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VARIATIONAL GAUSSIAN APPROXIMATION FOR THE
MAGNETIC SCHRODINGER EQUATION

SELINA BURKHARD, BENJAMIN DORICH, MARLIS HOCHBRUCK,
AND CAROLINE LASSER

ABSTRACT. In the present paper we consider the semiclassical magnetic Schro-
dinger equation, which describes the dynamics of particles under the influence
of a magnetic field. The solution of the time-dependent Schrédinger equa-
tion is approximated by a single Gaussian wave packet via the time-dependent
Dirac—Frenkel variational principle. For the approximation we derive ordinary
differential equations of motion for the parameters of the variational solution.
Moreover, we prove L?-error bounds and observable error bounds for the ap-
proximating Gaussian wave packet.

1. INTRODUCTION

In the present paper we study the semiclassical magnetic Schrédinger equation

ied(t) = H(t)p(t), ¢(0) =0, teR, (1.1a)

on R? with magnetic Hamiltonian
1
H(t) = 5 (ieVa + At ) + Vit ), (1.1b)

and initial value 1y € L?(R?) with semiclassical parameter 0 < ¢ < 1. Here, A is
a magnetic vector potential, and V' is the electric potential. This equation arises in
the modeling of the quantum dynamics of nuclei in a molecule subject to external
magnetic fields. From a numerical point of view, solving this time-dependent par-
tial differential equation raises three major problems. First, it is a high-dimensional
problem, since the space dimension is typically given by d = 3N, where N is the
number of nuclear particles in the system. Further, the computational domain R?
is naturally unbounded, and thus most numerical methods require truncation be-
fore discretization. For the method of lines (first discretize space, then time),
high dimension combined with an unbounded domain leads to inadequately if not
unattractably large systems that have to be integrated in time. Another challenge
is given by the high oscillations induced by the small semiclassical parameter €. For
standard time integration schemes severe stepsize restrictions have to be imposed
and leave these methods impracticable.

We consider the case that the initial value g is strongly localized and given by
a Gaussian wave packet,

Yol) =exp (L (50— 0)Cle ) + (2~ 0)p+ ),
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where ¢,p € R? are the packet’s position and momentum center, C € C4*¢ is the
width matrix of the envelope, and ¢ € C a phase and weight parameter. For A =0
it is well established that it is possible to reasonably approximate the solution
by a Gaussian wave packet with parameters that are evolved according to ordi-
nary differential equations. First studies in this direction are due to K. Hepp [21]
and G. Hagedorn [13] from the perspective of mathematical physics, and E. Heller
[19,20] as well as R. Coalson, M. Karplus [6] with already an eye on numerical com-
putation. The evolution equations for the parameters of all Gaussian wave packet
approximations can be classified in two categories:

Variational: The variational approach relies on the time-dependent Dirac—Frenkel
principle for deriving the parameter equations of motion. By the variational con-
struction, the Gaussian wave packet automatically inherits several conservation
properties of the exact solution.

Semiclassical: The semiclassical approach expands the wave packet ansatz with
respect to the semiclassical parameter € and derives € independent parameter equa-
tions by matching terms with the same order.

Both types of ordinary differential equations have the advantageous property,
that their solutions are non-oscillatory. Both approximations have the same con-
vergence order with respect to the semiclassical parameter ¢ in L?-norm, and both
reproduce the exact solution for the special case of Schrodinger operators with
linear magnetic potential A and quadratic electric potential V. For a further dis-
cussion, we refer to [5, Chapter 10.2] for a monograph that covers the semiclassical
construction, to [25, Chapter I1.4] or [24, Chapter 3] for a short book and a review
presenting the variational case, and to [31] for a general presentation of Gaussian
wave packet dynamics.

Contributions of the paper. Our main contribution in this paper is to first show
that for the magnetic Schrodinger equation the variational approximation is still
given by a system of ordinary differential equations for the parameters defining the
Gaussian wave packet. Second, we prove rigorous error bounds for this approx-
imation on finite time intervals [0,7] in terms of the semiclassical parameter e.
The presented results generalize the bounds established in [24,25] to non-vanishing
magnetic potentials A and further allow for time-dependencies in both the elec-
tric and the magnetic potential. We also treat the more general case where the
dynamics are generated by the Weyl quantization of a smooth and subquadratic
Hamiltonian function. This includes convergence in the L?-norm with order O(1/z)
as well as for expectation values of observables, which resemble certain measurable
physical quantities of the wave function, with order O(¢?). These estimates extend
and improve the observable bound of [24, Theorem 3.5] and the result of [28] from
the case of vanishing magnetic potential. Let us point out that the design and the
analysis of time integrators for the magnetic variational equations of motion are
currently under investigation.

Further wave packet results for A = 0. Hagedorn wave packets [13—15] are a
multivariate anisotropic generalization of the Hermite functions. They are Gaussian
wave packets with a polynomial prefactor, such that a family of them constitutes an
orthonormal basis of L2(R?). In [1,8,10], time splitting integrators for Hagedorn
wave packet approximations are proposed, that combine parameter propagation
by ordinary differential equations with a Galerkin step. A spawning method for
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Gaussian L?-norm [ observables

semiclassical | O(v/e) | O(e)

variational | O(y€) | O(&?)
TABLE 1. Error bounds for the semiclassical and the variational
approximation of magnetic Schrodinger dynamics according to

Theorem 3.8 and Theorem 3.10. The variational observable er-
ror estimate extends and improves previously known results.

several families of Hagedorn wave packets is introduced in [29]. For variational
Gaussian wave packets, a time splitting integrator, which is robust in the semi-
classical parameter ¢, is proposed in [9]. Recently in [28], T. Oshawa has analysed
the expectation values of position and momentum for a variational Gaussian wave
packet and proved O(£3/2) accuracy. Our results here generalize and improve this
error bound in two ways: First, we allow for general sublinear observables. Second,
our method of proof shows O(g2) observable accuracy also for the case A # 0.
It is worthwhile emphasizing, that from the perspective of the observable error
variational Gaussians are more accurate than their semiclassical counterparts.

Related wave packet results for A # 0. The most general result for the semi-
classical wave packet approach is given in [30, Theorem 21] of the monograph by
D. Robert and M. Combescure. There, the propagation of Gaussian and Hagedorn
wave packets is covered for a general class of time-dependent Hamiltonian opera-
tors H(t), that includes the magnetic Schrodinger operator. The error analysis is
with respect to the L?-norm, but not for observables. The semiclassical construc-
tion there also receives corrections, such that it can be accurate to order O(¢¥/2)
for any k > 1. In [2], magnetic Schrédinger operators with polynomially bounded,
time-independent magnetic fields and zero potential are considered. The initial co-
herent state has zero initial energy and its propagation is analysed for the long-time
horizon [0, T/¢]. In [23], N. King and T. Ohsawa derive the equations of motion for
variational Gaussians in the presence of a magnetic field. They conduct numerical
experiments for the expectation value of the position and the momentum operator
suggesting that the variational Gaussians are more accurate than the semiclassical
ones. An extension of the Hagedorn Galerkin method [8] to the case of magnetic
Schrodinger equations is studied in [34], including an error analysis with respect
to the L2-norm. However, no error bounds for the observables are investigated
there. For linear magnetic potentials of a particular structure, in [11] a problem
adapted splitting method for Hagedorn wave packets is derived but without error
analysis. A slightly different approach, called the Gaussian wave packet transform,
is proposed for the magnetic Schrédinger equation in [35]. There, the ordinary
differential equations for the Gaussian parameters are the semiclassical ones except
for an additional term for the scalar parameter (.

Outline of the paper. The rest of the paper is structured as follows. For our
error analysis we introduce the analytical framework and the variational Gaussian
wave packet ansatz in Section 2. We present our main results for the magnetic
Schrodinger equation in Section 3, including the equations for the parameters, the
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conservation of different quantities, the convergence in the L?-norm and the con-
vergence of the observables. The proofs of the corresponding results are given in
Sections 4 to 7.

Notation. Throughout the paper, we denote by LP(Rd) the classical Lebesgue
spaces, and by S(R?) the Schwartz space of rapidly decreasing functions. Further,

we make use of the multiindex notation and let for a = (ay,...,aq) € Nd, 2 € R4,
feSRY
la| =01 + ...+ aq, x® =alt . a?, 0“f =0 ...05"f.

For a function W: R* — RL, L > 1, we define the average
(W) = (u|Wu) :/ W (z)|u(z)? dz,
Rd

if the integral exists. For a linear operator A acting on L?(R%), we denote

(A)y = (u|Au) = / u(z)(Au)(z) dz,

R4

whenever the integral is well-defined. We also use the dot product of v, w € CL as

v~w::va:v1w1+~~~+vaL.

2. GENERAL SETTING

We first discuss the analytic framework for our analysis and introduce the Gauss-
ian wave packets. We further call some results on the wellposedness from the lit-
erature. For the vector potential we choose the Coulomb gauge, i.e. divA = 0. In
order to shorten notation, we rewrite the Hamiltonian in (1.1b) as

2 ~ ~
Ht) = ~SA+ieAt) - V+7(1), V= %|A|2 LV (2.1)

Throughout this paper we make the following smoothness and growth assump-
tion on the potentials.

