
A fully parallelized and budgeted
multi-level Monte Carlo method and
the application to acoustic waves

Niklas Baumgarten, Sebastian Krumscheid,
Christian Wieners

CRC Preprint 2023/18, July 2023

KARLSRUHE INSTITUTE OF TECHNOLOGY

KIT – The Research University in the Helmholtz Association www.kit.edu

Participating universities

Funded by

ISSN 2365-662X

2

A FULLY PARALLELIZED AND BUDGETED MULTI-LEVEL
MONTE CARLO METHOD AND THE APPLICATION TO

ACOUSTIC WAVES∗

NIKLAS BAUMGARTEN† , SEBASTIAN KRUMSCHEID‡ , AND CHRISTIAN WIENERS§

Abstract. We present a novel variant of the multi-level Monte Carlo method that effectively
utilizes a reserved computational budget on a high-performance computing system to minimize the
mean squared error. Our approach combines concepts of the continuation multi-level Monte Carlo
method with dynamic programming techniques following Bellman’s optimality principle, and a new
parallelization strategy based on a single distributed data structure. Additionally, we establish
a theoretical bound on the error reduction on a parallel computing cluster and provide empirical
evidence that the proposed method adheres to this bound. We implement, test, and benchmark
the approach on computationally demanding problems, focusing on its application to acoustic wave
propagation in high-dimensional random media.

Key words. Uncertainty Quantification, High Performance Computing, Multi-level Monte
Carlo Method, Knapsack Problem, Dynamic Programming, Parallelization, Wave Propagation

1. Introduction. Being certain about an outcome of any physical, technical
or economical process comes with a cost. This cost manifests in several ways and
often includes conducting extensive research, data collection, analysis, and employing
sophisticated modeling or simulation techniques. Furthermore, achieving certainty
may involve dealing with extremely complex systems in high dimensions and intricate
mathematical models which may require the usage of highly advanced and resource-
intensive computational technologies.

In this paper, we investigate the computational aspects associated with the cost
of certainty, specifically the cost involved in quantifying uncertainty. To address
this problem, we propose an integrated framework that combines multi-level Monte
Carlo (MLMC), finite element (FE), and dynamic programming (DP) methods. In
particular, we introduce a fully parallelized and budgeted variant of the multi-level
Monte Carlo method, named as Budgeted MLMC (BMLMC) method. Additionally,
we present novel parallelization concepts to handle substantial computational loads.

In recent years, the combination of MLMC and FE methods has been success-
fully applied to partial differential equations (PDEs) involving random parameters.
Notable instances include elliptic PDEs [2, 7, 16, 17, 18, 19, 55] as well as hyper-
bolic PDEs [6, 31, 40, 41, 42, 43, 44]. The MLMC-FE method provides significant
computational efficiency, enabling the achievement of desired accuracy levels while
considerably reducing computational requirements compared to a single-level Monte
Carlo (MC) method. Despite the existence of alternative uncertainty quantification
(UQ) methods, such as stochastic collocation (SC) [3, 4, 46, 45], quasi-Monte Carlo
(QMC) techniques [14, 30, 52], as well as various multi-level and multi-index variants
described in [34, 35, 38, 54], the MLMC method is a popular choice due to its non-

∗Submitted to the editors July 21, 2023
Funding: This work was partly funded by the German Research Foundation (DFG) through

an association with the CRC 1173 on Wave Phenomena (Project-ID 258734477). The numerical
experiments were executed on the Hochleistungsrechner Karlsruhe (HoReKa) funded by the Ministry
of Science, Research and the Arts Baden-Württemberg and by the Federal Ministry of Education
and Research.

†Institut für Angewandete und Numerische Mathematik, KIT, niklas.baumgarten@kit.edu.
‡Steinbuch Computing Center (SCC), KIT, sebastian.krumscheid@kit.edu.
§Institut für Angewandete und Numerische Mathematik, KIT, christian.wieners@kit.edu.

1

ar
X

iv
:2

30
7.

10
76

7v
1

 [
m

at
h.

N
A

]
 2

0
Ju

l 2
02

3

mailto:niklas.baumgarten@kit.edu
mailto:sebastian.krumscheid@kit.edu
mailto:christian.wieners@kit.edu
Christian Knieling

2 N. BAUMGARTEN, S. KRUMSCHEID, AND C. WIENERS

intrusive implementation and the moderate assumptions it imposes on the problem
and the employed discretization.

The problems that can be addressed using the method proposed in this paper fall
under the domain of forward UQ methods. These problems typically involve solving
linear or nonlinear partial differential equations (PDEs) with random input data. In
our study, we specifically concentrate on the application of the method to acoustic
wave equations in random media. This particular model is of high significance in
applications such as seismic imaging and geophysics. As a hyperbolic PDE, it presents
unique challenges, including issues related to low regularity, stability conditions, and
the handling of high-dimensional random input data.

To tackle this challenge, we developed a high-performance computing (HPC) ap-
proach and drew inspiration from previous works such as [44, 57], which address
similar problems using MLMC methods. Additionally, we refer to studies such as [11,
20, 24, 36], which focus on different discretization techniques for this particular prob-
lem. However, the size of the resulting discrete model, the number of required samples,
and the diverse array of solution approaches prompted us to explore new strategies for
distributing the computational workload and effectively managing the interplay of all
algorithms involved. Consequently, our research and contributions can be summarized
by the following three points.

Budgeted multi-level Monte Carlo method. We present a novel budgeted variant of
the MLMCmethod which we call BMLMCmethod. In the classical MLMC framework
described in [7, 18, 17, 27, 28, 55], a desired tolerance for the total root mean squared
error (RMSE), denoted as ϵ > 0, is selected. Subsequently, a sequence of samples
is generated either based on knowledge of the solution’s regularity or by adaptive
methods, such as the Continuation MLMC (CMLMC) method [19, 29]. The objective
of the adaptive methods is minimizing the overall computational cost while achieving
the specified tolerance. In contrast, the BMLMC method is designed to minimize the
RMSE and to operate within a given cost budget denoted as B > 0. The cost and
the budget are specifically measured in units of CPU seconds. A similar approach is
also taken by the multi-fidelity method [49] and the unbiased estimation in [51]. This
point of view is motivated in the context of this work by two key reasons.

In HPC applications, it is customary to allocate a cost budget to secure a spot in
the queue of an HPC cluster. In our notation, this is represented as B = |P|·TB, where
|P| corresponds to the total number of processing units, and TB represents the time
budget. Even with a priori knowledge about the solution’s regularity, the convergence
rates, the parallelization strategies and the computational infrastructure, determining
the tolerance ϵ that can be achieved with a budget B remains an NP-hard task. Thus,
it is more natural in HPC applications to replace the predefined tolerance ϵ with a
predefined budget B and allow the method to determine the smallest achievable ϵ
while fully utilizing the budget. This approach aligns with the practical requirements
and constraints encountered in HPC scenarios.

Furthermore, employing a budgeted algorithm enables us to address the question
of determining the optimal algorithm stack for a given problem. Specifically, we aim
to identify the algorithm stack that yields the smallest error while utilizing the same
computational resources. We can investigate this question empirically by conducting
experiments where various algorithms, e.g. different time stepping methods, are evalu-
ated using an equal budget, and subsequently comparing the resulting error estimates.
This empirical analysis allows us to make informed decisions regarding the selection of
algorithm combinations that optimize the trade-off between computational resources
and the achieved accuracy.

A FULLY PARALLELIZED AND BUDGETED MLMC METHOD 3

In order to implement our method, we introduce the reserved computational bud-
get as an additional constraint, effectively transforming the problem into a knapsack
problem. To solve this knapsack problem, we decompose it into multiple subproblems,
each of which is solved under an optimality condition. Specifically, we combine the
Continuation MLMC (CMLMC) method [19] with dynamic programming techniques,
allowing us to address the problem without any prior knowledge of its specific char-
acteristics or computational complexity. The method proves to be highly robust and
performant, and can be widely applied to a general class of PDEs in conjunction with
the proposed parallelization strategy.

Parallelization Strategy. Parallelization is an omnipresent challenge in various
applications, including manufacturing, logistics, and computer networks. The load
distribution of MLMC methods has already been addressed in prior work, such as [5,
25, 53, 56]. However, our parallelization in this study offers a distinguishing fea-
ture compared to most of the previous work by being done on a single distributed
data structure. This technical choice allows for a more efficient and adaptable load
distribution.

In our proposed parallelization scheme, we leverage a multi-mesh parallelism on
distributed memory, which can be applied not only to arbitrary FE spaces but also to
other non-intrusive UQ algorithms beyond MLMC. The key idea is to assemble large
algebraic systems on distributed memory across multiple computing nodes, while
dynamically adapting the system’s structure based on the number of samples that
need to be computed. This integrated approach seamlessly combines FE with UQ
methods, resulting in a highly efficient implementation that fully exploits hardware
capabilities without compromising the non-intrusive nature of UQ methods. We refer
to this parallelization strategy throughout the paper as multi-sample finite element
method (MS-FEM).

By adopting this parallelization strategy, we achieve a highly adaptive and hard-
ware proximal implementation, providing significant computational benefits by min-
imizing the communication overhead and processor idling. In summary, our par-
allelization approach offers a novel perspective on distributing computational load
and demonstrates its effectiveness in enhancing the performance of UQ algorithms,
including the MLMC method.

