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ERROR ANALYSIS OF SECOND-ORDER LOCAL TIME

INTEGRATION METHODS FOR DISCONTINUOUS GALERKIN

DISCRETIZATIONS OF LINEAR WAVE EQUATIONS

CONSTANTIN CARLE AND MARLIS HOCHBRUCK

Abstract. This paper is dedicated to the full discretization of linear wave
equations, where the space discretization is carried out with a discontinuous

Galerkin method on spatial meshes which are locally refined or have a large

wave speed on only a small part of the mesh. Such small local structures lead
to a strong CFL condition in explicit time integration schemes causing a severe

loss in efficiency. For these problems, various local time-stepping schemes have

been proposed in the literature in the last years and have been shown to be
very efficient. Here, we construct a quite general class of local time integration

methods preserving a perturbed energy and containing local time-stepping

and locally implicit methods as special cases. For these two variants we prove
stability and optimal convergence rates in space and time. Numerical results

confirm the stability behavior and show the proved convergence rates.

1. Introduction

In this paper we consider the discretization of linear acoustic wave equations in
space and time by a methods of lines approach. For the space discretization, a
popular choice is to apply discontinuous Galerkin (dG) methods, since they allow
one to handle heterogeneous or complex materials by using unstructured meshes,
cf. [18, 30]. At the cost of a larger number of degrees of freedom compared to
conforming finite element methods, a main advantage is that dG methods lead to
block diagonal mass matrices. In combination with an explicit time integrator, this
yields a fully explicit scheme.

Unfortunately, the system of ordinary differential equations (ODEs) resulting
from (any kind of) spatial discretization is stiff and thus explicit schemes suffer
from stability issues caused by a strong CFL condition. Roughly speaking, if we
define a local CFL parameter ξK as the quotient of the wave speed and the diameter
of a mesh element K, then the time-step size τ must fulfill τ maxK ξK . 1 for
stability. Large values of ξK are caused by a large wave speed or a small diameter
of K. Even if we have a large ξK only on a single element K, this leads to a strong
CFL condition meaning that an explicit scheme has to use a very small time-step
size on all elements. Hence, explicit methods perform poorly if we have a large
CFL parameter (and thus a strong CFL condition) on only a few elements but a
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large number of elements with a small or moderate CFL parameter (which require
a weak CFL condition). Such situations appear in many applications. For instance,
locally refined meshes might be necessary to resolve small-scale geometric features
or if the exact solution locally lacks regularity (corner singularities). In [45], it was
shown that the solution remains smooth over time in a certain distance away from
the corner and that graded meshes yield optimal convergence rates of the finite
element discretization.

An alternative to explicit schemes are implicit methods such as the Crank–
Nicolson (implicit trapezoidal) scheme. The advantage of these methods is that
they are unconditionally stable. This means that the time-step size is only restricted
by the accuracy of the approximation but not by stability. The disadvantage is that
implicit methods require the solution of a large linear systems of equations, which
might be unfeasible for problems in three space dimensions.

As a remedy, two variants of local time integration schemes have been proposed:
local time-stepping (LTS) and locally implicit methods. LTS methods for wave
equations are constructed in, e.g., [3, 19, 20, 26, 28, 29], and for Maxwell’s equations
in [27, 40, 44, 48]; see also references therein. Locally implicit schemes have only
been considered for Maxwell’s equations, see, e.g., [14, 15, 16, 21, 36, 37, 49, 52].
These schemes use an explicit scheme, e.g., the leapfrog (Verlet) method, on the
elements with a small value of ξK and either an implicit or an explicit scheme with a
more favorable CFL condition on the few remaining elements. A related approach,
where two explicit solvers are coupled with a Lagrange multiplier on the interface
between the two submeshes is presented in [9, 11, 12, 38]. These methods require
the solution of a linear system for the Lagrange multiplier in each time step, whose
dimension is much smaller than for locally implicit or fully implicit methods.

To the best of our knowledge there are only a few papers containing rigorous
error bounds: locally implicit methods for Maxwell’s equations in [36, 37] and [25]
for LTS for the linear, homogeneous wave equation. In [25], a modification of the
very efficient and popular scheme proposed in [19] was analyzed for finite element
space discretization combined with mass lumping. This modification was motivated
by our earlier work [7, 8] on second-order ODEs. For the related approach using
Lagrange multipliers, a rigorous analysis is given in [9].

In contrast to the existing literature on local time integration schemes we consider
a quite general class of methods which contains LTS and locally implicit methods
as special cases. The LTS schemes use the leapfrog method on those elements with
a weak local CFL condition and the explicit leapfrog-Chebyshev (LFC) method [8],
which are based on stabilized Chebyshev polynomials, on the remaining elements.
To ensure stability under the weak local CFL condition, the degree of these poly-
nomials and the stabilization parameter have to be chosen appropriately. For LTS
schemes, the coupling between the elements treated by the leapfrog and the LFC
scheme, respectively, enter the CFL condition. Our analysis is based on [7, 8]. It
differs from the recent work in [25] in the considered space discretization: we study
a dG method while in [25] finite elements with mass lumping are studied. In addi-
tion, compared to [25] we could weaken the CFL condition, require less regularity
of the solution, and include inhomogeneities.

We are not aware of any rigorous results for locally implicit schemes so far for
wave equations. Our new result is a proof that this scheme is stable if the leapfrog
scheme on the elements with a small CFL parameter is stable. Hence, in contrast
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to LTS methods, the stability is independent of the coupling. For both, LTS and
locally implicit methods, we prove error bounds of optimal order in space and time
under regularity assumptions on the solution which correspond to the ones required
for the leapfrog or θ-scheme in [32, 39].
Outline. We start in Section 2 by setting the analytical framework for the forth-
coming presentation. The construction of a general class of local time integration
methods for the linear wave equation is presented in Section 3, where we also state
the main results of our paper. A review of the symmetric weighted interior penalty
discontinuous Galerkin method for the wave equation is given in Section 4. In Sec-
tion 5 we shortly investigate the stability and energy conservation of the general
scheme and state CFL conditions for the special cases of LTS and locally implicit
schemes. A crucial result is that these conditions only depend on the elements with
a small CFL parameter ξK . For LTS methods, which are fully explicit, this holds if
the polynomial degree and the stabilization parameter used within the LFC scheme
are chosen appropriately. Here, we benefit from our results in [7]. Afterwards, in
Section 6, we perform the error analysis showing error bounds of optimal order for
the LTS and locally implicit scheme. Finally, we confirm our theoretical findings
with some numerical examples in Section 7.

2. Analytic setting

In this section we shortly present the analytic setting. Let Ω ⊂ Rd, d = 1, 2, 3, be
a bounded Lipschitz domain. For a set K ⊆ Ω and u ∈ L2(K) sufficiently regular,
say H1(Ω), we denote the L2(K)-norm and the L2(F )-norm, F ⊂ ∂K, by

‖u‖2K =

∫
K

u(x)2 dx, ‖u‖2F =

∫
F

(u(x)|F )2 dσ,

respectively. Whenever it is clear from the context, we abbreviate ‖·‖ = ‖·‖Ω.
Analogous definitions hold for vector fields U ∈ L2(Ω)d.

For a partition B of Ω into finite disjoint Lipschitz subdomains, we denote by

Hr(B) =
{
v ∈ L2(Ω) | v|B ∈ Hr(B) for all B ∈ B

}
, r ≥ 0,

piecewise/broken fractional Sobolev spaces fitting the partition B. Here, we define
fractional Sobolev spaces Hr(B) via Sobolev-Slobodeckij spaces or real interpola-
tion spaces; see, e.g., [2, 17, 51] for more information. For the norm and seminorm
of the Hilbert spaces Hr(B) we write

‖v‖2r,B =
∑
B∈B
‖v‖2r,B , |v|2r,B =

∑
B∈B
|v|2r,B ,

where ‖v‖r,B and |v|r,B denote the norm and seminorm of Hr(B), respectively.

For a finite time T > 0 we consider the linear acoustic wave equation

∂2
t u = ∇ · (κ∇u) + f in (0, T )× Ω,(2.1a)

subject to homogeneous Dirichlet boundary conditions and initial conditions

u = 0 on (0, T )× ∂Ω,(2.1b)

u(0) = u0, ∂tu(0) = v0 in (0, T )× Ω.(2.1c)

By f : (0, T ) × Ω → R we denote a given source term. We assume that the wave
speed κ1/2 : Ω→ R+ is piecewise smooth and uniformly bounded, i.e.,

(2.2) 0 < κmin ≤ κ(x) ≤ κmax <∞ for all x ∈ Ω.
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We point out that the restriction to homogeneous Dirichlet boundary conditions
is only for the sake of presentation. The following results can be transferred to
other boundary conditions and even extended to other second-order problems,
e.g., Maxwell’s equations; see Section 6.3 for more details.

The acoustic wave equation (2.1) is a special case of a second-order evolution
equation

∂2
t u = −Au+ f in L2(Ω),(2.3a)

u(0) = u0, ∂tu(0) = v0,(2.3b)

with A : D(A)→ L2(Ω) defined via

Au = −∇ · (κ∇u)

on its domain D(A) = H1
0 (Ω) ∩ {u ∈ L2(Ω) | ∇ · (κ∇u) ∈ L2(Ω)}. It is well-known

that A is self-adjoint on L2(Ω) and coercive on H1
0 (Ω). Moreover, the following

result holds; see, e.g., [34, Theorem 4.3].

Lemma 2.1. Let u0∈D(A), v0∈H1
0 (Ω) and f ∈ C(0, T ;D(A)) +C1(0, T ;L2(Ω)).

Then, the exact solution of (2.1) satisfies

u ∈ C(0, T ;D(A)) ∩ C1(0, T ;H1
0 (Ω)) ∩ C2(0, T ;L2(Ω)).

Additional to the above conditions we make further assumptions on the domain
Ω and the material parameter κ to simplify the representation and the proofs for
the error estimate of the space discretization. A definition of a polyhedron in Rd is
given in [18, Definition 1.6], for instance.

Assumption 2.2. Let Ω be a Lipschitz polyhedron in Rd. Further, there exists a
partition PΩ of Ω into NΩ ∈ N disjoint Lipschitz polyhedra Ωi, i ∈ {1, . . . , NΩ} such
that κ|Ωi

is constant for all i ∈ {1, . . . , NΩ}.

These assumptions enable us to cover the domain Ω and its subdomains exactly
with a mesh. Moreover, the evaluation of κ causes no additional quadrature errors.
Nevertheless, we expect that the following analysis can be extended to these cases
with additional technical effort; see, e.g., [34, 35] how to deal with such additional
approximations.

Moreover, since we are interested in error bounds of u in L2(Ω), we require
elliptic regularity for optimal error bounds (recall that A is self-adjoint).