Assumption 2.1. The scalar potential V:R x RY - R and the vector valued
potential A = (Aj)j=1,..a: R x RT — R? are infinitely often differentiable and in
addition

(a) Vs subquadratic, i.e. VAV is bounded for all k > 2, and

(b) A is sublinear, i.e. V¥ A is bounded for all k > 1, and satisfies div A = 0.

vy

If in addition to Assumption 2.1, we assume that 9;A is sublinear, then it can
be shown that the initial value problem (1.1a) is well posed for initial values in L2,
cf. [33, sec. 4] or the remarks after [30, Def. 1] or [27, Rem. 5.14]. In particular,
the following wellposedness result on the unitarity of the time evolution guarantees
that the norm of the solution of (1.1a) is the same as the one of the initial data.
However, for our analysis here, only Assumption 2.1 will be used.

Theorem 2.2. Let Assumption 2.1 hold and assume that 0; A is sublinear. There
ezists a unitary evolution family (U(t,s))tser on L*(R%) such that for all initial
data 1y € L*(R?) the solution 1) of (1.1a) is given by

P(t) = U(t, 0)tbo. (2.2)
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In the case of time-independent potentials the evolution family (U(¢,s))s ser
reduces to the unitary group (e~*/¢),cp on L?(R%), which which is given by the
spectral theorem and commutes with the Hamiltonian.

Following [24, Chapter 3], we approximate the solution 1 of (1.1a) in the mani-
fold M of Gaussian wave packets given by

M={ge®Y | g() =exp (L(3l—)Cla—a) + (2~ "D +Q)),

¢, peRY C=CT e C¥™? ImC positive definite, ¢ € (C}. (2.3)

The approximating Gaussian wave packet is characterized by the Dirac—Frenkel
variational formulation, cf. [24,25]: seek u(t) € M such that for all ¢ € R it holds

u(t) € TynyM,  (iedwu(t) — H(t)u(t)|v) =0 for all v € TyuM,
with initial value u(0) = ug € M. Using the orthogonal projection P, : L?(R?) —
TuM we can equivalently write
iedyu(t) = Py (H(t)u(t)), u(0)=uy € M. (2.4)

We note that (2.4) can also be stated in terms of the symplectic projection onto
the tangent space, see C. Lubich’s blue book [25, I1.1.3].

Remark 2.3. In the time-independent and non-magnetic case, one can also treat
initial values ¥y ¢ M using continuous superpositions of thawed and frozen Gaus-
sians, see [24, Ch. 5]. The extension of these to the case (1.1b), however, is beyond
the scope of the present work.

For the manifold M defined in (2.3) the tangent space T, M takes the following
simple form.

Lemma 2.4 ([24, Lemma 3.1]). For u € M we have
TuM = {ou]| ¢ d-variate complex polynomial of degree at most 2} .

The approximation by Gaussian wave packets seems appropriate due to the fol-
lowing exactness result, which is a consequence of Lemma 2.4 together with (2.4)
and Theorem 2.2.

Proposition 2.5 ([24, Prop. 3.2]). Let V(t,-) be quadratic and A(t,-) be linear in
space for all t € R. If g € M, then the variational approrimation u defined by
(2.4) is exact, i.e., u(t) =¥ (t), where ¢ denotes the solution of (1.1a).

In the next section we derive a system of ordinary differential equations to de-
termine parameters of the variational solution © € M and present error bounds for
the variational approximation.

3. MAIN RESULTS

In the remaining paper we consider (1.1a) and (2.4) for initial data satisfying
Yo =1up €M and ||UOHL2 =1 (3.1)
Our first step is to derive equations of motions for the parameters defining the
variational solution u. Then we show that in the limit ¢ — 0, these equations tend

to classical equations of motions. Moreover, we study geometric properties of the
solution and the variational approximation. Finally, we state error bounds for the
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solution in the L?-norm and for averages of observables. Our work generalizes the
results in [24] in the sense that we treat time-dependent, magnetic Hamiltonians.
We also generalize the results of [23,28] from the position and momentum operator
to sublinear observables in the sense of Assumption 2.1. For the sake of readability,
we postpone the proofs to Sections 4 to 7.

3.1. Variational equations of motion. In order to write equations of motion for
the parameters of a Gaussian wave packet u € M we use the short notation

CRZRGC, CIZImC,
U= (Uj)_?:17 A= (Aj);'lzlv
Ja= (048 D3kt = X 00k Ajv;.

We start by deriving two equivalent sets of equations for 0 < ¢ <« 1. In the
following section, we discuss the limit € — 0 and show that the two sets lead to the
classical equations of motion for charged particles in a magnetic field given by the
time-dependent Hamiltonian function

~ 1 U~ ~
h(t»Qa@ = §|m2_‘4(t7® p+V(t7®7 (t7Qaﬁ) GRXR2d7 (32)
cf. [12,18]. The first set of equations of motion reads:

Theorem 3.1. Let ug satisfy (3.1) and be given by its parameters qo,po,Co,Co
defined in (2.3). Then, the parameters of the solution u € M of (2.4) satisfy

d=p—(A)u, (3.3a)

. € T -1 T Ve

b= 2 (Ver (JACRCT)), + (Ja)lp = (VV)., (3.3b)

C=—C+(DA,)u+ (JAVIC+C(JA)w — (VPV),. (3.3¢)
+ S (V3 (JECRC)),

&= 2ol + S (JECC)), + Sur(0) (3.3d)
- Ztr(Cfl (§<V2tr (JECRCT™)), + (Ja)E Cr + Cr(Ta)u + (Di)p)u))

— (V) + Ztr(CTH(VEV),),
with initial data (¢(0),p(0),C(0),¢(0)) = (g0, o, Co, Co)-

The proof of Theorem 3.1 is given in Section 4. We observe that in terms of the
classical Hamiltonian function h defined in (3.2), the equations of motion (3.3) can
be rewritten as

G = (Vph)u, (3.4a)
p=—(Veh)u, (3.4b)
C= —(Vagh)u = (Vgph)uC — C{Vpgh)u — C(Vpph)uC, (3.4c)
$ =~ (hyu+ 2 tx(B &)+ (Tph) (3.4d)

with the matrix B € C%*? given by

B = (1d,C) (V?h), <Ig> .
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Later on, in Theorem 4.2 we extend these findings to the variational dynamics
induced by a general a subquadratic Hamiltonian.

Remark 3.2. In order to solve (3.3) numerically, one might adapt the Boris algo-
rithm originally proposed in [3] and recently analyzed in [16,17]. This algorithm is
constructed for the classical equations of motion for charged particle systems. De-
tails or an efficient numerical algorithm are ongoing work which will be presented
elsewhere.

An alternative approach presented in [24] makes use of a factorization of the
width matrix C due to Hagedorn. For the magnetic Schrodinger equation, it leads
to differential equations for the factors of C instead of (3.3¢). By [24, Lemma 3.16],
we can write

C=PQ ' and ImC=(QQ*) (3.5)
with complex, invertible, and symplectic matrices P and (). The latter means that
for

Y = <§Eg }gg) and J = <I(31 _§d> € R2dx2d (3.6)

it holds YTJY = J, or equivalently
QTP-Pr'Q =0, (3.7a)
Q*P — P*Q =2ild. (3.7b)

In fact, if @ and P are complex matrices satisfying (3.7), then @ and P are invert-
ible and the matrix C = PQ~! is symmetric with positive definite imaginary part
(QQ*)~1. This allows us to write the Gaussian wave packet (2.3) as

_ il T pey-1 T
u(x)=ep(z (5@ -0 PQ @ -9+ @ -0 +C))  (33)
and to derive equations of motion for the parameters (g, p, Q, P, ¢).

Corollary 3.3. Let ug satisfy (3.1) and be given by the parameters qo,po, Co, Co-
Then the Gaussian wave packet (3.8) with parameters (q,p,Q, P, () solving

Q=P-(Ja),Q (3.9a)

. I _ ~

P=(J)TP+ 5 (V21 (JaCrCy ").,Q+(Di,), Q—(VV),Q, (3.9b)
and (3.3a), (3.3b), and (3.3d) is the variational solution (2.4) with initial data

(4(0),p(0),€(0),¢(0)) = (g0 o, Co; o)-

If the initial matrices Qo and Py are symplectic, then Q(t) and P(t) are symplectic
for all times t € R.

The proof of Corollary 3.3 is given in Section 4.

3.2. Equations of motion in the limit £ — 0. The classical Hamiltonian func-
tion (3.2) induces the non-autonomous classical Hamiltonian system

@(t)) — JYVR(L (), B(E)

p(t)
_ ( F(t) — A(t, (D)) )
J:Z’;(t, a( ))ﬁ(t) - VV(t, (Aj(t))

(3.10)

3
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with initial data ¢(s) = ¢s,p(s) = ps and with J defined in (3.6). Since A(t,q)
and V(t,&') are sublinear and subquadratic with respect to g, the right-hand side
for the ordinary differential equation (3.10) is locally Lipschitz continuous. There
is no blow-up, since

SO +157) = 777 - A@) + 7" (U5 @F - YV @)

2 2
<C(L+1g" +1pI°),

where the constant C' > 0 depends on bounds of the potentials. By Gronwall’s

lemma, there is no finite time blow-up. This provides the existence of a unique

global solution. The bound in [24, Lemma 3.15] states that (), tend to point

evaluations at ¢ as € — 0, i.e., (4), — A(q). Hence, we observe that the magnetic

equations of motion (3.3a) and (3.3b) tend to classical equations (3.10) as e — 0
and (3.3d) to

.1 ~
C=3lpP*=V(.a).