Numerical Experiments and Software. Lastly, this paper provides a concise in-
sight into the developed software, M++ [59], along with a range of automated numer-
ical experiments. An essential aspect of our implementation is its flexibility, as the
methodology can be seamlessly integrated with arbitrary FE and other non-intrusive
UQ methods. Consequently, our approach allows for the unified application of these
methods to elliptic, parabolic, and hyperbolic PDEs [8, 9], although our focus in this
paper is specifically on the application of the BMLMC method to the acoustic wave
equation.

It is worth noting that the empirical investigations concerning the algorithm stack
have been meticulously conducted using a fully automated approach via a continuous
delivery pipeline, ensuring the reproducibility and potential improvement of the pre-
sented results. In particular, we describe experiments performed within our framework
that encompass the parallelization, model assessment, and methodology evaluation.

Outline. The paper is structured as follows. In Section 2 we establish the no-
tation, state the underlying assumptions, and present the classical MLMC method.
Subsequently, we derive the BMLMCmethod using dynamic programming techniques.
Notably, we also demonstrate in this section that any parallel and adaptive imple-
mentation of an MLMC method inherently contains an error contribution that cannot

4 N. BAUMGARTEN, S. KRUMSCHEID, AND C. WIENERS

be eliminated by increasing the number of processing units. Section 2 is designed to
be independent of the specific application, making it applicable to other problems
as well. In Section 3, we discuss details of the multi-sample finite element method
(MS-FEM), which represents an ideal fit for the requirements of the BMLMC method,
offering a highly adaptive and efficient parallelization strategy. We provide a expla-
nation of how we define a multi-sample discontinuous Galerkin (dG) finite element
space, which serves as the basis for the subsequent discussion on the discretization
of the acoustic wave equation under uncertainty in Section 4. Specifically, we in-
troduce a semi-discrete dG system solved with implicit time-stepping methods in the
time domain. Section 5 presents numerical results achieved using the proposed frame-
work. We conclude with a comprehensive discussion and an outlook on further work
in Section 6.

2. A Budgeted Multi-level Monte Carlo Method. In this section, we pres-
ent the budgeted multi-level Monte Carlo (BMLMC) method along with novel ap-
proaches for determining the optimal load distribution among a given set of processing
units. We begin by establishing the notation and outlining the main assumptions on
the stochastic model in Subsection 2.1. Next, in Subsection 2.2, we provide an over-
view of the classical multi-level Monte Carlo method [27, 28]. Subsection 2.3 focuses
on implementation techniques [19, 29] that are utilized in conjunction with dynamic
programming (DP) to develop the BMLMC method, as described in Subsection 2.4.
Finally, in Subsection 2.5, we explain the resulting algorithm as a distributed state
machine, leveraging adaptive parallelization techniques and show that the error of
any parallel and adaptive implementation of the MLMC method obeys a bound with
respect to the computing time and the amount of processing units.

2.1. Assumptions and Notation. In the following, we consider a bounded
polygonal domain D ⊂ RD with spatial dimension D ∈ {1, 2, 3}, and a probability
space (Ω,F ,P). We are interested in solving PDEs with uncertainly determined input
data, i.e., models of the form L(ω,x)u(ω,x) = b(ω,x), where ω ∈ Ω corresponds to
a specific outcome in the probability space and u(ω,x) represents the solution of the
PDE at spatial location x ∈ D. The differential operator L(ω,x) depends on the input
data and acts on the solution u(ω,x), while b(ω,x) is a forcing term on the PDE.
Later in this work, we also consider time dependent PDE models, which however,
relax to the above formulation for a fixed time point. Thereby, the time dependence
is neglected throughout this section. For each ω ∈ Ω, the solution lies in a separable
Hilbert space V . Additionally, we consider a bounded functional Q(ω) := Q(u(ω,x))
that represents a quantity of interest (QoI) of the solution.

As a start, we consider the objective of the method as to estimate the expected
value of Q with a prescribed level of accuracy by approximating the PDE using a FE
solution uℓ(ω) ∈ Vℓ and employing an MC method to approximate the expectation. In
this context, Vℓ represents a discrete FE space at level ℓ and uℓ(ω,x) solves the discrete
problem Lℓ(ω,x)uℓ(ω,x) = bℓ(ω,x). A specific study of such a system is given
in Section 4 in form of the acoustic wave equation discretized with non-conforming
dG elements. Furthermore, we denote by Qℓ(ω) := Qℓ(uℓ(ω,x)) the quantity of
interest (QoI) defined on Vℓ and give samples the index m, i.e., uℓ(ω

(m),x) represents
the FE solution computed using input data corresponding to ω(m). To numerically
represent the input, we make the following assumption.

A FULLY PARALLELIZED AND BUDGETED MLMC METHOD 5

Assumption 2.1. We rely on the finite dimensional noise assumption (FDNA):
the space of outcomes Ξ of any random field Y : Ω×D → Ξ is of finite dimension K,
i.e., any sample can be represented by a vector y(m) = (y1, . . . , yK)⊤ ∈ Ξ ⊂ RK .

By the FDNA, we can express samples of the input data by the vector y(m) ∈ RK ,

so that we simply write u
(m)
ℓ := uℓ(y

(m),x) and Q
(m)
ℓ := Qℓ(y

(m)).
A Monte Carlo method for a FE solution estimates the expected value of a QoI

(2.1) E[Q] :=

∫
Ω

Q(ω)dP ≈ 1

M

M∑
m=1

Qℓ(y
(m)) =: Q̂ℓ ,

depending on independent and identically distributed (iid) samples y(m) ∈ Ξ ⊂ RK

drawn from the distribution of the input data. Computing Qℓ(y
(m)) requires to solve

a PDE with a FE method and thereby is a costly and inexact evaluation admitting
a discretization error errdisc. Thus, estimating the expected value comes with an
estimator bias induced by the FE method giving a mean squared error (MSE)

(2.2) errMSE = E
[(

Q̂ℓ − E[Q]
)2]

= M−1V[Qℓ]︸ ︷︷ ︸
Estimator variance

+ E[Qℓ −Q]︸ ︷︷ ︸
Bias

2
,

where V[Qℓ] is the variance of the random variable Qℓ and the corresponding root
mean squared error (RMSE) is given by errRMSE =

√
errMSE. To link the admitted

error and the computational cost, we introduce the following definition of a cost-
measure.

Definition 2.2 (ϵ-time, ϵ-cost and cost-measure). For given ϵ > 0, the computing
time to achieve a root mean squared error errRMSE ≤ ϵ is the ϵ-time Tϵ. The ϵ-cost
Cϵ = |P| · Tϵ is the corresponding computational cost on a parallel machine, where
|P| is the total count of involved processing units.

On a serial machine the ϵ-cost simplifies to Cϵ,s = Tϵ. Since the classical theory of
MLMC methods does not consider parallel machines, the methods in subsections 2.2–
2.3 are formulated for a serial ϵ-cost.

Clearly to bound (2.2) and the total computational cost, we have to assume that
we can control the FE error with respect to the discretization parameter hℓ and that
the computational cost to evaluate the FE solution for a single sample C

(
Qℓ(y

(m))
)
is

finite. Combined with the third assumption given below, we can express a bound for
the total computational cost of the MLMC method with respect to the target RMSE
ϵ in the next section.

Assumption 2.3. Suppose the approximation scheme to compute Qℓ satisfies

|E[Qℓ −Q]| ≤ cαhαℓ(2.3)

V[Qℓ −Qℓ−1] ≤ cβhβℓ(2.4)

C
(
Qℓ(y

(m))
)
≤ cγh−γ

ℓ(2.5)

with α, β, γ > 0 and cα, cβ , cγ > 0 independently on ℓ.

2.2. Introduction to Multi-level Monte Carlo methods. The underlying
idea of the MLMC method is to construct a model hierarchy for the imposed problem.
In FE applications, this can be done with nested meshes {Mℓ}Lℓ=0 with decreasing
mesh widths, e.g. hℓ = 2−ℓh0, for the discretization on level ℓ = 0, . . . , L. The goal

6 N. BAUMGARTEN, S. KRUMSCHEID, AND C. WIENERS

is to reduce the number of evaluations of the model on the finest level as much as
possible and to minimize the overall estimator variance. For a fixed finest level L, the
expected value of QL can be written as a telescoping sum over the levels

(2.6) E[QL] = E[Q0]+

L∑
ℓ=1

E[Qℓ−Qℓ−1] =

L∑
ℓ=0

E[Yℓ] , Y0 := Q0 , Yℓ := Qℓ−Qℓ−1 .

Each expected value of Yℓ in the telescoping sum is now estimated individually with
a MC method, resulting in the MLMC estimator

(2.7) Q̂MLMC
{Mℓ}L

ℓ=0
=

L∑
ℓ=0

Ŷℓ , Ŷℓ =
1

Mℓ

Mℓ∑
m=1

Yℓ(y
(m)) ,

where {Mℓ}Lℓ=0 denotes a sequence for the number of samples on each level. It is im-
portant that every Yℓ(y

(m)) = Qℓ(y
(m))−Qℓ−1(y

(m)) uses the same sample y(m) ∈ Ξ
for two different meshes. Since all the expected values E[Yℓ] are estimated indepen-
dently, the variance of the MLMC method can be quantified on each level individually
and with this, we obtain for the mean squared error

(2.8) errMSE

(
Q̂MLMC

{Mℓ}L
ℓ=0

)
=

L∑
ℓ=0

1

Mℓ
V[Yℓ]︸ ︷︷ ︸

Estimator variance

+ E[QL −Q]︸ ︷︷ ︸
Bias

2
,

cf. [18]. Assuming we want to achieve a MSE of ϵ2, i.e., an RMSE tolerance of ϵ, we
can reach this accuracy with θ ∈ (0, 1), if

E[QL −Q]2 < (1− θ)ϵ2 and V
[
Q̂MLMC

{Mℓ}L
ℓ=0

]
< θϵ2.

