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Abstract

In this paper, we focus on scattering of non-periodic incident fields in three-dimensional bi-
periodic structures, as they can not be solved by the classical methods used for the quasi-periodic
scattering problems. To solve such non-periodic scattering problems, the Floquet-Bloch transform,
which decomposes the unbounded problem into a family of periodic problems in a bounded unit
cell, has been applied together with a numerical method in [25]. However, its theoretical result
indicates that the computational order is too low. Hence, our aim is to propose a high-order
numerical approach by using the Floquet-Bloch transform. To this end, the first crucial part is to
analyze the regularity of the Floquet-Bloch of the total field with respect to the Floquet parameter.
The second challenging part is to propose a high-order tailor-made quadrature method adapted
to singularities of the Floquet-Bloch of the total field formed by a finite number of circular arcs.
Afterward, we obtain the error estimation of the proposed numerical approach. Eventually, the
accuracy and efficiency of the mentioned approach are revealed by several numerical examples.

Keywords: Scattering problems, Helmholtz equation, bi-periodic structure, Floquet-Bloch trans-
form, error estimation.
AMS subject Classifications: 35J05, 35A35, 65N30.

1 Introduction

Scattering problems in periodic structures play a substantial role in modern mathematical physics.
They are particularly important in thin solar cell design, photonic crystal band gap engineering,
and surface structure optimization for organic light-emitting diodes [1, 15]. The classical periodic
scattering problem that a periodic or quasi-periodic incident field such as a plane wave is scattered
by a periodic structure, can be directly reduced to a problem posed on a unit cell of the periodic
domain [17, 27]. Afterwards, the reduced problem can be solved numerically for example by the finite
element [3, 14] or integral equation methods [26]. However, when the incident field is non-periodic,
this approach no longer works. Therefore, novel numerical schemes are necessary to efficiently solve
these challenging problems.

One way to tackle such problems is the use of the Floquet-Bloch transform. It has been applied
most often in two-dimensional scattering problems (e.g., see numerical results in [6, 12, 23, 24] and
theoretical results in [21, 22]). This is also the approach that will be used in this paper, where
we consider a three-dimensional geometry, extending similar approaches from [18, 19, 25]. Another
possibility is a numerical approach based on the extension of the Robin-to-Robin map by using a
recursive doubling procedure, as described in [7, 8]. Moreover, in [10, 11, 16], operator equations are
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solved to construct the Dirichlet-to-Neumann (DtN) map. It is worth noting that the non-periodic
scattering problems in three dimension have been studied by the Floquet Bloch transform only in
[18, 25]. However, the convergence rate of the techniques in these references is rather low.

In this paper, we propose a high-order numerical scheme to solve scattering problems in three-
dimensional bi-periodic structures. We first apply the Floquet-Bloch transform to decompose the
original scattering problem, involving non-periodic fields and posed in an unbounded but periodic
domain, into a family of problems involving only periodic fields and posed on just a single bounded
cell of periodicity. In this procedure, the numerical error is the combination of two components:
the error in the approximation of the transformed total field due to the employed numerical method
and the error due to the approximation of the inverse Floquet-Bloch transform. To approximate
the transformed field, we use the finite element method whose error estimation is given by classical
results. Hence, the main goal of this paper is to derive a highly accurate and efficient scheme for the
inversion of the Floquet-Bloch transform. This, in particular, requires to prove regularity properties
of the transformed field with respect to the Floquet parameter: the inverse Floquet-Bloch transform
essentially consists of a double integral of the transformed field over a bounded domain, but the
integrand has got a particular structure of singularities. Based on the regularity results we establish,
we propose a tailor-made quadrature rule to numerically obtain the total field of the original non-
periodic scattering problem.

It should be pointed out that the regularity of the transformed field for the two-dimensional
scattering problem in [28] is not similar to the three-dimensional case. In [28], it is proved that
the transformed field is analytic except for at most two singular points. However, in the three-
dimensional case, the singularities of the transformed field no longer consist of a finite number of
points; they form a set that is the union of a finite number of circular arcs. Hence, the extension of
the high-order numerical methods used for the two-dimensional case in [2, 28] is not appropriate for
the three-dimensional case.

The framework of this paper is as follows: Section 2 is devoted to a review of the mathematical
formulation of scattering problems in unbounded bi-periodic domains. In Section 3, we introduce
the Floquet-Bloch transform and state some of its properties that we require in the later analysis.
Furthermore, we apply the Floquet-Bloch transform to the variational formulation of the original
scattering problem to derive a family of periodic problems that may be reduced to just a single
bounded cell of periodicity. Afterwards, we analyze the regularity of the transformed field with
respect to the Floquet parameter. Our first main result in Theorem 5 is a local representation of the
transformed field exactly mirroring the expected structure of singularities. This significantly extends
similar representations found in [18, 19]. Moreover, we obtain a globally valid representation in
Theorem 7. In Section 4, we construct a quadrature rule exactly adapted to the singularity structure
of the transformed field. This allows a rigorous analysis of the quadrature error bases on the regularity
results established earlier in Corollary 17 and of the overall numerical method in Theorem 20. Some
numerical examples illustrating the performance of the proposed scheme are presented in Section 5.

2 Mathematical model of scattering problems

We consider acoustic wave propagation in an unbounded domain Ω which is bounded from below by
a bi-periodic surface Γ given as the graph of a bounded function ξ, i.e.,

Ω =
{

(x̃, x3) : x̃ ∈ R2, x3 > ξ(x̃)
}
, Γ =

{
(x̃, ξ(x̃)) : x̃ ∈ R2

}
.

The function ξ is assumed to be 2π-periodic with respect to both variables. A given, non-periodic
incident field ui propagating in Ω is scattered by Γ and generates a scattered field us that is to be
determined (see Fig. 1 (a)). The total field u = ui + us satisfies the Helmholtz equation with the
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wave number κ > 0
∆u+ κ2u = 0 in Ω ⊂ R3, (1)

and it is assumed to satisfy a Dirichlet boundary condition

u = 0 on Γ . (2)

The formulation of the scattering problem is not complete without an appropriate radiation condition.
This condition physically guarantees that the scattered field us is propagating upwards from Γ and,
mathematically, it makes the scattering problem well-posed. Before stating this condition, we need
to introduce some definitions.

We assume H > ‖ξ‖∞ and let ΓH := R2 ×
{
H
}

. By ΩH, we denote the unbounded domain
between Γ and ΓH. Fig. 1 (b) shows a sketch of these domains.

(a) (b)

Figure 1: A sketch of the presented unbounded domains.

We will use the standard Sobolev spaces Hs(ΩH) and Hs
loc(ΩH) for any s ∈ R. For s, r ∈ R, the

weighted Sobolev spaces Hs
r (ΩH) and Hs

r (ΓH) are defined by

Hs
r (ΩH) =

{
φ ∈ Hs

loc(ΩH) : (1 + |x̃|2)r/2φ(x̃, x3) ∈ Hs(ΩH)
}
,

Hs
r (ΓH) =

{
φ ∈ Hs

loc(ΓH) : (1 + |x̃|2)r/2φ(x̃, x3) ∈ Hs(ΓH)
}
.

The corresponding spaces of functions satisfying a homogeneous Dirichlet boundary condition on Γ
in the trace sense will be denoted with a tilde, i.e.,

H̃s
r (ΩH) =

{
φ ∈ Hs

r (ΩH) : φ
∣∣
Γ

= 0
}
.