Assumption 2.3. Let µ > 1
2 . There is a constant c ell = c ell(Ω, µ) such that for

all f ∈ L2(Ω) the solution z ∈ D(A) of the problem

Az = f

belongs to z ∈ D(A) ∩H1+µ(PΩ) and satisfies ‖z‖1+µ,PΩ ≤ c ell‖f‖.

We emphasize that we do not assume z ∈ H1+µ(Ω) for a µ > 1
2 which is clearly

wrong for the case of piecewise constant κ (to obtain such a regularity one requires
at least Lipschitz continuity of κ on Ω). Although even z ∈ H1+µ(PΩ) for µ > 1

2
does not hold in general, there are cases for piecewise constant κ such that the
above regularity holds; see, e.g., [13, 46, 47]. Moreover, in the case of constant κ on
general Lipschitz domains (e.g., non-convex polygonal domains) one always obtains
H3/2+ε(Ω) for some ε > 0; see, e.g., [24, Section 31.4] and references therein.

In the following, we let Assumptions 2.2 and 2.3 hold without mentioned explic-
itly everywhere.
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For the subsequent analysis, we assume a slightly more regular solution in space
than in Lemma 2.1. Based on the previous assumption we introduce for a µ > 1

2
the space

V? = D(A) ∩H1+µ(PΩ).(2.4)

This allows for well-defined traces in L2 for κ∇u. We expect that the subsequent
analysis can be extended to the case V? = D(A)∩H1+µ(PΩ), µ > 0. However, since
in this case (n · κ∇u)|Γ ∈ H−1/2(Γ) for Γ ⊂ ∂Ωi,Ωi ∈ PΩ, the analysis becomes
more involved and technical; see [24, Chapter 41] for details how this can be done.

After setting the analytical framework, the next two sections are devoted to time
and space discretization.

3. Local time integration schemes

In this section we define a whole class of local time integration schemes which
comprise LTS and locally implicit methods as special cases. The class has been
introduced and analyzed in [7] for second-order ODEs. For the space discretiza-
tion, we use a symmetric weighted interior penalty discontinuous Galerkin method.
Details will be given in Section 4. This results in the semidiscrete problem

(3.1) ∂2
t uh = −Ahuh + fh, uh(0) = u0

h, ∂tuh(0) = v0
h,

where Ah, fh, u0
h, and v0

h denote the spatially discretized operator, source term,
and initial values, respectively. The boundary condition (2.1b) is weakly enforced
within the operator Ah.

For the spatial mesh Th we define a local CFL parameter ξK > 0 via

(3.2) ξ2
K = κ|Kh−2

K , K ∈ Th,

where hK denotes the diameter of the element K. Recall that for constant wave
speed and a uniform grid, i.e., ξK ≡ ξ for all K ∈ Th, the leapfrog scheme is stable
if τξ . 1. We are interested in the situation, where ξK is large on only a few
elements elements while it takes small or moderate values on the remaining mesh.
To be more precise, we define a disjoint splitting of the mesh into submeshes which
lead to a weak or strong CFL condition, respectively, i.e.,

(3.3a) Th = Th,w ∪̇ Th,s, card(Th,s)� card(Th,w),

where

0 < ξK ≤ ξmax,w for all K ∈ Th,w,(3.3b)

ξmax,w < ξK ≤ ξmax for all K ∈ Th,s.(3.3c)

With this notation, the leapfrog scheme on the entire mesh Th is stable if τξmax . 1,
and this strong CFL condition must be satisfied even if Th only contains a single
element. The idea of local time integration methods is to apply the very efficient
leapfrog method on as many elements as possible and to modify it on the remaining
elements in such a way that stability is guaranteed under a weak CFL condition
τξmax,w . 1. Such schemes are attractive, if ξmax,w � ξmax.

From our previous work on locally implicit methods for Maxwell’s equations
[36, 37] we know that it is not sufficient to modify the time integration scheme only
on the fine elements and thus we decompose the mesh Th subject to

Th = Th,e ∪̇ Th,m, Th,s ⊂ Th,m, Th,e ⊂ Th,w,
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where Th,e contains the elements treated with the explicit leapfrog scheme and Th,m
contains the elements treated by a modified scheme, e.g., an explicit scheme with a
weaker CFL condition than the leapfrog method or an implicit scheme. A precise
definition of Th,e and Th,m is given in Section 4.4 below. To define the local time
integration scheme we denote by χe and χm the indicator functions on Th,e and
Th,m, respectively, i.e., for v ∈ L2(Ω) we define

(3.4) (χbv)|K =

{
v|K , K ∈ Th,b,
0, K ∈ Th \ Th,b,

b ∈ {e,m}.

We denote with τ > 0 the time-step size and write tn = nτ , n ∈ N0. To simplify
the presentation, we introduce weighted means and second-order differences as

⟪unh⟫θ = θ un+1
h + (1− 2θ)unh + θ un−1

h , ⟪unh⟫ = ⟪unh⟫ 1
4
,

⟨unh⟩θ = 2θ un+1
h + (1− 2θ)unh, ⟨unh⟩ = ⟨unh⟩ 1

4
,

⦅unh⦆ = un+1
h − 2unh + un−1

h ,

respectively. Here, θ ≥ 1/4 is a parameter.
With this notation we define a class of local time integration schemes via an

analytic function Ψ̂ : [0,∞)→ R satisying Ψ̂(0) = 1 as follows

Ψ̂ = Ψ̂(τ2Ahχm),(3.5a)

u1
h = u0

h + τ
(
Ih − 1

4τ
2Ψ̂Ah

)
v0
h + 1

2τ
2Ψ̂
(
−Ahu0

h + f̂0
h

)
,(3.5b)

un+1
h − 2unh + un−1

h = ⦅unh⦆ = τ2Ψ̂
(
−Ahunh + f̂nh

)
,(3.5c)

for n = 1, 2, . . ., where f̂nh denotes a discretization of f(tn) which is yet to be
determined. This class comprises the following special cases:

. For

(3.6) Ψ̂(z) ≡ 1, f̂nh = fnh := fh(tn),

(3.5c) yields the well-known leapfrog recurrence on Th. In general, (3.5) corre-

sponds to the leapfrog scheme on Th,e, since Ψ̂(0) = 1.
. For θ ≥ 1/4 and

(3.7) Ψ̂(z) = R̂(z) = (1 + θz)−1, f̂nh = ⟪fnh ⟫θ, n ≥ 1, f̂0
h = ⟨f0

h⟩θ,
the two-step scheme (3.5c) corresponds to a θ-scheme on Th,m and the leapfrog
scheme on Th,e. For θ = 1/4, the scheme (3.5c) is equivalent to the Crank–
Nicolson recurrence.

. For

(3.8a) Ψ̂ = P̂p, f̂nh = fnh ,

the scheme corresponds to the modification [6, eq. (4.1a)] of the LFC scheme [8]

on Th,m and the leapfrog scheme on Th,e. Here, P̂p is a polynomial defined as

(3.8b)

P̂p(z)z = Pp(z) = 2− 2

Tp(ν
η
p )
Tp

(
νηp −

z

αp

)
,

αp = 2
T ′p (νηp )

Tp(ν
η
p )
, νηp = 1 +

η2

2p2
,

where Tp denotes the pth Chebyshev polynomial of first kind (p ∈ N) and η ≥ 0
is a stabilization parameter. For fh ≡ 0, and a continuous finite element space
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discretization with mass lumping, the LTS scheme (3.5c)&(3.8) has been analyzed
in [25].

. Further alternatives to the implicit θ-scheme or the explicit LFC scheme are
exponential integrators, e.g., a Gautschi-type method [33, Chapter XIII]. For a

characterization of functions Ψ̂, which allow us to perform the following stabil-
ity and error analysis, we refer to [6, 7] where the above two-step scheme was
proposed and analyzed for (stiff) ODEs.

For the sake of presentation, we focus only on two choices for the modified
scheme, namely (3.8), i.e., a LTS method, and (3.7) with θ = 1/4, i.e., a locally
implicit scheme comprising leapfrog and Crank–Nicolson methods.

Our main result is the following error bound:

Theorem 3.1. Let Assumption 2.2 and Assumption 2.3 hold with µ ≥ 1. Further,
assume that the solution u of (2.1) is sufficiently regular. Consider the local time
integration scheme (3.5) complemented with either (3.7) (for θ = 1/4) or (3.8) (for
suitable choices of p and η). If τ ≤ τCFL, where τCFL is independent of Th,s and
κ|Th,s

, then there is a constant C > 0 independent of h and τ such that

‖u(tn)− unh‖ ≤ C(τ2 + hk+1), tn ≤ T,(3.9)

where k denotes the degree of the polynomials of the dG discretization.

In the remaining paper, we will provide more detailed versions of this result and
also present their proofs.

4. Spatial discretization

In this section, we introduce the discrete setting and define the discretization
with the discontinuous Galerkin method. In addition, we review some properties
and estimates on the operator Ah (and its “suboperators” on the submeshes Th,e
and Th,m) required for the error analysis.

4.1. Discrete setting. With Th we denote matching simplicial meshes of Ω, see,
e.g., [18, Definition 1.36] for a definition. As usual, the subscript h = maxK∈Th hK
refers to the maximal diameter of all mesh elements, where hK denotes the diameter
of a mesh element K. We assume that Th matches the partition PΩ of Ω given in
Assumption 2.2, thus, κ is constant on every mesh element K ∈ Th. Moreover,
we assume that the meshes Th are shape-regular, i.e., there exist a constant ρ
independent of h such that hK/δK ≤ ρ for all K ∈ Th and all Th, where δK denotes
the diameter of the largest ball inscribed in K.

The faces of mesh elements of Th are collected in Fh = F int
h ∪ Fbnd

h , where
the first set collects the interior faces and the second set the boundary faces. For a
precise definition of a face F ∈ Fh we refer, e.g., to [18, Section 1.2]. The maximum
number of mesh faces composing the boundary of a mesh element is denoted by

N∂ = max
K∈Th

card{F ∈ Fh | F ⊂ ∂K},

which is in case of matching simplicial meshes given by N∂ = d+ 1.
For every interior face F ∈ F int

h we refer to the two neighboring elements sharing
this face arbitrarily by KF,1 and KF,2. We fix this choice and define nF as the
outward unit normal vector pointing from KF,1 to KF,2. For a boundary face
F ∈ Fbnd

h the orientation of nF is always outwards.
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Remark 4.1. The restriction to matching simplicial meshes can be dropped. The
following results hold true for more general meshes satisfying the shape and con-
tact regularity assumptions [18, Section 1.4.1] as well as an optimal polynomial
approximation property [18, Section 1.4.4].