The parameter θ can thereby be used to tune the variance bias trade-off in order
to favor the minimization of one term over the other. Numerical experiments have
shown that for our particular application θ = 0.5 is a sufficient choice [8].

Quantitatively, the computational cost of the method is given by

(2.9) C
(
Q̂MLMC

{Mℓ}L
ℓ=0

)
=

L∑
ℓ=0

Mℓ∑
m=1

Cℓ(y
(m)) =

L∑
ℓ=0

MℓĈℓ , Ĉℓ =
1

Mℓ

Mℓ∑
m=1

Cℓ(y
(m)) ,

where Ĉℓ is the sample mean of the cost. We now want to find the optimal sequence
of samples {Mℓ}Lℓ=0, such that the estimator cost is minimized while achieving an
MSE tolerance of ϵ2, cf. [29]. By presetting the MSE tolerance, we can also deduce
from (2.3) the highest level L since the estimator bias has to be smaller than (1−θ)ϵ2.
Thereby, it is sufficient to minimize the estimator cost while achieving an estimator
variance of θϵ2, i.e., we search for {Mℓ}Lℓ=0 solving

(2.10) min
{Mℓ}L

ℓ=0

C
(
Q̂MLMC

{Mℓ}L
ℓ=0

)
s.t.

L∑
ℓ=0

M−1
ℓ V[Yℓ] = θϵ2.

By treating eachMℓ as a continuous variable, the solution to this optimization problem
is given by

(2.11) Mopt
ℓ =

⌈(√
θϵ
)−2

√
V[Yℓ]

Ĉℓ

(
L∑

ℓ′=0

√
V[Yℓ′]Ĉℓ′

)⌉
for ℓ = 0, . . . , L.

We lastly restate the ϵ-cost theorem of the MLMCmethod in the form given in [18, 27]:

A FULLY PARALLELIZED AND BUDGETED MLMC METHOD 7

Theorem 2.4 (Bounded ϵ-cost of the MLMC method). Suppose assumption 2.3
is fulfilled with some positive rates α, β, γ > 0 with α ≥ 1

2 min {β, γ} and cα, cβ , cγ > 0
independent of hℓ. Then for any 0 < ϵ < e−1, there exists a maximum level L ∈ N
and a sequence of samples {Mℓ}Lℓ=0 such that

errRMSE

(
Q̂MLMC

{Mℓ}L
ℓ=0

)
< ϵ with Cϵ

(
Q̂MLMC

{Mℓ}L
ℓ=0

)
≲

ϵ−2 β > γ ,

ϵ−2 log(ϵ)2 β = γ ,

ϵ−2−(γ−β)/α β < γ .

with ≲ denoting that the left hand side obeys an upper bound given by the right hand
side up to some hidden constant.

2.3. Implementation Techniques. Implementing the MLMC method with
on-the-fly estimation of Assumption 2.3 is well described in [29] and shortly recalled
to commit to our notation. This includes a way to find the optimal sequence {Mℓ}Lℓ=0

and the highest level L during runtime. Choosing Mopt
ℓ by (2.11) requires estimates

for the variance V[Yℓ] and the sample mean of the cost Ĉℓ, which are unknown a pri-
ori. The idea is to perform the MLMC method with an initial sequence {M init

ℓ }Linit

ℓ=0

to get first estimates for the sample mean of the cost Ĉℓ and the variance V[Yℓ] by
the sample variance estimator

s2Yℓ
=

1

Mℓ − 1
SYℓ,2 with SYℓ,2 =

Mℓ∑
m=1

(
Y

(m)
ℓ − Ŷℓ

)2
.(2.12)

From these initial estimates on, the MLMC method is executed until the target RMSE
ϵ is reached by continuously updating the sample statistics. Hence, the amount of
samples accumulates and the required amount is given by △Mℓ := max{M̂opt

ℓ −Mℓ, 0}
with the optimal sample amount based on the estimates

(2.13) M̂opt
ℓ =

(√

θϵ
)−2

√
s2Yℓ

Ĉℓ

(
L∑

ℓ′=0

√
s2Yℓ′

Ĉℓ′

) for ℓ = 0, . . . , L .

With assumption (2.3) and the geometric sum, an estimate for the bias is given by

(2.14) êrrdisc = max

{
Ŷℓ

2α̂ − 1
2−α̂(L−ℓ) : ℓ = 1, . . . , L

}
,

which also incorporates lower levels for robustness of the estimate, cf. [29], and uses

an approximation for α by fitting the data {Ŷℓ}Lℓ=0 to assumption (2.3)

(2.15) min
(α̂, ĉα)

L∑
ℓ=1

(
log2 Ŷℓ + α̂ℓ− ĉα

)2
.

This gives the estimates α̂ and ĉα for the rate α and the constant cα which can be
done in a similar way for (γ, cγ) and (β, cβ). The estimator variance of the MLMC
method is approximated with the sample variance by

êrrinput =

L∑
ℓ=0

1

Mℓ
s2Yℓ

8 N. BAUMGARTEN, S. KRUMSCHEID, AND C. WIENERS

and, finally, an estimate for the MSE can be computed with

êrrMSE = êrrinput + êrr
2
disc .

The above techniques are further refined by the CMLMC method [19], also applied
in [39, 50]. The central idea is to create a sequence ϵi with ϵi → ϵmin > 0 and
by doing so, the above estimates and the required number of samples {Mi,ℓ}Li

ℓ=0 are
continuously updated for each new tolerance. This idea is now extended with an
additional constraint on the total cost, i.e., a budget, giving the budgeted MLMC
method.

2.4. Budgeted Multi-level Monte Carlo. In large HPC systems, the work-
load managers require to reserve computational budget B := |P| · TB to initiate a
job on the cluster. Therefore, we define an execution of a method on a computing
cluster as feasible, if the method is capable of fully utilizing the computational budget
without exceeding it. In light of this, we adapt the perspective of Theorem 2.4. The
final implementation will contain certain parts of the algorithm which can be paral-
lelized, while others cannot. We denote λp ∈ [0, 1] as the parallelization constant,
representing the portion of the implemented algorithm that is executed in parallel on
|P| units.

Proposition 2.5 (Convergence of a parallelized BMLMC method). For a fea-
sible execution of the budgeted method by a parallel implementation, the estimate for
the error splits up into two parts

(2.16) ϵ ≲ (1− λp) · T−δ
B︸ ︷︷ ︸

=:ϵs

+λp(|P| · TB)
−δ︸ ︷︷ ︸

=:ϵp

with δ =

{
1
2 β > γ
α

2α+(γ−β) β < γ

depending on the parallization constant λp ∈ [0, 1].

For the proof we refer to Subsection 2.5, here we only comment on the case λp = 1
when a perfectly parallel implementation can be realized. Then, in case of a feasible
run, the final ϵ-cost equals the budget, and the estimate

ϵ ≲ B−δ =

{
B−1/2 β > γ

B−α/(2α+(γ−β)) β < γ
(2.17)

simply follows by inverting Theorem 2.4. Similar results can be found e.g. in [37, 44]
where the word work was used instead of budget. The case β = γ is neglected for
the sake of a leaner representation and since it has no practical relevance if the cost
is measured in units of CPU seconds.

This result does not tell us how to utilize the budget. Thereby, the new algorith-
mic challenge is to find the best way to invest B, such that we minimize the error.
Formally, this is expressed by a knapsack problem:

Problem 2.6 (MLMC Knapsack). Find L and {Mℓ}Lℓ=0, such that the MSE is
minimized while staying within the cost budget B, i.e.,

min
(L,{Mℓ}L

ℓ=0)
errMSE =

L∑
ℓ=0

1

Mℓ
V[Yℓ] +

(
E[QL −Q]

)2
(2.18a)

s.t.

L∑
ℓ=0

Mℓ∑
m=1

Cℓ(y
(m)) ≤ B.(2.18b)

A FULLY PARALLELIZED AND BUDGETED MLMC METHOD 9

We remark the change of perspective to (2.10). The objective now is to mini-
mize the complete MSE including the bias, while the constraint is given by the com-
putational budget. Knapsack problems, in general, are combinatorial optimization
problems and often arise while searching for the optimal allocation of resources, e.g.,
in manufacturing, in computer networks or in financial models. These integer opti-
mization problems are NP-hard and require effective algorithms often designed with
dynamic programming (DP) techniques [12, 13]. The key idea of DP is to split up the
initial problem into overlapping subproblems and solve them recursively with some
optimal policy, while reusing memoized results stored in a suitable data structure.

Now, the goal is to derive an algorithm satisfying Bellman’s optimality condition of
DP, i.e., an algorithm finding a sequence of optimal actions, such that at each state an
objective value is maximized. To do so, we have to construct a reward/pay-off function
which describes in each state the reward/pay-off for the maximization, if a certain
action is taken. For the construction of a suitable reward function, we recognize that
we do not know the exact quantities in (2.18a) and (2.18b). The following optimization
problem is still NP-hard but at least exclusively contains computable quantities.