We will assume that the incident field satisfies ui ∈ H1
r (ΩH) and look for the total field in H̃s

r (ΩH).
In addition, to make the scattering problem physically meaningful, the scattered field us will be
assumed to satisfy the radiation condition [4, 5],

us(x̃, x3) =
1

2π

∫
R2

eix̃·ζ+i
√
κ2−|ζ|2(x3−H) ûs(ζ, H) dζ, x3 > H, (3)

where ûs(ζ, H) denotes the Fourier transform of us restricted to ΓH, i.e.,

ûs(ζ, H) :=
1

2π

∫
R2

e−ix̃ ·ζus(x̃, H) dx̃.

In [4], it is shown that ûs(·, H) ∈ H1/2
r (R2) and it is elaborated why the integral on the right-hand

side of (3) exists for us ∈ H1
r (ΩH), |r| < 1.
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The radiation condition (3) can be equivalently formulated as the transparent boundary condition

∂u

∂x3
(x̃, H)−

(
T+u|ΓH

)
=
∂ui

∂x3
(x̃, H)−

(
T+ui|ΓH

)
=: f, on ΓH, (4)

where the Dirichlet-to-Neumann (DtN) map T+ is defined by(
T+ψ|ΓH

)
(x̃, H) =

i

2π

∫
R2

√
κ2 − |ζ|2 eix̃·ζ ψ̂(ζ, H) dζ.

In [5, 4], it is proved that T+ : H
1/2
r (ΓH)→ H

−1/2
r (ΓH) is well-defined and continuous for |r| < 1.

Now, the problem (1)–(2) can be reduced to a boundary value problem in ΩH together with
the transparent boundary condition (4) on ΓH. The variational formulation of this boundary value

problem with f ∈ H−1/2
r (ΓH) for |r| < 1 is to find u ∈ H̃1

r (ΩH) such that it satisfies∫
ΩH

(
∇u · ∇ v − κ2 u v

)
dx−

∫
ΓH

(
T+u|ΓH

)
v ds =

∫
ΓH

f v ds, for all v ∈ H̃1(ΩH). (5)

Existence and uniqueness of solution for the variational problem (5) has been proved in [4].
From a numerical point of view, the variational problem (5) is not yet adequate as it is still posed

on an unbounded domain. In the next section, by applying the Floquet-Bloch transform, we hence
present a decomposed formulation of (5) consisting of a family of periodic problems posed on a single
bounded unit cell of the periodic domain.

3 The Floquet-Bloch transform

Consider the square lattice
{

2πj : j ∈ Z2
}

with the primitive cell V =
{

2πη : η ∈ R2, −1/2 <
η1,2 ≤ 1/2

}
. We define the three-dimensional bounded unit cell by restricting the domain ΩH to x̃

in the considered primitive cell, i.e., Ω2π
H = {x ∈ ΩH : x̃ ∈ V} as depicted in Fig. 2.

Figure 2: The three-dimensional bounded unit cell Ω2π
H .

Definition 1 ([21, 25]). For ϕ ∈ C∞0 (ΩH), the Floquet-Bloch transform Jϕ is defined by

(Jϕ)(α,x) =
∑
j∈Z2

ϕ(x̃+ 2πj, x3) e−iα·(x̃+2πj) , (6)

where x = (x1, x2, x3)>, x̃ = (x1, x2)> ∈ R2 and α ∈ R2 denotes the Floquet parameter.

Note that Jϕ is bi-periodic with respect to x̃ with period 2π in each coordinate direction.
Moreover, for every x the function eiα·x̃(Jϕ)(α,x) is bi-periodic with respect to α with period 1
in each coordinate direction. The fundamental cell of periodicity of Jϕ thus is V∗ × Ω2π

H where
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V∗ := [−1/2, 1/2]2. To investigate more properties of the Floquet-Bloch transform, we introduce the
Sobolev space of bi-periodic functions

H̃s
per(Ω

2π
H ) =

{
φ ∈ Hs(Ω2π

H ) : φ(x̃+ 2πj, x3) = φ(x), j ∈ Z2 , φ|Γ2π = 0
}
,

and the space Hr(V∗; H̃s
per(Ω

2π
H )) with norm

‖φ‖
Hr(V∗;H̃s

per(Ω
2π
H ))

=

 ∑
m∈N2:|m|≤r

∫
V∗
‖∂mα φ(α)

∥∥2

H̃s
per(Ω

2π
H )

dα

1/2

.

For ψ ∈ Hr(V∗; H̃s
per(Ω

2π
H )) we will write ψ(α) ∈ H̃s

per(Ω
2π
H ), but continue using ψ(α,x) instead of

ψ(α)(x). The next theorem states the mapping properties of the Floquet-Bloch transform in the
framework of these spaces.

Theorem 2 (Theorem 1, [25]). The Floquet-Bloch transform J extends to an isomorphism between
H̃s
r (ΩH) and Hr(V∗; H̃s

per(Ω
2π
H )) for all s, r ∈ R. Moreover, the inverse Floquet-Bloch transform is

obtained by

(J −1ψ)(x̃+ 2πj, x3) =

∫
V∗
ψ(α,x) eiα·(x̃+2πj) dα, x ∈ Ω2π

H , j ∈ Z2. (7)

According to [21], the mapping properties of the Floquet-Bloch transform when operating on
functions defined on ΓH or Γ are analogous.

We now use the Floquet-Bloch transform to decompose the scattering problem in the unbounded
domain ΩH to a family of periodic problems in the unit cell Ω2π

H . Let w = J u and F = J f to
simplify the notation. By applying the Floquet-Bloch transform to the Helmholtz equation in ΩH

and to the boundary conditions (2) and (4), it turns out that for every α ∈ V∗, w(α) ∈ H̃1
per(Ω

2π
H )

is a weak solution to the problem
∆xw(α) + 2iα · ∇̃xw(α) +

(
κ2 − |α|2

)
w(α) = 0 in Ω2π

H , (8)

w(α) = 0 on Γ2π, (9)

∂w(α)

∂x3
− T ′αw(α) = F(α) on Γ2π

H , (10)

i.e. (8) is understood in the distributional sense and (9), (10) in the trace sense and ∇̃xw(α) =

(∂w(α)/∂x1, ∂w(α)/∂x2)>. The periodic DtN map T
′
α : H

1/2
per (Γ2π

H )→ H
−1/2
per (Γ2π

H ) is defined by

(T ′αΨ)(x̃) = i
∑
j∈Z2

√
κ2 − |α− j|2 Ψ̂(j) ei x̃·j for Ψ =

∑
j∈Z2

Ψ̂(j) ei x̃·j .

