Our main results, which are stated in detail in Section 2, can be
summarized as follows:

• In Theorem 1 we prove existence of solutions of (1.4) for small ε provided the effec-
tive potential Veff changes sign, where Veff is a weighted integrated version of the
coefficient function V.
• In Theorems 2 and 3 we prove stability/instability properties of the solution ob-

tained from Theorem 1 with the time evolution of (1.3).
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• In Section 3 we illustrate the findings of our theorems by numerical simulations.
The numerical simulations show that the location of the intensity extremum of the
ε-continued solutions does not change significantly for small ε. Therefore, we call
this phenomenon pinning of solutions at zeroes of the effective potential Veff.

Existence and bifurcation behavior of solutions of (1.1) have been studied quite well, cf.
[8, 9, 12, 13, 21, 23, 24, 25, 26] and their stability properties have been investigated in
[3, 4, 14, 15, 16, 28, 30]. Analytical and numerical investigations of (1.2) have recently been
reported [10, 11]. In contrast, we are not aware of any treatment of (1.3). However, a
related problem, where instead of iεV(x)u′ a term of the form εV(x)u appears in the NLS
equation, has been quite well studied, cf. [1, 7, 27]. In this case solutions are pinned near
nondegenerate critical points of Veff instead of the zeroes of Veff as in our case.

2. MAIN RESULTS

In this section we present our main results regarding existence and stability of stationary
solutions of (1.3). For ε = 0 there is a plethora of non-trivial (non-constant) stationary
solutions, cf. [8, 21]. We start with such a solution under the assumption of its non-
degeneracy according to the following definition.

Definition 1. A non-constant solution u ∈ H2
per([−π, π], C) of (1.4) for ε = 0 is called

non-degenerate if the kernel of the linearized operator

Lu ϕ := −dϕ′′ + (ζ − iµ− 2|u|2)ϕ− u2 ϕ̄, ϕ ∈ H2
per([−π, π], C)

consists only of span{u′}.

Remark 1. Note that Lu : H2
per([−π, π], C) → L2([−π, π], C) is a compact perturbation

of the isomorphism −d∂2
x + sign(d) : H2

per([−π, π], C) → L2([−π, π], C) and hence a
Fredholm operator. Notice also that span{u′} always belongs to the kernel of Lu due to
translation invariance in x for ε = 0. Non-degeneracy means that except for the obvious
candidate u′ (and its real multiples) there is no other element in the kernel of Lu.

One can ask the question whether non-constant non-degenerate solutions at ε = 0 in
Definition 1 may be continued into the regime of ε 6= 0. In order to describe the continu-
ation, we denote such a solution by u0 and its spatial translations by uσ(x) := u0(x− σ).
The non-degeneracy assumption implies that ker Luσ = span{u′σ}. Since the adjoint op-
erator L∗uσ

also has a one-dimensional kernel there exists φ∗σ ∈ H2
per([−π, π], C) such

ker L∗uσ
= span{φ∗σ}. Notice that φ∗σ(x) = φ∗0(x− σ).

Before stating our existence result, let us clarify the assumption on the potential V.
(A1) The potential V : [−π, π] → R, x 7→ V(x) is a 2π-periodic, continuously differen-

tiable function.
The existence result is given by the following theorem.

Theorem 1. Let d ∈ R \ {0}, f0, ζ, µ ∈ R be fixed and assume that (A1) holds. Let furthermore
u0 ∈ H2

per([−π, π], C) be a non-constant, non-degenerate solution of (1.4) for ε = 0. If σ0 is a
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simple zero of the function

(2.1) σ 7→ Veff(σ) := Re
∫ π

−π
iV(x + σ)u′0φ̄∗0 dx

then there exists a continuous curve (−ε∗, ε∗) 3 ε → u(ε) ∈ H2
per([−π, π], C) consisting of

solutions of (1.4) with ‖u(ε)− u0(· − σ0)‖H2 ≤ Cε for some constant C > 0.

Remark 2. The value of σ0 is determined from the existence of a unique solution v ∈
H2

per([−π, π], C) of the linear inhomogeneous equation

Luσ0
v = −iV(x)u′σ0

with the property that v ⊥L2 u′σ0
. Fredholm’s condition shows that σ0 is a zero of Veff.

Simplicity of the zero of Veff yields the result of Theorem 1.

To investigate the stability of a stationary solution u we introduce the expansion

u(x) + v(x, t) = u1(x) + iu2(x) + v1(x, t) + iv2(x, t)

and substitute this into the perturbed LLE (1.3). After neglecting the quadratic and cubic
terms in v and separating real and imaginary parts we obtain the linearized system for
v = (v1, v2) which reads as

∂tv = L̃u,εv

and the linearization has the form

(2.2) L̃u,ε = JAu − I(µ− εV(x)∂x)

with

J :=
(

0 1
−1 0

)
, I :=

(
1 0
0 1

)
, Au :=

(
−d∂2

x + ζ − (3u2
1 + u2

2) −2u1u2
−2u1u2 −d∂2

x + ζ − (u2
1 + 3u2

2)

)
.

In the following we will often identify functions in C as vector-valued functions in R×R

and use the notation

u = u1 + iu2 ∈ C ↔ u =

(
u1
u2

)
∈ R2.

We denote the spectrum of L̃u,ε in L2([−π, π])× L2([−π, π]) by σ(L̃u,ε) and the resolvent
set of L̃u,ε by ρ(L̃u,ε).

For our stability results we require one additional spectral assumption on the non-
degenerate solution u0 regarding the spectrum of L̃u0,0.

(A2) The eigenvalue 0 ∈ σ(L̃u0,0) is algebraically simple and there exists ξ > 0 such that

σ(L̃u0,0) ⊂ {z ∈ C : Re z ≤ −ξ} ∪ {0}.
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Remark 3. By Fredholm theory, the assumption of simplicity of the zero eigenvalue of
L̃u0,0 is equivalent to u′0 6∈ range L̃u0,0 = span{Jφ∗0}⊥. It will be convenient to use the
normalization 〈u′0, Jφ∗0〉L2 =

∫ π
−π u

′
0 · Jφ∗0 dx = 1. We also note that∫ π

−π
u′0 · Jφ∗0 dx = Re

∫ π

−π
iu′0φ̄∗0 dx.

Before stating the stability results, let us clarify that ker L∗u and ker Lu are linearly inde-
pendent so that Veff is generically nonzero. We also clarify the parity of eigenfunctions in
ker L∗u and ker Lu if u0 is even in x. This is used for many practical computations.

Lemma 1. Let u0 ∈ H2
per([−π, π], C) be a non-constant, non-degenerate solution of (1.4) for

ε = 0. Then the following holds:
(i) u′0 and φ∗0 are linearly independent,

(ii) if u0 is even then φ∗0 is odd.

Proof. Part (i): By using the decomposition (2.2) with u = u0 and ε = 0, the eigenvalue
problems Lu0u′0 = 0 and L∗u0

φ∗0 = 0 are equivalent to

JAu0

(
u′01
u′02

)
= µ

(
u′01
u′02

)
, JAu0

(
φ∗01
φ∗02

)
= −µ

(
φ∗01
φ∗02

)
.