Problem 2.7 (Approximated MLMC Knapsack). Find L and the sequence
{Mℓ}Lℓ=0, such that the estimated MSE is minimized, while staying within the cost
budget B, i.e.,

min
(L,{Mℓ}L

ℓ=0)
êrrMSE =

L∑
ℓ=0

1

Mℓ
s2Yℓ

+ êrr
2
disc(2.19a)

s.t.

L∑
ℓ=0

MℓĈℓ ≤ B ,(2.19b)

where êrrdisc is computed with (2.14) and the sample variance s2Yℓ
by (2.12).

The idea is to identify the MSE as the value we try to optimize and to split up the ini-
tial problem into several estimation rounds with a decreasing sequence of tolerances ϵi
as in the CMLMC method [19]. This creates subsequent optimization problems where
each solution yields some reward to the total optimization. To this end, we equip all
quantities of Subsection 2.3 with an index i. In the following, we motivate the exis-
tence of a pay-off/reward function depending on the chosen action ϵi, and the current
state of the simulation, i.e., the collected data up to i− 1.

Suppose we are in estimation round i and M init
0,ℓ is given. For ℓ = 0, . . . , Li, we

separate

Mi,ℓ = Mi−1,ℓ︸ ︷︷ ︸
available data

+ △Mi,ℓ︸ ︷︷ ︸
optimal choice

with △M0,ℓ :=M init
0,ℓ and M−1,ℓ := 0

such that △Mi,ℓ is computed using (2.13), hence after the estimation round we have

Mi,ℓ = M̂opt
i,ℓ . Thereby, we can express the amount of samples based on the currently

available data and some optimal policy, i.e., △Mi,ℓ is chosen such that the cost is
minimized and a target MSE tolerance of ϵ2i is reached. With △Mi,ℓ and accumulative

10 N. BAUMGARTEN, S. KRUMSCHEID, AND C. WIENERS

update formulas for the sample mean and sample variance [48], we further separate

Ĉi,ℓ = Ĉi−1,ℓ +
△Mi,ℓ

M̂opt
i,ℓ

(△Ĉi,ℓ − Ĉi−1,ℓ) with △Ĉi,ℓ :=
1

△Mi,ℓ

M̂opt
i,ℓ∑

m=Mi−1,ℓ+1

C
(m)
ℓ

Ŷi,ℓ = Ŷi−1,ℓ +
△Mi,ℓ

M̂opt
i,ℓ

(△Ŷi,ℓ − Ŷi−1,ℓ) with △Ŷi,ℓ :=
1

△Mi,ℓ

M̂opt
i,ℓ∑

m=Mi−1,ℓ+1

Y
(m)
ℓ

and likewise for

s2Yi,ℓ
=

SY2,i,ℓ

M̂opt
i,ℓ − 1

,

we separate

SY2,i,ℓ
= SY2,i−1,ℓ

+ △SY2,i,ℓ
+
Mi−1,ℓ△Mi,ℓ

M̂opt
i,ℓ

(
Ŷi−1,ℓ − △Ŷi,ℓ

)2
,

where

△SY2,i,ℓ
=

M̂opt
i,ℓ∑

m=Mi−1,ℓ+1

(
Y

(m)
ℓ − △Ŷi,ℓ

)2
.

As α̂i is computed with (2.15), i.e., a fit to the available data, we can express (2.19a)
and (2.19b) for a particular estimation round i as a nonlinear function of preexisting
data (the state) and the optimal policy (2.13). This motivates a function for the pay-
off purely determined by the state and the optimal policy. We denote this function
by △errMSE(datai−1,△datai) which represents the error reduction in one estimation
round, if {△Mi,ℓ}Li

ℓ=0 additional samples are computed. We use the notation

datai = {datai,ℓ}Li

ℓ=0 =
{{

Mi,ℓ, Q̂i,ℓ, Ĉi,ℓ, Ŷi,ℓ, SQ2,i,ℓ
, SY2,i,ℓ

, . . .
}}Li

ℓ=0
,

△datai = {△datai,ℓ}Li

ℓ=0 =
{{

△Mi,ℓ,△Q̂i,ℓ,△Ĉi,ℓ,△Ŷi,ℓ,△SQ2,i,ℓ
,△SY2,i,ℓ

, . . .
}}Li

ℓ=0

to collect all needed quantities in one object. We further define Bi as the left-over
budget in round i and denote with B0 := B the initially imposed budget. By (2.13),
we see that the amount of samples is guided by ϵi. With ϵi as the chosen action
and η ∈ (0, 1) as reduction factor determining how fast ϵi decays and with the cost

prediction Ĉi =
∑Li

ℓ=0 △Mi,ℓĈi−1,ℓ, the Bellman equation for finding the solution to
Problem 2.7 can be expressed by

êrr
final
MSE(B0, {M init

0,ℓ }
L0

ℓ=0) = êrr
init
MSE − êrrMSE

(
B0 −

L0∑
ℓ=0

C0,ℓ, η · êrrinitMSE

)
with the recursive function

êrrMSE(Bi, ϵi) = max
{△Mi,ℓ}

Li
ℓ=0

s.t. Ĉi<Bi

{
△errMSE(datai−1,△datai)(2.20)

+ êrrMSE

(
Bi −

Li∑
ℓ=0

Ci,ℓ, η · ϵi
)}
.

A FULLY PARALLELIZED AND BUDGETED MLMC METHOD 11

So far, we have not discussed the minimization of the bias yet. If in (2.19a) the bias

becomes larger than
√
1− θ ϵi and if we have enough budget left, i.e., Ĉi < Bi, we

draw additional samples on level Li + 1 and stop the optimization otherwise.
To conclude, function (2.20) is the expression of Bellman’s optimality condition

applied to Problem 2.7, i.e., the subsequent minimization of the MSE under consider-
ation of the cost budget. This subsequent minimization is also illustrated in Figure 1,
where each dotted square represents one estimation round.

Fig. 1. Illustration of an example execution of Algorithm 2.1. The data point in the up-
per right corner represents the first estimate of êrr2disc and êrrinput based on the initial sequence

{M init
0,ℓ }L0

ℓ=0. The doted squares represent the target MSEs ϵ2i in each estimation round and illustrate

the overlapping subproblems. Hence, Algorithm 2.1 solves in each estimation round the optimization
problem (2.10) or adapts the highest level Li. The joint effort of each estimation round finally solves
Problem 2.7.

Remark 2.8. The actual implementation in C++ [59] is not done with a recursive
function but in an equivalent formulation with a while-loop. This is also often called a
bottom up implementation which has the advantage over the recursive implementation
(top down) to avoid an increased memory consumption on the stack. However, the re-
cursive formulation is easier to derive mathematically. We further remark the inverted
level loop which has benefits for the load distribution [5] as illustrated in Figure 2.

Fig. 2. Load balancing of a single exemplary estimation round on three levels with M0 = 16,
M1 = 2 and M2 = 1. The sample on level two is processed on all four processes at first. Next, two
samples on level one follow where each one is computed on two processes. Lastly sixteen samples on
level zero are computed, where each processor handles four individual samples. The light red areas
correspond to parallelization losses due to either idling processes (red areas) or due to communication
losses (dashed red lines, corresponding to communication across subdomains). The remaining colors
repent one of four processing units. The black dashed lines represent transitions between levels, the
red dashed lines represent parallelization losses in the FEM system.

Lastly, we present in Algorithm 2.1 the final BMLMC method as a recursive
implementation. For a detailed explanation of the subroutines Welford and MS-FEM,
we refer to the upcoming Subsection 2.5 and to Section 3.

12 N. BAUMGARTEN, S. KRUMSCHEID, AND C. WIENERS

Algorithm 2.1 Budgeted Multi-Level Monte Carlo

Set the initial sample sequence {M init
0,ℓ }

L0

ℓ=0 in data−1, a cost budget |P| ·TB = B > 0,
a splitting parameter θ ∈ (0, 1) and the reduction factor η ∈ (0, 1).

data =
{
i 7→

{
erri, {Mi,ℓ}Li

ℓ=0, {Q̂i,ℓ}Li

ℓ=0, {Ĉi,ℓ}Li

ℓ=0, {Ŷi,ℓ}Li

ℓ=0, . . .
}}

function BMLMC(B0,
{
M init

0,ℓ

}L0

ℓ=0
) :{

for ℓ = L0, . . . , 0: △data0,ℓ ← MS-FEM(M init
0,ℓ ,P)

data0 ← Welford(data−1,△data0) return BMLMC(B0 −
∑L0

ℓ=0 Cℓ, η · err0)

function BMLMC(Bi, ϵi) :

if Bi ≈ 0: return erri−1

if êrrdisc(datai−1) ≥
√
1− θϵi : Li ← Li + 1

if êrrinput(datai−1) ≥ θϵ2i : M̂opt
i,ℓ ← (2.13)

for ℓ = Li, . . . , 0: △Mi,ℓ ← max
{
M̂opt

i,ℓ −Mi−1,ℓ, 0
}

Ĉi ←
∑Li

ℓ=0 △Mi,ℓĈi−1,ℓ

if Ĉi = 0: return BMLMC(Bi, η · ϵi)
if Ĉi > Bi : return BMLMC(Bi, 0.5 · (ϵi + ϵi−1))

for ℓ = Li, . . . , 0: △datai,ℓ ← MS-FEM(△Mi,ℓ,P)
datai ← Welford(datai−1,△datai) return BMLMC(Bi −

∑Li

ℓ=0 Cℓ, ϵi)

Remark 2.9. By considering Problem 2.7, we chose to discretize first and optimize
then. The downside of this approach is that if s2Yℓ

, Ĉℓ, Ŷℓ and α̂ are inaccurate, the
optimization delivers poor results, too. However, by using dynamic programming we
actually discretize, optimize, discretize, optimize, . . . until the budget is exhausted.
Hence, the risk of optimizing for the wrong objective based on inaccurate data is
reduced as the simulation runs.