As discrete approximation space we use the broken finite element space

Vh =
{
ϕh ∈ L2(Ω) | ϕh|K ∈ P(K) for all K ∈ Th

}
,

where Pkd(K) ⊆ P(K) ⊂ Hk+1(K) and Pkd denotes the set of polynomials of total
degree at most k; see, e.g., [23, Chapter 18]. Typically, one chooses P(K) = Pkd.
We point out that, since our bounds rely on elementwise estimates, it is easy to
generalize our analysis to varying polynomial degrees on mesh elements. For the
error analysis we also introduce the vector space

V?,h = V? + Vh

as the sum of V? defined in (2.4) and the discrete space Vh.
Further, we define the weighted average of a sufficiently smooth function v over

an interior face F ∈ F int
h as

{{v}}ωF =
ωKF,1

(v|KF,1
)|F + ωKF,2

(v|KF,2
)|F

ωKF,1
+ ωKF,2

,(4.1)

where ω : Ω → (0,∞) is a given piecewise constant function satisfying ω|K ≡ ωK
for all K ∈ Th. Note that, if ω is constant on a face F ∈ F int

h , we obtain the usual
arithmetic average, i.e., {{·}}ωF = {{·}}1F . The jump of v over an interior face F ∈ F int

h

is defined as

JvKF = (v|KF,1
)|F − (v|KF,2

)|F .

For vector fields these operations act componentwise. On boundary faces F ∈ Fbnd
h

we set {{v}}ωF = JvKF = v|F .

4.2. Spatially discretized problem. For the discretization of the operator A we
use the symmetric weighted interior penalty bilinear form introduced in [22]; see
also [18, Chapter 4] and [24, Chapters 38, 41] for more information. The bilinear
form ah : V?,h × V?,h → R is then given by

ah(uh, ϕh) =
∑
K∈Th

∫
K

κ∇uh · ∇ϕh dx−
∑
F∈Fh

∫
F

{{κ∇uh}}1/κF · nF JϕhKF dσ

−
∑
F∈Fh

∫
F

{{κ∇ϕh}}1/κF · nF JuhKF dσ +
∑
F∈Fh

aF

∫
F

JuhKF JϕhKF dσ,

(4.2)

where aF denotes a penalty factor on each face F . The second, third, and fourth
terms correspond to jump and flux terms at faces F ∈ Fh and are called consistency,
symmetry/adjoint consistency, and penalty terms, respectively.

As penalty factor we use aF = ηS κF h
−1
F on every face F ∈ Fh with a penalty

parameter ηS > 0, the local length scale hF given by

(4.3) hF =

{
min{hKF,1

, hKF,2
}, F ∈ F int

h , F = ∂KF,1 ∩ ∂KF,2,
hK , F ∈ Fbnd

h , F = ∂K ∩ ∂Ω,
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and the material-dependent penalty parameter

(4.4) κF =

{ 2κKF,1
κKF,2

κKF,1
+κKF,2

, F ∈ F int
h , F = ∂KF,1 ∩ ∂KF,2,

κK , F ∈ Fbnd
h , F = ∂K ∩ ∂Ω.

Note that our choice of the bilinear form ah coincides with the weighted version in
[18, Section 4.5], where a different notation is used.

Remark 4.2. Other choices for the penalty factor aF and the weight ω are possible;
see, e.g., [18, Chapter 4] or [30]. For instance, in d = 2, 3 we could have used the
local length scale hF = diam(F ) for every face F ∈ Fh as well. For appropriate
choices the following results still hold, possibly with minor modifications.

It can be shown that the bilinear form ah is bounded on V?,h×Vh and coercive on
Vh with respect to a suitable norm if ηS > η∗S = N∂C

2
trc see, e.g., [18, Lemma 4.51]

or [24, Lemma 41.11]. Here, Ctrc refers to the constant from the discrete trace
inequality (A.3). We emphasize that η∗S is independent of hF and the material
parameter κ. However, since Ctrc depends on the shape-regularity constant ρ, the
polynomial degree k, and the dimension d, so does η∗S . For instance, for matching
simplicial meshes and Vh = Pkd(Th) one has N∂ = d+ 1 and C2

trc ≤ (k+ 1)(k+ d)ρ,
hence η∗S ∼ (d+ 1)(k+ 1)(k+d)ρ; see, e.g., [18, Lemma 1.46 and Remark 1.48] and
[23, Lemma 12.10].

Assumption 4.3. The penalty parameter ηS satisfies ηS > N∂C
2
trc.

With this bilinear form ah, the spatially discretized problem of the wave equa-
tion (2.1) is given by

(∂2
t uh, vh) = −ah(uh, vh) + (f, vh) for all vh ∈ Vh,(4.5a)

uh(0) = u0
h = πhu

0, ∂tuh(0) = v0
h = πhv

0,(4.5b)

where we take the L2-orthogonal projection of the exact values for the initial values;
see (4.8) below for a definition. Clearly, other approximations of the initial values
could be taken as well, e.g., interpolation. The boundary conditions (2.1b) are
weakly enforced through the bilinear form ah. The error analysis of this semidiscrete
problem (with minor modifications in the bilinear form ah) was carried out in [30].

By introducing the operator Ah : V?,h → Vh, which for u ∈ V?,h is defined by

(4.6) (Ahu, ϕh) = ah(u, ϕh) for ϕh ∈ Vh,
the semidiscrete scheme (4.5a) can be written in the compact form (3.1). Note that
the operator Ah is well-defined by the boundedness of ah and the Riesz representa-
tion theorem. Moreover, by using results from [5] we obtain from the coercivity of
the bilinear form ah (under Assumption 4.3) that there exists a constant c̃coer > 0,
independent of h, such that

(4.7) (Ahuh, uh) ≥ c̃coer‖uh‖2 for all uh ∈ Vh.

4.3. Consistency and projections estimates. Next, we state some properties
of Ah as well as projection estimates required for the error analysis. We start with
the definitions of the projection operators.

The L2-orthogonal projection πh : L2(Ω) → Vh and the Ritz/elliptic projection
Πh : V?,h → Vh are defined such that for u ∈ L2(Ω)

(πhu, ϕh) = (u, ϕh) for all ϕh ∈ Vh,(4.8)
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and for u ∈ V?,h
ah(Πhu, ϕh) = ah(u, ϕh) for all ϕh ∈ Vh.(4.9)

Observe that due to the broken space Vh ⊂ L2(Ω) the L2-projection works locally
on each element, i.e., for u ∈ L2(Ω) we have πhu|K = (πhu)|K for all K ∈ Th.

Lemma 4.4 (Consistency). For u ∈ V? we have

(4.10) AhΠhu = Ahu = πhAu.

Proof. We first observe that by u ∈ V? we have JuKF = 0 for all F ∈ Fh and
Jκ∇uKF = 0 for all F ∈ F int

h . Elementwise integration by parts, cf. [18, Lemma 4.47],
then yields

ah(u, ϕh) =
∑
K∈Th

∫
K

κ∇u · ∇ϕh dx−
∑
F∈Fh

∫
F

{{κ∇u}}1/κF · nF JϕhKF dσ

= −
∑
K∈Th

∫
K

∇ · (κ∇u)ϕh dx = (Au,ϕh),

which shows (4.10) by using the corresponding definitions. �

We emphasize that this lemma does not hold true for u ∈ H1
0 (Ω) ∩D(A), since

κ∇u admits no trace in L2 in general. In fact, this is the main reason why we
assume u ∈ H1+µ(PΩ), µ > 1

2 . For the L2-projection the following results hold
elementwise; see, e.g., [23, Section 18.4].

Lemma 4.5. For K ∈ Th, F ∈ Fh , F ⊂ ∂K, and u ∈ H1+σ(Th), σ > 1
2 , there

are constants C, depending only on the shape-regularity constant ρ, the polynomial
degree k, the dimension d, and the regularity exponent σ, such that

‖u− πhu‖K ≤ Chr∗+1|u|r∗+1,K , ‖∇u−∇πhu‖K ≤ Chr∗ |u|r∗+1,K ,

‖u− πhu‖F ≤ Chr∗+1/2|u|r∗+1,K , ‖∇u−∇πhu‖F ≤ Chr∗−1/2|u|r∗+1,K ,

where r∗ = min{σ, k}.

For the Ritz projection one obtains with Assumption 2.3 the following optimal
estimate.

Lemma 4.6. Let Assumptions 2.2, 2.3, and 4.3 hold. If u ∈ V?∩H1+σ(Th), σ > 1
2 ,

we have

‖u−Πhu‖ ≤ CR |u|r∗+1,Thh
r, r = r∗ + min{µ, 1}, r∗ = min{σ, k},

where CR is independent of h and u.

Proof. By definition (4.9) the Ritz projection Πh of u ∈ V? is the solution of the
elliptic problem: Seek uh ∈ Vh such that

ah(uh, ϕh) = `(ϕh) for all ϕh ∈ Vh,

where `(ϕh) = (Au,ϕh) (note that by assumption Au ∈ L2(Ω)). For a proof of this
standard problem we refer to [24, Section 38.3], where the result is shown for κ ≡ 1
under the regularity H1

0 (Ω) ∩H1+σ(Ω), σ > 1
2 , for the exact solution. The results

in there also hold for our regularity assumptions and can be directly extended to
the case of κ 6≡ 1; see also [24, Chapter 40 and 41] for further information. �
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Clearly, if Assumption 2.3 holds with µ ≥ 1 and u ∈ V? ∩Hk+1(Th), we obtain
the optimal order hk+1 for Vh = Pkd(Th). Moreover, by definition we always have
σ ≥ µ.

4.4. Splitting of the mesh. To complete the construction of the LTS and locally
implicit scheme, we have to define the sets Th,e and Th,m, i.e., the sets of elements
treated with the explicit leapfrog scheme and the ones treated with the modified
scheme, respectively.