In order to link the set of equations (3.9) to classical mechanics, we consider the
linearization of (3.2) along the position and momentum parameters (g, p), i.e.,

()= (3)

3.11
) P—1a(,0Q (3.1)
- (Dfxc@ﬁ - V2V(-@) Q+Ja(@)"P )"

By the same reasoning, we observe that the equations (3.9) tend to the linearized

equations classical equations (3.11) as ¢ — 0.

3.3. Averages. A further remarkable property of Gaussian wave packets is the
conservation of several physical quantities. In the following, we recall the definitions
of the linear and angular momentum for quantum dynamical systems.

Let © = (z1,...,7n), where 7, € R} k = 1,...,N and d = 3N, be position
variables. We recall the follwoing definition given in [24, Chapter 3].

Definition 3.4. (a) The quantum mechanical total linear momentum operator is

given by
N
Pi=—ie» V.
k=1

(b) The quantum mechanical total angular momentum operator is given by

N N $k28k3 — 1'!@361@
L= E xR X (—ieVy, ) = —ie E Ty Oky — Thy Oky
k=1 k=1 \ Tk, 8k2 — Ik28k1

Next, we state sufficient conditions on the potentials A and V', which lead to the
conservation of averages of the observables from Definition 3.4.

Definition 3.5. We call a potential W = (W;);=1,_ a: (R®)Y — R?
(a) translation invariant, if
Wi(z1,...,aen) =Wz +7,...,a8 +7),
forall» € R® and j = 1,...,d,
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(b) rotation invariant if for all orthogonal matrices R € R3*3 with det R = 1 it
holds

Wj(l‘l, sy Z‘N) = Wj(Rl‘l, sy RxN),
where 5 =1,...,d.
In the next lemma we provide a representation for the energy and state conser-
vation properties of the momenta.
Lemma 3.6. The following assertions hold.

(a) We have [ (@)l = lu()ll o = luoll s for all t € R.
(b) If the potentials A and V are both time-independent, then

(H)py = (H)y, and  (H)y@y = (H)u,-

(¢) For ¢ =1,u the energy (H), is given by

(H®)) oy = (H(0))p(0) +/0 (ie0A(s) - v>¢(s) + <as‘7(s)>@(s) ds.

(d) For P and L from Definition 3.4 we have:
(i) If V and A = (Aj)?zl given in Assumption 2.1 are invariant under trans-
lations

Ppwy = (Plyy  and  (Phu@y = (P)uy-

(it) If V defined in (2.1) is invariant under rotations and A(-,z) = a(-)z for
some a(-) € R, then

(L)pry = (Lo and  (L)ugr) = (L)uo-

The proof of Lemma 3.6 is given in Section 6.

3.4. L?-error bound. In this section, we present the approximation property of
the Gaussian wave packet with respect to the L2-norm. Since our error bounds
depend on parameters characterizing the Gaussian wave packet in (2.3), we first
consider the boundedness of these parameters up to a fixed but arbitrary finite time
T > 0 specified by ODE-theory.

Lemma 3.7. For all times T > 0, the set of equations (3.3) is well posed on [0,T]
independently of €. Furthermore, the solution parameters are bounded independently
of g, i.e.

V| < cup, for all v € {q,p,C,(},

uniformly on [0,T], where c,, depends on the parameters of the initial Gaussian
ug, on the potentials V, A, and on T.

We note that by Corollary 3.3 the matrix Cj is real symmetric, positive definite
for all times ¢. To formulate the following results, we denote by p > 0 a lower
bound on the smallest eigenvalue of C; on the finite time horizon [0,7]. For a
discussion of relevant time scales on which p is sufficiently large compared to e,
called the Ehrenfest time, we refer to [24, Sec. 3.6]. With this, we can state our
approximation result.
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Theorem 3.8. Let ¥, u be the solution of (1.1a) and (2.4), respectively, and let
ug satisfy (3.1). Then the error bound

() —ut)ll 2 <teve,  t€0,T],
holds with a constant ¢ which depends on p, the bounds on the parameters from
Lemma 3.7 and on the potentials, but is independent of € and t.

We provide the details and the proof of the theorem in Section 5.

3.5. Observable error bound. In classical mechanics physical states are de-
scribed by the position and momentum parameters §,p € R? Observables are
functions depending smoothly on (g,p) € R? x R? see, for example, [18,32].
Classical mechanics can be linked to quantum mechanics via Weyl quantization,
which asigns a classical observable to a quantum mechanical one using semiclassi-
cal Fourier transformation, cf. [7, Thm. 4.14] or [18,26]. Formally, for ¢ € S(R?)
and an observable a, we define

1 x+qN ~\ P (z—q) /e ~
Prio(@@) = o [ a5 B () a(@ 5

The Weyl quantization of the projections to the first or second component of the
classical variables are

OPWeyl(m<P = —ieVyp and OpWeyl(®<p = TP.
Further examples of physically relevant observables stemming from classical sym-
bols are

OPweyl ([PI*)¥(2) = —e?Agp(x)
and, due to div A = 0,
OPwey (A(Q) - DY (@) = 5 (A(@) - (—1eV) + (=ieV) - A(2)) ¥(2)
= (A(z) - (-1eV)) ¥ (x),
and, of course,
OPweyl (h(1))(z) = H (t)y(x)
for the Hamiltonian function (3.2) and the magnetic Schrédinger operator (1.1Db).

An observable A = 0pyy(a) defines for an L*-normalised function ¢ € S(R?) an
expectation value,

(elAg) = [ FEA)@)s,

and we investigate how expectation values issued by the variational approxima-
tion u(t) differ from the ones of the true solution ¢ (t). For an error estimate relying
on L? bounds, we have to restrict ourselves to sublinear classical observables.

Definition 3.9. The class of sublinear classical symbols is defined as smooth func-
tions @ : R2¢ — R such that for a € N2¢ with |a| > 1 there exists C,, > 0

10%a(q,p)| < Ca
for all (7,p) € R? x R%.
For the expectation values of classical sublinear observables, we obtain the fol-
lowing error estimate that generalizes and improves the findings of N. King and

T. Ohsawa [23, 28], where asymptotic accuracy of the order £3/2 has been observed
and proved for the variational position and momentum expectation value.
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Theorem 3.10. Let ¢, u be the solution of (1.1a) and (2.4), respectively, and let
ug satisfy (3.1). Moreover, let A = ODPyey(a) be an observable stemming from a
classical sublinear observable a in the sense of Definition 3.9 such that a o ®V% is
sublinear. Then we have the error bound

‘< H)AD(t)) — (u(t)|Au(t >‘<tc€

for all t € [0,T]. The error constant ¢ depends on the parameter bounds of
Lemma 3.7 for the time-interval [0,T)], in particular on the bounds for the width
matriz C, on the potentials, and on a, but is independent of € and t.

Note that the convergence in the observables is of order €2, while the convergence
in the L2-norm presented in Theorem 3.8 is of order /. This is an improvement
of the results obtained in [24, Theorem 3.5], where O(/€) norm accuracy and an
O(e) estimate for the non-magnetic observable error were proved. The rest of the
paper is devoted to the proofs of the equations of motion and the error estimates
presented in this section.

4. EQUATIONS OF MOTIONS: PROOF OF THEOREM 3.1 AND COROLLARY 3.3

In this section we derive equations of motion for the parameters (¢,p,C,() as
well as for the factorization matrices @ and P. To do so, we compute both sides of
(2.4) and compare the coefficients.

Proof of Theorem 3.1. In order to use the formula for the orthogonal projection
derived in [24, Prop. 3.14] for (2.4), we observe that derivatives with respect to x
of a Gaussian wave packet turn into scalar functions of x times u. For notational
simplicity, we omit the time-dependence and in the potentials A and V' we omit
the space variable z. In particular, we have

ieAd-Vu=—-A-(Clz—q)+p)u, (4.1a)
S Au= (5 - ) Clw— )+ Cw )+ o — Str(©))u,  (4.1D)

and for the time derivative it holds that
. 1
iedpu(-, x) = (—5(50 —q)"Cx—q)+{"Clx—q) —p (@—q) +p 4 C)u. (4.2)

Motivated by the classical magnetic Hamiltonian system (3.10), we eliminate one
degree of freedom by setting ¢ = p — (A),, see [12,18]. Incorporating the above
formulas, we compare the coefficients in « on both sides of (2.4) and arrive at
equations of motions of the form

qd=p— (A,
b= (JiCa(z —q)), + (Ja),p = (VV),,
C=—C*+ (D% et +<DAp> +<JA>ZC+C<JA>u_<V2‘7>U7
(= 1\pl2 (ATCr(z — q)), +
— (0 (Do o+ (T cR+cR<JA>u+<Di,p>u))
W)+ Sl (90,

—tr
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It remains to extract the additional power of € from the terms that contain the
difference x — ¢q. From

u(@)? = exp(~ 2 (z — ) Crlar — ) — 2T )
we obtain the derivative
Viu(e)? = ~2Ci(z - o) u(z) P, (43)
and apply integration by parts to obtain
(ATCr(z —q)), = (ATCrC 'Ci(z — q)),,
- /R ATCRCT G — q)|u(e)

= = (o (JAerC™))

Similarly, we gain an order of ¢ for
(Jicr(@ —a)),), = (JACrCT'Cilz = ),), = S(Ditx (JECRCT)),.

as well as for

d
(<DZ,CR(w—q)>u)ij = §< Z 8maiajAch,kl(CI_1)lm>u~

k,l,m=1

By the identity

d
8ijt1‘ (JXCRCfl) = Z 6ijamAkCR7kl(C;1)lma

k,m,l=1

we conclude the equations of motion stated in (3.3). ]

We now turn to the equations of motion for the Hagedorn factorization (3.5).
The idea is to show that the product PQ~' solves the same differential equation
as C and conclude with the uniqueness of the variational solution wu.