2.5. Parallelization Techniques. Algorithm 2.1 is designed as a state ma-
chine. However, due to the significant computational load involved in solving Prob-
lem 2.7, it becomes necessary to distribute the workload across multiple nodes or pro-
cessing units. As a result, Algorithm 2.1 needs to be transformed into a distributed
state machine, i.e., a computational method on interconnected nodes or processing
units that synchronizes and maintains a shared state. In this context, the shared
state refers to the data containing the estimated errors and sample statistics in the
very first line of the algorithm, while the set of processing units P is responsible for
dividing the work and minimizing êrrMSE.

To achieve this, we discuss the functionality of Algorithm 2.2 representing the
subroutine Welford in Algorithm 2.1. We use concepts introduced by [15, 58], which
were further expanded in [48], to stably compute sample statistics in an incremental
and parallel manner.

In particular as illustrated in Figure 3, Algorithm 2.2 is first used to incremen-
tally update the sample statistics on individual processes, then again to merge the
computations recursively across multiple processing units and lastly, Algorithm 2.2

A FULLY PARALLELIZED AND BUDGETED MLMC METHOD 13

Algorithm 2.2 Welford’s Online Update Method

Compute for
{
{datai,ℓ}Li

ℓ=0

}
i=A,B

=
{
{Mi,ℓ, Q̂i,ℓ, SQ2,i,ℓ

, . . . }Li

ℓ=0

}
i=A,B

function Welford(dataA, dataB)) :

MAB,ℓ ← MB,ℓ +MA,ℓ

δAB,ℓ ← Q̂B,ℓ − Q̂A,ℓ

Q̂AB,ℓ ← Q̂A,ℓ +
MB,ℓ

MAB,ℓ
δAB,ℓ

SQ2,AB,ℓ
← SQ2,A,ℓ

+ SQ2,B,ℓ
+

MA,ℓMB,ℓ

MAB,ℓ
δ2AB,ℓ

s2QAB,ℓ
← (MAB,ℓ − 1)−1SQ2,AB,ℓ

return {MAB,ℓ, Q̂AB,ℓ, SQ2,AB,ℓ
, . . . }Li

ℓ=0

is utilized one more time to update the statistical quantities over several estimation
rounds. This last step is denoted in Algorithm 2.1, however, the other two updates
happen within MS-FEM for which we refer to the upcoming Section 3. Essentially, we
combine in MS-FEM a finite element parallelization with a sample distribution. The
resulting inherent parallelization of the algorithm can be classified according to the
criteria defined in [5, 25] and [10, 22, 33] as a dynamic and heterogeneous sample
and solver parallelization in a single program multiple data framework. A detailed
discussion is given in [8, Section 3.5.4].

Fig. 3. Illustration of the update technique as binary-tree using Algorithm 2.2 on four parallel
processes each represented with another color and over three estimation rounds separated by the
vertical dashed lines.

Lastly, we present a proof on Proposition 2.5. The idea is to combine Gustafson’s
law [32] with Theorem 2.4. Gustafson’s law describes the theoretical slowdown of
an already parallelized task, if it is executed on a serial machine. The motivation
behind this law is to describe how more processing units can be utilized to solve larger
problems in the same amount of time, i.e., to describe how well the parallelization
scales weakly. Translated to the knapsack problem, larger means that we have used
more samples and more levels in the final computation. Thereby, we can achieve a
smaller estimated RMSE with the same budget in time. Hence, we can measure the
weak scaling of the developed parallelization by the development of the estimated

14 N. BAUMGARTEN, S. KRUMSCHEID, AND C. WIENERS

error as more processing units are added.

Proof of Proposition 2.5. The estimates in the edge cases λp = 1 of an optimal
parallelism ϵ ≲ (|P| · TB)

−δ = C−δ
ϵ and λp = 0 of a serial execution ϵ ≲ T−δ

B = T−δ
ϵ

simply follow by inversion of Theorem 2.4 for every feasible execution.
To examine λp ∈ (0, 1), we split the ϵ-time into two parts of the program, a serial

part λs = 1− λp and a parallel part λp executed on |P| processing units, i.e.,

Tϵ,p = λsTϵ,p + λpTϵ,p .

If the same program is executed on a serial system, the parallelizable part of the
system slows down by a factor of |P|−δ

to achieve the same RMSE tolerance of ϵ, i.e.,
the corresponding sequential execution time is

Tϵ,s = λsTϵ,p + λpTϵ,p |P|−δ
.

By this we can deduce the optimal speedup factor of the parallelization

S :=
Tϵ,s

Tϵ,p
=
λs + λp |P|−δ

λs + λp
= (1− λp) + λp |P|−δ

.

Using this speedup factor to determine the additional error reduction by utilizing |P|
processing units, we get again by the inverted estimate of Theorem 2.4

ϵ ≲ S · T−δ
B =

(
(1− λp) + λp |P|−δ

)
T−δ

B .

As a consequence, there is a part in the error, denoted with ϵs, which can only be
reduced with further processing time and another part, denoted with ϵp, which can
also be mitigated by more processing units

ϵ ≲ (1− λp) · T−δ
B︸ ︷︷ ︸

=:ϵs

+λp
(
|P| · TB

)−δ︸ ︷︷ ︸
=:ϵp

.

We conclude this section, by summarizing the following limits as a consequence
of Proposition 2.5.

λp = 0 λp ∈ (0, 1) λp = 1
TB →∞ ϵ→ 0 ϵ→ 0 ϵ→ 0
|P| → ∞ ϵ ∼ 1 ϵ→ ϵs ϵ→ 0

By this tabel, the BMLMC method is MSE-consistent with respect to the time-
budget TB for a fixed set of processing units P. For a fixed time-budget TB, the
BMLMC method is not MSE-consistent with respect to the amount of processing
units |P|. Hence, there remains a parallelization bias ϵs no matter how manny pro-
cessing units are added. We refer to Section 5 for numerical experiments on the
parallelization and the derived bound.

3. Multi-Sample Finite Element Method. A Finite Element Method (FEM)
searches an approximation uℓ to some PDE in a finite dimensional function space Vℓ.
To construct this space and implement FEMs on a parallel computer, the spatial
domain D ⊂ RD is partitioned into subdomains DP each assigned to a different
processing unit P ∈ P and decomposed in finitely many cells K ∈ KP , i.e.,

(3.1) D =
⋃
P∈P
DP =

⋃
P∈P

⋃
K∈KP

K with K ∩K ′ = ∅ for K ̸= K ′ ,

A FULLY PARALLELIZED AND BUDGETED MLMC METHOD 15

Fig. 4. Parallelization approaches for D = (0, 1)2 and |P| = 4 according to (3.2). First, only
on spatial domain D for Mℓ = 1 with k = 2. Second, mixed parallelization for Mℓ = 2 with k = 1.
Last, only for Mℓ = 4 with k = 0.

whereK ⊂ D are open sets, K =
⋃

P∈P KP is the collection of all cells on all processing
units and KP is the collection of cells on a single processing unit P . The cardinality
of the set of processing units P is assumed to be of power of two to keep the theory
aligned with our implementation; however, this is not a necessity and sets of another
size might be considered as well. This decomposition of the domain D further defines
a set of vertices V, a set of faces F and a set of edges E as explained in the following.

We denote with FK the set of faces for a cell K ∈ K and for all inner faces
F ∈ FK ∩ D, KF ∈ K represents the neighboring cell such that F = ∂K ∩ ∂KF . We
denote the unit normal vector on the face F ∈ FK pointing outwards of K by nK .

Furthermore, VK denotes the vertices of the cell K and EF denotes the edges of
a face F ∈ F . Hence, we set V =

⋃
K∈K VK , F =

⋃
K∈K FK and E =

⋃
F∈F EF and

define a distributed finite element mesh as

MP := {V,K,F , E} with MP := {VP ,KP ,FP , EP } ,

where VP =
⋃

K∈KP
VK , FP =

⋃
K∈KP

FK and EP =
⋃

F∈FP
EF are the vertices, faces

and edges on a single processing unit. Note that
{
VP
}
,
{
FP

}
,
{
EP
}
are overlapping,

and
{
KP

}
is non-overlapping for conforming discretizations; otherwise, the overlap

depends on the finite element method.
To construct a mesh hierarchy, the cell diameter h0 of a given mesh Mℓ=0,P is

sequentially divided in half hℓ = h02
−ℓ with ℓ = 0, . . . , L as discretization level. This

gives the hierarchy

Mℓ=0,P ⊂Mℓ=1,P ⊂ · · · ⊂ Mℓ=L,P .

More details and several applications of this parallel data structure are given in [9].

3.1. Multi-Mesh Parallelization. To combine the parallelization technique
discussed in Subsection 2.5 with the FE parallelization, we proceed as follows. We
distribute the computational units P across both the set of input samples {y(m)}Mℓ

m=1

and the domain D. Formally, this is expressed as the following resource allocation
problem.

Problem 3.1. Approximate Mℓ-times a PDE with a FEM on the discretization
level ℓ, such that the communication on a fixed set of processing units P is minimized.