Theorem 3 (Theorem 2, [25]). Let |r| < 1 and ui ∈ H1
r (ΩH). A function u ∈ H̃1

r (ΩH) satisfies (5)
if and only if w ∈ Hr(V∗; H̃1

per(Ω
2π
H )) is a solution to the variational problem∫

V∗
aα(w(α), ψ(α)) dα−

∑
j∈Z2

∫
V∗

√
κ2 − |α− j|2 bj(w(α), ψ(α)) dα

=

∫
V∗

∫
Γ2π
H

F(α,x)ψ(α,x) ds dα for all ψ ∈ H−r(V∗; H̃1
per(Ω

2π
H )) . (11)
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Moreover, if α 7→ F(α) is continuous, then α 7→ w(α) is also continuous, and for every α ∈ V∗,

aα(w(α), ζ)−
∑
j∈Z2

√
κ2 − |α− j|2 bj(w(α), ζ) =

∫
Γ2π
H

F(α) ζ ds , (12)

for all ζ ∈ H̃1
per(Ω

2π
H ). Here,

aα(v, ζ) =

∫
Ω2π

H

(
∇v · ∇ζ − 2iα · ∇̃v ζ − (κ2 − |α|2) v ζ

)
dx ,

bj(v, ζ) = i

∫
Γ2π
H

ζ(x) v̂(j) eix̃·j ds = 4iπ2 v̂(j) ζ̂(j) .

Unique solvability of the variational problem (12) in H̃1
per(Ω

2π
H ) has been proved in [9] for any

arbitrary, but fixed α ∈ V∗. We can thus compute numerical approximations to the transformed
field w(α) for every α ∈ V∗ by using some numerical method of choice. In the second step, the
inverse Floquet-Bloch transform (7) must be computed to obtain an approximation to the solution of
(11). This essentially amounts to the evaluation of a double integral of w over the domain V∗. The
accuracy of the numerical solution of (11) depends not only on the selected numerical method for
solving (12), but also on the accuracy of the numerical integration method employed for this double
integral. In order to construct a high-order numerical scheme, requiring few quadrature points for
high accuracy, it is necessary to precisely know the regularity of the transformed field with respect
to the Floquet parameter.

Let us heuristically motivate the results that we shall make rigorous in Theorem 5. In the
variational formulation (12), all terms depend analytically on α except for the square root functions.
Hence, we may expect the transformed field w to depend analytically on α, except for points where
(the derivatives of) these functions have singularities, i.e. except for points located in the set

S =
{
α ∈ V∗ : |α− j| = κ for some j ∈ Z2

}
.

The set S is a union of circular arcs formed by the intersection of V∗ and circles with center j and
radius κ, and we will also refer to this set as the curves of singular points. Fig. 3 illustrates possible
structures of S for different wave numbers κ on V∗. Any high-order method for approximately
inverting the Floquet-Bloch transform will need to take into account the structure of S that becomes
more and more complex as κ increases.

For any α ∈ S, we also define

J(α) = {j ∈ Z2 : |α− j| = κ}, (13)

a finite set with cardinality #J(α).

Remark 4. When κ < 0.5, for all α ∈ S, #J(α) = 1. When κ ≥ 0.5, there exist finite number of
α ∈ S with #J(α) > 1.

For the later analysis of the numerical inversion of the Floquet-Bloch transform, we require a
particular regularity of both the transformed incident and the transformed total fields. To formulate
these requirements, we make the following definitions: For some open set U ⊆ R2 and Hilbert space
Y , we denote by Cω(U ;Y ) the space of Y -valued functions that depend analytically on α ∈ U . For
a Hilbert space Y , let

X (Y ) = {g : V∗ → Y : g satisfies (C1) and (C2) } , (14)

where
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Figure 3: Structure of S for different values of κ on V∗ = [−0.5, 0.5]2.

(C1) for every open subdomain U ⊆ V∗ \ S, g ∈ Cω(U ;Y ),

(C2) for any α0 ∈ S, there exists a neighborhood U0 of α0 such that

g(α) =
∑

I⊆J(α0)

∏
j∈I

√
κ2 − |α− j|2 gI(α) , (15)

where gI ∈ Cω(U0;Y ) for every I ⊆ J(α0).

Theorem 5. Let ui ∈ H1
r (ΩH) for some |r| < 1 and additionally F ∈ X (H

−1/2
per (Γ2π

H )). Then, the

transformed total field w that solves (11) satisfies w ∈ X (H̃1
per(Ω

2π
H )).

Proof. Let α0 ∈ V∗. Using the Riesz representation theorem, we may define the operators A(α) and
B(j) by

〈B(j)v, ζ〉Γ2π
H

= bj(v, ζ) ,

〈A(α)v, ζ〉Ω2π
H

= aα(v, ζ) −
∑

j∈Z2\J(α0)

√
κ2 − |α− j|2 〈B(j)v, ζ〉Γ2π

H
.

Note that in a neighborhood of α0, A(α) depends analytically on α. Using these operators, and also
the antilinear form F̂(α) induced by the right-hand side of (12), (12) can be reformulated asA(α) −

∑
j∈J(α0)

√
κ2 − |α− j|2 B(j)

w(α) = F̂(α) . (16)

If α0 6∈ S, then J(α0) = ∅ and as F satisfies (C1) with Y = H
−1/2
per (Γ2π

H ), so does w with Y =
H1

per(Ω
2π
H ).

We now assume α0 ∈ S. Moreover, let B(α0, δ) denote an open ball centred at α0 with radius δ.
Note that for any j ∈ J(α0), ‖

√
κ2 − |α− j|2 B(j)‖ → 0 as |α−α0| → 0. In [1], it has been shown

that the operator on the left-hand side of (16) is boundedly invertible. Hence, for small enough δ,
the operator A(α) is boundedly invertible for all α ∈ B(α0, δ). Setting B̃(j) = (A(α))−1 B(j), we
can write the solution w as the Neumann series

w(α) =

∞∑
n=0

 ∑
j∈J(α0)

√
κ2 − |α− j|2 B̃(j)

n

(A(α))−1F̂ .

Let J(α0) = {j1, . . . , jm}. Applying the multinomial theorem leads to

w(α) =
∞∑
n=0

 ∑
K1+K2+···+Km=n,

K1,...,Km≥0

n

K1!K2! . . .Km!

m∏
µ=1

(√
κ2 − |α− jµ|2 B̃(jµ)

)Kµ

 (A(α))−1F̂ .
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Note that all even powers of the square root functions are analytic. Insertion (15) for F̂ and combining
all analytic terms appropriately into functions wI for I ⊆ J(α0), gives that w satisfies (C2) with
Y = H1

per(Ω
2π
H ).

Following up on the previous result, the next theorem guarantees that we can make use of (15)
for w with the same center of expansion in small balls contained in a neighborhood of S.

Theorem 6. There exist open balls B` = B(α`, ρ`) with center points α` ∈ S and radii ρ`, ` =
1, . . . , L, such that S ⊆

⋃L
`=1B` and the representation (15) holds for w on B` with α0 = α`.

Moreover, there exist r, δ > 0 such that

S̃ := {α′ ∈ V∗ : dist(α′,S) < r} ⊆
L⋃
`=1

B` ,

and that for every α ∈ S̃ there exists ` with B(α, δ) ⊆ B`.

Proof. For every α0 ∈ S, we choose ρ(α0) > 0 such that the representation (15) holds for w on
B(α0, ρ(α0)). Then, S ⊆

⋃
α0∈S B(α0, ρ(α0)). Since S is a compact set, we select a finite number

of points α` and radii ρ` = ρ(α`), ` = 1, . . . , L, such that S ⊆
⋃L
`=1B(α`, ρ`). This yields the first

part of the theorem.
Choose q ∈ (0, 1) such that still S ⊆

⋃L
`=1B(α`, qρ`). Choose r such that S̃ ⊆

⋃L
`=1B(α`, qρ`)

and set δ = (1 − q) min
`=1,...,L

ρ`. Now, let α ∈ S̃ and ˆ̀ such that |α − αˆ̀| < q ρˆ̀. Then, for any

α′ ∈ B(α, δ), we have

|α′ −αˆ̀| < q ρˆ̀ + δ = q ρˆ̀ + (1− q) min
`=1,...,L

ρ` ≤ ρˆ̀ .