For this we recall that we are interested in situations where the mesh can be
split into two parts Th,w and Th,s which require a weak and a strong CFL condition,
respectively and satisfy card(Th,s)� card(Th,w); cf. (3.3). In order to avoid that the
CFL condition of the leapfrog scheme on Th,e depends on the strong CFL condition,
it is necessary to treat the elements in Th,s and their neighbors with the modified
scheme because of the flux terms in the bilinear form ah; cf. the locally implicit
schemes for Maxwell’s equations in [36, 37]. More precisely, the decomposition
Th = Th,m ∪̇ Th,e is given by

(4.11)
Th,m = {K ∈ Th | ∃Ks ∈ Th,s : vold−1(∂K ∩ ∂Ks) 6= 0},
Th,e = Th \ Th,m;

cf. [36, Definition 2.3].
For the stability of the local time integration schemes (3.5) it is important to

understand the behavior of the operator Ah on the submeshes Th,e and Th,m. Hence,
we define the self-adjoint, positive semidefinite operators

(4.12) Ah,e = χeAhχe, Ah,m = χmAhχm,

acting on the submeshes Th,e and Th,m, respectively. They correspond to the “non-
stiff” and “stiff” parts of the semidiscrete differential equation (3.1). By definition
of χe, χm and ξmax, ξmax,w, cf. (3.3), we have

4ξ2
max ∼ ‖Ah‖Vh

≈ ‖Ah,m‖Vh
� ‖Ah,e‖Vh

∼ 4ξ2
max,w;

cf. Lemma A.1 for detailed bounds. Here and in the following, ‖T‖Vh
= ‖T‖Vh←Vh

denotes the operator norm of an discrete operator T : Vh → Vh. In addition, we
define a coupling operator Ah,em by

(4.13) Ah,em = χeAhχm,

which acts on the faces between Th,m and Th,e. By the definition of Th,e and Th,m
we have ‖Ah,em‖Vh

/ 1
2‖Ah,e‖Vh

; cf. Lemma A.1.

5. Stability and CFL conditions

This section is devoted to the stability analysis of the scheme (3.5). We call the
scheme stable if for fh ≡ 0, there is a constant C = C(u0

h, v
0
h) > 0 such that

(5.1) ‖unh‖ ≤ Ctn, n = 0, 1, 2, . . . .

5.1. Representation formula. Recall that we use the leapfrog method on Th,e
and a modified scheme defined by a suitable function Ψ̂ on Th,m. If the problems
on these submeshes decouple, i.e., Ah,em = 0, then the scheme (3.5) is stable if the
following two conditions hold:

(i) the CFL condition of the leapfrog scheme on Th,e is satisfied, i.e., τ2‖Ah,e‖Vh
≤4,

(ii) the scheme defined by Ψ̂ is stable if applied to (3.1) with Ah,m instead of Ah.
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Unfortunately, this does not hold for LTS methods if Ah,em 6= 0.
A crucial observation for the stability of the general scheme (3.5) is the fact

that the two-step scheme (3.5c) is equivalent to the leapfrog scheme applied to the
modified equation

∂2
t uh(t) = −AΨ

h uh(t) + Ψ̂fh(t)(5.2a)

with self-adjoint operator

AΨ
h = Ψ̂Ah = Ψ̂(τ2Ahχm)Ah.(5.2b)

Moreover, we have the following representation formula.

Lemma 5.1. The approximations unh of the two-step scheme (3.5c) satisfy

unh = CΨ
nu

0
h + SΨ

n

(
u1
h − CΨ

1 u
0
h

)
+
∑n−1

j=1
SΨ
n−jΨ̂f̂ jh, n ≥ 0,(5.3a)

with operators CΨ
n , S

Ψ
n : Vh → Vh defined by

CΨ
n = Tn(Xh), SΨ

n = Un−1(Xh), Xh = Ih − 1
2τ

2AΨ
h ,(5.3b)

where Tn and Un denote the nth Chebyshev polynomials of first and second kind,
respectively (with U−1 ≡ 0).

Proof. We modify the proof of [8, Theorem 3.3] since it requires that the CFL
condition (5.5) holds. First, we define generating functions as formal power series

u(ζ) =

∞∑
n=0

unhζ
n, f̂(ζ) =

∞∑
n=0

f̂nh ζ
n.

Next, we multiply the recursion (3.5c) by ζn+1 and sum over n ≥ 1. This yields

%(ζ)u(ζ) = u0
h + ζu1

h − 2ζXhu
0
h + τ2ζ

(
f̂(ζ)− f̂0

h

)
,(5.4a)

%(ζ) = ζ2Ih − 2ζXh + Ih.(5.4b)

To prove the representation formula, we first observe that Xh is a self-adjoint
operator, which only has real eigenvalues. By [1, Ch. 22] we have

%(ζ)−1 =

∞∑
n=0

Un(Xh)ζn =

∞∑
n=0

SΨ
n+1ζ

n.

Comparing the coefficients of ζn in (5.4a) yields

unh = SΨ
n+1u

0
h + SΨ

n

(
u1
h − 2Xh u

0
h

)
+ τ2

n−1∑
`=1

SΨ
n−`f̂

`
h.

The identity CΨ
n = SΨ

n+1 − SΨ
nXh completes the proof. �

Thus, stability is guaranteed by the well-known CFL condition of the leapfrog
scheme, namely for

(5.5) τ ≤ τCFL := max{τ > 0 s.t. all eigenvalues λ of τ2AΨ
h satisfy λ ∈ [0, 4]}.

Note that we have τCFL > 0 because of Ψ̂(0) = 1. Moreover, (5.5) is sharp, meaning
that if the self-adjoint operator τ2AΨ

h has an eigenvalue outside of [0, 4], then ‖unh‖
grows exponentially in n. This can be seen directly from (5.3) by choosing the
initial values u0

h and v0
h as a corresponding eigenfunction.
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Unfortunately, (5.5) is not of practical use, because τCFL cannot be computed
explicitly for a given space discretization in general. Thus, we next show sufficient

conditions in terms of the operators Ah,m, Ah,e, and Ah,em and the function Ψ̂.

5.2. CFL conditions. Since we use an explicit scheme on Th,e, stability is subject
to a CFL condition. In this section, we present explicit conditions for local time
integration methods, starting with the LTS scheme (3.5)&(3.8).

Lemma 5.2. Let ϑ ∈ (0, 1]. Then the LTS scheme (3.5)&(3.8) is stable for all
τ > 0 satisfying

(5.6a) τ2 ≤ τLTS(ϑ)2 = max

{
4ϑ2

‖Ah‖Vh

,min
{ β2

p

‖Ah,m‖Vh

,
4γϑ2

‖Ah,e‖Vh

}}
with % = ‖Ah,em‖Vh

/‖Ah,e‖Vh
and

(5.6b) β2
p = αp(ν

η
p + 1), γ =

2

1 + (1 + 4%2m−1
1 )1/2

, m1 =
1

2

(
1− 1

Tp(ν
η
p )

)
.

Proof. The statement directly follows from Theorem 3.14 (with g = 0) together
with Lemmas 3.17, 5.4, and 5.5 in [7]. �

Observe that the CFL condition (5.6a) is never stronger than that of the leapfrog
scheme applied on the entire mesh Th. A detailed discussion on the CFL condition
and the choice of the parameters p and νηp can be found in [7, Sections 3.2, 3.4, 5.1,

and 5.4]. In particular, νηp = 1 + η2/(2p2) in (3.8a) implies that m1 and β2
p/(4p

2)
can be bounded in terms of η but independent of the polynomial degree p; see [7,
Lemma 5.5] and [6, Lemma A.7]. Extensive numerical observations showed that
η = 1/2 (in which case we have β2

p/(4p
2) ≥ 0.9162) is sufficient for stability and

in many cases, even η = 0.1 worked well (which gives β2
p/(4p

2) ≥ 0.9963). A
comparison to the CFL condition given in [25] can be found in [7, Remark 5.6]

Note also that there is a direct relation between τLTS(ϑ) and the CFL parameters
introduced in (3.3b), namely

τLTS(ϑ)2 ∼ max

{
1

ξ2
max

,min
{ β2

p

4ξ2
max

,
γϑ2

ξ2
max,w

}}
.

The polynomial degree p should be selected such that

γϑ2

ξ2
max,w

≈
β2
p

4ξ2
max

.
p2

ξ2
max

.

Hence, as a rule of thumb, we recommend to choose p & ξmax/ξmax,w. Then, the
CFL condition is independent of ξK for K ∈ Th,s.

The situation for the locally implicit scheme is much simpler. For a proof of the
following lemma we refer again to [6, 7].

Lemma 5.3. Let ϑ ∈ (0, 1] and θ ≥ 1
4 . Then the locally implicit scheme (3.5)&(3.7)

is stable for all τ > 0 satisfying

(5.7) τ2 ≤ τLI(ϑ)2 :=
4ϑ2

‖Ah,e‖Vh

.

The lemma states that the CFL condition of the locally implicit scheme coincides
with the one for the leapfrog scheme applied to the semidiscrete problem (3.1) on
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Th,e. Hence, it is completely independent of the parameters on the mesh Th,s and
of the coupling operator Ah,em. In particular, we have

τLI(ϑ)2 =
4ϑ2

‖Ah,e‖Vh

∼ ϑ2

ξ2
max,w

.

Under the above CFL conditions we further have the following stability esti-
mates; see [7] and [6, Section 5.3 and 5.5].

Lemma 5.4. Let ϑ ∈ (0, 1) and n ∈ N.

(a) For τ ≤ τCFL we have

(5.8) ‖CΨ
n ‖Vh

≤ 1, τ‖SΨ
n ‖Vh

≤ tn.

(b) If τ ≤ τLTS(ϑ) and Ψ̂ = P̂p defined in (3.8a), then there is a constant cLTS =
cLTS(η, c̃−1

coer) > 0 such that

(5.9) τ ‖SΨ
n ‖Vh

≤ cϑLTS := cLTS(1− ϑ2)−1/2.

(c) If τ ≤ τLI(ϑ) and Ψ̂ defined in (3.7) with θ = 1
4 , then

τ ‖SΨ
n Ψ̂‖Vh

≤ cϑLI := c̃−1
coer(1− ϑ2)−1/2.(5.10)

Here, c̃coer is defined in (4.7). For ϑ = 1 we formally set cϑLTS, c
ϑ
LI =∞.

5.3. Conservation of a perturbed energy. We conclude this section by showing
that the two-step scheme (3.5c) of the local time integrator conserves a perturbed
energy. Recall that, if f ≡ 0,

E(u) = 1
2‖∂tu‖

2 + 1
2 (Au, u) and Eh(uh) = 1

2‖∂tuh‖
2 + 1

2 (Ahuh, uh)

are conserved quantities for (2.1) and (3.1), respectively.

Lemma 5.5. For f ≡ 0, the perturbed energy of the local time integrator (3.5c)

Enh,τ =
∥∥ 1

2τ (un+1
h − un−1

h )
∥∥2

+ (AΨ
h u

n
h, u

n
h)− 1

4τ
2‖AΨ

h u
n
h‖2, n ∈ N,

is conserved, i.e., Enh,τ = E1
h,τ for all n ≥ 1.

Proof. By taking the sum and difference of two consecutive steps of the two-step
scheme (3.5c) we obtain

‖un+2
h − unh‖2−‖un+1

h − un−1
h ‖2 =

(
−τ2AΨ

h (un+1
h + unh),

(
4Ih − τ2AΨ

h

)
(un+1
h − unh)

)
= −4τ2

(
AΨ
h u

n+1
h , un+1

h

)
+ 4τ2

(
AΨ
h u

n
h, u

n
h

)
+ τ4‖AΨ

h u
n+1
h ‖2 − τ4‖AΨ

h u
n
h‖2.