But since (u′01, u′02) and (φ∗01, φ∗02) are eigenvectors to the different eigenvalues µ and −µ
of JAu0 , respectively, they are linearly independent.

Part (ii): By assumption we have that ker Lu0 = span{u′0} and u′0 is an odd function. Let
us define the restriction of Lu0 onto the odd functions

L#
u0

: H2
per,odd → L2

per,odd, ϕ 7→ Lu0 ϕ.

Then L#
u0

is again an index 0 Fredholm operator with ker L#
u0

= span{u′0}. Further we
have (L#

u0
)∗ = (L∗u0

)# where

(L∗u0
)# : H2

per,odd → L2
per,odd, ϕ 7→ L∗u0

ϕ

is the restriction of the adjoint onto the odd functions. But since 1 = dim ker(L∗u0
)# =

dim ker L∗u0
it follows that ker(L∗u0

)# = ker L∗u0
and hence φ∗0 ∈ H2

per,odd as claimed. �

The stability results are given by the following two theorems. A stationary solution u
of (1.4) is called spectrally stable if Re(λ) ≤ 0 for all eigenvalues λ of L̃u,ε. It is called
spectrally unstable if there exists one eigenvalue λ with Re(λ) > 0.

Theorem 2. Let d ∈ R \ {0}, f0, ζ, µ ∈ R be fixed and assume that (A1) and (A2) hold. With σ0
being a simple zero of Veff as in Theorem 1, we have

V′eff(σ0) = Re
∫ π

−π
iV′(x + σ0)u′0φ̄∗0 dx = 〈V′(·+ σ0)u

′
0, Jφ∗0〉L2 6= 0.
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Then there exists ε0 > 0 such that on the solution branch (−ε0, ε0) 3 ε→ u(ε) ∈ H2
per([−π, π], C)

of (1.4) with u(0) = uσ0 the solutions u(ε) are spectrally stable for V′eff(σ0) · ε > 0 and spectrally
unstable for V′eff(σ0) · ε < 0.

Theorem 3. Let u(ε) ∈ H2
per([−π, π], C) be a spectrally stable stationary solution of (1.3) for a

small value of ε as in Theorem 2. Then u(ε) is asymptotically stable, i.e., there exist η, δ, C > 0 with
the following properties. If ϕ ∈ C([0, T), H1

per([−π, π], C)) is a solution of (1.3) with maximal
existence time T and

‖ϕ(·, 0)− u(ε)‖H1 < δ

then T = ∞ and

‖ϕ(·, t)− u(ε)‖H1 ≤ Ce−ηt‖ϕ(·, 0)− u(ε)‖H1 for all t ≥ 0.

Remark 4. Due to periodicity of Veff on T, simple zeros of Veff comes in pairs. By Theo-
rems 2 and 3 , one simple zero gives a solution branch consisting of asymptotically stable
solutions for any sign of ε. Moreover, at the bifurcation point ε = 0 there is an exchange
of stability, i.e., the zero eigenvalue crosses the imaginary axis with non zero speed.

Remark 5. In [4, 14] the authors constructed spectrally stable solutions u of (1.4) for ε = 0
in the case of anomalous dispersion d > 0. These solutions satisfy the spectral condition
σ(L̃u,0) ⊂ {−2µ}∪{Re z = −µ}∪{0} and are therefore non-degenerate starting solutions
for which our main results from Theorems 1, 2, and 3 hold.

Remark 6. If u is a solution of (1.4) then the relation∫ π

−π
(u′ū− ū′u)dx = 0

holds. This constraint is satisfied by every even function u. In fact, the only solutions of
equation (1.4) for ε = 0 that we are aware of are even around x = 0 (up to a shift).

Remark 7. In the limit where u0 is highly localized around 0 (e.g. the limit d → 0±)
and the potential V is wide, the effective potential Veff is well approximated by the actual
potential V. More precisely we find the asymptotic

Veff(σ) = Re
∫ π

−π
iV(x + σ)u′0φ̄∗0 dx ≈ V(σ)Re

∫ π

−π
iu′0φ̄∗0 dx = V(σ)

provided 〈iu′0, φ∗0〉L2 = 1. Thus, the asymptotically stable branch bifurcates from a simple
zero σ0 of V with V′(σ0)ε > 0.

Remark 8. The criterion for stability of stationary solutions in Theorem 2 can be written
in a more precise form for small µ in the case of solitary waves. This limit is considered in
Appendix B.

To summarize, our main results show that nondegenerate solutions of (1.4) for ε = 0
can be extended locally for small ε 6= 0 provided the effective potential Veff has a sign-
change. Depending on the derivative of Veff at a simple zero we determined the stability
properties of these solutions. It remains an open problem to give a criterion on V or Veff
for the existence/stability of stationary solutions which applies when |ε| is large.
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3. NUMERICAL SIMULATIONS

In the following we describe numerical simulations of solutions to (1.4). We choose
f0 = 2, µ = 1, V(x) = 0.1+ 0.5 cos(x) and d = ±0.1. All computations are done with help
of the Matlab package pde2path (cf. [5, 34]) which has been designed to numerically treat
continuation and bifurcation in boundary value problems for systems of PDEs.

We begin with the description of the stationary solutions of the LLE (1.1), which are the
same as the solutions of (1.4) for ε = 0. The corresponding results are mainly taken from
[8, 21]. There is a curve of trivial, spatially constant solutions, cf. black line in Figure 1,
and this is the same curve for anomalous dispersion (d = 0.1) and normal dispersion
(d = −0.1). Next one finds that there are finitely many bifurcation points on the curve
of trivial solutions (blue dots). Depending on the sign of the dispersion parameter d one
can find now the branches of the single solitons on the periodic domain T. In the follow-
ing descriptions we always follow the path of trivial solutions by starting from negative
values of ζ.

FIGURE 1. Bifurcation diagram for the case ε = 0. Blue dots indicate bifur-
cation points on the line of trivial solutions (black). The red curve denotes
the single soliton solution branch. The point BP is chosen as a starting point
for Theorem 1. Further solutions on the same branch for the same value of ζ
are denoted by C (left panel) and A, C (right panel). Left panel for d = 0.1,
right panel for d = −0.1.

For d = 0.1 (left panel in Figure 1) along the trivial branch there is a last bifurcation
point which gives rise to a single bright soliton branch (red line). This branch has a turning
point, at which the solutions change from unstable (dashed) to stable (solid), and after the
turning point it tends back towards the trivial branch. Thus, the red line in the left panel
of Figure 1 represents two different but almost identical curves, which can be seen in the
enlarged inset. We have chosen a solution at the point BP on the stable branch as a starting
point for the illustration of Theorems 1 and 2.

In the case where d = −0.1 (right panel in Figure 1) along the trivial branch there is a
first bifurcation point from which a single dark soliton branch (red line) bifurcates. Near
the second turning point of this branch the most localized single solitons live and we have
chosen a stable dark soliton solution at the point BP as a starting point for the illustration
of Theorems 1 and 2.
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Next we explain the global picture in Figure 2 of the continuation in ε of the chosen
point BPs from the ε = 0 case in Figure 1. The local picture is covered by Theorem 1. First
we note the following symmetry: since V(x) is even around x = 0 we find that (u(x), ε)
solves (1.4) if and only if (u(−x),−ε) satisfies (1.4). Since reflecting u does not affect the
L2-norm we see for ε > 0 an exact mirror image of the one for ε < 0.