We have to solve this problem within Algorithm 2.1 whenever the routine MS-FEM
is invoked. Considering that we have varying sample sizes across different levels, we
find the solution to this problem by examining the following cases.

16 N. BAUMGARTEN, S. KRUMSCHEID, AND C. WIENERS

First, we consider the task to approximate a single Mℓ = 1 sample solution on
multiple processing units |P| > 1. Then, the best parallelization is given by the
domain decomposition (3.1) resulting in a single, parallelized mesh MP over the
domain D. An illustration of this case is given in Figure 4 on the very left for |P| = 4.
Second, if the sample amount equals the amount of processing units Mℓ = |P|, a
minimal communication, and thus an optimal parallelization, is achieved by assigning
each process its very own unparallelized mesh. This results in the set of meshes

MP := {M(m)
P }Mℓ

m=1, i.e., an individual mesh for every single sample as shown in
Figure 4 on the very right.

The more general case, where we compute more samples than available process-
ing units Mℓ > |P|, requires a sequential split of the samples

∑
jM

′
j,ℓ = Mℓ with

M ′
j,ℓ ≤ |P|. Last, we consider the case as depicted in the middle of Figure 4, where

1 < Mℓ < |P|. Here, we construct for each m = 1, . . . ,Mℓ a subset of processing units

P(m)
k ∈ P which can be used to distribute the domain D on. The subsets P(m)

k are

disjoint and of size |P(m)
k | = 2k where k ∈ N0 is chosen such that

(3.2) 2k ≤ |P|
Mℓ

< 2k+1.

By following this rule we construct the set of meshesMP := {M(m)
Pk
}Mℓ
m=1, such that

we minimize the communication in every estimation round.

3.2. Multi-Sample Finite Element Spaces. We consider the task to com-
pute the FE solution uℓ(ω) ∈ Vℓ of Lℓ(ω,x)uℓ(ω,x) = bℓ(ω,x) for multiple samples
at once. In particular, the parallel data structure presented in the previous Sub-
section 3.1 is exploited to define a finite element space incorporating the subsets

P(m)
k ⊂ P.

Definition 3.2. We call the space

Vℓ(P) = Vℓ(P(1)
k)× · · · × Vℓ(P(Mℓ)

k) =

Mℓ∏
m=1

Vℓ(P(m)
k)

a multi-sample finite element space, where

Vℓ(P(m)
k) :=

{
vℓ ∈ Vℓ : vℓ|K ∈ Vℓ,K , ∀K ∈ K(P(m)

k), P(m)
k ⊂ P

}
is a finite element space for a single sample, defined on the triangulation K(P(m)

k)

where the subdomain of processes P(m)
k ⊂ P is chosen with the rule (3.2) and Vℓ,K is

a generic local finite element space.

With this definition the task of the multi-sample finite element method (MS-FEM)
is to find the coefficients

µ = (µ
(1)
1 , . . . ,µ

(1)

Nh
ℓ

, . . . ,µ
(Mℓ)
1 , . . . ,µ

(Mℓ)

Nh
ℓ

)⊤ ∈ RMℓ·Nh
ℓ

representing the discrete solution

(uℓ)
Mℓ
m=1 =

Nh
ℓ∑

n=1

µ(m)
n ψ(m)

n

Mℓ

m=1

∈ Vℓ(P) ,

A FULLY PARALLELIZED AND BUDGETED MLMC METHOD 17

where ψ(m)
n are basis functions of the global finite element space of dimension Nh

ℓ .
This formulation is inspired by the implementation in [59], where the paralleliza-

tion over the samples is realized on the coefficient vector of the FEM. This enables
the highly adaptive parallelization scheme needed in the BMLMC method. Finally,
the complete procedure is summarized in Algorithm 3.1.

Algorithm 3.1 Multi-Sample Finite Element Method

function MS-FEM(Mℓ,P, ℓ) :

k ← use (3.2) with (Mℓ,P)
Generate input samples

{
y(m)

}Mℓ

m=1

Assemble Lℓ(y
(m),x)uℓ(y

(m),x) = bℓ(y
(m),x) for m = 1, . . . ,Mℓ

Solve Lℓ(y
(m),x)uℓ(y

(m),x) = bℓ(y
(m),x) for m = 1, . . . ,Mℓ

Update QoI and Cost with Algorithm 2.2

Remark 3.3. The above is applicable to arbitrary finite element spaces, e.g. con-
tinuous Lagrange elements, enriched Galerkin elements, Raviart-Thomas elements,
space-time discontinuous Galerkin (dG) elements or, as in the upcoming section, to
dG elements in space. Further details and experiments can be found in [8].

Since the load distribution is a function of Mℓ and |P| minimizing the communi-
cation, the system in Algorithm 3.1 is assembled, such that it minimizes the coupling,
i.e., the system is decoupled for each sample and mildly coupled on the spatial do-
main. The assembled system has a block structure and is sparse which is inherited
from the sparsity of each finite element discretization block.

4. Discretization of the Acoustic Wave Equation. In our numerical exam-
ples, we consider the acoustic wave equation with randomly modeled input data in
the form of compressible waves propagating through solids.

Problem 4.1. Let D ⊂ RD be a domain and [0, T] ⊂ R a time interval. We
search for the randomly distributed velocity field v : Ω×D× [0, T]→ RD and pressure
component p : Ω×D × [0, T]→ R, such that

ρ(ω,x)∂tv(ω,x, t)−∇p(ω,x, t) = f(ω,x, t) x ∈ D, t ∈ (0, T]
κ(ω,x)−1∂tp(ω,x, t)− div (v(ω,x, t)) = g(ω,x, t) x ∈ D, t ∈ (0, T]

v(ω,x, t) · n = 0 x ∈ ∂D, t ∈ [0, T]
v(ω,x, 0) = v0(ω,x) x ∈ D
p(ω,x, 0) = p0(ω,x) x ∈ D

with f : Ω×D × (0, T]→ RD and g : Ω×D × (0, T]→ R as right-hand sides and the
material parameters κ, ρ : Ω×D → R modeled as random fields. We further allow for
randomly distributed initial data in the velocity component v0 : Ω×D → RD and the
pressure component p0 : Ω×D → R.

The works [40, 44] discuss sufficient conditions for the well-posedness of Prob-
lem 4.1 in the case D = RD.

4.1. Semi-Discretization with Discontinuous Galerkin Methods. We fol-
low [11] and use a discontinuous Galerkin approximation in space based on the formu-
lation of the acoustic wave equation as a first-order system for a fixed ω ∈ Ω, x ∈ D

18 N. BAUMGARTEN, S. KRUMSCHEID, AND C. WIENERS

and t ∈ (0, 1] given by

(4.1) M(ω,x)∂tu(ω,x, t) + Au(ω,x, t) = b(ω,x, t) and u(ω,x, 0) = u0(ω,x) .

From now on, we omit the explicit notation of the dependency on ω, x and t. The
first oder formulation (4.1) is derived with the operators

u =

(
v
p

)
, Mu =

(
ρv
κ−1p

)
, Au = −

(
∇p
divv

)
and b =

(
f
g

)
.

This system is approximated in space using discontinuous Galerkin (dG) finite ele-
ments

V dG
ℓ,p =

{
uℓ ∈ L2(D;RD+1) : uℓ|K ∈ V dG

K,p, ∀K ∈ K
}
,

where V dG
K,p := Qp(K;RD+1) is the tensor product space of local polynomials on a cell

K ∈ K. In the resulting semi-discrete system, we search for uℓ ∈ V dG
ℓ,p

Mℓ∂tuℓ +Aℓuℓ = bℓ and uℓ(0) = uℓ,0 ,

with cell-wise constant approximations for Mℓ and L2-projections of b,u0 on bℓ,uℓ,0 ∈
V dG
ℓ,p . The differential operator A is discretized with a full-upwind scheme

⟨Aℓuℓ,ϕℓ⟩L2(D) =
∑
K∈K

〈
Aℓ,Kuℓ,ϕℓ,K

〉
L2(K)

,

with test functions ϕℓ = (φℓ, ψℓ) ∈ V dG
ℓ,p . Each local operator is given in case of

Neumann boundary conditions by〈
Aℓ,Kuℓ,ϕℓ,K

〉
L2(K)

=−
〈
∇pℓ,K ,φℓ,K

〉
L2(K)

− ⟨divvℓ,K , ψℓ,K⟩L2(K)

−
∑

F∈FK∩D

1

ZK + ZKF

〈
Jpℓ,KKF + ZKF

Jvℓ,KKF · nK , ψℓ,K + ZKφℓ,K · nK

〉
L2(F)

+
∑

F∈FK∩∂D

ZK

〈
vℓ,K · nK , ψℓ,K + ZKφℓ,K · nK

〉
L2(F)

where ZK =
√
κKρK is the impedance and Jvℓ,KKF = vℓ|KF

− vℓ|K is the jump at
inner faces F ∈ F ∩ D. In [20] it is shown that the system is the well-posed, also for
more general boundary conditions.

4.2. Time-Discretization with Implicit Methods. We follow [11, Section
3] and shortly outline the usage of the implicit mid-point rule with the time-step size
τℓ = T/Nτ

ℓ and the time-steps tn = nτℓ, n = 0, . . . , Nτ
ℓ , i.e., we construct a sequence

of approximations uℓ(tn) ∈ V dG
ℓ,p with the initial value of uℓ(t0) = u0 by

(4.2)
(
Mℓ +

τℓ
2
Aℓ

)
uℓ(tn) =

(
Mℓ −

τℓ
2
Aℓ

)
uℓ(tn−1) + τℓbℓ(tn−1/2).