Rearranging this formula and dividing by 4τ2 yields En+1
h,τ = Enh,τ , which shows the

claim. �

We point out that by a suitable adaption of the first term in Enh,τ for n = 0

one also can show E1
h,τ = E0

h,τ ; see [6, Section 3.3.2] for related computations.

Moreover, by using the self-adjointness of AΨ
h a simple calculation shows that Enh,τ

is nonnegative for all n ∈ N under the abstract CFL condition (5.5).
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6. Error analysis

After recalling the stability results in the last section, we now turn towards the
error analysis. For a more compact notation we abbreviate

ũn = u(tn), fn = f(tn), fnh = πhf
n.

To bound the fully discrete error en = ũn − unh between the exact solution u(tn)
and the approximations unh, we split it into a projection error enπ and a discrete error
enh which stems from the time discretization of the spatially discretized equation,
i.e.,

en = ũn − unh = enπ + enh, enπ = ũn −Πhũ
n, enh = Πhũ

n − unh ∈ Vh.

Since the projection error enπ is bounded by Lemma 4.6, we focus on the discrete
error.

To derive an error bound for enh, we insert the Ritz projected solution Πhũ
n into

the general scheme (3.5c) to define a defect dnh via

(6.1) Πh⦅ũn⦆ = τ2Ψ̂(−AhΠhũ
n + f̂nh ) + dnh, n = 1, 2, . . . .

Subtracting (3.5) from (6.1) shows the error recursion

⦅enh⦆ = −τ2Ψ̂Ahe
n
h + dnh, n = 1, 2, . . . ,

which leads with Lemma 5.1 to a representation formula for the discrete error

(6.2) enh = CΨ
n e

0
h + SΨ

n

(
e1
h − CΨ

1 e
0
h

)
+
∑n−1

j=1
SΨ
n−jd

j
h.

For the error e1
h of the first step, we replace u1

h, u0
h in (3.5b) by Πhũ

1, Πhũ
0,

respectively, yielding

(6.3) Πhũ
1 = Πhũ

0 + τ
(
Ih − 1

4τ
2AΨ

h

)
v0
h + 1

2τ
2Ψ̂(−AhΠhũ

0 + f̂0
h) + d0

h

with a defect d0
h which is again to be determined (note that we leave v0

h unchanged).
Subtracting (3.5b) from this equation, inserting this into the representation formula

(6.2), and using Ih − 1
2τ

2AΨ
h = CΨ

1 leads to

enh = CΨ
n e

0
h + SΨ

n d
0
h +

∑n−1

j=1
SΨ
n−jd

j
h.(6.4)

For the next steps in the error analysis, in particular for the derivation of the
defects, we distinguish between the LTS scheme and the locally implicit scheme. A
crucial step for the error analysis of both schemes consists in the application of the
following identity which, roughly speaking, allows us to express two discrete spatial
derivatives (via the operator AΨ

h ) by a second-order central difference quotient.

Lemma 6.1. Let ∆̃k∗ ∈ Vh, k = 0, 1, . . . , n. Then ∆k∗ = −τ2AΨ
h ∆̃k∗ satisfies

(6.5) 1
2S

Ψ
n∆0
∗ +

n−1∑
j=1

SΨ
n−j∆

j
∗ = CΨ

n ∆̃0
∗ − ∆̃n∗ + SΨ

n (∆̃1
∗ − ∆̃0

∗) +

n−1∑
j=1

SΨ
n−j

⦅
∆̃j∗

⦆
.

Proof. We refer to [7, Lemma 4.3] and [6, Lemma 5.22], where the same result is

shown for matrices instead of discrete operators and a special choice of ∆̃n∗. �
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6.1. Explicit LTS scheme. We start with the LTS scheme (3.5)&(3.8), i.e., we

have Ψ̂ = P̂p(τ
2Ahχm) and f̂nh = fnh in (6.1) and (6.3). The main idea is to consider

the defects dnh as perturbations of the defects of the leapfrog scheme. Since we rely
on Taylor expansion for the defects of the time discretization, we abbreviate with

(6.6) δnk,j,± =

∫ tn±1

tn

κ
(k−1)
n,± (s) ∂j+kt u(s) ds, κ

(k)
n,±(s) =

1

k!
(tn±1 − s)k,

the remainder terms of the (k − 1)st-order Taylor polynomial of ∂jt ũ
n±1 at tn.

Lemma 6.2. Let u be the solution of (2.1). If u ∈ C(0, T ;V?)∩W 4,1(0, T ;L2(Ω)),
then the defect dnh of the LTS scheme (3.5c)&(3.8) defined in (6.1) satisfies

dnh = dnLF + ∆nE, ∆nE = τ2(Ih − Ψ̂)πh∂
2
t ũ

n, n = 1, 2, . . . ,(6.7a)

where

dnLF = (Πh − πh)⦅ũn⦆ + πhδ
n
LF, δnLF = δn4,0,+ + δn4,0,−,(6.7b)

denotes the defect of the leapfrog scheme.

Proof. From (6.1) we obtain

dnh −Πh⦅ũn⦆ = −τ2Ψ̂
(
πh(−Aũn + fn)

)
= −τ2Ψ̂πh∂

2
t u(tn),

where we used the consistency (4.10) of Ah, which follows from the assumption
that ũn ∈ V?, as well as (2.3). By Taylor expansion we further have that

⦅ũn⦆ = τ2∂2
t ũ

n + δnLF.(6.8)

Taking the L2(Ω)-projection of this identity and inserting it into the above equation
proves (6.7). �

For the defect d0
h of the first time step we have the following.

Lemma 6.3. Let u be the solution of (2.1). If u ∈ C1(0, T ;V?)∩W 3,1(0, T ;L2(Ω)),
then the defect d0

h of the starting value of the LTS scheme (3.5b)&(3.8) defined in
(6.3) satisfies

d0
h = d0

LF + 1
4τ

3AΨ
h πh∂tũ

0 + 1
2∆0

E, d0
LF = (Πh − πh)

(
ũ1 − ũ0

)
+ πhδ

0
3,0,+,

(6.9)

with ∆0
E defined as in Lemma 6.2.

Proof. The representation of the defect follows from (6.3) by using again (4.10),
v0
h = πh∂tũ

0, and Taylor expansion. �

With these two lemmas we are in the position to prove the error result for the
LTS scheme (3.5)&(3.8). The problematic terms for an error estimate are the

defects ∆nE. To see this, we first observe that because of P̂p(0) = 1 there exists a

polynomial P̃p : R→ R with

(6.10) P̂p(z) = 1 + P̃p(z)z.

A naive estimate would then lead to

‖∆nE‖ ≤ τ2‖(Ih − Ψ̂)(πh − Ih)∂2
t ũ

n‖+ τ4‖Ψ̃(τ2Ahχm)Ahχm∂
2
t ũ

n‖
≤ Cτ2

(
hr∗+1|∂2

t ũ
n|r∗+1,Th + τ2‖Ahχm∂2

t ũ
n‖
)
,
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where we additionally used the boundedness of Ih − Ψ̂ and Ψ̃(τ2Ahχm) under the
CFL condition (5.6) (see [7]) as well as Lemma 4.6. However, the second term
cannot be bounded uniformly in h in general; see Lemma A.2 below. Thus, such
an estimate would yield suboptimal convergence rates. A similar behavior occurs
for locally implicit schemes for Maxwell’s equations; see, e.g., [36]. The remedy
consists in using the identity (6.5) in Lemma 6.1.

Theorem 6.4. Let σ > 1
2 , ϑ ∈ (0, 1], τ ≤ τLTS(ϑ) defined in (5.6), and let As-

sumptions 2.2, 2.3, and 4.3 hold. Further, assume that the solution u of (2.1)
satisfies

(6.11) u ∈ C2(0, T ;V? ∩H1+σ(Th)) ∩W 4,1(0, T ;L2(Ω)).

Then, for tn ≤ T , the approximations unh of the LTS scheme (3.5)&(3.8) satisfy

‖u(tn)− unh‖ ≤ C min{cϑLTS, tn}(τ2 + hr), r = min{σ, k}+ min{µ, 1},(6.12)

where C only depends on CR, η defined in (3.8b), and u and its derivatives.

Proof. We first notice that Ψ̂(τ2Ah,m) is invertible for τ ≤ τLTS(1); see [7, Sec-

tion 3]. Together with the definition of the polynomial P̃p in (6.10) we then have
for the defect ∆nE given in (6.7a)

∆nE = −τ4Ψ̃(τ2Ahχm)Ahχm πh∂
2
t ũ

n = −τ2AΨ
h ∆̃nE,(6.13a)

with

∆̃nE = τ2χm Ψ̂(τ2Ah,m)−1Ψ̃(τ2Ah,m)χm πh∂
2
t ũ

n.(6.13b)

Hence, employing (6.4), (6.7), (6.9), as well as Lemma 6.1 with ∆n∗ = ∆nE, taking
the norm, and using the stability estimates in (5.8), (5.9) yields

‖enh‖ ≤ ‖e0
h‖+ min{cϑLTS, tn} 1

τ

(
‖d0

LF‖+
∑n−1

j=1
‖djLF‖+ 1

4τ
3‖AΨ

h πh∂tũ
0‖
)

+ ‖∆̃nE‖+ ‖∆̃0
E‖+ min{cϑLTS, tn} 1

τ

(
‖∆̃1

E − ∆̃0
E‖+

∑n−1

j=1
‖⦅∆̃jE⦆‖

)
.

The terms are bounded separately. For e0
h we have by the definition of πh and

Lemma 4.6

‖e0
h‖ = ‖πh(Πhũ

0 − ũ0)‖ ≤ ‖Πhũ
0 − ũ0‖ ≤ CR|u0|r∗+1,Th h

r.

For the leapfrog defects defined in (6.7b) and (6.9) we have by Taylor expansion,
the definition of δnk,j,± in (6.6), and again Lemma 4.6

1
τ

(
‖d0

LF‖+
∑n−1

j=1
‖djLF‖

)
≤ CR max

s∈[0,τ ]
|∂tu(s)|r∗+1,Th h

r + 1
6 max
s∈[0,τ ]

‖∂3
t u(s)‖ τ2

+ CR

∫ tn

0

|∂2
t u(s)|r∗+1,Th ds hr + 1

3

∫ tn

0

‖∂4
t u(s)‖ ds τ2.