This completes the proof.

The structure of S̃ for different values of the wave number κ is depicted in Fig. 4. For any point α
in S̃, we may use the local representation (15) for the transformed field also on a small neighborhood
of that point. In our later analysis, we also require a globally valid representation of w which is
provided by the next theorem.

Figure 4: Structure of S̃ for different values of κ on V∗ = [−0.5, 0.5]2.

Theorem 7. Let α`, ` = 1, . . . , L, denote the points in Theorem 6 and set J =
⋃L
`=1 J(α`). Then

there exist vI ∈ C∞(V∗; H̃1
per(Ω

2π
H )) such that

w(α) =
∑
I⊂J

∏
j∈I

√
κ2 − |α− j|2 vI(α) , α ∈ V∗ . (17)
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Moreover, for any µ ∈ N0, there exist a constant Cµ such that∥∥∥∥∂µvI(α)

∂αµν

∥∥∥∥
H̃1

per(Ω
2π
H )

≤ Cµ

dist(α, S̃)µ
, I ⊆ J , ν = 1, 2 , α ∈ V∗ . (18)

Proof. Recall the covering of S by the open balls B(α`, δ`), ` = 1, . . . , L, from the proof of Theorem 6.
Furthermore, let B0 denote an open subset of V∗ \ S such that V∗ ⊆ B0 ∪

⋃L
`=1B(α`, δ`). Let

ϕ0, . . . , ϕL ⊆ C∞(V∗) denote a partition of unity subject to this open covering. By Theorem 6, in
each ball we have

w(α) =
∑

I⊂J(α`)

∏
j∈I

√
κ2 − |α− j|2 w`,I(α) , α ∈ B(α`, δ`), ` = 1, . . . , L ,

with w`,I analytic in B(α`, δ`). Let J =
⋃L
`=1 J(α`) and define w`,I = 0 for I ⊆ J, but I 6⊆ J(α`),

` = 1, . . . , L. Since the function w on B0 is itself analytic according to the first part of Theorem 5,
we set w0,∅ = w and w0,I = 0 for all other I ⊆ J. Finally, on V∗ we define

vI =
L∑
`=0

ϕ`w`,I , I ⊆ J ,

where we extend each product on the right-hand side by 0 outside its domain of definition. Then

w(α) =
∑
I⊆J

∏
j∈I

√
κ2 − |α− j|2 vI(α) , α ∈ V∗ .

By definition, vI ∈ C∞(V∗; H̃1
per(Ω

2π
H )). A standard estimate for analytic functions (see Theo-

rem 2.2.7, [13]) gives that for some constant C

max
α∈B(α`,δ`)

∥∥∥∥∂µw`,I∂αµν

∥∥∥∥
H̃1

per(Ω
2π
H )

≤ C µ!

δµ`
, ν = 1, 2 , µ ∈ N0 , ` = 1, . . . , L . (19)

Finally, we uniformly bound each derivative of w on B0 and for some δ̃ > 0, dist(B0,S) ≥ δ̃ > 0.
Thus, together with bounds on the derivative of the function ϕ`, we obtain the assertion.

4 A numerical inversion of the Floquet-Bloch transform

We propose a numerical scheme to obtain the total field in a scattering problem by combining a
numerical method, such as the finite element method, to compute the transformed field w(α) for
fixed α with a tailor-made quadrature rule to approximate the inverse Floquet-Bloch transform to
high order. The regularity properties of the transformed field reported in the previous section are an
essential prerequisite for the derivation of such a rule. According to (7), the total field is calculated
by the inverse Floquet-Bloch transform as

u(x̃+ 2πj, x3) =

∫
V∗
w(α,x) eiα·(x̃+2πj) dα, x ∈ Ω2π

H , j ∈ Z2. (20)

For an analysis of the approximation of this integral, it obviously suffices to consider the case j = 0
as the analytic phase factor exp(iα · 2πj) does not affect the regularity of the integrand.

A naive way to approximately compute the integral in (20) is to generate an equidistant uniform
square mesh in V∗ and then use the set of vertices in this mesh to define a composite trapezoidal
rule [25, 18, 19]. However, convergence of such an approach is typically slow: due to the square
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root singularities present in the representation of w(α) in (15), one can not even attain second order
convergence in the mesh width.

We instead propose to generate a specific quadrature rule matching the a priori known structure of
singularities in w to achieve high order of convergence. A recursively refined square mesh, dependent
only on the wave number, is generated, with elements getting smaller with decreasing distance to the
curves of singularities. On each square, except for the finest level, a tensor-product Gauss-Legendre
rule is applied to approximate the integral in (20). On the finest level, a tensor-product trapezoidal
rule is employed.

4.1 Mesh generation adapted to the set of singular curves

First, note that although V∗ = [−0.5, 0.5]2, it suffices to generate a mesh on [0, 0.5]2 due to the
symmetry of the curves of singular points S (see Fig. 3 for an illustration). We start by subdividing
[0, 0.5]2 into squares of lateral length h0 = 1/(2n0) for some n0 ∈ N≥2. Then N refinement steps are
taken, further subdividing those squares close to the curves of singular points, which are circular arcs
of radius κ centred at j ∈ J̃ := ∪α∈[0,0.5]2J(α). The complete procedure is presented as Algorithm 1
whose the output is illustrated in Fig. 5 for N = 6 and different values of the wave numbers κ.

Figure 5: The generated adapted mesh G6 for different κ by Algorithm 1.

In the proposition below, we list properties of the adapted mesh generated by Algorithm 1. To
concisely formulate these results, we introduce the sets of squares of lateral length hn = h0/2

n in the
mesh,

Mn = {K : K ∈ GN and K has lateral length hn} , n = 0, . . . , N , (21)

as well as the union of all squares of lateral length hn,

Rn =
⋃

K∈Mn

K , n = 0, . . . , N . (22)

Proposition 8. Let the square K ∈Mn (for n = 1, . . . , N) with center ξK , then

dist(ξK ,S) >
1

2n+1
, n = 0, . . . , N − 1,

dist(ξK ,S) ≤ 1

2n

(
1 +

√
2

2
h0

)
, n = 1, . . . , N.