FIGURE 2. Continuation diagrams w.r.t ε with stability regions (solid = sta-
ble; dashed = unstable) and solutions at designated points. The two different
zeroes of Veff give rise to two different continuation curves (blue and green).
Top panels: d = 0.1, ζ = 3.7. Bottom panels: d = −0.1, ζ = 4.5 with zoom
(middle panel) of the continuation curve near the starting point.

Next we observe that continuation curves in ε appear to be unbounded for d = 0.1
(upper left panel of Figure 2) and closed and bounded for d = −0.1 (lower left panel
of Figure 2). In our example the map σ 7→ Veff(σ) := Re

∫ π
−π iV(x + σ)u′0φ̄∗0 dx has two

zeroes in the periodic domain T denoted by σ0 and σ1. Since moreover u0 is even and
consequently u′0, φ∗0 are odd we see that the effective potential Veff is also even and hence
σ0 = −σ1. Thus, continuation in ε works for the starting point u0(· − σ0) (blue curve) and
u0(· + σ0) (green curve) with σ0 < 0. As predicted from Theorem 2 locally on one side
of ε = 0 we have stable and on the other side unstable solutions. On the top and bottom
right panels of Figure 2 we see the graph of |u|2 for several solutions on the continuation
diagram. The top left panel and the bottem left panel indicate that the ε-continuation
curves meet all other nontrivial points (C for d = 0.1 and A, C for d = −0.1) at ε = 0 from
Figure 1.

In Figure 3 we show the starting solutions u0(x− σ0) and u0(x− σ1) together with the
potential V(x). Here the zeroes σ0 < 0 < σ1 of the effective potential Veff are shown as
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FIGURE 3. Top row: d = 0.1, bottom row: d = −0.1. Left panels: starting
solutions u0(x − σ0) together with V(x) and negative zero σ0 of Veff (blue
dot). Stability for ε > 0, instability for ε < 0. Right panels: starting solutions
u0(x + σ0) together with V(x) and positive zero σ1 = −σ0 of Veff (green dot).
Stability for ε < 0, instability for ε > 0.

blue and green dots and we already observed σ0 = −σ1 due to the evenness of both V and
Veff. Since u0 is sufficiently strongly localized the zeroes of Veff are well approximated by
the zeroes of V and the starting solutions are thus centered near the zeroes of V. Therefore,
by applying Remark 7, we see that slope of V at the center of the soliton being positive
in the blue bifurcation point indicates that the ε-continuation will be stable for ε > 0 and
unstable for ε < 0. The stability behavior is exactly opposite for the green bifurcation
point. The stability considerations are valid both for d = 0.1 and d = −0.1.

Finally, let us illustrate the spectral stability properties of the ε-continuations in Figure 4.
For ε = 0 we see in the left panel the spectrum of the linearization around u0 with most of
spectrum having real part −1 due to damping µ = 1 and further spectrum in the left half
plane together with the zero eigenvalue caused by shift-invariance. Now we consider how
the critical eigenvalue behaves when ε varies. We do this for the case where the starting
soliton sits at a zero of Veff with positive slope, cf. blue bifurcation point in Figure 3.
As predicted, the critical eigenvalue moves into the complex left half plane for ε > 0
rendering the ε-continuations stable. Since the starting solitons are sufficiently localized
−V′(σ0) predicts well the slope of the critical eigenvalue, cf. Lemma 3 and Remark 7.
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FIGURE 4. Top: d = 0.1, bottom: d = −0.1. Left: spectrum for ε = 0. Right:
critical eigenvalue λ0(ε) together with −V′(σ0)ε as functions of ε.

4. PROOF OF THE EXISTENCE RESULT

Theorem 1 will be proved via Lyapunov-Schmidt reduction and the Implicit Function
Theorem. Fix the values of d, ζ, µ and f0. Let u0 ∈ H2

per([−π, π], C) be a non-degenerate
solution of (1.4) for ε = 0 and recall that for σ ∈ R its shifted copy uσ(x) := u0(x− σ) is
also a solution of (1.4) for ε = 0.

Proof of Theorem 1: We seek solutions u of (1.4) of the form

u = uσ + v, 〈v, u′σ〉L2 = 0, v ∈ H2
per([−π, π], C).

Inserting it into (1.4) we obtain the following equation for the correction term v:

Luσ v + iεV(u′σ + v′)− N(v, σ) = 0(4.1)

with nonlinearity given by

N(v, σ) = ūσv2 + 2uσ|v|2 + |v|2v.

The nonlinearity is a sum of quadratic and cubic terms in v. Since H2
per is a Banach algebra,

it is clear that for every R > 0, there exists CR > 0 such that

(4.2) ‖N(v, σ)‖L2 ≤ CR‖v‖2
H2 , for every v ∈ H2

per : ‖v‖H2 ≤ R.

Moreover, since V ∈ L∞ it follows that

‖iεV(u′σ + v′)‖L2 ≤ |ε|‖V‖L∞‖uσ + v‖H2 .
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Next we solve (4.1) according to the Lyapunov-Schmidt reduction method. Define the
orthogonal projections

Pσ : L2 → span{u′σ} ⊂ L2, Qσ : L2 → span{φ∗σ}⊥ ⊂ L2

onto ker Luσ and (ker L∗uσ
)⊥ = span{φ∗σ}⊥ = range Luσ , respectively. Then (4.1) can be

decomposed into a non-singular and singular equation

Qσ

(
Luσ(I − Pσ)v + iεV(u′σ + v′)− N(v, σ)

)
= 0,(4.3)

〈iεVu′σ, φ∗σ〉L2 + 〈iεVv′ − N(v, σ), φ∗σ〉L2 = 0.(4.4)

Notice that the linear part QσLuσ(I − Pσ) in (4.3) is invertible between the σ-dependent
subspaces (ker Luσ)

⊥ and range Luσ . Therefore, the Implicit Function Theorem cannot be
applied directly to solve (4.3). However, (4.3) is equivalent to F(v, ε, σ) = 0 with

F(v, ε, σ) := Qσ

(
Luσ(I − Pσ)v + iεV(u′σ + v′)− N(v, σ)

)
+ φ∗σ〈v, u′σ〉L2

and F : H2
per([−π, π], C) × R × R → L2([−π, π], C). Here the added term φ∗σ〈v, u′σ〉L2

enforces v ⊥ u′σ. For any fixed σ0 ∈ R we have F(0, 0, σ0) = 0. Since

DvF(0, 0, σ0)ϕ = Lσ0 ϕ + φ∗σ0
〈ϕ, u′σ0

〉L2

is an isomorphism from H2
per to L2, we can apply the Implicit Function Theorem to the

function F which gives the existence of a smooth function v = v(ε, σ) solving the problem
F(v(ε, σ), ε, σ) = 0 for (ε, σ) in a neighborhood of (0, σ0). Then, by construction, v is a
solution of (4.3) and satisfies the orthogonality condition

〈v(ε, σ), u′σ〉L2 = 0

as required at the beginning of the proof. Moreover from (4.3) we see that F(0, 0, σ) = 0
so that v(0, σ) = 0 which implies the bound

‖v(ε, σ)‖H2 ≤ C|ε|.(4.5)

As a consequence, ‖v′(ε, σ)‖L2 ≤ C|ε|, where v′(ε, σ) denotes the derivative of v with
respect to x. Inserting v(ε, σ) into the singular equation (4.4) we end up with with the
2-dimensional problem

f (ε, σ) := 〈iεVu′σ, φ∗σ〉L2 + 〈iεVv′(ε, σ)− N(v(ε, σ), σ), φ∗σ〉L2 = 0.