By [11, Theorem 3.1] the above system is well-posed and therefore the implicit
midpoint rule is applicable. The downside of this implicit method is that the new
iteration un+1 is only implicitly given. Thus, a system of algebraic equations has to
be solved in each time-step which can increase the cost of the method significantly.

A FULLY PARALLELIZED AND BUDGETED MLMC METHOD 19

However, in the context of hyperbolic PDEs the usage of implicit methods avoids
stability issues, if the Courant–Friedrichs–Lewy (CFL) condition [21]

(4.3)
τℓ
hℓ
≤ CCFL ⇐⇒ τℓ ≤ CCFL · h02−ℓ

is not satisfied. For our particular problem, this is critical since the wave speed is
a random variable in each cell and thus, the right ratio τ0/h0 = CCFL is a local
condition leading to global stability issues. The usage of implicit methods avoids
this problem, nevertheless, finding the right ratio is still important since too large
time-steps lead to worse conditioned systems in (4.2) and too many time-steps simply
might be unnecessary to achieve a smaller overall error. However, it is shown in [11,
Lemma 3.1] that (4.2) is well-conditioned and the convergence is independent of the
mesh size on level ℓ. In particular, we solve this system using a GMRES solver
with a point block Jacobi preconditioner. We refer to Section 5 for an experimental
investigation of this issue.

5. Numerical Experiments for the Acoustic Wave Equation. We con-
sider Problem 4.1 and solve it with the methods introduced in the previous sections.
In particular, we commit to the following problem and method configurations which
will serve, if not stated otherwise, as the default for the numerical experiments.

Fig. 5. One example realization of the pressure wave approximating Problem 4.1 with log-
normal material density ρ (left image) shown at the time points t = 0.0625, t = 0.5 and t = 1.0.
The regions of high material density (red areas in left plot) lead to small wave speeds in these regions
and thus, to high pressures in the wave.

Problem Configuration. We consider the domain D = (0, 1)2, the final time T = 1
and homogeneous and deterministic initial conditions (v0, p0) = (0, 0)⊤.

The right-hand side of Problem 4.1 is deterministically given by f ≡ 0 and
g(x, t) = g1(t) g2(x), where the function g1(t) is a Ricker wavelet, i.e.,

g1(t) = 10
(
1−

(
t
a

)2) · exp(− t2

2a2

)
with a = π

10 , t ∈ [0, 1].

The function g2(x) is a nascent delta function centered at c = (0.5, 0.75)⊤ with an
appropriate constant g2 such that ∥g2∥L1(D) = 1 and a diameter w = 0.1, i.e.,

g2(x) =

g2 exp
(
−
(
1−

∥∥x−c
w

∥∥2
2

)−1
)
, ∥x− c∥2 < w

0, ∥x− c∥2 ≥ w
x ∈ D.

As material, we use a uniformly constant and deterministic compression module κ ≡ 1
and a log-normally distributed material density ρ(ω,x), i.e., log(ρ(ω,x)) is Gaussian

20 N. BAUMGARTEN, S. KRUMSCHEID, AND C. WIENERS

random field with mean-zero and the covariance function

(5.1) Cov(x1,x2) = σ2 exp

(
−
∥∥∥∥x1 − x2

λ

∥∥∥∥ν
2

)
,

where the variance σ = 1.0, the correlation length λ = 0.15 and the smoothing ν = 1.8
are used. Defining

ρmin(ω) := min
x∈D

ρ(ω,x) and ρmax(ω) := max
x∈D

ρ(ω,x)

gives a distribution of the maximal cmax(ω) =
√
κ/ρmin < ∞ and the minimal

cmin(ω) =
√
κ/ρmax > 0 wave speeds. By [17, Lemma 2.3] realizations are Hölder

continuous, and thus ρ(ω, ·) ∈ L∞(D) for a fixed ω ∈ Ω. Lastly, we mention that
the samples of ρ are generated with the circulant embedding method [23] on the
multi-mesh implementation introduced in 3.1. For further details we refer to [8].

The default QoI is the L2-norm for vector valued functions in a region of interest
DRoI = (0.25, 0.75)× (0, 0.25) at time T = 1, i.e.,

Q(ω) :=

(∫ 0.75

0.25

∫ 0.25

0

∣∣(v, p)⊤(ω, x1, x2, 1)∣∣22 dx2 dx1)1/2

,

where |·|2 is the Euclidean-norm. The problem configuration is illustrated in Figure 5
for one particular realization of the input data at the time points t = 0.0625, t = 0.5
and t = 1.0.

Method Configuration. The experiments are conducted on the HoReKa super-
computer for TB = 6 hours using |P| = 1024 processing units. We initialize the
BMLMC method on four initial levels starting with the mesh width h0 = 2−5 by{

M init
0,ℓ

}L0

ℓ=0
:=
{
M init

0,0 = 212, M init
0,1 = 210, M init

0,2 = 27, M init
0,3 = 25

}
which consumes less than 5% of the total computational budget but already provides
good initial estimates. Furthermore, we choose the splitting factor as θ = 0.5 and
the reduction factor as η = 0.9. The semi-discrete solution is searched in V dG

ℓ,p=2 on

uniform meshes with hℓ = h02
−ℓ, which is then solved using an implicit midpoint rule

with the time-step size τℓ = 2−ℓ+3.
Covariance Function. As start, we examine the influence of the covariance func-

tion (5.1) on the behavior of Algorithm 2.1. Analytical investigations [16, 17, 47, 55]
as well as experiments [8, 9] for elliptic problems have shown that the structure of
the log-normal fields has a large influence on the constant and the convergence rate
in Theorem 2.4. We conduct similar investigations for the acoustic wave equation
with log-normally distributed material parameters by choosing σ ∈ {0.5, 0.75, 1.0} in
the covariance function (5.1), while everything else is kept as described in the con-
figurations. The results of this experiment are given in Figure 6, where in the top row
the a posteriori verification of Assumption 2.3 is given with the estimated exponents
α̂, β̂ and γ̂. In the bottom row, the figure shows the computed amount of samples
on each level on the left, the cost distribution over the levels in the middle, and the
numerical verification of the convergence of Proposition 2.5 on the right. The x-axis
of the lower right plot is the relative left over time budget (TB,0 − TB,i)/TB,0 and
the y-axis is the estimated RMSE over the estimation rounds in logarithmic scales.
Figure 6 clearly shows that increasing the variance in (5.1) worsens the constant

A FULLY PARALLELIZED AND BUDGETED MLMC METHOD 21

Fig. 6. Experiments on the covariance function (5.1) of the log-normal field.

in Proposition 2.5, while the measured convergence rate δ̂, estimated by

min
(δ̂, ĉδ)

∑
i

(
log2(êrrRMSE,i)− δ̂ log2((TB,0 − TB,i)/TB,0) + ĉδ

)2
,

only changes slightly. We further remark that the BMLMCmethod works very reliably
for this model problem and is capable to exhaust the large computational budget of
B = 1024 · 6 CPU hours feasibly and completely. This can be seen on the middle
plot on the bottom, where the total computing times are given by the horizontal lines
staying just below the time represented by the red line. Similar investigations for ν
and λ in (5.1) or any sort of input data to Problem 4.1 can be done as well for which
we refer again to [8].

Time Discretization. We further investigate the time discretization. Even though
only shortly discussed in Subsection 4.2, finding the right time-steps and the right
time integrator is crucial for the performance of the overall method and its stability.
In Figure 7, we illustrate the comparison of three different implicit Runge-Kutta
methods with the global convergence order of O(τ2ℓ). Particularly, we compare the
implicit midpoint rule (IMPR), the Crank Nicolson (CN) method and a third diagonal
implicit Runge-Kutta (DIRK) method determined by the Butcher-tableau:

DIRK:
1/4 1/4 0
3/4 1/2 1/4

1/2 1/2

By the lower right plot of Figure 7, we see that the implicit midpoint rule yields
the smallest estimated error and thereby is the best choice out of theses three since we
have assigned all three experiments the same computational budget. We suspect that
the reason for this is that the evaluations in each time-step in the IMPR are cheaper
than for the other two methods. As a consequence of this cost saving, more samples
and even one additional level can be computed using the IMPR. We remark that
we experimented with explicit Runge-Kutta methods, too, but the time-step sizes τℓ
had to be drastically reduced in order to stabilize the computation. Locally adaptive
schemes as in [31] might overcome this issue, however, we have not been comparing
this ansatz to the current implicit approach yet.

22 N. BAUMGARTEN, S. KRUMSCHEID, AND C. WIENERS

Fig. 7. Comparison of different time-stepping methods.

We recall the discussion of Subsection 4.2 and examine the influence of the time-
step size on the overall method performance. The results are given in Figure 8 where
we tried out different ratios τℓ/hℓ ∈

{
2−1, 2−2, 2−3, 2−4

}
. By the plot on the upper

right, we see that the constant cγ slightly depends on the time-step as predicted, but

also that the variance reduction β̂ (upper row in the middle) is heavily influenced.
The best choice is CCFL = 2−3 again reviled in the lower right plot of Figure 8. We
further remark that with this choice the estimate γ̂ = 3.1 is very close to the best
possible value of γ = D + 1 = 3 as further explained in [36].

Fig. 8. Comparison of different time-step to mesh-width ratios CCFL = τℓ/hℓ.