Furthermore,

dist(Rn,S) ≥ 1

2n+1

(
1−
√

2h0

)
=: dmin,n, n = 0, . . . , N − 1, (23)

sup
x∈Rn

dist(x,S) ≤ 1

2n

(
1 +
√

2h0

)
=: dmax,n, n = 1, . . . , N. (24)

10



Algorithm 1: Generate adapted mesh

Input: κ, N , n0, J̃
1 h0 ← 1/(2n0)
2 G0 ←

{
[µ1h0, (µ1 + 1)h0]× [µ2h0, (µ2 + 1)h0] : µ1, µ2 = 0, . . . , n0 − 1

}
3 for n = 1, . . . , N do
4 Gn ← {}
5 hn ← hn−1/2
6 for K ∈ Gn−1 do
7 let ξK denote the center of K
8 dist(ξK ,S)← min

j∈J̃ |κ− |ξK − j||
9 if dist(ξK ,S) ≤ 1/2n then

10 Refine K into K1, . . . ,K4 of lateral length hn
11 Gn ← Gn ∪ {K1, . . . ,K4}
12 else
13 Gn ← Gn ∪ {K}

14 return GN

Proof. Consider the square K ∈Mn, n = 1, . . . , N , with center ξK . According to Algorithm 1, K is
generated by refining a larger square K̃ ∈Mn−1. The center ξ

K̃
of K̃ satisfies the condition

dist(ξ
K̂
,S) =

∣∣κ− |ξ
K̂
− j|

∣∣ ≤ 1

2n
for at least for one j ∈ J̃ . (25)

Based on the refinement, we first conclude that |ξK − ξK̃ | = (
√

2/4)hn−1, and hence from (25) that

dist(ξK ,S) ≤ dist(ξK , ξK̃) + dist(ξ
K̃
,S) ≤ 1

2n

(
1 +

√
2

2
h0

)
, n = 1, . . . , N . (26)

A bound for x ∈ K is obtained by adding half of the diameter of K,

dist(x,S) ≤
√

2

2
hn +

1

2n

(
1 +

√
2

2
h0

)
=

1

2n

(
1 +
√

2h0

)
.

As the right-hand side is independent of K, it actually holds for all x ∈ Rn.
On the other hand, any K ∈ Mn, n = 0, . . . , N − 1, that was not subject to the refinement in

the (n+ 1)-th refinement step, it implies

dist(ξK ,S) >
1

2n+1
, n = 0, . . . , N − 1. (27)

Hence, for any x ∈ K, we have

dist(x,S) ≥ dist(ξK ,S)− diam(K)/2 >
1

2n+1
−
√

2

2
hn =

1

2n+1

(
1−
√

2h0

)
.

As the right-hand side is independent of K, the estimate holds for any x ∈ Rn.

Remark 9. Proposition 8 shows that every set Rn is covered by annuli for which we have explicit
bounds for inner and outer radius. As each Rn is the union of the equally sized squares in Mn, we
may estimate the number of squares in Mn. For n = N , we have

|RN | ≤ π (κ+ dmax,N )2 − π (κ− dmax,N )2 = 4πκ dmax,N =
4πκ

2N

(
1 +
√

2h0

)
,

11



and hence

#MN =
|RN |
h2
N

≤ 4πκ

h0

(√
2 +

1

h0

)
2N .

Similarly, for n = 1, . . . , N − 1,

|Rn| ≤ 4πκ (dmax,n − dmin,n) =
2πκ

2n

(
1 + 3

√
2h0

)
,

and

#Mn =
|Rn|
h2
n

≤ 2πκ

h0

(
3
√

2 +
1

h0

)
2n .

We will now proceed with defining appropriate quadrature rules on each square in GN and then an-
alyze the corresponding error in computing the integral. We will strongly rely on the correspondence
of the squares in the mesh to representations of the integrand w. In accordance with Theorem 6, we
may use (15) for w on the smallest squares if RN ⊆ S̃ and if hN <

√
2 δ. In the first step, we will use

this observation to estimate the error of applying a composite trapezoidal rule on RN . Afterwards,
we investigate the error of a P -point Gaussian quadrature rule applied on all other squares, making
use of the representation as derived in Theorem 7. Finally, it is proved that combining both rules
for approximating the inverse Floquet-Bloch transform is super-algebraically convergent.

Recall that it suffices to consider the case j = 0 when approximating (20). Led by the properties
of the transformed total field established in Section 3, let us first sum up all required assumptions
for the integrand. Also recall the definition of the space X in (14).

Assumption 10. We assume that w ∈ X (H1
per(Ω

2π
H )) and that r, δ denote the corresponding numbers

from Theorem 6. Note that w then will also admit the representation (17).

4.2 The trapezoidal rule on the smallest squares

We first consider a square K ∈ MN with center ξK = (ξK,1, ξK,2). The vertices of K are given by
αp,q = ξK + (p − 1

2)hN e
(1) + (q − 1

2)hN e
(2), p, q = 0, 1, where e(j) denotes the j-th coordinate

vector. The integral w over K is approximated by the trapezoidal rule∫
K
w(α) dα =

h2
N

4

1∑
p,q=0

w(αp,q) + EtKw ,

where EtKw denotes the error. To estimate EtKw, we require the bilinear interpolation operator of
the transformed field in the points αp,q, which we shall denote by PK . Well-known estimates for
interpolation give

max
α∈K

|f(α)− PKf(α)| ≤ C max
ν=1,2

∥∥∥∥∂2f

∂α2
ν

∥∥∥∥
∞
h2
N , (28)

for any f ∈ C2(K). This estimate of course generalizes to C2-smooth functions on K with values in
a Sobolev space.

Theorem 11. Let w satisfy Assumption 10 and let h0, N be chosen such that dmax,N < r, hN ≤
√

2δ.
Then

max
α∈K

‖w(α)− PKw(α)‖
H̃1

per(Ω
2π
H )
≤ C 2−N/2 ,

where the constant C depends on κ and the functions wI appearing in (15) for all the centers of
expansion from Remark 6.
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Proof. According to Theorem 6, there exists α0 ∈ S such that the representation

w(α) =
∑

I⊆J(α0)

∏
j∈I

√
κ2 − |α− j|2 wI(α) ,

with analytic functions wI , holds for all α ∈ K. To establish the assertion, it is necessary to
distinguish between curves of singular points close to K and those at a larger distance. Hence, define

J1 = {j ∈ J(α0) : |κ− |α− j|| ≤ dmax,N for some α ∈ K} ,

and J2 = J(α0) \ J1. To abbreviate notation, we set γj(α) =
√
κ2 − |α− j|2 and introduce

vI1(α) =


w∅(α) +

∑
∅6=I2⊆J2

wI2(α)
∏
j∈I2

γj(α) , I1 = ∅ ,∑
I2⊆J2

wI1∪I2(α)
∏
j∈I2

γj(α) , I1 ⊆ J1 , I1 6= ∅ .

With this notation, the representation of w becomes

w(α) =
∑
I1⊆J1

vI1(α)
∏
j∈I1

γj(α) . (29)

The goal is thus to establish the asserted estimate for each term in (29). Throughout the arguments
we shall make use of a generic C denoting constants that depend on κ, the maximum norms of
derivatives of all wI up to second order and on maximum norms of all vI (but not their derivatives).

We start with terms for I1 = ∅. For w∅, the estimate follows directly from (28). This is, in
fact, also the initial step in an induction over the number of square root factors in a summand in
the definition of vI1 . For the induction step, assume that the estimate has been proven for some
bounded continuous function z. Let j ∈ I2. From Lemma 22 and the definition of J2, we obtain∣∣∣∣∂2γj(α)

∂α2
ν

∣∣∣∣ ≤ C (κ+ |α− j|)1/2

|κ− |α− j||3/2
≤ C

d
3/2
max,N

≤ C 23N/2 , α ∈ K , ν = 1, 2 . (30)

By the induction and properties of PK ,

|PK(γj z)(α)− γj(α) z(α)|
≤ |PK(γj z)(α)− γj(α)PKz(α)|+ |γj(α)PKz(α)− γj(α) z(α)|

≤ |PK(γj PKz)(α)− γj(α)PKz(α)|+ C ‖γj‖∞;V∗ 2−N/2.