For all σ ∈ R we have the asymptotic

|〈iεVv′(ε, σ)− N(v(ε, σ), σ), φ∗σ〉L2 | = O(ε2) as ε→ 0

which follows from the bounds (4.2) and (4.5). Thus f can be written as

f (ε, σ) = ε〈iVu′σ, φ∗σ〉L2 +O(ε2) as ε→ 0.

Note that if 〈iVu′σ, φ∗σ〉L2 6= 0 the function f (ε, σ) has no root near (0, σ) other than the
trivial root (0, σ). However, by our assumption on the effective potential Veff there exists
σ0 ∈ R such that

〈iVu′σ0
, φ∗σ0
〉L2 = Re

∫ π

−π
iV(x)u′σ0

φ̄∗σ0
dx = Veff(σ0) = 0
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and

∂σ〈iVu′σ, φ∗σ〉L2

∣∣
σ=σ0

= ∂σ Re
∫ π

−π
iV(x)u′σφ̄∗σdx

∣∣∣∣
σ=σ0

= V′eff(σ0) 6= 0.

Hence the Implicit Function Theorem can be applied to the function ε−1 f (ε, σ) and yields
a curve of unique non-trivial solutions σ = σ(ε) to the singular equation f (ε, σ) = 0 such
that σ(0) = σ0. Finally we conclude that u(ε) = u0(· − σ(ε)) + v(ε, σ(ε)) solves (1.4) for
small ε. �

5. PROOF OF THE STABILITY RESULT

In this section we will find the condition when the stationary solutions obtained in
Theorem 1 as a continuation of a stable solution u0 of the LLE (1.1) are spectrally stable
against co-periodic perturbations in the perturbed LLE (1.3). Moreover, we prove the
nonlinear asymptotic stability of stationary spectrally stable solutions.

5.1. Preliminary notes. For our stability analysis we consider (1.3) as a 2 dimensional
system by decomposing the function u = u1 + iu2 into real and imaginary part. This leads
us to the system of dynamical equations{

∂tu1 = −d∂2
xu2 + εV(x)∂xu1 + ζu2 − µu1 − (u2

1 + u2
2)u2 + f0,

∂tu2 = d∂2
xu1 + εV(x)∂xu2 − ζu1 − µu2 + (u2

1 + u2
2)u1,

(5.1)

equipped with the 2π-periodic boundary condition on R. The spectral problem associated
to the nonlinear system (5.1) can be written as

L̃u,εv = λv, λ ∈ C, v ∈ H2
per([−π, π], C)× H2

per([−π, π], C)

and the linearized operator L̃u,ε is given by (2.2). Note that the operator Au in the de-
composition (2.2) is self-adjoint on L2([−π, π], C)× L2([−π, π], C) and L̃u,ε is an index 0
Fredholm operator. Moreover we see that if u0 is a non-degenerate solution of (1.4) for
ε = 0 then the following relations for the linearized operators are true:

ker L̃u0,0 = span{u′0}, ker L̃∗u0,0 = span{Jφ∗0},

where the vectors u′0 = (u′01, u′02) and φ∗0 = (φ∗01, φ∗02) are obtained from u′0 = u′01 + iu′02
and φ∗0 = φ∗01 + iφ∗02. We recall that 〈u′0, Jφ∗0〉L2 = 1 due to normalization, cf. Remark 3.

Finally we observe that since the embedding

H2
per([−π, π], C)× H2

per([−π, π], C) ↪→ L2([−π, π], C)× L2([−π, π], C)

is compact, the linearization has compact resolvents and thus the spectrum of L̃u,ε consists
of isolated eigenvalues with finite multiplicity where the only possible accumulation point
is at ∞. In the following we will use the spaces

H2
per([−π, π], C) =: X, H1

per([−π, π], C) =: Y, L2([−π, π], C) =: Z.

Both the proof of Theorem 2 and Theorem 3 rely on the next lemma for the linearized
operator L̃u(ε),ε where u(ε) lies on the solution branch of Theorem 1 and |ε| is small. The
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lemma gives spectral bounds for eigenvalues with large imaginary part together with a
uniform resolvent estimate. The proof is presented in Section 5.4.

Lemma 2. Denote Λλ∗ := {λ ∈ C : Re(λ) ≥ 0, | Im(λ)| ≥ λ∗}. Given ε1 > 0 sufficiently
small there exists λ∗ > 0 such that we have the uniform resolvent bound

sup
λ∈Λλ∗

‖(λI − L̃u(ε),ε)
−1‖L2→L2 < ∞

for all ε ∈ [−ε1, ε1].

Remark 9. The uniformity of the resolvent estimate on the imaginary axis allows to sharpen
the above result as follows. If we define S as the supremum from Lemma 2 and let
0 < δ < 1/S then the estimate

sup
λ∈Λλ∗−δ

‖(λI − L̃u(ε),ε)
−1‖L2→L2 < ∞

holds. This follows from taking inverses in the identity

(λ− δ− L̃u(ε),ε) = (λ− L̃u(ε),ε)(I − δ(λ− L̃u(ε),ε)
−1).

5.2. Proof of Theorem 2. For λ ∈ C we study the spectral problem

(5.2) L̃u,εv = λv.

Since (1.4) has the translational symmetry in the case that ε = 0 we find

L̃u,0u
′ = 0.

For ε 6= 0, this symmetry is broken, and the zero eigenvalue is expected to move either
into the stable or unstable half-plane. In our stability analysis, it is therefore important to
understand how the critical zero eigenvalue behaves along the bifurcating solution branch
given by (−ε∗, ε∗) 3 ε 7→ u(ε) ∈ X with u(0) = uσ0 , where σ0 is a simple zero of Veff as
in Theorem 1. For the following calculations we will identify u(ε) with a vector-valued
function u(ε) : T×R→ R2 and write this as u(ε) ∈ X× X.

We start with the tracking of the simple critical zero eigenvalue and set up the equation
for the perturbed eigenvalue λ0 = λ0(ε) which reads

L̃u(ε),εv(ε) = λ0(ε)v(ε).

After a possible re-scaling we find that v(0) = u′σ0
and using regular perturbation theory

for simple eigenvalues, cf. [17, 18], the mapping (−ε∗, ε∗) 3 ε 7→ λ0(ε) ∈ R is contin-
uously differentiable. Our first goal is to derive a formula for λ′0(0). If λ′0(0) > 0 this
means that the solutions u(ε) for ε > 0 are spectrally unstable. In contrast, if λ′0(0) < 0,
the solutions u(ε) for ε > 0 are spectrally stable.