Moreover, since τ2‖AΨ
h ‖ ≤ 4 and ‖Ψ̂‖ ≤ cΨ̂ under the CFL condition τ ≤ τLTS(1)

(see again [7, Section 3]), we have with Lemma 4.5

1
4τ

2‖AΨ
h πh∂tũ

0‖ ≤ ‖πh∂tũ0 − ∂tũ0‖+ 1
4‖Ψ̂Ah∂tũ

0‖ τ2

≤ C|∂tu0|r∗+1,Th h
r∗+1 + 1

4cΨ̂‖A∂tũ
0‖ τ2.
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For the terms involving ∆̃jE we observe that under the CFL condition τ ≤ τLTS(ϑ)
we have with [7, Lemma 3.2] for u ∈ L2(Ω)

‖χm Ψ̂(τ2χmAhχm)−1Ψ̃(τ2χmAhχm)χmπhu‖ ≤ m̃3‖χmπhu‖ ≤ m̃3‖χmu‖,

since πh and χm commute by definition. Note that the constant m̃3 = m̃3(η) can
be bounded independent of the degree p of the LFC polynomial (3.8b); see [7,

Section 5.1]. Hence, we obtain ‖∆̃nE‖ ≤ m̃3‖χm∂2
t ũ

n‖ and ‖∆̃0
E‖ ≤ m̃3‖χm∂2

t ũ
0‖.

Moreover, again with Taylor expansion, we have

1
τ

(
‖∆̃1

E−∆̃0
E‖+

∑n−1

j=1
‖⦅∆̃jE⦆‖

)
≤m̃3

(
max
s∈[0,τ ]

‖χm∂3
t u(s)‖+2

∫ tn

0

‖χm∂4
t u(s)‖ds

)
τ2.

Collecting these bounds and inserting them into the first estimate yields the bound
for ‖enh‖. The triangle inequality and Lemma 4.6 complete the proof. �

Remark 6.5. The regularity assumptions (6.11) we pose for the exact solution u
of (2.1) coincides with those imposed for the leapfrog or θ-schemes in [32, 39] to
prove (optimal) error bounds in the L2(Ω)-norm. In contrast, the error analysis for
the LTS scheme in [25, Theorem 3.11] requires u ∈ W 8,∞(0, T ;Hk+1(Ω)) for the
exact solution. Moreover, compared to the error bounds in [32, 39] our result holds
without an additional factor of tn for ϑ < 1, since min{cϑLTS, tn} ≤ cϑLTS.

6.2. Locally implicit scheme. Next, we turn towards the error bound for the

locally implicit scheme (3.5)&(3.7) with θ = 1
4 , i.e., we have Ψ̂ = R̂(τ2Ahχm) and

f̂nh = ⟪fnh ⟫ for n ≥ 1, as well as f̂0
h = ⟨f0

h⟩ in (6.1) and (6.3).
In principle, we could use the defect from the LTS schemes in Lemma 6.2 by

additionally taking the modification of f̂nh into account, i.e.,

dnh = dnLF + ∆nE − 1
4τ

2Ψ̂(fn+1
h − 2fnh + fn−1

h )

with ∆nE and dnLF defined in (6.7). By assuming f ∈ C2(0, T ;L2(Ω)) we could then
perform the analysis analogously. However, since for θ = 1

4 the locally implicit

scheme does not admit a uniform bound for τ‖SΨ
n ‖ like (5.9) for the LTS scheme,

the error bound (6.12) would hold with tn instead of min{c(ϑ), tn} for a constant
c(ϑ) > 0.

As remedy to this problem we want to employ the bound (5.10). To do so, we
consider the defects as perturbation of the defects of the implicit trapezoidal rule
or θ-schemes instead of the ones of the leapfrog scheme.

Lemma 6.6. Let u be the solution of (2.1). If u ∈ C1(0, T ;V?)∩W 4,1(0, T ;L2(Ω)),
then the defect dnh of the locally implicit scheme (3.5c)&(3.7) defined in (6.1) sat-
isfies

dnh = Ψ̂dnθ − 1
4τ

2Ψ̂Ahχed
n
LF + ∆nI , ∆nI = − 1

4τ
4Ψ̂Ahχeπh∂

2
t ũ

n,(6.14a)

where dnLF is given in (6.7b) and

dnθ = (Πh − πh)⦅ũn⦆ + πhδ
n
θ , δnθ = δn4,0,+ + δn4,0,− − 1

4τ
2(δn2,2,+ + δn2,2,−),(6.14b)

denotes the defect of the θ-scheme.
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Proof. With the definition (3.7) of R̂, the identity ⟪ũn⟫ = ũn + 1
4⦅ũn⦆, and the

consistency property (4.10), the defect dnh defined in (6.1) satisfies

Ψ̂
−1
dnh = (Ih + 1

4τ
2Ahχm)Πh⦅ũn⦆− τ2( 1

4AhΠh⦅ũn⦆−AhΠh⟪ũn⟫ + ⟪fnh ⟫)

= Πh⦅ũn⦆− πhτ2⟪∂2
t ũ

n⟫ − 1
4τ

2AhχeΠh⦅ũn⦆.

In the second step we additionally employed the differential equation (2.1) and the
fact that χm + χe ≡ 1. The first two terms yield (6.14b) by Taylor expansion of
δnθ = ⦅ũn⦆− τ2⟪∂2

t ũ
n⟫. For the third term we observe that by (6.8) we have

− 1
4τ

2AhχeΠh⦅ũn⦆ = − 1
4τ

2Ahχe
(
(Πh − πh)⦅ũn⦆ + πhδ

n
LF

)
− 1

4τ
4Ahχeπh∂

2
t ũ

n,

which yields (6.14a) by multiplying with Ψ̂. �

For the error of (3.5b)&(3.7) in the initial time step we have the following.

Lemma 6.7. Let u be the solution of (2.1). If u ∈ C(0, T ;V?)∩W 3,1(0, T ;L2(Ω)),
then the defect d0

h of the starting value of the locally implicit scheme (3.5b)&(3.7)
defined in (6.3) satisfies

d0
h = Ψ̂d0

θ − 1
4τ

2Ψ̂Ahχed
0
LF + 1

2∆0
I,(6.15a)

where

d0
θ = (Πh − πh)(ũ1 − ũ0) + πh(δ0

3,0,+ − 1
4τ

2δ0
1,2,+)(6.15b)

and ∆0
I is defined as in Lemma 6.6.

Proof. Since for Ψ̂ = R̂(τ2Ahχm)

Ih − 1
4τ

2AΨ
h = Ψ̂

(
Ih − 1

4τ
2Ahχe

)
,

we obtain from (6.3) with similar arguments as above for

Ψ̂
−1
d0
h = (Ih + 1

4τ
2Ahχm)Πh(ũ1 − ũ0)− τ(Ih − 1

4τ
2Ahχe)v

0
h

− 1
2τ

2(−AhΠhũ
0 + ⟨f0

h⟩)
= Πh(ũ1 − ũ0)− πh(τv0 + 1

2τ
2⟨∂2

t ũ
0⟩)− 1

4τ
2Ahχe

(
Πh(ũ1 − ũ0)− τπhv0

)
.

Next, we use Taylor expansion. For the first two terms this yields (6.15b) and for
the third term we have

− 1
4τ

2Ahχe
(
Πh(ũ1 − ũ0)− τπhv0

)
= − 1

4τ
2Ahχed

0
LF + 1

2Ψ̂
−1

∆0
I.

Multiplying with Ψ̂ leads to the formula for d0
h. �

As mentioned before, if χe ≡ 0 (i.e., all elements are treated implicitly), the
defects in Lemmas 6.6 and 6.7 reduce to those of the θ-scheme. For the error result
we now insert the defects dnh into the error representation (6.4) as we have done for
the LTS scheme above. For the problematic terms – here consisting of the terms
∆nI – we apply Lemma 6.1 with

∆n∗ = ∆nI = −τ2Ψ̂Ah∆̃nI , ∆̃n∗ = ∆̃nI = 1
4τ

2χeπh∂
2
t ũ

n.

Altogether we obtain the error result.
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Theorem 6.8. Let σ > 1
2 , ϑ ∈ (0, 1], τ ≤ τLI(ϑ) defined in (5.7), and let Assump-

tions 2.2, 2.3, and 4.3 hold. Further, assume that the solution u of (2.1) satisfies
the regularity assumptions (6.11). Then, for tn ≤ T , the approximations unh of the
locally implicit scheme (3.5)&(3.7) with θ = 1

4 satisfy

‖u(tn)− unh‖ ≤ C min{cϑLI, tn}(τ2 + hr), r = min{σ, k}+ min{µ, 1},(6.16)

where C only depends on CR, θ, and u and its derivatives.

Proof. Combining (6.2) with Lemmas 6.6 and 6.7, Lemma 6.1 with ∆n∗ = ∆nI , taking
the norm, and using the stability estimates (5.8), (5.10) yields

‖enh‖ ≤ ‖e0
h‖+ min{cϑLI, tn} 1

τ

(
‖d0
θ‖+

∑n−1

j=1
‖djθ‖

)
+ ‖ 1

4τ
2SΨ

n Ψ̂Ahχed
0
LF‖+

∑n−1

j=1
‖ 1

4τ
2SΨ

n−jΨ̂Ahχed
j
LF‖

+ ‖∆̃nI‖+ ‖∆̃0
I‖+ min{cϑLI, tn} 1

τ

(
‖∆̃1

I − ∆̃0
I‖+

∑n−1

j=1
‖⦅∆̃jI⦆‖

)
.

The terms are bounded separately. The bound for e0
h is obvious. The defects dnθ

can be estimated similarly as in the proof of the LTS scheme, leading to

1

τ

(
‖d0
θ‖+

∑n−1

j=1
‖djθ‖

)
≤ CR max

s∈[0,τ ]
|∂tu(s)|r∗+1,Th h

r + 1
4 max
s∈[0,τ ]

‖∂3
t u(s)‖ τ2

+ CR

∫ tn

0

|∂2
t u(s)|r∗+1,Th ds hr + 1

6

√
2

∫ tn

0

‖∂4
t u(s)‖ ds τ2.

For the defects involving djLF we observe that by the definition of SΨ
k and because

of Ψ̂χe = χe we have

SΨ
n−jA

Ψ
h χed

j
LF = AΨ

hS
Ψ
n−jΨ̂χed

j
LF.

Hence, the CFL condition (5.7) implies

‖ 1
4τ

2SΨ
n−jΨ̂Ahχed

j
LF‖ ≤

1
τ min{cϑLI, tn}‖χed

j
LF‖.

The bounds for ‖χedjLF‖ are the same as before. Moreover, again with Taylor
expansion we have

1
τ

(
‖∆̃1

I − ∆̃0
I‖+

∑n−1

j=1
‖⦅∆̃jI⦆‖

)
≤ 1

4

(
max
s∈[0,τ ]

‖χe∂3
t u(s)‖+ 2

∫ tn

0

‖χe∂4
t u(s)‖ ds

)
τ2.