Now using Eq. (28), the bilinearity of PKz and finally (30), the first term can be estimated by

|PK(γj PKz)(α)− γj(α)PKz(α)| ≤ C ‖z‖∞ max
ν=1,2

∥∥∥∥∂2γj
∂α2

ν

∥∥∥∥
∞;K

h2
N ≤ C 2−N/2 .

Next, we establish the estimate for terms with I1 6= ∅. Consider again a bounded continuous function
z for which the asserted estimate is valid and let now j ∈ I1. Similarly as before, we estimate

|PK(γj z)(α)− γj(α) z(α)|

≤ |PK(γj z)(α)− γj(α)PKz(α)|+ C ‖γj‖∞;K 2−N/2 ≤ C
(

1 + 2−N/2
)
‖γj‖∞;RN .

By the definition of J1, it follows that

‖γj‖∞;RN ≤ C |κ− |α− j|| ≤ C (dmax,N + diam(K)) ≤ C
(

2−N +
√

2hN

)
≤ C 2−N .

By induction, the asserted estimate now follows for all terms in (29).
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It is now straightforward to obtain a bound for approximating the integral on the union of all
K ∈MN . The corresponding quadrature operator will be denoted by

ITNw =
∑

K∈MN

∫
K
PKw(α) dα .

Theorem 12. Let w satisfy Assumption 10 and let N be chosen such that dmax,N < r, hN ≤
√

2δ.
Then, the error of the trapezoidal rule over RN is bounded by∥∥∥∥∫

RN
w(α) dα− ITNw

∥∥∥∥
H̃1

per(Ω
2π
H )

≤ C 2−3N/2.

Proof. By using the triangle inequality and Theorem 11, we have∥∥∥∥∫
RN

w(α) dα− ITNw
∥∥∥∥
H̃1

per(Ω
2π
H )

≤
∑

K∈MN

∫
K
‖(w − PKw)(α)‖

H̃1
per(Ω

2π
H )

dα

≤ C(κ) (#MN )h2
N 2−N/2 .

By using Remark 9, which establishes #MN ∼ 2N , and the construction hN ∼ 2−N , the asser-
tion follows.

4.3 The Gauss-Legendre quadrature rule on all larger squares

On all squares K ∈Mn for n = 1, . . . , N − 1, we will use a P -point Gauss-Legendre quadrature rule
in each coordinate direction to approximate the inverse Floquet-Bloch transform. We denote this
rule applied to a function f by IGP,Kf and set IGP,Rnf =

∑
K∈Rn

IGP,Kf . In the next theorem, we present

the well known general error estimate for applying such a rule.

Theorem 13. Let f ∈ C2P (Rn; H̃1
per(Ω

2π
H )). Then, there is a constant C such that∥∥∥∥∫

Rn
f(α) dα− IGP,Rnf

∥∥∥∥
H̃1

per(Ω
2π
H )

≤ C
(
h0

2

)2P 2−(2P+1)n

(2P + 1)!
max
α∈Rn

(
2∑

ν=1

∥∥∥∥∂2P f(α)

∂α2P
ν

∥∥∥∥
H̃1

per(Ω
2π
H )

)
.

Proof. Extending standard estimate for the P -point Gauss-Legendre quadrature rule (see e.g. [20,
Theorem 9.20]) to the two-dimensional case and our setting of functions mapping to a Sobolev space,
gives ∥∥∥∥∫

K
f(α) dα− IGP,Kf

∥∥∥∥
H̃1

per(Ω
2π
H )

≤ 4

(2P + 1)!

(
hn
2

)2P+2

max
α∈K

(
2∑

ν=1

∥∥∥∥∂2P f(α)

∂α2P
ν

∥∥∥∥
H̃1

per(Ω
2π
H )

)
.

Using the estimates from Remark 9, we obtain the asserted error bound.

Based on Theorem 13, the error of the Gauss-Legendre rule for computing the integral of w
over Rn depends on the 2P -th partial derivatives of w with respect to either α1 or α2. Recalling the
representation (17), it suffices to estimate the 2P -th partial derivatives of

∏
j∈I

√
κ2 − |α− j|2 vI(α)

with respect to only one coordinate. We do so in the next lemma using some standard estimates for
square root functions and their derivatives presented in the appendix.

Lemma 14. For any fixed ` ∈ N, there is a constant C such that

max
α∈Rn

∣∣∣∣∣∂`
√
κ2 − |α− j|2
∂α`ν

∣∣∣∣∣ ≤ C `!
(
dmax,n

)1/2(
dmin,n

)` , for n = 1, . . . , N − 1, ν = 1, 2, (31)

where dmin,n and dmax,n are defined by (23) and (24), respectively.
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Proof. According to Lemma 22 in Appendix, for all α ∈ Rn, n = 1, . . . , N − 1, there is a constant
C1 such that ∣∣∣∣∣∂`

√
κ2 − |α− j|2
∂α`ν

∣∣∣∣∣ ≤ C1 `!
∣∣κ+ |α− j|

∣∣1/2∣∣κ− |α− j|∣∣`−1/2
.

Hence, using Eqs. (23), (24), i.e., dmin,n ≤ |κ− |α− j|| ≤ dmax,n, leads to

max
α∈Rn

∣∣∣∣∣∂`
√
κ2 − |α− j|2
∂α`ν

∣∣∣∣∣ ≤ C `!
(
dmax,n

)1/2(
dmin,n

)` .

Theorem 15. Let I ⊆ J and denote by ΛI(α) :=
∏
j∈I

√
κ2 − |α− j|2 vI(α) one of the terms in

(17). Let m = #I. Then, for every ` ∈ N0 there exists C` > 0 such that

max
α∈Rn

∥∥∥∥∂`ΛI∂α`ν

∥∥∥∥
H̃1

per(Ω
2π
H )

≤
C`

(
dmax,n

)m/2(
dmin,n

)` , ν = 1, 2. (32)

Proof. From the generalized Leibniz formula, we obtain

∂`ΛI(α)

∂α`ν
=

∑
K0+···+Km=`

`!

K0! · · ·Km!

∂K0 vI(α)

∂αK0
ν

m∏
µ=1

∂Kµ

∂α
Kµ
ν

√
κ2 − |α− jµ|2 .

Using (18) and Lemma 14 yields for α ∈ Rn∥∥∥∥∂`ΛI(α)

∂α`ν

∥∥∥∥
H̃1

per(Ω
2π
H )

≤ C
∑

K0+···+Km=`

`!

K0! · · ·Km!

CK0(
dmin,n

)K0

m∏
µ=1

Kµ!
(
dmax,n

)1/2(
dmin,n

)Kµ .

Combining all constants gives the assertion.

Theorem 16. Let w satisfy Assumption 10. Then, for every P ∈ N, there exists a constant CP such
that ∥∥∥∥∥

N−1∑
n=1

∫
Rn

w(α) dα−
N−1∑
n=1

IGP,Rnw

∥∥∥∥∥
H̃1

per(Ω
2π
H )

≤ CP h2P
0 .