Lemma 3. Let ε 7→ λ0(ε) be the C1 parametrization of the perturbed zero eigenvalue. Then the
following formula holds true:

λ′0(0) = −
∫ π

−π
V′(x)u′σ0

· Jφ∗σ0
dx.
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Proof. On the one hand, if we differentiate the equation

L̃u(ε),εv(ε) = λ0(ε)v(ε).

with respect to ε and evaluate at ε = 0 we find

L̃uσ0 ,0∂εv(0)− JNuu
′
σ0
+ V(x)u′′σ0

= λ′0(0)u
′
σ0

,

where Nu is given by

Nu = 2
(

3uσ01∂εu1(0) + uσ02∂εu2(0) uσ01∂εu2(0) + uσ02∂εu1(0)
uσ01∂εu2(0) + uσ02∂εu1(0) uσ01∂εu1(0) + 3uσ02∂εu2(0)

)
.

On the other hand, if we differentiate (1.4) with respect to ε at ε = 0, then we obtain

L̃uσ0 ,0∂εu(0) + V(x)u′σ0
= 0.

If we differentiate this equation with respect to x we find

L̃uσ0 ,0∂εu
′(0) + V(x)u′′σ0

+ V′(x)u′σ0
− JNuu

′
σ0
= 0.

Combining both equations yields

L̃uσ0 ,0[∂εv(0)− ∂εu
′(0)]−V′(x)u′σ0

= λ′0(0)u
′
σ0

and testing this equation with Jφ∗σ0
∈ ker L̃∗uσ0 ,0 we obtain

−
∫ π

−π
V′(x)u′σ0

· Jφ∗σ0
dx = −〈V′(x)u′σ0

, Jφ∗σ0
〉L2 = λ′0(0)〈u′σ0

, Jφ∗σ0
〉L2 = λ′0(0)

which finishes the proof. �

By Lemma 3 we can control the critical part of the spectrum close to the origin along the
bifurcating solution branch. In fact, using standard perturbation theory, cf. [17], we know
that all the eigenvalues of L̃u(ε),ε depend continuously on the parameter ε. However, this
dependence is in general not uniform w.r.t. all eigenvalues, so we have to make sure that
no unstable spectrum occurs far from the origin. At this point, it is worth mentioning that
we have an a-priori bound on the spectrum of the form

∃λ∗ = λ∗(u(ε), ε) > 0 : λ ∈ σ(L̃u(ε),ε) =⇒ Re(λ) ≤ λ∗.

This bound follows from the Hille-Yoshida Theorem since L̃u(ε),ε generates a C0-semigroup
on Z × Z, cf. Lemma 4 below. It can also be shown directly by testing the eigenvalue
problem with the corresponding eigenfunction and integration by parts. As a conclusion,
spectral stability holds if we can prove that there exists λ∗ > 0 such that

{λ ∈ C : 0 ≤ Re(λ) ≤ λ∗, | Im(λ)| ≥ λ∗} ⊂ ρ(L̃u(ε),ε).

This relation is shown as part of Lemma 2 and it is extended to the left of the origin by the
subsequent Remark 9. Since in any rectangle {λ ∈ C : −M ≤ Re(λ) ≤ λ∗, | Im(λ)| ≤ λ∗}
there are only finitely many eigenvalues of L̃u(ε),ε and they depend (uniformly) contin-
uoulsy on ε, our assumption (A2) on L̃u0,0 shows that none of these eigenvalues (except
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possibly the critical one) can move into the right half plane if |ε| is small. Therefore, only
the movement of the critical eigenvalue determines the spectral stability and therefore
Theorem 2 is true.

5.3. Proof of Theorem 3. In order to prove nonlinear asymptotic stability of stationary
solutions of (5.1) it is enough to show exponential stability of the semigroup of the lin-
earization in Y × Y, see e.g. [2]. For the proof of Theorem 3 we will show the following
three steps:

(i) Prove that L̃u(ε),ε is the generator of a C0-semigroup on Z× Z.

(ii) Show exponential decay of (eL̃u(ε),εt)t≥0 in Z× Z.
(iii) Show exponential decay of (eL̃u(ε),εt)t≥0 in Y×Y.
For step (i), we establish the generator properties of the linearization in Z× Z.

Lemma 4. The operator L̃u(ε),ε generates a C0-semigroup on Z× Z.

Proof. We split the operator into

L̃u(ε),ε = L1 + L2 + L3,

where L1 : X× X → Z× Z, L2 : Y×Y → Z× Z, and L3 : Z× Z → Z× Z are defined by

L1

(
ϕ1
ϕ2

)
:=
(
−dϕ′′2 − µϕ1
dϕ′′1 − µϕ2

)
,

L2ϕ := εV(x)ϕ′ − |ε|
2
‖V′‖L∞ϕ,

and

L3

(
ϕ1
ϕ2

)
:=

(
|ε|
2 ‖V′‖L∞ − 2u1u2 ζ − (u2

1 + 3u2
2)

−ζ + 3u2
1 + u2

2
|ε|
2 ‖V′‖L∞ + 2u1u2

)(
ϕ1
ϕ2

)
We will show that

(i) L1 generates a contraction semigroup.
(ii) L2 is dissipative and bounded relative to L1.

(iii) L3 is a bounded operator on Z× Z.
By using the semigroup theory, this will prove that the sum L1 + L2 + L3 is the generator
of a C0-semigroup on Z× Z.

Part (i): It follows that Re〈L1ϕ,ϕ〉L2 = −µ‖ϕ‖2
L2 ≤ 0 for every ϕ ∈ X × X, and λ− L1

is invertible for every λ > 0 which can be seen using Fourier transform. By the Lumer-
Phillips Theorem we find that L1 generates a contraction semigroup on Z× Z.

Part (ii): We have to show that

∀ϕ ∈ Y×Y : Re〈L2ϕ,ϕ〉L2 ≤ 0

and
∀a > 0, ∃b > 0 : ‖L2ϕ‖L2 ≤ a‖L1ϕ‖L2 + b‖ϕ‖L2 ∀ϕ ∈ X× X.
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Let ϕ = (ϕ1, ϕ2) ∈ Y×Y and observe that integration by parts yields

Re
∫ π

−π
εV(x)(ϕ′1 ϕ̄1 + ϕ′2 ϕ̄2)−

|ε|
2
‖V′‖L∞ |ϕ|2dx =

∫ π

−π
− ε

2
V′(x)|ϕ|2 − |ε|

2
‖V′‖L∞ |ϕ|2dx ≤ 0

which shows that L2 is dissipative. Further, if ϕ ∈ X× X, then for every a > 0 we have

‖εVϕ′ − |ε|
2
‖V′‖L∞ϕ‖L2 ≤ |ε|‖V‖L∞‖ϕ′‖L2 +

|ε|
2
‖V′‖L∞‖ϕ‖L2

≤ |ε|a‖V‖L∞‖ϕ′′‖L2 +
|ε|
4a
‖V‖L∞‖ϕ‖L2 +

|ε|
2
‖V′‖L∞‖ϕ‖L2

≤ |ε|a|d| ‖V‖L∞‖L1ϕ‖L2 + |ε|
((

aµ

|d| +
1
4a

)
‖V‖L∞ +

1
2
‖V′‖L∞

)
‖ϕ‖L2

where we used the inequality

∀ϕ ∈ X× X, ∀a > 0 : ‖ϕ′‖L2 ≤ a‖ϕ′′‖L2 +
1
4a
‖ϕ‖L2 .