Proof of Corollary 3.3. We employ the differential identity

HQ™) =-Q7'9QQ ",
and the product rule to find that C = PQ~! satisfies the differential equation
C=-PQ'QQ" +PQ!
with 8,Q = Q. Then, using (3.9), we see that this is the differential equation for C
in (3.3c).
Concerning the symplectic relation in (3.7), we have
QTP - PTQ) = QTP +Q"P - PTQ - P70,
and by inserting the differential equations of P, Q given in (3.9), we see that QT P —

PTQ is constant. The same calculation holds for 9;(Q* P — P*Q) with * replaced
by 7. Since p,q, A and V are real valued, we conclude

QP -PQ)=QP+QP-PQ-PQ=0,
which means that (3.7) holds true for all times. O
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4.1. Equations of motion for a general Hamiltonian. The findings of The-
orem 3.1 for the magnetic Schrédinger operator H(t) extend to the dynamics for
general Hamiltonian operators that are the Weyl quantization of a smooth function
h: R x R — R of subquadratic growth, that is, for all @ € N3¢ with |a| > 2 there
exists C, > 0 such that

0°h(t,3,5)| < Ca (4.4)
for allt € R and (¢, p) € R??. Note that the classical magnetic Hamiltonian function
(3.2) is not subquadratic, but our analysis works for both cases.

A first step for the generalization is the construction of a suitable orthonormal ba-
sis of the tangent space of a Gaussian wave packet, which is done in [24, Lemma 3.12
and Theorem 4.1] for the non-magnetic case, where only the modulus squared of
the wave packet matters. For convenience, we state the representation formulas of
the basis functions that we use. Consider a Gaussian wave packet u € M of unit
norm, |jul| = 1. The family {¢y}nj<2 with

Yo = U, (453,)

Pe; = 2 (@' -a);u (4.5b)

€
1 2 1 -1 * =T >
) = — | - T — . T — — ik lu, (4.5c

be = T (2@ 0), (@7 - 0), - @@ e ) (450
is an orthonormal basis of the tangent space 7, M of M at u. For calculating the
orthogonal projection to the tangent space, we make use of another representation
via the raising and lowering operators .A;r- and A;. These are the jth component of
the vector-valued operators

i . _ . ~
Al = 7o (P*0Pwey1 (7 — 4) — Q" 0Pyey (P — p)) »
i - _
A= ——= (PTopyey (7 — 4) = Q" 0Pweyi (5 — 1)) ,

V2e

respectively. Using the complete family of Hagedorn functions constructed by the
infinite ladder process, we obtain that {¢;, },j<2 with

1

_ _ gt —
SOO - U, SOEJ' - A]’U’a @Ek"rej - \/m

see also [25, Chapter V.2] or [15, Theorem 3.3].

Equipped with the orthonormal basis (4.5) and (4.6), we can give an explicit
formula for the quadratic polynomial generated by the orthogonal projection when
acting on a general Hamiltonian operator.

Al Alu, (4.6)

Proposition 4.1 (Orthogonal projection). Let h : R?*? — R be smooth and of
growth. Let u € M be a Gaussian wave packet of unit norm, ||u|| = 1, with phase
space center zg = (q,p) € R x R, Then,

PU(OpWeyl(h)u> = p2u,
where ps is the quadratic polynomial

pQZRdg)(C,

pa(x) =B+ b (z — q) + %(m — q)TB(x —q)
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given by the complex coefficients
B=(hy =SB G,
b= (Id C)(Vh), € C,

B=(Id C)(V?h), (ch) e Cc,

The notation (@), = (u | opwey(@)u) refers to the expectation value of a quantized
smooth observable a : R** — R with respect to the Gaussian state u.

Proof. We use the Hagedorn wave packets {¢y, }|,<2 associated with the Gaussian
wave packet u as an orthonormal basis of the tangent space T, M, see (4.5) and
(4.6), and write the orthogonal projection as

Pu(OpWeyl(h)u) = Z <§0n | OpWeyl(h)u> Pn-

In|<2

Starting with the contribution for n = 0, we have

(o | OpWeyl(h)U'> = (u | OpWeyl(h)u> = (h)u-

For the following, it will be useful to introduce the slim rectangular matrix Z =
(Q; P) € C?¥¥4 with column vectors Zy,...,Zg € C2¢ and to write the ladder
operators more compactly as

i i
V2e V2e

For n = e; we have by (4.5), [24, Lemmas 4.1, and 4.2] that

AT = Z*Jochyl(giz)a A=— ZT‘]Ochyl(’Zv*Z)'

(e; [ oPwey(R)u) = (u | Ajopwey (h)u) = (u | [Aj, 0Pweyi (A)]u).

Since the symbol of A; is linear, we can use pseudodifferential calculus without
remainders and obtain that the commutator satisfies

i

[AjvopWeyl(h)] = —\/72»5 [OpWeyl(ZJT'](g_ Z))vopWeyl(h)}

= = Sopue{Z] TG = 2.1}

€
_ \@ OPyweyt(ZTVh), (4.7)
where we have calculated the Poisson bracket according to
{Z] Jz,h} =V (Z] Jz)- JVh = —Z]Vh.

Therefore,

(@e, | ODywert (A)u) = \/gzﬂvmu.
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After summation, we therefore obtain that

d d
D (¢e; | opweyi(h)u) pe; =D (Vh) Zeje] Q7w — g)u
j=1 j=1
= (Vh), Z2Q™ (z — q)u

=t (¢) -

which concludes the computation of the first order contributions. For the second
order wave packets, we analogously compute the projection coefficient as

(e son |yt (1)0) = s ] 45 s i (]

Using (4.7) twice, we obtain that the double commutator satisfies
€

3
Ay Ak 0D (0] = 5 (A 0Bt (2 0] = 5 0 (2 V1 22)

This implies for the coefficient that
€

<<10€J+6k, |opWey1( )u> QW

We now calculate the sum of all the second order contributions. We have

ZT(V?h)y Z.

Z (n | OPweyl (R)u)pn = Z (Pe;+en | OPwey1 (M) W)@, +ey

d
€ 1
=Y —=Z](V’h)uZr —=AlALu,
le 2v2 $ AV L vl

where the complete summation over the full square of indices is compensated by
a change in normalisation of the contributions for j # k. For the part of the sum
that generates a constant prefactor for the Gaussian, we have

d
_Zj;1 ZjT<v2h>qu (Q*Q_T)j,k - _Ztr(Q*Q_TZT<V2h>uZ)

€ 9 Id "
= —te((1d ) (VZh). (c) QQA").

For the quadratic prefactor, we similarly obtain

d
5> 2Nz (@7 - a), (@7 - 0),

Jk=1
= %(x —¢)" (Id C) (V2h), (ch) (z —q).
O

Let h: R x R?? — R be continuous with respect to time ¢ € R, and smooth, and
of subquadratic growth in the sense of (4.4). Denote H(t) = 0pyey(h(t)). Then,
the time-dependent Schrodinger equation

iedyp(t) = H(t)y(t), (0) = 1o
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has a unique solution ¥ (t) = U(t,0)1 for all times ¢ € R for all square integrable
initial data 1o € L?(R?), see [27] or [30, Def. 1]. The corresponding variational
Gaussian wave packet obeys the following equations of motion.

Theorem 4.2 (Equations of motion for a general Hamiltonian). Let ug € M
satisfy (3.1) and be given by its parameters qo, po, Co, o defined in (2.3). Then, the
parameters of the variational approrimation

icdu(t) = Puy (H(Hu(t),  u(0) = ug

satisfy the following set of ordinary differential equations (3.4) subject to initial
data (g(0),p(0),C(0),¢(0)) = (o, o, Co, Co), where h is now the given general sub-
quadratic classical Hamiltonian function. The Hagedorn parameter matrices of the
variational wave packet satisfy:

P = —(Vygh)uQ = (Vgph)u P, Q = (Vpgh)u@Q + (Vpph)u P.
Moreover, the matriz factors Q, P are symplectic, provided that the initial matrices
Qo, Py of the factorization Cy = PoQal are symplectic.