Collecting these bounds and inserting them into the first estimate yields the bound
for ‖enh‖. The triangle inequality and Lemma 4.6 complete the proof. �

Note that with minor modifications the proof also holds for θ > 1
4 .

6.3. Extensions and generalizations. We conclude this section with some notes
about possible extensions of the local time integration schemes (and its error anal-
ysis) to other spatial discretizations and to more general problems than (2.1).

A close investigation of the stability and error analysis reveals that the precise
structure of Ah is only used for bounds of the operators Ah,e, Ah,m, and Ah,em in
Appendix A, and thus for the CFL condition required for stability of the schemes.
In fact, for the remaining analysis only the symmetry and consistency (4.10) of
Ah are crucial. Moreover, the coercivity assumption of Ah can be weakened to Ah
being non-negative by two minor modifications of the analysis:
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(a) For the well-posedness, the elliptic projection (4.9) has to be constructed
as in [24, Remark 32.16] which has the same properties as the stated one,
in particular Lemmas 4.4 and 4.6 still hold.

(b) Since the stability bounds (5.9) and (5.10) do not hold anymore ((4.7)
only holds with c̃coer = 0 under Assumption 4.3), we have min{cϑLTS, tn} =
min{cϑLI, tn} = tn in the error bounds (6.12) and (6.16).

Hence, the analysis is extendable in several directions. First, instead of Dirichlet
boundary conditions we can allow for Neumann or periodic boundary conditions re-
sulting in a non-negative but not coercive Ah. Second, other discontinuous Galerkin
space discretization methods for the operator A can be used as long as the resulting
discrete operator Ah is symmetric, non-negative, and satisfies Lemmas 4.4 and 4.6.
This is true, for instance, for the first, second, and fourth method in [4, Table 6.1].
Clearly, the bounds in Appendix A have to be verified for these variants. Moreover,
depending on the chosen method, the submeshes Th,e and Th,m have to be selected
slightly differently for efficiency reasons, e.g., for the local discontinuous Galerkin
method [10].

Third, we could even consider more general linear second-order partial differen-
tial equations of the form

∂2
t u+Au = f,

where A is self-adjoint and non-negative. By using a suitable discontinuous Galerkin
space discretization for A, which again leads to a symmetric and non-negative dis-
crete operator Ah, the error analysis can be performed in the same way. For ex-
ample, the interior penalty discontinuous Galerkin method for Maxwell’s equations
fits into this setting; see, e.g., [31].

7. Numerical examples

In this section we present some numerical examples illustrating and confirming
the previously shown theoretical results. We start with two simple one-dimensional
examples before we turn towards two-dimensional problems. The codes for re-
producing the numerical results are available on https://doi.org/10.5445/IR/

1000158573. For an efficient implementation of the local time integration schemes
we refer to [7]; see also [6, Section 5.6]. The spatial discretization in our codes is
done with the software package FEniCS [41, 42].

For the LTS scheme an example with a discontinuous wave speed κ1/2 can be
found in [7, Section 6.3], further applications are given in [43] and [19, Section 5.2]
with a slightly modified but unstabilized variant of the LTS scheme.

7.1. One-dimensional examples. With the following two examples we confirm
the necessity of choosing Th,m as a true superset of Th,s (by using an additional
layer of one mesh element per face at the interface between Th,s and Th,w) as well
as the necessity of the stabilization parameter in the LTS methods to guarantee an
enhanced stability behavior. For both examples we consider the wave equation (2.1)
on Ω = (0, 1) with κ ≡ 1. As initial values and for the right-hand side we use
u0 = sin(2πx), v0 ≡ 0, and f ≡ 0, respectively, such that the exact solution is
given by u(t, x) = sin(2πx) cos(2πt). The simulation time is T = 5. For the space
discretization we use polynomials of degree k = 2 as ansatz functions in the discrete
space Vh and ηS = 2 as penalty parameter in the bilinear form (4.2).

https://doi.org/10.5445/IR/1000158573
https://doi.org/10.5445/IR/1000158573
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τ

(b) q = 5.
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Figure 1. Maximum error ‖en‖ of the numerical solution over all
timesteps for the leapfrog (LF) method, the locally implicit (LI) method,
and the locally implicit method with Th,m = Th,s (LITh,s). The dashed
black lines indicate order two, the dotted vertical lines correspond to
the theoretical CFL conditions of the leapfrog scheme if applied to the
semidiscrete problem (3.1) on the meshes Th (black), Th,w (orange), and
Th,e (blue), respectively.

In the first example we use a set of three meshes T qh , q = 3, 5, 7, consisting
of a fixed equidistant coarse mesh Th,w with hmin,c = 0.02 and equidistant fine
submeshes T qh,s satisfying hmin,c/hmin,f = q. In Figure 1 the errors of the leapfrog
method and the locally implicit method are plotted against τ . For each mesh we
apply the locally implicit method once with Th,m = Th,s and once with Th,m as
defined in (4.11). Besides the second-order convergence in time we clearly observe
that due to the CFL condition the maximal time-step size for which the leapfrog
scheme is stable deteriorates with increasing q. A similar drift is visible for the
locally implicit method, if Th,m = Th,s is chosen. In contrast, for the correctly
chosen Th,m the examples confirm that the CFL condition of the locally implicit
method is independent of the fine mesh Th,s. For the LTS scheme the same behavior
as for the locally implicit method can be observed in numerical experiments.

In the second example the mesh Th = Th,w ∪̇ Th,s consists of 108 mesh elements
where Th,w contains 106 elements of diameter hmin,c = 0.009375 and Th,s contains
two elements of diameter hmin,f = hmin,c/3. To this problem we apply the leapfrog
method and the LTS method with two different values for the stabilization parame-
ter η. In Figure 2 the errors are plotted against the time-step size. Again, provided
stability, we can clearly see the second-order convergence in time. Moreover, with-
out stabilization, i.e., for η = 0, we observe that the LTS method becomes unstable
at step sizes which are only up to π/2 larger than the maximum possible step size of
the leapfrog scheme; cf. [7, Section 5]. Even a larger polynomial degree of the LFC
polynomial (here for p = 8) does not overcome these shortcomings. In contrast, for
η = 0.1 we observe that these instabilities vanish and the LTS scheme (if p is chosen
appropriately) is stable for step sizes almost as large as the ones of the leapfrog
scheme if applied to the semidiscrete problem (3.1) on the mesh Th,e.

7.2. Two-dimensional examples. For the two-dimensional example we consider
the wave equation (2.1) on the square Ω = (−1, 1)2 again with a constant material
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LF
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(b) η = 0.1.

Figure 2. Maximum error ‖en‖ of the numerical solution over all
timesteps for the leapfrog method (denoted with LF) and the LTS
method with polynomial degree p = 3 (LTS3) and p = 8 (LTS8) for
two values of the stabilization parameter η. The dashed black lines in-
dicate order two, the dotted vertical lines correspond to the theoretical
CFL conditions of the leapfrog scheme if applied to the semidiscrete
problem (3.1) on the meshes Th (black) and Th,e (green), respectively.

parameter κ ≡ 1. The initial values and the right-hand side are chosen such that
the exact solution is given by

u(t, x) = sin(πx1) sin(πx2)
(
cos($t) + sin($t)

)
, $ = (2π2 + 10)1/2.

For the space discretization we use the meshes T j,`h = T jh,w∪T `h,s, j, ` ∈ {1, 2, 3, 4},
defined in [36]; see [36, fig. 1] for an illustration and also [50, Section 6.3.1]. The

meshes T `h,s = T (`)
h,f representing the domain (−0.5, 0.5)2 contain the small elements

and T jh,w = T (j)
h,c contain the coarse ones. The data for the submeshes T jh,w, T `h,s

can be found in Appendix B.
As before, we use the penalty parameter ηS = 2 in the bilinear form (4.2). In all

of the following plots the error ‖eN‖ is measured at time tN = 5.
First, we look at the spatial convergence of the local time integration schemes.

For this, we use the meshes T j,3h , j ∈ {1, 2, 3, 4} with a fixed “fine” mesh. In Figure 3
the error is plotted against the mesh size h for the leapfrog, the locally implicit,
and the LTS methods. Here, for the LFC polynomials in the LTS method, we fix
the polynomial degree as p = 16 and the stabilization parameter as η = 0.1. For
all three methods we observe the optimal order in space confirming our theoretical
results. Moreover, the error constant for all methods almost coincide.

For the temporal convergence, we consider the meshes T j,`h with j ∈ {2, 4} and
` ∈ {1, 2, 3, 4}. As polynomial degree in space we employ k = 3. In Figure 4
the error is plotted against the time-step size τ . For the LFC polynomials Pp
the stabilization parameter is again set to η = 0.1. The polynomial degree of Pp
is chosen as p = dre, where r = ‖Ah‖

‖Ah,e‖ . We clearly see that in contrast to the

leapfrog method, the CFL condition of the locally implicit and the LTS method
(with appropriately chosen p and η) is independent of the meshes T `h,s and only

depends on the coarse meshes T jh,w, j ∈ {2, 4}. Moreover, all methods converge with
order two in time with a constant independent of the spatial resolution confirming
our theoretical results. In particular, for a fixed coarse mesh, the errors of the LTS
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Figure 3. Error ‖eN‖ of the numerical solution at time tN = 5 for the
leapfrog, the locally implicit, and the LTS method (p = 16, η = 0.1)
plotted against h with fixed time-step size τ = 10−4. The solid lines
correspond to polynomial degree k = 1 (blue, circles), k = 2 (orange,
triangles), k = 3 (green, rhombi) in the discrete space Vh. The black
dashed, dash-dotted, and dotted line have slope hk+1 for k = 1, 2, 3,
respectively.

10−4 10−3

10−6

10−5

10−4

τ

‖e
N
‖

Figure 4. Error ‖eN‖ of the numerical solution at time tN = 5 for
the leapfrog, the locally implicit, and the LTS (η = 0.1) method plotted

against τ for the meshes T j,`
h , j ∈ {2, 4}, ` ∈ {1, 2, 3, 4}. The explanation

of the markers, colors, and line styles are given in Table 1. The degree of

the LFC polynomial Pp are chosen for each mesh as p = dre, r = ‖Ah‖
‖Ah,e‖

.

The black dashed line indicates order 2 in time. Note that the lines for
different refinement levels ` are on top of each other.