Hence, by the dissipative perturbation theorem, cf. Chapter III, Theorem 2.7 in [6], for
generators the operator L1 + L2 : X× X → Z× Z generates a contraction semigroup.

Part (iii): It follows that L3 is bounded on Z × Z. Then the bounded perturbation the-
orem for generators, cf. Chapter III, Theorem 1.3 in [6], yields that L̃u(ε),ε = L1 + L2 + L3
generates a C0-semigroup on Z× Z as desired. �

Remark 10. Using similar arguments, one can show that L̃u(ε),ε is the generator of a C0-
semigroup on Y×Y.

For step (ii), we use a characterization of exponential decay of semigroups in Hilbert
spaces known as the Gearhart-Greiner-Prüss Theorem, cf. Chapter V, Theorem 1.11 in [6].

Theorem 4 (Gearhart-Greiner-Prüss Theorem). Let L be the generator of a C0-semigroup
(eLt)t≥0 on a complex Hilbert space H. Then (eLt)t≥0 is exponentially stable in H if and only
if

{λ ∈ C : Re(λ) ≥ 0} ⊂ ρ(L) and sup
Re λ≥0

‖(λI − L)−1‖H→H < ∞.

By the assumption of Theorem 3, spectral stability of the solution u(ε) is guaranteed and
we are left with the proof of the uniform resolvent estimate on {λ ∈ C : Re(λ) ≥ 0}. Using
Lemma 2, we find λ∗ � 1 such that (λI − L̃u(ε),ε)

−1 is uniformly bounded on the set Λλ∗

for sufficiently small ε. Moreover, since L̃u(ε),ε is the generator of a C0-semigroup on the
state-space Z× Z, the Hille-Yosida Theorem ensures a uniform bound of the resolvent on
{λ ∈ C : Re(λ) > λ∗} for some constant λ∗ > 0. From the fact that λ 7→ (λI− L̃u(ε),ε)

−1 is
a meromorphic function with no poles in {λ ∈ C : Re(λ) ≥ 0}, the resolvent is uniformly
bounded on compact subsets of C in {λ ∈ C : Re(λ) ≥ 0}. Thus, we can conclude
that L̃u(ε),ε satisfies the Gearhart-Greiner-Prüss resolvent bound and exponential stability
in Z× Z follows.
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Finally, for step (iii), we will interpolate the decay estimate between the spaces Z × Z
and X×X. To do so, we have to establish bounds in X×X which is done the next lemma.
The interpolation argument is then in the spirit of Lemma 5 in [30] and will also lead to
decay estimates in the more general interpolation spaces Hs

per × Hs
per for s ∈ [0, 2].

Lemma 5. For any s ∈ [0, 2] and sufficiently small ε the semigroup (eL̃u(ε),εt)t≥0 has exponential
decay in Hs

per([−π, π], C)× Hs
per([−π, π], C), i.e., there exist Cs > 0 such that

‖eL̃u(ε),εt‖Hs→Hs ≤ Cse−ηt for t ≥ 0,

where −η < 0 is the previously established growth bound of the semigroup in Z× Z.

Proof. We consider only the case d > 0, since the other case can be shown by rewriting
JAu as−J(−Au) and using the same arguments as presented below. If d > 0, the operator
Au(ε)+γI is positive and self-adjoint provided γ > 0 is sufficiently large. Hence, for z ∈ C

we can define the complex powers by

(Au(ε) + γI)zv =
∫ ∞

0
λzdEλv, for v ∈ dom(Auu(ε) + γI)z,

with domain given by

dom(Au(ε) + γI)z =

{
v ∈ Z× Z : ‖(Au(ε) + γI)zv‖2

L2 =
∫ ∞

0
λ2 Re zd‖Eλv‖2

L2 < ∞
}

and where Eλ for λ ∈ R is the family of self-adjoint spectral projections associated to
Au(ε) + γI. Note that for θ ∈ [0, 1] the relation

dom(Au(ε) + γI)θ = H2θ
per([−π, π], C)× H2θ

per([−π, π], C)

is true, cf. [20] Theorem 4.36, and further for any r ∈ R the operator (Au(ε) + γI)ir is
unitary on Z× Z. If θ = 0, 1 we will show that there exists Cθ > 0 such that

∀r ∈ R, ∀t ≥ 0, ∀v ∈ X× X, : ‖(Au(ε) + γI)θ+ireL̃u(ε),εtv‖L2 ≤ Cθe−ηt‖v‖H2θ ,

which implies

∀r ∈ R, ∀t ≥ 0, ∀θ ∈ (0, 1), ∀v ∈ X×X : ‖(Au(ε)+γI)θ+ireL̃u(ε),εtv‖L2 ≤ C1−θ
0 Cθ

1e−ηt‖v‖H2θ ,

by complex interpolation, cf. [20] Theorem 2.7. In particular, we see that

‖eL̃u(ε),εt‖Hs→Hs ≤ C1−s
0 Cs

1e−ηt

which is precisely our claim. The estimate for θ = 0 has already been shown in the preced-
ing discussion, so it remains to check the estimate for θ = 1. Let v ∈ X × X and observe
that

‖(Au(ε) + γI)1+ireL̃u(ε),εtv‖L2 = ‖(Au(ε) + γI)eL̃u(ε),εtv‖L2

= ‖(L̃u(ε),ε + Jγ + I(µ− εV(x)∂x))eL̃u(ε),εtv‖L2

≤ ‖eL̃u(ε),εt L̃u(ε),εv‖L2 + C‖eL̃u(ε),εtv‖L2 + |ε|‖V‖L∞‖∂xeL̃u(ε),εtv‖L2
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≤ Ce−ηt‖L̃u(ε),εv‖L2 + Ce−ηt‖v‖L2 + |ε|‖V‖L∞‖eL̃u(ε),εtv‖H1

≤ Ce−ηt‖v‖H2 + |ε|C‖eL̃u(ε),εtv‖H2 ,

which yields ‖(Au(ε) + γI)1+ireL̃u(ε),εtv‖L2 ≤ Ce−ηt‖v‖H2 if ε is sufficiently small because
of the norm equivalence ‖v‖H2 ∼ ‖(Au(ε) + γI)v‖L2 . �

In particular Lemma 5 establishes exponential stability of the linearization in Y × Y,
thus we have proved Theorem 3.

5.4. Proof of Lemma 2. The uniform resolvent estimate is proved if we can find a constant
C > 0 independent of λ ∈ Λλ∗ such that

(5.3) ∀ϕ ∈ X× X : ‖(λI − L̃u(ε),ε)ϕ‖L2 ≥ C‖ϕ‖L2 .