Proof. We again use (4.2) and Proposition 4.1 and compare the coefficients with
respect to the spatial variable z. We have one degree of freedom and set, inspired
by (3.3a),

G = (Vph)y.
Now, the claim follows by a direct calculation. (Il

The equations of motion given in Theorem 4.2 are indeed a generalization of the
magnetic ones derived in Theorem 3.1 as we verify next.

Corollary 4.3. In the special space of the magnetic Hamiltonian given in (3.2) we
rediscover the equations of motion (3.3). Moreover, if ¢ — 0 and averages tend to
point evaluations at the center point q, then the equations (3.4a) and (3.4b) tend
to classical equations of motion for a general classical Hamiltonian function h.

Proof. We have that
(Vph)y =p— (A, and  — (Voh)y = —ie(J5V), — (VV),.
Furthermore, it is
V2V(-,q) — D2 —JT
V2h(-,q,p) = ’ ACap TIA
(-a,p) < I 14
such that the trace part appearing in (3.4d) contains the terms
~(Vagh)u = (Di icvhu = (VV)u,  —(Vgph)uC = (J3)uC,
—C(Vpgh)u = C{Ja)u, —C(Vpph)uC = —C2.

For the scalar contribution of the projection Proposition 4.1 we observe by (4.1),

62

(Bu = =Z(A)u +ie(A- Vu + (V).

1 € _ ~
= 5 |p|2 + Ztr<(CR2 + CI2)CI 1) - <AT (CR(Q7 - Q) +p)>u + <V>u
Finally, we calculate the following trace, appearing in (3.4d), as

—tr((CRz + cﬁ)cl—l) + tr(C2CI_1) = —2t2(Cy) + 2i tr(Cr) = 2itr(C),
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such that, together with
pT<vph>u = |p|2 7pT<A>u;
we obtain the differential equation (3.3d). (]

5. L2-ERROR BOUND: PROOF OF LEMMA 3.7 AND THEOREM 3.8

This section is devoted to the wellposedness of the equations of motion (3.3) and
the approximation quality of the variational solution in the L?-norm.

We first state the following lemma which will be used frequently to obtain error
bound with respect to . We recall that the lower bound on the eigenvalues of Cy
was denoted by p > 0.

Lemma 5.1 ([24, Lemma 3.8]). For any m > 0 there exists a constant c¢,, such
that for all € > 0 it holds

m

g\ 2
S Cm(7> ’
P

Nl

(me)~ T det (Cy) % /\x|2m exp( — fa:TCIx) dx)
where ¢, is independent of € and p.

We now prove the wellposedness result for (3.3) and show the boundedness of
the parameters solving (3.3).

Proof of Lemma 3.7. We show that the right-hand side of (3.3) satisfies a local
Lipschitz condition with Lipschitz constant independent of . To this end it is
sufficient if the derivatives with respect to parameters ¢, p, Cr, C1, ¢ are bounded on
a bounded domain. Then, we obtain a local solution and, as in Section 3.2, we can
show that there is no blow-up.

The potentials in the averages of the equations of motion in (3.3) do not depend
on ¢. However, we need to carefully treat the absolute values of the Gaussian wave
packet, since they contain ¢ in the denominator. By the chain rule, it is sufficient
to first calculate the derivatives of averages of some arbitrary potential U , which is
independent of the parameters. Then, the average has the form

D= Y [Omen (206 -0) ar

from which we see that, in this case, the average only depends on ¢ and Cy. Let u
be a Gaussian wave packet with [ju||,. = 1. By (4.3) we obtain

Vdet(C) o (L Te
S e (<10 -0)
det(CI) 1
(WT ECI(x — q) exp (6(35 —q)"Ci(z — CD)
= —Vlu(z)?,

thus, using integration by parts, the derivative of the average with respect to to ¢
is given by

04U (2))u = (VU (2))u.
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We continue with derivatives with respect to C;. For a differentiable matrix func-
tion F : R%*¢ — R and a general invertible, symmetric matrix M = (Mij)ij=1,..d
we define the componentwise derivation matrix

81\/1}?(]\4) = (amijF(M))i7j:17-~xd € R4,
By [22, Part 0.8.10] we have
OaraTMb=ab” and Oy det(M) = det(M)M~*

and consequently,

Oary/det(M) = %\/det(M)Mfl.

Hence, it follows that

0o (2o~ 0o~ ) ) =~ 2o = a)a = )T o (o - )TCrla )

and

06 {0())u = ~{(r — @)z~ ) T @), + 31T (@),

By Lemma 5.1 we have |((z—q)(z —q)Tﬁ(x)>u| < Ce for parameters on a bounded
domain.

For potentials depending on the parameters, we use again that we are on a
bounded domain and that the dependence on e of the potentials in (3.3) is such
that € does not enter the denominator. |

We now turn to the L2-error bound and adapt the proof of [24, Theorem 3.5] to

the magnetic case and note that the multiplication potential V is already covered.
In order to demonstrate the dependence of the constant in the error bound, we
carry out the proof for the advection term.

Proof of Theorem 3.8. From the proof of [24, Theorem 3.5] we know that

‘1
o) = uio) 2 < [ 2 = Pt s

(a) We write the action of the magnetic Schrédinger operator H on a Gaussian u

with width C and phase space center (g, p) as
2

Hu = —%Au—l—Yu—i— Vu
with
Y, =—-A - (C(x —q)+p). (5.1)
We perform a second order Taylor expansion of the potentials Y, and V' around
the point ¢ and denote by W, and W, the respective remainders. Then,
(Id — P,)(Hu) = (Id — P,)(Wyu + Wyu)
and

t
1 —~
[0~ e < [ 2w+ W] s

Since
Wy=3 3 @0 [ (=020, (0+0la ).

|a|=3
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we bound ||Wul|,, by finding a bound on 8*Y, (g + 6(x — g)), which then leads
us to

[Wy(2)[> < Cla — ¢[°

By norm conservation and Lemma 5.1 the claim that ||[Wyul|,, = O(£%/?) follows.
For the third derivative of 9y, Y, where I,m,n =1,...,d, we have

8lm.nY—u = (8lmnA)TC(x - Q) + (8lmnA)Tp

where O;nnA is meant component wise. The term z — ¢ in (5.2) evaluated at
x = q+ 0(xz — ¢) has the form

0(mnA)TC(x — q).

By Lemma 5.1 we gain additional orders of €, and we thus neglect the first summand
n (5.2). The remaining terms are bounded again using Lemma 5.1.

(5.2)

(b) In the general subquadratic case, we use that the action of a semiclassical
pseudodifferential operator on a Gaussian wave packet can be approximated by a
polynomial prefactor, see [30, Lemma 14 in §2.3]. For any ¢ € N there exists a
polynomial Q; of degree ¢, such that

Hu = Qpu+ O(e\“H1)/2),

i.e., we have
Hu — P,(Hu) = Wy gu+ O(FD/2), (5.3)

with a remainder potential W, .. We now fix £ = 2 and denote the corresponding
cubic remainder potential W, = W, 2. The proof then works along the lines of the
magnetic case. U

6. EXPECTATION VALUES: PROOF OF LEMMA 3.6

In this section we adapt the proofs of [24, Section 3.2] on conservation properties
to the time-dependent, magnetic case. Due to time-dependence, the energy will not
be a conserved quantity.

Let ¢ be the exact solution of (1.1a) and u the variational solution (2.4) such
that (3.1) holds.

Proof of Lemma 3.6. The proof of norm conservation and the energy formula can
be done in the same way as in [24]. We only show the conservation of total linear
and angular momentum.

By [25, Theorem 1.3] or [9, Lemma 4.1] it is sufficient to show that H(t) com-
mutes with P and L, respectively, for each ¢t € [0,7]. By [24] it follows that
PAg, =0forallk e {1,...,N} and j € {1,2,3}. We further calculate

N 3
PA-V)p =" (PAk,)Ok, b + Ap, POi,tp = (A- V)P,

k=1j=1
Furthermore, a tedious calculation shows that (A-V)Ly = L(A- V) if and only if
N Alzal?’ — AZB&Q N Tl (613 Ak, Tl (612 Akj)akj

J

N 3 ) Ok
Alsall - Allala '(/J = Z Z Z Lig (allAkj)akj — Ty (aIBAkj)akj w
=1 Allal2 — A12811 k=1j=11=1 \Z, (alekj)akJ — Ty, (811Akj)8kj
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holds true. This condition is fulfilled if
8lmAkj = a&lm,kj und Aln = axry,

holds true for some o € R, j,n,m € {1,2,3}, and k,l € {1,...,N} and thus, if
A(, ) = a(-)z holds. O

7. ERROR BOUND FOR AVERAGES OF OBSERVABLES: PROOF OF THEOREM 3.10

In this section we give the proof of Theorem 3.10. We proceed in three steps:
First, we follow [24, Section 6.7] and establish an integral representation for the
error that involves a commutator with the time-evolved observable. Second, we
prove Egorov’s theorem for the time-evolution of observables in the general context
of magnetic Schrédinger operators. Third, we derive a semiclassical expansion of
averages with respect to Gaussian wave packets. The combination of these steps
then allows us to prove Theorem 3.10. We note that the semiclassical expansion of
the averages is crucial for improving the observable estimate in [24, Theorem 3.5].
This section applies for both the magnetic and the general subquadratic hamiltonian
case. For better readability, some arguments will be provided for the magnetic
case only, but with natural slight modifications they also apply for the general
subquadratic case.