Proof. Combining Theorems 13 and 15, we obtain the estimate∥∥∥∥∫
Rn

w(α) dα− IGP,Rnw
∥∥∥∥
H̃1

per(Ω
2π
H )

≤ CP
(
h0

2

)2P 2−(2P+1)n

(dmin,n)2P
,

with some constant CP independent of h0 and n. From (23), we have dmin,n ≥ C 2−n. Hence, we
conclude ∥∥∥∥∫

Rn
w(α) dα− IGP,Rnw

∥∥∥∥
H̃1

per(Ω
2π
H )

≤ CP
h2P

0

2n
.

Summing over n = 1, . . . , N − 1 completes the proof.

Now, we are going to provide the analysis of the total error in numerical solution of the main
non-periodic scattering problem (1-4).

15



4.4 The combined quadrature rule

It is now straightforward to combine the quadrature rules of both the previous two subsections to up
to a super-algebraically convergent approximation to the Floquet-Bloch transform of the total field.

Corollary 17. Let w satisfy Assumption 10 and fix P ∈ N. Then there is CP > 0 such that for
every h0 and N with dmax,N < r, hN ≤

√
2δ, there holds∥∥∥∥∥

∫
V∗
w(α) dα − ITNw −

N−1∑
n=1

IGP,Rnw

∥∥∥∥∥
H̃1

per(Ω
2π
H )

≤ CP
(

2−3N/2 + h2P
0

)
.

Example 18. As examples for the performance achievable with our quadrature rule, we consider
functions w that are simply products of the square root functions occurring in the representation (15).
In this special case, all wI are either constant 0 or 1 and thus analytic on V∗. From (19) and the
estimates in the proof of Theorem 15 we expect the constant CP to be independent of P in this case.

We apply the quadrature rule to the approximation of two integrals,

I1 =

∫
V∗

√
κ2 − |α− j|2 dα , κ = 0.4 , j = (0, 0) ,

I2 =

∫
V∗

√
κ2 − |α− j|2

√
κ2 − |α− l|2 dα , κ = 1.4 , j = (−1, 0) , l = (−1, 1) .

For the first integral, the set S is a single circle entirely contained in the set V∗. Hence, the exact
value of the integral I1 can be obtained analytically. We have used Maple 2022 to carry out this task
and then computed approximations using our quadrature rule for various values of N and P .

In the second integral, the integrand is singular along two circular arcs contained in the set V∗.
The exact value of this integral is not available. Instead, we have computed a reference value for
N = 23 and P = 5 and compare our results against this.

The results are presented in Fig. 6. The theoretically predicted convergence rate from Corollary
17 is very well reflected, with exponential convergence with respect to N dominating the result for
small N , until the error of the Gauss quadrature rule becomes dominant. The results also nicely
illustrate our expectation that CP is independent of P for these examples.

To conclude our analysis, we combine the result of Corollary 17 with error bounds for the Galerkin
approximation of the solution of the variational equation (12).

Theorem 19. let F(α) ∈ H−1/2
per (Γ2π

H ) and w(α) denote the exact solution of the variational formu-
lation of (12) and wτ (α) its numerical approximation by the finite element method with mesh size
τ . For sufficiently small τ ,

‖w(α)− wτ (α)‖Hs(Ω2π
H ) ≤ C τ2−s ‖F(α)‖

H
−1/2
per (Γ2π

H )
, for s = 0, 1 ,

where C is independent of α.

Proof. The proof is completely analogous to that of Theorem 16 presented in [23].

Combing both error bounds yields the complete estimate for the proposed numerical method. To
concisely formulate this result, we introduce operators

Υjψ(α,x) = ψ(α,x) eiα·(x̃+2πj) and J −1
P,N,h0

ψ(x̃+ 2πj, x3) =

(
ITN +

N−1∑
n=1

IGP,Rn

)
Υjψ(x) .
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(a) I1 (b) I2

Figure 6: Difference between the value computed for Ij , j = 1, 2 by using the quadrature rule for
various N and P and the exact value (j = 1) or reference value (j = 2), respectively.

Theorem 20. Let ui ∈ H1
r (ΩH) for some |r| < 1 and additionally F ∈ X (H

−1/2
per (Γ2π

H )). Let u denote
the total field, i.e. the solution to (5), and for any α ∈ V∗ by wτ (α) the finite element approximation
to the solution of (12) for sufficiently small mesh size τ . Let h0 and N satisfy dmax,N < r, hN ≤

√
2δ

and fix P ∈ N. Then there holds the error estimate

‖u− J −1
P,N,h0

wτ‖Hs(Ω2π
H ) ≤ C

(
τ2−s + 2−3N/2 + h0

2P
)
, s = 0, 1 .

where C depends on P and ui.

Proof. For any α ∈ V∗, denote by w(α) the exact solution to (12). By using the inverse Floquet-
Bloch transform and then the triangle inequality, we have∥∥∥u− J −1

P,N,h0
wτ

∥∥∥
Hs(Ω2π

H )
=
∥∥∥J −1w − J −1

P,N,h0
wτ

∥∥∥
Hs(Ω2π

H )

≤
∥∥∥(J −1 − J −1

P,N,h0

)
w
∥∥∥
Hs(Ω2π

H )
+
∥∥∥J −1

P,N,h0
(w − wτ )

∥∥∥
Hs(Ω2π

H )
. (33)

Note that application of Υj is just a multiplication with an analytic function, hence Υjw satisfies
Assumption 10. For the first term of (33), Corollary 17 gives∥∥∥(J −1 − J −1

P,N,h0

)
w
∥∥∥
Hs(Ω2π

H )
≤ CP

(
2−3N/2 + h2P

0

)
.

Denote by α`, %`, for ` = 1, . . . , Q, all the quadrature points and corresponding weights appear-
ing in the rules ITN and IGP,Rn , respectively. It should be noted that all the weights are positive.
Accordingly, we may write using Theorem 19,∥∥∥J −1

P,N,h0
(w − wτ )

∥∥∥
Hs(Ω2π

H )
≤

Q∑
`=1

%` ‖w(α`)− wτ (α`)‖Hs(Ω2π
H ) ≤ Cτ

2−s
Q∑
`=1

%` ‖F(α`)‖H−1/2
per (Γ2π

H )
.

As F ∈ X (H
−1/2
per (Γ2π

H )), we may use the same approach as in the proof of Theorem 7 to derive an
expression analogous to (17) for F and conclude that supα∈V∗ ‖F(α)‖

H
−1/2
per (Ω2π

H )
< ∞. Then, using

the fact that
Q∑̀
=1

%` = |V∗| = 1, the proof is completed.
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5 Numerical results

In this section, we present numerical examples to illustrate the performance of the proposed method
for solving the three-dimensional scattering problems. To have access to an exact solution, we
consider the case of a radiation problem: We assume that Γ ⊆ R3

+, where R3
+ := {x ∈ R3

+ : x3 > 0}
is the upper half-space and that ui is the Dirichlet Green’s function for this upper half-space for some
source point y located between Γ and x3 = 0,

ui(x) = G(x,y) =
1

4π

[
exp (iκ|x− y|)
|x− y|

− exp (iκ|x− ŷ|)
|x− ŷ|

]
, x ∈ R3

+, x 6= y .