In order to simplify the situation, let us introduce the rotation on Z× Z as follows:

R
(

ϕ1
ϕ2

)
:=
(

cos θ sin θ
− sin θ cos θ

)(
ϕ1
ϕ2

)
with spatially varying angular θ(x) = ε

2d

∫ x
−π[V(y)− V̂0]dy where V̂0 = 1

2π

∫ π
−π V(y) dy is

the mean of the potential V. Since R is an isometry on Z× Z the resolvent estimate (5.3)
is equivalent to

∀ϕ ∈ X× X : ‖(λI − RL̃u(ε),εR−1)ϕ‖L2 ≥ C‖ϕ‖L2 ,

where we note that σ(L̃u(ε),ε) = σ(RL̃u(ε),εR−1). The advantage of considering the operator
RL̃u(ε),εR−1 becomes clear if we calculate

RL̃u(ε),εR−1 = J Ãu(ε),ε,V − I(µ− εV̂0∂x)

where the operator Ãu(ε),ε,V given by

Ãu(ε),ε,V :=
(
−d∂2

x + W1 W2 + W4
W2 −W4 −d∂2

x + W3

)
with potentials

W1 = ζ + cos2 θU1 + 2 cos θ sin θU2 + sin2 θU3 + dθ′2 − εθ′V,

W2 = (cos2 θ − sin2 θ)U2 + cos θ sin θ(U3 −U1),

W3 = ζ + sin2 θU1 − 2 cos θ sin θU2 + cos2 θU3 + dθ′2 − εθ′V,

W4 = dθ′′,

and functions

U1 = −(3u2
1(ε) + u2

2(ε)), U2 = −2u1(ε)u2(ε), U3 = −(u2
1(ε) + 3u2

2(ε)).

Clearly, the first order derivative is now multiplied by a constant instead of a spatially
varying potential which will be used in the following calculations. We also note that the
functions Wi ∈ X, i = 1, 2, 3 depend upon the solution u and the potential V whereas
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W4 ∈ X only depends upon the potential V. For the proof of the resolvent estimate we use
techniques presented in [30], where the authors construct resolvents for the unperturbed
LLE (1.1).

We need the following proposition, which is Lemma 4 in [30].

Proposition 1. Let d 6= 0 and µ > 0. Then there exists λ∗ > 0 depending on d and µ with the
property that for all ω ≥ λ∗ there is at most one k0 = k0(ω, µ) ∈N such that

ω ≥ |d2k4
0 + µ2 −ω2|.

For all other k ∈ Z \ {±k0(ω, µ)} we have

|d2k4 + µ2 −ω2| ≥ 1
10

max{d2k2, ω}3/2.

Moreover, we find k0(ω, µ) = O(ω1/2) as ω → ∞.

Now we can start to construct and bound the resolvent. By the Hille-Yoshida Theorem, a
uniform resolvent estimate holds whenever Re λ is sufficiently large. It therefore remains
to consider λ = δ + iω ∈ Λλ∗ for some λ∗ > 0 and δ ≥ 0 on a compact set. Since δ

replaces µ in λI − L̃u(ε),ε by µ + δ and the estimates of Proposition 1 holds for any µ > 0
on a compact set, it sufficies to prove the uniform estimates for δ = 0. For now, we do not
specify the value of λ∗, since this will be done later in the proof. We can restrict to the case
ω ≥ λ∗, since the proof for ω ≤ −λ∗ follows from symmetries of the spectral problem
under complex conjugation. For v ∈ X× X we define

(5.4) (λI − RL̃u(ε),εR−1)v =: ψ ∈ Z× Z

and show that there exist bounded operators T1 and T2 on Z × Z depending on λ with
norms satisfying ‖T1‖L2→L2 = O(ω−1/2) and ‖T2‖L2→L2 = O(1) as ω → ∞ such that (5.4)
implies

(5.5) (I + T1)v = T2ψ.

If λ∗ is sufficiently large, we then deduce that I + T1 is a small perturbation of the identity,
and hence invertible with norm uniformly bounded in λ which is our claim. Therefore, it
remains to show (5.5). We introduce the matrix-valued potential

W =

(
W1 W2 + W4

W2 −W4 W3

)
in order to write

λI − RL̃u(ε),εR−1 = iωI − J(−d∂2
x + W) + I(µ− εV̂0∂x).

Now, let A = λI−RL̃u(ε),εR−1 + JW and observe that Av(x) = ∑k∈Z Akv̂keikx with v(x) =
∑k∈Z v̂keikx and Fourier multiplier

Ak = A1
k + A2

k =

(
iω + µ −dk2

dk2 iω + µ

)
+

(
−iεV̂0k 0

0 −iεV̂0k

)
.
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The inverse of A1
k is given by

(A1
k)
−1 =

1
det(A1

k)

(
iω + µ dk2

−dk2 iω + µ

)
and by Proposition 1 there exists at most one k0 = k0(ω, µ) ∈N such that

|det(A1
k)| ≥ |d2k4 + µ2 −ω2| ≥ 1

10
max{d2k2, ω}3/2 for all k 6= ±k0

provided that λ∗ is sufficiently large. Thus A1
k is invertible with bound ‖(A1

k)
−1‖C2×2 ≤

C/ max{ω1/2, k} for all k 6= ±k0. Using again Proposition 1, we have the asymptotic k0 =
k0(ω) = O(ω1/2) as ω → ∞. Consequently, if |ε| is sufficiently small, then Ak = A1

k(I +
(A1

k)
−1A2

k), k 6= ±k0, is also invertible with the bound ‖(Ak)
−1‖C2×2 = O(ω−1/2) as ω →

∞. Next, for the above k0 ∈ N, we introduce the orthogonal projections P, Q, Q1, Q2 :
Z× Z → Z× Z as follows:

Q1v = v̂k0eik0(·), Q2v = v̂−k0e−ik0(·)

and
Q = Q1 + Q2, P = I −Q.

This allows us to decompose (5.4) as follows:

PAPv − PJWv = Pψ,(5.6)
QAQv −QJWv = Qψ.(5.7)

From the preceding arguments we find

‖(PAP)−1‖L2→L2 = O(ω−1/2) as ω → ∞

which implies that (5.6) is equivalent to

Pv − (PAP)−1PJWv = (PAP)−1ψ(5.8)

with bound ‖(PAP)−1 JW‖L2→L2 = O(ω−1/2) as ω → ∞.

Next we investigate (5.7) which we decompose a second time to find

Q1AQ1v −Q1 JWQ1v −Q1 JWQ2v −Q1 JWPv = Q1ψ,(5.9)
Q2AQ2v −Q2 JWQ1v −Q2 JWQ2v −Q2 JWPv = Q2ψ.(5.10)

Both equations can be handled similarly and thus we focus on the first one. Using (5.8)
we can write (5.9) as

[Q1AQ1 −Q1 JWQ1]v −Q1 JWQ2v −Q1 JW(PAP)−1PJWv = Q1 JW(PAP)−1ψ + Q1ψ.