7.1. Error representation. We start with a useful a posteriori representation
for the observable error. To this end, let U(t, s) be the evolution family given by
Theorem 2.2 and A an observable. We introduce the notation

A(t,s) =U(s, t)AU(t, s), t,s eR.

Lemma 7.1. Let ¢ be the solution of (1.1a) and u the solution of (2.4). If the
initial value 1y = up € M is a Gaussian wave packet with ||ug|| 2 = 1, then the
error of the observables takes the form

(W(O)AY(E)) — (u(t)| Au(t)) (7.1)
= [ )] (Tur At = R aWo ) us) ds.

where the remainder potential W, : R* — C depends on the Gaussian wave packet u.
In the general subquadratic case, it has been previously defined in (5.3). In the
magnetic Schrodinger case, it satisfies

Wa = Xula) = (X + 300G 1T Xo) + (VXulg) — (VX)) (2 — )

+ =) (VIXula) ~ (VX)) (2 — 0) + R(X,)

(7.2)

with X, = Y, + V defined in (5.1) and (2.1), respectively, and R(X,) being the
remainder potential of the quadratic Taylor expansion of X, around the point q.
For the non-magnetic Schrédinger case A =0, we have Y, =0 and W, : R? — R.
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Proof. Let U(t, s) be the evolution family, such that the exact solution of (1.1a) is
given by (2.2). Using ¥y = up and U(¢,t) = Id we calculate

(u(®)|Au(t)) — (Y (t)[Ap(L))

= (u(®)|U(t, ) AU (t, t)u(t)) — (U(t,0)u(0)|AU (¢, 0)u(0))
= (u(®)|U(t, ) AU (t, t)u(t)) — (u(0)|U(0,t)AU(t,0)u(0))

/85 Uls. DAU(t,5)u(s)) ds.
—A(t s)

Employing the differential properties of the evolution family, that is, e U (¢, s) =
H(t)U(t,s) and —ied;U(s,t) = U(s,t)H(t), we obtain
0 ~ 1

%A( s) = = —(H(s)U(s,t)AU(t,s) — U(s,t)AU(t, s)H(s))
= é(H(s):&(t,s) — A(t,s)H(s)). (7.3)

Since the variational evolution satisfies icd;u(t) = Py)H (t)u(t), we then have

0 * ({1 - P H(s)u(s)|A(t, s)u(s) )

55 luls )AL, s)uls)) = —
—(u(s)|A(t, s)(Id - Pu(s))H(S)u(8)>) :

ie

We arrive at (7.1), using that
(Id — Pu(s))H(S)u(S) = XU(S)U(S) — Pu(s) (Xu(s)u(s)) = Wu(s)u(s).

The claimed form of the remainder potential Wy : R? — C follows from [24,
Proposition 3.14], since the proof of the projection formula there also applies for
the potential function X, even though it is complex-valued. O

7.2. Egorov’s theorem. Further, to prove Theorem 3.10 we have to establish
a variant of Egorov’s theorem, which connects the time-evolved quantum observ-
able A(t,s), in case it originates from a Weyl-quantized A = opyy,y(a), with the
evolution map of the classical Hamiltonian system. Recall that since A and V are
sublinear and subquadratic, respectively, we obtain a unique global solution to the
ordinary differential equation (3.10). We denote by

(:[)t’s : R2d — R2d, (asaﬁs) — (E]vs(t),ﬁs(t))

the classical propagator, which maps initial values at time s to the solution of (3.10)
at time ¢t. For any zZ = (q,p), it satisfies the evolution equation

Oi01(3) = —J(Vh)(t, (), (7.4)
%4 (Z2) =Z.
Both in the magnetic and the general subquadratic case, the classical propaga-

tor 47 is a diffeomorphism with inverse (®7)~! = ®7!. For time-independent,
subquadratic Hamiltonians it is well-established that

;&(t 0) = OpVVeyl (Cl, © (I)t70) + 0(62)'

However, to the best of our knowledge, in the literature a proof of the Egorov ap-
proximation for the non-autonomous case is not available, and the proofs presented
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for example in [4], [36, Chapter 11], or [30, Thm. 12] assume time-independent or
compactly supported Hamiltonians and thus do not cover our more general situ-
ation. The main difficulties are the time-dependence of the Hamiltonian operator
H (t), which prevents energy conservation, and the allowed sublinear growth of the
observables.

Proposition 7.2 (time-dependent Egorov—theorem). Let A = opyyy(a) be a
quantum observable stemming from a smooth, sublinear classical observable a in
the sense of Definition 3.9. Further, let a : R x R x R? — R, (t,5,%) v a(t, s, 2)
be defined by

Gt 5,%) = ao ®(3). (7.5)
We consider two cases.

(a) The Hamiltonian operator stems from a classical, subquadratic function h.
Then, the observable given in (7.5) is sublinear and for all ¢ € L*(R?) we
have

H (;&(ta S) - OpWeyl (a(t7 5)))@”[]2 S 062 eC‘ltiSl ||90||L2
for all s,t € R.

(b) The Hamiltonian operator is a magnetic Schridinger operator. We assume
that the observable given in (7.5) is of time-exponential growth in the fol-
lowing sense. There exists a smooth nonnegative function T'(t,s) > 0 such
that for any o € N?¢ there exists C,, > 0 with

102a(t, 5,7)| < Can exp(la|T(t,5))
for all Z € R*! and all t,s € R. Then, for any ¢ € L?*(RY) such that
OPwey1 ()@ € L2(RY), we then have
[ (A6t~ opwen @t o), < €= opwen(Del

for all s,t € R.

The constant C > 0 depends on derivative bounds of the potentials A, V and the
observable a, but not on ,t,s. In particular, C = 0 for A linear and V quadratic.

Proof. (1) We start by discussing the growth of the function af(t, s, z) for case (a).
For first order derivatives with respect to (¢, p) of the classical propagator we have
t
DO =1d+J! / V2h(r, ®7%) D®™* dr,
S

and thus

t
Do <1 +/ sup ||VZh(r,2)| |D®™*|| , dT.
s zeR2d
Since the Hamiltonian function h(t,-) is subquadratic, we have
t
N(t.s) = [ sup [V2h(r,D)dr < o,
s z€R2d

and by Gronwall’s lemma

||D<I>t’8||Oo <exp(T'(t, s)).
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Moreover, for any a € N2? with |a| > 1 there exists a constant C,, > 0 such that
020(2)| < Co exp(la| I(t, )

for all t,s € R and all Z € R??, see [4, Lemma 2.2] for a proof that literally applies
to the non-autonomous case. Then, the same argument as for [4, Lemma 2.4] yields
that for every a € N2¢ with |a| > 1 there exists a constant Cg o > 0 such that

02a(t, s,2)| < Ca,a exp(|a|I(t, 5))
for all t,s € R and all Z € R??. In particular, a(t, s, -) is sublinear.

(2) Next we compare the operators opyy,(a(t, s)) and A(t,s) = U(s,t)AU(t, s).
Since on the diagonal a(t,t,-) = a and U(s, s) = Id, we obtain similarly as for (7.3)

A(t7 S) — OPweyl (a(t’ S))

= [ U (ZH) 0P @l6,7) ] + by (B1a(1,7) U 5) dr

— [ UGs7) (0P (7). G 7)) + Oyt ({1, 7)) U 5) dr + (e, ).

where the last equation relies on the product rule of Weyl quantization [30, Theo-
rem|. Here,

{h(7),a(t,7)} = Vzh(r) - JVza(t,T)
denotes the Poisson bracket of h(7) and a(t, 7). It remains to show that the integral
vanishes and that the remainder p(t, s) is of order 2.

(3) For the estimation of the remainder, we use that

p(t,s) = g2 / U(s, T)opweyl(r(t, NHU(r,s)dr,

where r(t,7,-) is a smooth function depending on the derivatives of the order > 3
of the function h(7,-) and of the sublinear a(t, 7,-). In order to estimate

t
ot 5)g|| . < 2 / lobweyt (7(t U, )] .2 .

we investigate the above integrand.
(i) If h is subquadratic, then, due to the estimates given in (a), for all o € N2%
there exist ;. q,c2,o > 0 such that

027 (t, 7, 2)| < c1aexp(ezalt = 7))

for all t,7 € R and Z € R?? and the Calderén—Vaillancourt Theorem, see e.g.
[30, Theorem 4], provides the claimed constant C' > 0 for part (a).
(74) In the magnetic case, we rewrite the remainder function

r(&am = ’I"(', B EL@ = bO(ZL]’;) + b(q7@Tﬁ,
where by : Rx R x R2¢ - R and b : R x R x R2¢ — R? are bounded with all
their derivatives. For the first summand, we proceed as in the subquadratic case,
using Calderén—Vaillancourt. For the second summand containing an unbounded
linearity in p, we use the product rule and obtain that

OpWeyl (TQ (&7@) = _OpWeyl (b(@@) -ieV + O(E)
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Then, the boundedness of b provides Cp > 0 such that
lopwey (B(t: 7)eV (U (T, 8)¢)| 2 < Co [V (U7, 5)0) | -

In the next step, we analyse HsV(U(T7 s)go) HLQ.