Table 1. Legend for Figure 4.

marker j = 2 j = 4

leapfrog square orange red
LTS circle blue cyan

locally implicit triangle green gray

` line style

1 dashed
2 dash-dotted
3 dash-dotdotted
4 dotted
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and the locally implicit methods are for all four fine meshes approximately equal
such that one cannot distinguish the corresponding lines in the figure. Interestingly,
the locally implicit method has a much smaller error constant for the rather large
norm of the inhomogeneity f used in this example.

Appendix A. Bounds for discrete operators

In this appendix, we show bounds for the operators Ah,m, Ah,e, and Ah,em
defined in (4.12) and (4.13), respectively. It is well-known that ‖Ahuh‖ . ξ2

max‖uh‖
for uh ∈ Vh, with ξmax given in (3.3c); see, e.g., [32, Lemma 3.3] for a variant of
the bilinear form ah. However, to show the precise dependency of the bounds on
the submeshes Th,b, b ∈ {w, s, e,m}, we state them here in detail. In addition to
these bounds we also show an estimate for ‖Ahχbu‖, u ∈ V?, in Lemma A.2.

Notation. For the mesh faces Fh we use the partition

Fh = F∗h,e ∪̇ Fh,m , F∗h,e = Fh,e ∪̇ Fh,em.

Here, Fh,e and Fh,m contain the faces between or at the boundary of elements
treated with the leapfrog and the modified scheme, respectively. The set Fh,em ⊆
F int
h consists of the faces between the submeshes Th,e and Th,m, i.e., a face F ∈ F int

h

belongs to Fh,em if F ⊆ ∂Ke ∩ ∂Km and vold−1(∂Ke ∩ ∂Km) 6= 0 for Ke ∈ Th,e,
Km ∈ Th,m. We use the convention that the normal nF is directed from Ke towards
Km. From the shape-regularity of Th (see Section 4.1) we further have that there
is a constant ρb > 0 such that

(A.1)
hK
δK
≤ ρb for all K ∈ Th,b, b ∈ {w, s, e,m}.

Note that ρ ≥ ρb and for locally refined meshes we might have ρ� ρw in addition
to ξmax � ξmax,w.

For proving the subsequent estimates the inverse and the discrete trace inequality
for functions in Vh play a crucial role. For uh ∈ Vh, the inverse inequality is given
by

‖∇uh‖K ≤ Cinvh
−1
K ‖uh‖K for all K ∈ Th,(A.2)

and the discrete trace inequality by

‖uh‖F ≤ Ctrch
−1/2
K ‖uh‖K for all F ∈ Fh,K ∈ Th with F ⊂ ∂K;(A.3)

see, e.g., [18, Lemmas 1.44, 1.46]. Since the constants Cinv and Ctrc depend on the
shape-regularity constant ρ (and also the polynomial degree k of the finite element
and the dimension d), we denote the corresponding constants on the submeshes
Th,b by Cinv,b and Ctrc,b (depending on ρb, k and d).

The split operators Ah,m, Ah,e, and Ah,em introduced in (4.12) are bounded as
follows.

Lemma A.1. For uh ∈ Vh we have

‖Ah,euh‖ = ‖χeAhχeuh‖ ≤ Cbnd,w ξ
2
max,w‖χeuh‖,(A.4a)

‖Ah,muh‖ = ‖χmAhχmuh‖ ≤ Cbnd ξ
2
max‖χmuh‖,(A.4b)
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with Cbnd,w = C2
inv,e+2(ηS+Cinv,e)C

2
trc,eρ

2
wN∂ , Cbnd = C2

inv+2(ηS+Cinv)C2
trcρ

2N∂ ,
and

‖Ah,emuh‖ = ‖χeAhχmuh‖ ≤ C∗bnd,w ξ
2
max,w‖χmuh‖(A.4c)

with C∗bnd,w = (ηS + Cinv,w)C2
trc,wρ

2
wN∂ .

Proof. We only show the bound (A.4a), the remaining ones can be proven analo-
gously. Let ϕh ∈ Vh. Using the definitions of Ah in (4.6), ah in (4.2), and of the
indicator function χe in (3.4), we have

(χeAhχeuh, ϕh) =
∑

K∈Th,e

∫
K

κ∇uh · ∇ϕh dx+
∑

F∈F∗
h,e

aF

∫
F

JχeuhKF JχeϕhKF dσ

−
∑

F∈F∗
h,e

∫
F

(
{{κ∇(χeuh)}}1/κF · nF JχeϕhKF + {{κ∇(χeϕh)}}1/κF · nF JχeuhKF

)
dσ.

The terms on the right-hand side are now bounded separately. For the first term
we obtain with the Cauchy-Schwarz inequality, the inverse inequality (A.2), and
the definition (3.2) of ξK∑
K∈Th,e

∫
K

κ∇uh · ∇ϕh dx ≤ C2
inv,e

∑
K∈Th,e

ξ2
K‖uh‖K‖ϕh‖K ≤ C2

inv,eξ
2
max,w‖χeuh‖‖ϕh‖.

Next, for the penalty term, we again apply the Cauchy-Schwarz inequality twice∑
F∈F∗

h,e

aF

∫
F

JχeuhKF JχeϕhKF dσ

≤ ηS
( ∑
F∈F∗

h,e

κ2
F h
−3
F ‖JχeuhKF ‖

2
F

)1/2( ∑
F∈F∗

h,e

hF ‖JχeϕhKF ‖2F
)1/2

.

Since both factors are bounded by similar arguments, we only show the bound for
the first one. For this, we first observe that by the definition (4.3) of hF together
with the shape-regularity (A.1)

hF ≤ hKF,1
, hKF,2

≤ ρwhF for all F ∈ F∗h,e ∩ F int
h , F = ∂KF,1 ∩ ∂KF,2,(A.5)

and by the definition (4.4) of κF

κF ≤ max{κKF,1
, κKF,2

} for all F ∈ F int
h , F = ∂KF,1 ∩ ∂KF,2.(A.6)

Thus, we have for all F ∈ Fh,e ∩ F int
h

κ2
F h
−3
F ‖JuhKF ‖

2
F ≤ 2C2

trc,eκ
2
F h
−3
F

(
h−1
KF,1
‖uh‖2KF,1

+ h−1
KF,2
‖uh‖2KF,2

)
≤ 2C2

trc,e ρ
4
w max{ξKF,1

, ξKF,2
}4
(
‖uh‖2KF,1

+ ‖uh‖2KF,2

)
,

where we additionally used the discrete trace inequality (A.3) in the first step.
Proceeding similarly for F ∈ Fh,e ∩ Fbnd

h and F ∈ Fh,em (note that JχeuhKF =
(uh|Ke

)|F for all F ∈ Fh,em) yields together with the definition of N∂∑
F∈F∗

h,e

aF

∫
F

JχeuhKF JχeϕhKF dσ ≤ 2ηS C
2
trc,eN∂ρ

2
wξ

2
max,w‖χeuh‖‖ϕh‖.
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For the consistency and symmetry terms we observe that by the definition of the
weighted average (4.1) we have for all F ∈ Fh,e ∩ F int

h

h−1
F ‖{{κ∇uh}}

1/κ
F ‖

2
F ≤ 1

2κ
2
F

(
‖∇uh|KF,1

‖2F + ‖∇uh|KF,2
‖2F )

≤ 1
2C

2
trc,eC

2
inv,eκ

2
F h
−1
F

(
h−3
KF,1
‖uh‖2KF,1

+ h−3
KF,2
‖uh‖2KF,2

)
≤ 1

2C
2
trc,eC

2
inv,e ρ

4
w max{ξKF,1

, ξKF,2
}4
(
‖uh‖2KF,1

+ ‖uh‖2KF,2

)
,

where we again used (A.5), (A.6), (A.3), and (A.2). Thus, using similar arguments
as for the penalty term leads to∑

F∈F∗
h,e

∫
F

(
{{κ∇(χeuh)}}1/κF · nF JχeϕhKF + {{κ∇(χeϕh)}}1/κF · nF JχeuhKF

)
dσ

≤ 2C2
trc,eCinv,eN∂ ρ

2
w ξ

2
max,w‖χeuh‖‖ϕh‖.

Collecting the estimates of all terms and using the identity

‖χeAhχeuh‖ = sup
ϕh∈Vh,‖ϕh‖=1

(χeAhχeuh, ϕh)

finishes the proof. �

The next lemma states that ‖Ahχbu‖, b ∈ {e,m}, cannot be uniformly bounded
in h (or hmin) for functions u ∈ V?.

Lemma A.2. For u ∈ V? and b ∈ {e,m} we have

(A.7)

‖Ahχbu‖ ≤
( ∑
K∈Th,b

‖Au‖2K
)1/2

+ Cor,cκmax,w

( ∑
F∈Fh,em

h−3
F ‖u‖

2
F

)1/2

+
√

2Ctrc,wN
1/2
∂ κmax,w

( ∑
F∈Fh,em

h−1
F ‖∇u‖

2
F

)1/2

with Cor,c = (2ηS + Cinv,w)Ctrc,wN
1/2
∂ and κmax,w = maxK∈Th,w

κK .

Proof. Let ϕh ∈ Vh. Since u ∈ V?, we have χbu ∈ V?,h as well as JuKF = 0 for all
F ∈ Fh \ Fh,em and Jκ∇uKF = 0 for all F ∈ F int

h \ Fh,em. Elementwise integration
by parts then yields for all ϕh ∈ Vh
(Ahχbu, ϕh) = ah(χbu, ϕh)

= −
∑

K∈Th,b

∫
K

∇ · (κ∇u)ϕh dx+
∑

F∈Fh,em

aF

∫
F

JχbuKF JϕhKF dσ

+
∑

F∈Fh,em

∫
F

(
Jκ∇(χbu)KF · nF {{ϕh}}κF − {{κ∇(ϕh)}}1/κF · nF JχbuKF

)
dσ.

Similar arguments as in the previous proof lead to (A.7). �

Appendix B. Mesh data

In Table 2 we collect the data of the submeshes T jh,w, T `h,s, j, ` ∈ {1, 2, 3, 4},
which build the meshes T j,`h = T jh,w ∪ T `h,s used in Section 7.2. Here, we denote

h
(a)
min,b = min

K∈T a
h,b

hK , h
(a)
max,b = max

K∈T a
h,b

hK , (a, b) ∈
{

(j, w), (`, s)
}
.
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Table 2. Data of the submeshes T j
h,w, T `

h,s, j, ` ∈ {1, 2, 3, 4}.

(a) T j
h,w.

j h
(j)
max,w h

(j)
min,w #elements

1 0.4618 0.0625 188
2 0.2469 0.05 528
3 0.1353 0.05 1448
4 0.0738 0.0373 3992

(b) T `
h,s.

` h
(`)
max,s h

(`)
min,s #elements

1 0.05 0.025 32
2 0.05 0.0125 48
3 0.05 0.00625 64
4 0.05 0.003125 80
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