The operator B := Q1AQ1 −Q1 JWQ1 acts like a Fourier-multiplier on range Q1 with ma-
trix

Bk0 =

(
i(ω− εV̂0k0) + µ− (Ŵ2)0 + (Ŵ4)0 −dk2

0 − (Ŵ3)0
dk2

0 + (Ŵ1)0 i(ω− εV̂0k0) + µ + (Ŵ2)0 + (Ŵ4)0

)
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and we observe that

|det(Bk0)| ≥ | Im det(Bk0)| = 2|ω− εV̂0k0||µ + ˆ(W4)0| ∼ ω

since k0 = O(ω1/2) and ω � 1. This means that Bk0 is invertible with ‖B−1
k0
‖C2×2 uni-

formly bounded in ω � 1, and thus the same holds for the operator B. Inverting B yields

Q1v − B−1[Q1 JWQ2 + Q1 JW(PAP)−1PJW]v = B−1Q1 JW(PAP)−1ψ + B−1Q1ψ

and since we have Wi ∈ Y for i = 1, 2, 3, 4 we can exploit decay of the Fourier-coefficients

|(Ŵi)k| ≤
C√

1 + k2
for all k ∈ Z

to bound Q1 JWQ2v = ( ˆJW)2k0v̂−k0eik0(·):

‖Q1 JWQ2‖L2→L2 = O(k0(ω, µ)−1) = O(ω−1/2) as ω → ∞.

Finally from the bounds of the first part we infer that

‖Q1 JW(PAP)−1PJW‖L2→L2 = O(ω−1/2) as ω → ∞,

‖Q1 JW(PAP)−1‖L2→L2 = O(ω−1/2) as ω → ∞

and as a conclusion we arrive at (5.5) which is all we had to prove.

APPENDIX A. DERIVATION OF THE PERTURBED LLE

The following is a derivation of the perturbed LLE (1.3) from the dual laser pump equa-
tion (1.2). We start by taking a solution u = u(x, t) of (1.2). Jumping in a moving coordi-
nate system we set ũ(x, t) = u(k1x− ν1t, t) and find that ũ satisfies

(A.1) i∂tũ− iν1∂ξ ũ = −dk2
1∂2

ξ ũ + (−iµ + ζ)ũ− |ũ|2ũ + i f0 + i f1eiξ ,

where ξ := k1x− ν1t. Next, using the approximation arctan s ≈ s for |s| small, we find for
| f0| � | f1| that

f0 + f1eiξ =
√

f 2
0 + 2 f0 f1 cos ξ + f 2

1 ei arctan f1 sin ξ
f0+ f1 cos ξ ≈ f0ei f1

f0
sin ξ .

Inserting this into (A.1) we find that approximately the following equation holds for ũ

(A.2) i∂tũ− iν1∂ξ ũ = −dk2
1∂2

ξ ũ + (−iµ + ζ)ũ− |ũ|2ũ + i f0ei f1
f0

sin ξ .

This suggests to set ũ(ξ, t) = w(ξ, t)ei f1
f0

sin ξ so that w solves

i∂tw =− dk2
1∂2

ξw +

(
iν1 − i2dk2

1
f1

f0
cos ξ

)
∂ξw

+
(
−iµ + ζ−ν1

f1

f0
cos ξ + dk2

1
f 2
1

f 2
0

cos2 ξ + idk2
1

f1

f0
sin ξ︸ ︷︷ ︸

=:α(ξ)

)
w− |w|2w + i f0.
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Using | f1| � | f0| we see that the term α(ξ) is much smaller than −iµ + ζ for physically
relevant (normalized) values of µ = O(1) and ζ between O(1) and O(10). Neglecting
α(ξ) we arrive at

i∂tw = −dk2
1∂2

ξw + i
(
ν1 − 2dk2

1
f1

f0
cos ξ︸ ︷︷ ︸

=:V(ξ)

)
∂ξw + (−iµ + ζ)w− |w|2w + i f0

which is our target equation (1.3) in the case ε = 1 and with d replaced by dk2
1.

APPENDIX B. STABILITY CRITERION FOR SOLITARY WAVES IN THE LIMIT OF SMALL µ

The stability criterion of Theorem 2 becomes more explicit in the limit µ→ 0 for solitary
waves on R for the focusing case d > 0. We thus consider the stationary LLE in the form:

(B.1) − du′′ + (ζ − iµ)u− |u|2u + iµ f0 = 0, x ∈ R.

Here both the pumping term iµ f0 and the dissipative term −iµu are small and of equal
order in µ. When µ is small, the solution can be expanded asymptotically as

(B.2) u = u(0) + µu(1) +O(µ2).

Here u(0) is the solitary wave of the nonlinear Schrödinger equation (NLSE) which exists
if d > 0 and u(1) is found from the linear inhomogeneous equation

(B.3) (−d∂2
x + ζ − 2|u(0)|2)u(1) − (u(0))2ū(1) = iu(0) + i f0.

By using the vector form with u = u1 + iu2 and the linearization operator L̃u = JAu − µI
as in (2.2), we can rewrite (B.3) in the form: JAu(0)u(1) = u(0) + f0. Recall that

ker L̃u = span{u′}, ker L̃∗u = span{Jφ∗},

according to Assumption (A2), which implies that

JAuu
′ = µu′, JAuφ

∗ = −µφ∗.

Expansion (B.2) yields at the order of O(µ) that

u′ = (u(0))′ + µ(u(1))′ +O(µ2),

φ∗ = C
[
(u(0))′ + µ[(u(1))′ + 2v(1)] +O(µ2)

]
,

where v(1) is a solution of the linear inhomogeneous equation JAu(0)v(1) = −(u(0))′ and
the constant C = C(µ) ∈ C is found from the normalization condition 〈u′, Jφ∗〉L2 = 1.
The solution of JAu(0)v(1) = −(u(0))′ on the line R is available explicitly:

v(1) = − 1
2d

xJu(0),
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where u(0)(x) → 0 as |x| → ∞ exponentially fast in the case of solitary waves for d > 0.
This allows us to compute by using integration by parts:

〈u′, Jφ∗〉L2 = C
[

2µ
∫

R
[(u(0)

1 )′v(1)2 − (u(0)
2 )′v(1)1 ]dx +O(µ2)

]
= C

[
µd−1

∫
R

x[(u(0)
1 )′u(0)

1 + (u(0)
2 )′u(0)

2 ]dx +O(µ2)

]
= C

[
− µ

2d
‖u(0)‖2

L2 +O(µ2)
]

.

Normalization 〈u′, Jφ∗〉L2 = 1 defines C asymptotically as follows:

C = − 2d
µ‖u(0)‖2

L2

[1 +O(µ)] .

The stability condition of Theorem 2 is expressed in terms of the sign of V′eff(σ0), where σ0
is a simple root of Veff. The effective potential can now be written more explicitly as

Veff(σ0) = 〈V(·+ σ0)u
′, Jφ∗〉L2

= C
[

µd−1
∫

R
xV(x + σ0)[(u

(0)
1 )′u(0)

1 + (u(0)
2 )′u(0)

2 ]dx +O(µ2)

]
=

1
‖u(0)‖2

L2

∫
R
[xV′(x + σ0) + V(x + σ0)]|u(0)|2dx +O(µ).

If Veff(σ0) = 0, then the solitary wave of the stationary LLE (B.1) with small µ = 0 is
uniquely continued in the perturbed equation for small ε and the unique continuation is
spectrally stable if V′eff(σ0) · ε > 0.
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