(4) Let t > s and set f(t) = 0Py (2)U(t, 5)¢. We argue as in the proof for
[5, Lemma 10.4] and observe that f(t) solves the perturbed magnetic Schrodinger
equation

ie0, f (1) = oPwen1 () H ()U (L, s)p = H(t) f(t) + ()
with source term

310 = lopuen () HOIU () = = (T~ 00

i
where we used the product rule for the second equation. In the same spirit as in
step (3), we estimate

||6(t)HL2 S C‘SHOpWeyl(g)U(tvS)(pHLQ = Os”f(t)Hsz

).,

where we exploited the sublinearity of A and that V is subquadratic. By the
variation of constants formula followed by Gronwall’s lemma, we obtain that

1F O 2 < 2 F )] = e [lopwen ) o
(5) In the following step we show that a satisfies the transport equation
ora(t,7) = —{h(r),a(t,7)}, (7.6a)
a(t,t) =a (7.6b)
for 7 € [s,t]. Then the integrand in question indeed vanishes, and we obtain

A(t, ) = opweyi(@l(t, s)) + O(e?),
as claimed. We rewrite the transport equation (7.6) as

o-a(t,7) = JVzh(r) - Vza(t, 1), (7.7)

a(t,t) = a.

The following argument crucially uses that ®%7 is a diffeomorphism with inverse
(®7)"! = &7, We observe that a(t,7,®7!(2)) = a(z) for all z € R*! and
calculate
0= 0ra(2)
= 0.a(t, 7,74 (2))
= (0:a)(t,7,®7"(2)) — J(Vzh)(r, @7 (2)) - (Vza)(t, 7, 27 (2)),

where, we used in the last step, the chain rule and (7.4). Since ®™¢ is a diffeomor-
phism, this proves that a(¢,7) indeed solves the transport equation (7.7). O
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7.3. Averages with respect to Gaussian wave packets. The a posteriori er-
ror representation of Lemma 7.1 involves an average with respect to the variational
solution. By Egorov’s theorem, Proposition 7.2, the time-evolved quantum ob-
servable can be approximated by the Weyl-quantized classical observable evolved
along the classical flow. We therefore derive an asymptotic expansion of averages
of Weyl-quantized operators with respect to Gaussian wave packets. For obtaining
this expansion, the following phase space moments will be useful.

Lemma 7.3 (Gaussian moments). We consider a Gaussian v € M of unit norm,
|lul| = 1, with phase space center z = (q,p) € R?*? and width matriz C € C*4, We
denote by

-1 -1
pe(C) = ﬂ'id\/ 2t exp(—z-Gz)dz with G= Cit C_F%CI Cr _CR_Cll ,
R2d G Cr G

where G € R2¥*2 s symmetric, positive definite and symplectic. Then, for any
multi-index £ = ({1, ..., l2q) € N2, we have

((Z=2)" ) =17p(C).
If the length |¢| of the multi-index is odd, then we have ((Z — 2)*), = 0.

Proof. The claimed representation becomes evident, when using the Wigner func-
tion of the Gaussian wave packet u. The Wigner function of a Gaussian wave packet
centered in z satisfies

Wa(E) = (me)Lexp(=1(F - 2) - G(Z — 2),

where the matrix G is symplectic, symmetric, positive definite, see [24, Proposi-
tion 6.15]. The average of any Weyl-quantized observable can be written as the
phase space integral of the symbol versus the Wigner function, see for example
[24, Theorem 6.5]. In particular,

z—zeu—— 37— 2)¢ w(2)dz
= (me)~¢ T2 exp(—L(Z—2)-G(E-2))dz
(5) /R2d( ) P( E( ) ( ))

= g deldl/2 / Z exp(—Z - GZ) dz,
R2d

where we have used that symplecticity implies det(G) = 1. We observe, that
if the length |¢| of the multi-index is odd, then the above integral vanishes, and
consequently ((Z — 2)%), = 0 as well. O

We now use these moments for expanding Gaussian averages with respect to
general observables.

Proposition 7.4 (Gaussian averages). We consider a Gaussian v € M of unit
norm, ||u|| = 1, with phase space center z = (q,p) € R* and complex width matriz
C € C™4. Then, for any smooth function a : R** — R with bounded sizth order
derivatives,

(@)u = a(2) +fa(a,C) + €% f1(a,C) + p°(a,C),
where

fela.c) =3 %afa(z) p(@), k=24
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The second order contribution satisfies
f2(a,C) = %tr(Vza(z)c CI_l)
with
VZa(z)e = (Id C*) Va(z) (ch> € CIxd, (7.8)
The remainder satisfies |p(a,C)| < Ce3 with a constant C > 0 that only depends

on sixth order derivatives of a as well as on the width matriz C.

Proof. We start by Taylor expanding the symbol around z with sixth order remain-
der,

a(z) = Z —.8’“ 2)(Z — 2)F +7r4(%; 2),

k<5
where
1
re(Z) = S mEAE- ), nEe) = %/ (1 =9y a(z +9(3 — 2)) dv.
|k|=6 $J0
We have

(re(Z;2))u = Z/d (7 2) (Z — 2)" W, (3) dz.
R2

|k|=6
Therefore, using Lemma 7.3,
(@), = a(z) +cfa(a,C) + 2 f1(a,C) + (r6(Z; 2))u,
and, with the same substitution as in the proof of Lemma 7.3, we bound
|(r6(Z: 2))ul < C(a,€)e*  with  C(a,C) = Y [Ire(52)lleo 1ox(C)]-
|k|=6

The constant C(a,C) > 0 depends on fourth order derivatives of @ and on the width
matrix C. It remains to rewrite the second order contribution as

fala.0) = w3 Go'a(e) [ (G675 exp(—[3) a2

[e]=2

7T_d/ 7. G2 (2)G7Y?Z exp(—|3%) dZ
R2d

1
2
tr(VZa(2)G™).

Since G is symplectic and symmetric, its inverse satisfies

_ Cr C;'Cr
Gl =JGT (CRC ! cI+cRcllcR>'

We decompose the Hessian V2a(z) in block form as

VZa(z) = ( pet g) . (7.9)
Using the cyclicity of the trace, we calculate that
tr(V2a(z)G™') = tr((A + BCr + Cr BT + C1DC; + Cr DCR)C; 1)
= tr(VZa(z)c ),
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where V2a(z)¢ was defined in (7.8) and has the form
V2a(z)c = A+ BC+C*BT +C*Dc,
which gives the claim. O
For our analysis of the observable error, we will use Proposition 7.4 also for
observables that are products of two functions. One of the factors will have a

controlled semiclassical expansion, when evaluated in the position center of the
variational solution.

Corollary 7.5 (Gaussian averages). In the situation of Proposition 7.4 applied to
a sublinear classical observable a : R??* — R, we additionally consider a smooth and
subquadratic function b° : R? — R, x + b%(z). Then,

f2(b°,C) = Ler(V27 (g)Ci ).
(a) If the function satisfies
b*(q), Vb*(q) = O(e),
then
(ab®), = a(2) (b°(q) +f2(b°,C)) + O(£?).
(b) If the function satisfies
b*(q) = O(e?), Vb (q), V265 (q) = O(e),
then
(@b%)y = a(2) (b°(q) + e f2(b%,C) + £ fa(b°,C))

+ EFl,l(a, bE,C) + EQFLS(O,, ba, C) + 0(53)
with

1
Fua(@b, 0= > 3. gy 9a) 07K (@) p(€), n=13
le|=n+1 8<¢,|8|=1 '

Proof. For the trace formula, it is enough to observe that the matrices B and D in
the block matrix (7.9) vanish, since b° only depends on .

For proving the expansions of the averages, we crucially use the Leibniz formula
for the ¢th derivative of the product, that is,

o)) = 3 () at) o)

B

for any multi-index ¢ € N2%.
(a) In the situation of statement (a), we only consider |[¢| = 2 and obtain
£0'(ab®)(z) = ca(2)0°b°(q) + O(?).
Then, Proposition 7.4 implies
(ab*)u = a(2)b°(q) + ef2(ab,C) + O(c?)
= a(2) (1°(q) + £/o(0°,C)) + O(e2).

(b) In the situation of statement (b), we aim for a higher order expansion and need
to consider second and fourth derivatives. In the same spirit as the proof of
part (a), Proposition 7.4 implies the claimed expansion of the average (ab®),,.
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d

Remark 7.6. The estimates of Corollary 7.5 also apply to functions b°(z) of the
form b¢(z) = B*(z) - (x — q), where B%(z) € R? is sublinear with uniform bounds
in €. A derivative 0%b°(x) additively decomposes into a bounded function and the
function 90*B*(x) - (x — ¢), which can be controlled by the arguments used in the
proof of Theorem 3.8 (a).

7.4. Proof of Theorem 3.10. We now have everything at hand to estimate the
error of observables and to conclude our final main result. In the following proof, we
use Assumption 2.1 on the potentials and the representation (7.2) of the remainder
potential W, only to the extent that the arguments literally also apply to the
dynamics induced by general subquadratic hamiltonians. Thus, the proof improves
known observable error estimates in full generality.