As indicated we assume that y = (y1, y2, y3)> satisfies 0 < y3 < ξ(y1, y2), and ŷ = (y1, y2,−y3)>

denotes the reflected point source. The reason for using this Green’s function instead of the standard
fundamental solution is its faster decay rate in vertically bounded strips. It is known that ui ∈
H1
r (ΩH) for r < 1 [25]. As we are considering a radiation problem, the “scattered field” us satisfies

us = −ui in Ω. Hence, we are able to compute explicitly the numerical approximation error in the
scattered field usτ obtained by Eq. (11) for the vanishing total field in the bounded cell Ω2π

H .
We fix H = 2, and assume that Γ is given by the bi-periodic function

ξ(x̃) = 0.6 + 0.3 sin(x1) cos(2x2) + 0.2 sin(2x1) sin(3x2), x̃ = (x1, x2) ∈ R2.

Moreover, we consider the point source y = (0, 0, 0.1)>.
To solve Eq. (11) in V∗×Ω2π

2 , we first generate an adapted square mesh in V∗ by using Algorithm 1
and tetrahedral meshes in Ω2π

2 with M3 nodes for M ∈ {16, 32, 64} so that the maximum diameter
τ for these three generated meshes is 0.4, 0.2 and 0.1, respectively. Note that these values for τ are
smaller than the essential limit of one-tenth of the wavelength for each value of κ considered below.
For each α ∈ V∗, we approximate the solution w(α, .) of (12) by P1−conforming piecewise linear
finite elements. The Floquet-Bloch transform of the incident field for each α ∈ V∗ is computed
by [25]

J ui(α,x) =
∑
j∈Z2

ei(α−j)·(x̃−ỹ)


ei
√
κ2−|α−j|2x3 sinc(

√
κ2 − |α− j|2y3) y3, y3 < x3,

ei
√
κ2−|α−j|2y3 sinc(

√
κ2 − |α− j|2x3)x3, otherwise.

The right-hand side of (11) is obtained the normal derivative and the DtN map of J ui(α,x).
Thus, the formula for J ui above in particular shows that the assumptions of Theorem 20 are satisfied.
The right hand side can be evaluated by truncating the infinite series if |j1| and |j2| > 40. Eventually,
we solve a sparse linear system for each α by the GMRES iterative method with tolerance 1× 10−6.

Below, we will demonstrate the dependence of the numerical errors on the discretization param-
eters τ , N and P . In Table 1, the relative errors and the computational orders, which are computed
the following formula

Error =
‖us − usτ‖L2(Ω2π

H )

‖us‖L2(Ω2π
H )

, Corder =
log(E1/E2)

log(τ1/τ2)
,

are listed for different values of the finite element discretization parameter τ and wave number κ.
This table indicates that the numerical results are consistent with the analytic results of Theorem 20
for each κ since the errors converge as τ decreases even with a low number of N and P .

In Tables 2 and 3, we report the relative errors with respect to N and P for different values of τ .
Since the error of the finite element method is dominated in the computational order, we can not see
the exponential convergence of the proposed numerical integration method with respect to N and P .
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Table 1: Relative error and computational order with respect to τ by N = 3, P = 2.

κ = 0.4 κ = 1 κ = 1.4
τ Error Corder Error Corder Error Corder

0.4 2.7760× 10−2 −− 2.2689× 10−2 −− 2.9006× 10−2 −−
0.2 8.2054× 10−3 1.75 6.7053× 10−3 1.75 8.0625× 10−3 1.84
0.1 2.2549× 10−3 1.86 1.9435× 10−3 1.78 2.0939× 10−3 1.94

Table 2: Relative error with respect to P and N for wave number κ = 0.4

τ = 0.4 τ = 0.1
P N = 2 N = 3 N = 2 N = 3

2 2.7928× 10−2 2.7760× 10−2 2.6373× 10−3 2.2549× 10−3

3 2.7928× 10−2 2.7760× 10−2 2.6373× 10−3 2.2549× 10−3

4 2.7928× 10−2 2.7760× 10−2 2.6373× 10−3 2.2550× 10−3

In Fig. 7, we show the numerical scattered field and its numerical error in L2-norm for κ = 1
with the parameter τ = 0.1, N = 3 and P = 2.

In conclusion, our method provides a way to very accurately approximate the inverse Floquet-
Bloch transform for solutions to a non-periodic scattering problem. Even for very small values of P ,
the error from this approximation is already dominated by the error from the finite element method.
Nevertheless, for larger wave numbers, the structure of the singular curves quickly becomes quite
complicated, making it necessary to use a large number of quadrature points. Thus, the accurate
solution of non-periodic scattering problems in periodic domains remains a computational challenge.
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Proof. For any ` ≥ 0, a direct calculation yields∣∣∣∣∣ d `

dα `

√
s± α

∣∣∣∣∣ =
|(2`− 3)!!|

2`
∣∣s± α∣∣1/2−` ≤ (2`)!!

2`
∣∣s± α∣∣1/2−` = `!

∣∣s± α∣∣1/2−` .

Lemma 22. Let ν ∈ {1, 2}. For any fixed ` ∈ N, there is a constant C such that∣∣∣∣∣∂`
√
κ2 − |α|2
∂α`ν

∣∣∣∣∣ ≤ C `!
∣∣κ+ |α|

∣∣1/2∣∣κ− |α|∣∣`−1/2
,

for all α ∈ R2 such that |α| 6= κ.

Proof. Without loss of generality, we treat the case ν = 1. Consider
√
κ2 − |α|2 =

√
s2 − α2

1 where

s =
√
κ2 − α2

2. Using the Leibniz formula and Lemma 21 leads to∣∣∣∣∣∂`
√
s2 − α2

1

∂α`1

∣∣∣∣∣ ≤ ∑̀
n=0

(
`

n

) ∣∣∣∣∂n√s+ α1

∂αn1

∣∣∣∣
∣∣∣∣∣∂`−n

√
s− α1

∂α`−n1

∣∣∣∣∣
≤
∑̀
n=0

(
`

n

)
n! (`− n)! |s+ α1|1/2−n |s− α1|1/2−`+n

≤ C `!
√
|s2 − α2

1|(
min

{∣∣s+ α1

∣∣, ∣∣s− α1

∣∣})` .
Now, it remains to estimate min

{∣∣s+ α1

∣∣, ∣∣s− α1

∣∣}, and we can distinguish two cases as follows:

1. If |α2| ≥ κ, then s = i
√
α2

2 − κ2. Hence,∣∣s+ α1

∣∣ =
∣∣s− α1

∣∣ =
√
α2

2 − κ2 + α2
1 =

√
|κ2 − |α|2| ≥

∣∣κ− |α|∣∣ .
2. If |α2| < κ, then s =

√
κ2 − α2

2 > 0. In this case, we write

min
{∣∣s+ α1

∣∣, ∣∣s− α1

∣∣} =
∣∣s− |α1|

∣∣ =

∣∣κ2 − |α|2
∣∣√

κ2 − α2
2 + |α1|

.

We conclude that

min{
∣∣s+ α1

∣∣, ∣∣s− α1

∣∣} ≥ ∣∣κ2 − |α|2
∣∣

κ+ |α|
=
∣∣κ− |α|∣∣ .

In both cases, we find by substituting s2 = κ2 − α2
2 in the estimate found above that∣∣∣∣∣∂`

√
κ2 − |α|2

∂α`1

∣∣∣∣∣ ≤ C `!
∣∣κ+ |α|

∣∣1/2∣∣κ− |α|∣∣`−1/2
.
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