Proof of Theorem 3.10. By Lemma 7.1 we only have to bound the commutator in
the representation formula (7.1).

(a) We start by recalling, that in the proof of Theorem 3.8, we have estimated
[Waioyu(s)|| . = [|(1d = Py H(s)u(s)|| ., < Ce¥/2. (7.10)

(b) We denote a(t,s) = a o " and expand

1 ,— ~ ~
f<Wu(S)A(t, S) — A(t, S)Wu(s)>

ie u(s)

1 ,— ~ ~
= E<WU(S)OpWey1 (a(t7 S)) - OpWeyl (a(t’ S)) WU(S)>u(s) +71 (87 t)

Using first Cauchy-Schwarz and then (7.10) together with Proposition 7.2 and norm
conservation, we bound the remainder by

(5,01 < 2 W) [ (A1) — 0Brweys @l 51 < 772

(¢) As in the proof of Proposition 7.2, we use the product rule of Weyl calculus and
expand the commutator. For notational simplicity, we suppress the dependence
on t and s. We have by symmetry of the real part with respect to the L? scalar
product and anti-symmetry of the Poisson bracket

<WU OpVchl (a) - Ochyl (a) Wu>u
2
_ % (ImW,@), + = ({ReWy,@}), + = (VAIm W V2aJ), + O(),

where the constant in O(e?) depends on phase space derivatives of the remainder
potential W, (s and of a(t, s) of the order > 3. Since a(t, s) is sublinear and W)
consists of subquadratic summands and a non-subquadratic summand which can
be handled by Remark 7.6, the Calderén—Vaillancourt Theorem applies for the
remainder term. We will prove below that

<opwey1 (ImW,a) >u = 0(e%), (7.11a)

(oPweyt ({Re Wy, a}) ), = O(?), (7.11b)
(0Pwey1 (VIm W, JV?aJ) ) = O(e), (7.11c)
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which allows us to conclude that
1~ -
E<WuA —AW,) =O0().

In order to do so, we first aim at the application of Corollary 7.5 statement (a)
for b* = 9;Re W, and statement (b) for b° = Im W,; see also Remark 7.6 for the
non-subquadratic terms in W,.

(d) From now on, we notationally focus on the magnetic Schrodinger case, but the
analysis works the same for the general case. We denote the phase space center
of the variational Gaussian u by z = (¢,p). The width matrix of v is C and has
imaginary part C;. We recall that the cubic remainder R(X,) in (7.2) vanishes
together with its first and second derivatives when evaluated in q.

We first apply the analysis to the Poisson bracket that involves the real part of
the remainder potential. For any j = 1,...,d, we use (7.2) and Proposition 7.4 and
obtain 9;Re W, (q) = O(e). Furthermore, by [24, Lemma 3.15] we have

VOojRe W, (q) = VO;Re X,,(q) — (VO;Re X)) = Ofe),
V20;Re W, (q) = V?9;Re R(X,)(q) = V?9;Re X, (q).

Hence, the function ° = J;Re W, fulfills the assumptions of statement (a) in
Corollary 7.5, and together with Proposition 7.4, we obtain

(0;Re W, 0p, @), = O(2).
After summation over j, we have proven (7.11b).
(e) Similarly, the first and second derivatives of Im W, satisfy
VIm W, (q), VZImW,(q) = O(e). (7.12)

Moreover, Proposition 7.4 implies for the point evaluation of the imaginary part of
the remainder potential that

Im W, (¢) = Ztr(((VzlmXu>u ~ VI X, (q)) G~ ) + O(?)

= 0(£?). (7.13)
At this point, a simple application of Proposition 7.4 and (7.12) yields (7.11c).
(f) The expansions in (7.12) and (7.13) show that b° = Im W, satisfies the assump-
tions of statement (b) in Corollary 7.5. In order to prove (7.11a), we analyse the
expansion obtained from Corollary 7.5 in two steps, aiming at

Im W, (q) + efo(Im Wy, C) 4+ 2 f4(Im W, C) = O(?), (7.14a)
eFy1(a,ImW,,C) + &*F 3(a, ImW,,,C) = O(£%). (7.14b)
(g) We start with proving the first estimate (7.14a). For this, we need a slightly

more accurate assessment of Im W, (q) than developed previously. Using (7.2),
Proposition 7.4, and (7.12), we have

ImW,(q) = — ef2(Im X, C) — 62f4(ImXu, C) +efo((Im Xy)u,C) + 0(53)
= — 2 f4,(Im Xy, C) + €2 fo(fo(Im X, C),C) + O(e3).
Similarly, we obtain for the second term in (7.14a) that

efo(Im Wy, C) = —2fo(fo(Im X, C),C) + O(3).
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Therefore, Im W,,(¢) cancels both the contributions from the second and the fourth
derivatives, and we have proven (7.14a).

(h) We next target the terms on the left hand side of equation (7.14b), that is,
eFy1(a,ImW,,C) = - > F11(a,0"m X,,,C) pi(C) + O(e?)
k=2
and

F1)3(6,Im Wu,C) = Fl,g(E,ImXu,C).

In Lemma A.1, we provide the combinatorial argument that shows (7.14b) as a
consequence of Isserlis’ theorem on the higher moments of multivariate normal
distributions. Hence, we have proven (Im W,a), = O(g%), that is, (7.11a). O

Remark 7.7. The crucial estimates of the previous proof, namely (7.11a) and (7.11b)
are one order worse for the semiclassical Gaussian approximation, since it lacks
the compensating averaging factors of the remainder potential. Therefore, for the
semiclassical Gaussians only O(e) observable accuracy can be expected.

APPENDIX A. GAUSSIAN MOMENTS

By an application of Isserlis’ theorem, the fourth order Gaussian moments can be
written as sums of products of second order moments. That is, for a 2d-dimensional
Gaussian random vector

(Xla"',X2d) NN(O,G)

with mean zero 0 € R?? and covariance matrix G € R2??*24_ the fourth order
moments satisfy

E(X;) = 393,
(X i) = 39iigij
E(X7X?) = giigj; + 293
(
E(

=

E(X?X;Xy) = giigjk + 29:19ik
XiX; XeX0) = gijgre + 9ingje + GieGjk

with 4,5, k,¢ € {1,...,2d}. We crucially use this for proving that the fourth order
summations that appeared in the proof of Theorem 3.10 can be expressed in terms
of second order summations.

Lemma A.1 (Resummation). For any family (ag,m)a,m of real numbers, indexed
by m € N3? and 8 < m with |3| = 1, we have

1 1
> (m—pB) om @)=Y > 71 sk P (C)pe(C)-
Im|=4 B<m,|8|=1 ' |k|=2 |¢|=2 p<t,|B]=1
Proof. We write a multi-index m € N3? of order |m| = 4 as
= (J1) + (J2) + {s) + (4a)

with coordinates ji,...,j4 € {1,...,2d}, where the bracket (j) = e; denotes the
jth canonical basis vector of R??. We distinguish five different cases for the order
four multi-index m.
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(a) m has one non-zero component, that is, m = 4(j) with j =1,...,2d. Then,
1 1
=gy @m Pml(C) = 5796).40) 3025 (C)?
1
= 71 Wkt P(C)pe(C)

with k = 2(j) = ¢ and 8 = (j).

(b) m has two different non-zero components, that is, m = 3(j1) + (j2) with j; # jo.
In this case, m dominates two multi-indices 3 of order one, and generates the terms

1 1
(2! aaym + 5 a<j2>,m> 302(i1) (€)P () +452) (€)
1
= 57 (@G0m + @) .m) P200) (€)PG1)+(32) (C)

1
+ 97 nim PG +2) (€)P2in) (€)-

This amounts to the two (k, ¢) pairs

k=2(j1), L= (j1) + (j2), B € {{j1), (J2) },
k= (j1) + (j2), €= 2(j1), B = (j1)-

In a similar manner, we show that in the cases
(¢) m has two identical non-zero components, that is, m = 2(j1)+2(ja) with j; # jo,

(d) m has three non-zero components, that is, m = 2(j1) + (j2) + (j3) with pairwise
distinct j17 j23 j3a

(e) m has four non-zero components, that is, m = (j1) + - -+ + (j4) with distinct
jlv s 7j47

we obtain the appropriate format of the resulting summands, that is,

LS asnen@ ()

" B<e,|Bl=1
with k,¢ € N2¢ such that |k| = |[¢| = 2 and k + ¢ = m. For concluding the proof,
we have to verify that any possible (k,¢) pairing of order two multi-indices has
appeared in one of the five cases (a)—(e). Let i1,...,i4 € {1,...,2d} be such that
k= (i1) + (i2), €= (i3) + (ia).
The combinatorics of this situation falls into the following five cases:

(a) All four coordinates agree, that is, iy = --- = ig =: j. Then, k + ¢ = 4(j),
and we recognize the previous case (a).

(8) Three of the four coordinates coincide with each other, which is case (b).
(7) The four coordinates form two different pairs, and we are in case (c).

(6) Two of the four coordinates agree, while the other two are different, which
is case (d).
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(e) All four coordinates are distinct as in case (e).

Hence, the combinatorics of the order four multi-indices and the one of pairs of
order two multi-indices are the same, and we have indeed proven that the two
different summation formats yield the same result as claimed. [
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