Space Discretization. For the next experiment, we are interested in the polynomial
degree of the dG space V dG

ℓ,p . The results in Figure 9 show that an ansatz space with a
higher degree is worth to consider since the êrrRMSE gets smaller with a growing degree
even though the cost constant cγ (confer upper right plot) is higher. We emphasize
that this conclusion is highly problem dependent and that the higher polynomial
degree is only worth the additional cost, if the true solution to the PDE provides
enough regularity. It is well known, for example given in a discussion in [18], that the
cost is dominated by the highest level if β > γ. Contrary to that, if β < γ, the cost

A FULLY PARALLELIZED AND BUDGETED MLMC METHOD 23

Fig. 9. Comparison of different polynomial degrees in the ansatz space V dG
ℓ,p .

Fig. 10. Weak scaling parallelization experiment for a fixed time budget TB.

is dominated by the lower levels. Both cases can be observed in Figure 9 on the bar
plot in the center of the bottom row, where for p = 1 the estimated exponents satisfy
β̂ = 0.51 < 3.07 = γ̂ and for p = 3 the exponents are given as β̂ = 5.44 > 3.17 = γ̂.

Parallelization. Last but not least, we examine the proposed parallelization by
conducting a weak scaling experiment, i.e., we increase the computational resources
from |P| = 128 to |P| = 2048 and keep the computational time budget fixed at TB = 6
hours. The numerical results of this experiment are summarized in Figure 10. The
lower right plot indicates clearly that we effectively reduce the estimated error by
utilizing more processing units. However, to examine the influence of the reduction
factor η and to evaluate the method in the light of Proposition 2.5, we solve the
problem again on |Pmax| = 8192 and on |Pmax| · 2−k with k = 1, . . . , 7. Subsequently,
we consider the estimated error at the very end of the simulation, i.e. at (TB,0 −
TB,i)/TB,0 = 1 and plot this over 2−k. With this and (2.16), we conclude for some
λp ∈ (0, 1)

ϵk ≲ ϵs + ϵp,k = ϵs + λp(2
−k · |Pmax| · TB)

−δ = ϵs + λp(|Pmax| · TB)
−δ · 2kδ.

24 N. BAUMGARTEN, S. KRUMSCHEID, AND C. WIENERS

This motivates to determine êrrRMSE,s and êrrRMSE,p by fitting the curve

êrrRMSE,k = êrrRMSE,s + êrrRMSE,p · 2kδ̂.

The results of these experiments and the fitted curve are given in Figure 11 for
η ∈ {0.7, 0.8, 0.9}, which illustrates the influence of the reduction factor on the par-
allelization. Clearly, we can see in this plot that the smaller the reduction factor,
the smaller is the estimated error. This is because the larger reduction factor leads
to more frequent synchronizations of the processing units and thus, leading to par-
allelization losses and ultimately in larger errors. The downside of small reduction
factors is the higher probability of exceeding or not fully using the computational
budget. In conclusion, in Figure 11 we see that the proposed BMLMC method ad-
heres to the theoretical bound of Proposition 2.5 and that λp is mostly influenced by
the reduction factor η.

Fig. 11. Numerical verification of Proposition 2.5.

6. Discussion, Conclusion and Outlook. We present a novel adaptation of
the MLMC method called Budgeted MLMC (BMLMC) method. This approach min-
imizes the need for prior knowledge, while demonstrating high reliability, robustness,
and broad applicability. Furthermore, it achieves exceptional performance within
budget constraints and offers full parallelization up to the limits of Gustafson’s law.

The method’s effectiveness stems from three fundamental components: the seam-
less integration of MLMC with FE methods, the adaptive load distribution within a
single distributed data structure according to (3.2), and the resource allocation within
an HPC system following the optimality principle (2.20).

To demonstrate this experimentally, we conduct investigations on the challen-
ging problem of approximating acoustic wave equations in random and heterogeneous
media. Our methodology involves a fully automated process using the continuous
delivery pipeline of the software M++ [59] connected to the HoReKa supercomputer.
This allows us to reproduce and enhance the numerical results obtained from our
implementation.

For a comprehensive explanation of the software, we refer to a forthcoming pub-
lication or to [8, 9]. This will provide detailed insights into the software development
workflow, as well as highlight the distinguishing features and applications of M++
including space-time discretizations [20, 24], interval arithmetic computations [60],
full waveform inversion [11], and other challenging applications like cardio-vascular
simulations [26].

A FULLY PARALLELIZED AND BUDGETED MLMC METHOD 25

This utilization of automated investigations and the empirical search for the op-
timal algorithm combination provide motivation to view the MLMC method as a
knapsack problem. This perspective has facilitated the development of the BMLMC
method, incorporating DP techniques and drawing inspiration from the continuation
MLMC method [19].

The same approach could potentially be applied to other multi-level UQ algo-
rithms such as multi-level stochastic collocation (MLSC) or multi-level quasi-Monte
Carlo (MLQMC) methods. To begin, we recognize that we can utilize the same par-
allelization strategy and the same distributed data structure. However, DP relies on
a nested problem structure. By employing nested sparse grids and suitable lattice
rules for QMC, we can preserve this problem structure. This results in a less flexible
selection of {△Mi,ℓ}Li

ℓ=0. Furthermore, the on-the-fly estimation of the errors is not
as straightforward as it is for simple Monte Carlo methods. Although these methods
may be more complex, we anticipate that the benefits of the BMLMC approach can be
extended to MLSC and MLQMC methods with careful consideration and adaptation.
We leave detailed investigations into these directions open for future work.

Finally, we interpret the consequence of Proposition 2.5. The notion that infinite
computing power does not bypass computing time is derived by combining the ϵ-
cost theorem and Gustafson’s law. Intuitively, this result makes sense because adding
more workers also entails increased synchronization, which prevents the objective from
being arbitrarily optimized. Thus, there will always be a synchronization or paral-
lelization bias that can only be mitigated by allocating more time for optimization.
The key aspect of demonstrating this insight lies in viewing computing time as a com-
ponent of the algorithm’s cost and connecting the algorithm’s objective with hardware
resources through Gustafson’s law. This idea is quite general, suggesting that similar
statements to those in Proposition 2.5 can be derived for other UQ algorithms beyond
MLMC, and perhaps even in the realm of machine learning.

Acknowledgement. We acknowledge the financial support by the CRC 1173 on
Wave Phenomena, the technical support by the National High-Performance Comput-
ing Center (NHR) at KIT and the detailed feedback by Tobias Jahnke on an earlier
draft of this work.

REFERENCES

[1] The HoreKa (Hochleistungsrechner Karlsruhe) supercomputer at KIT, 2022, https://www.nhr.
kit.edu/userdocs/horeka/.

[2] A. Abdulle, A. Barth, and C. Schwab, Multilevel Monte Carlo methods for stochastic elliptic
multiscale PDEs, Multiscale Model. Simul., 11 (2013), pp. 1033–1070, https://doi.org/10.
1137/120894725, https://doi.org/10.1137/120894725.

[3] I. Babuška, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial
differential equations with random input data, SIAM J. Numer. Anal., 45 (2007), pp. 1005–
1034, https://doi.org/10.1137/050645142, https://doi.org/10.1137/050645142.

[4] I. Babuška, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial
differential equations with random input data, SIAM Rev., 52 (2010), pp. 317–355, https:
//doi.org/10.1137/100786356, https://doi.org/10.1137/100786356.

[5] S. Badia, J. Hampton, and J. Principe, A massively parallel implementation of multilevel
Monte Carlo for Finite Element models, arXiv preprint arXiv -2111.11788, (2021).

[6] M. Ballesio, J. Beck, A. Pandey, L. Parisi, E. von Schwerin, and R. Tempone, Multilevel
Monte Carlo acceleration of seismic wave propagation under uncertainty, GEM Int. J.
Geomath., 10 (2019), pp. Paper No. 22, 43, https://doi.org/10.1007/s13137-019-0135-5,
https://doi.org/10.1007/s13137-019-0135-5.

[7] A. Barth, C. Schwab, and N. Zollinger, Multilevel Monte Carlo Finite Element Method for
elliptic PDEs with stochastic coefficients, Numerische Mathematik, 119 (2011), pp. 123–

https://www.nhr.kit.edu/userdocs/horeka/
https://www.nhr.kit.edu/userdocs/horeka/
https://doi.org/10.1137/120894725
https://doi.org/10.1137/120894725
https://doi.org/10.1137/120894725
https://doi.org/10.1137/050645142
https://doi.org/10.1137/050645142
https://doi.org/10.1137/100786356
https://doi.org/10.1137/100786356
https://doi.org/10.1137/100786356
https://doi.org/10.1007/s13137-019-0135-5
https://doi.org/10.1007/s13137-019-0135-5

26 N. BAUMGARTEN, S. KRUMSCHEID, AND C. WIENERS

161.
[8] N. Baumgarten, A Fully Parallelized and Budgeted Multi-level Monte Carlo Framework for

Partial Differential Equations, PhD thesis, Karlsruher Institut für Technologie (KIT), 2023,
https://doi.org/10.5445/IR/1000158415.

[9] N. Baumgarten and C. Wieners, The parallel finite element system M++ with integrated
multilevel preconditioning and multilevel Monte Carlo methods, Comput. Math. Appl.,
81 (2021), pp. 391–406, https://doi.org/10.1016/j.camwa.2020.03.004, https://doi.org/10.
1016/j.camwa.2020.03.004.

[10] J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, and J. Weglarz, Handbook on scheduling,
Springer, 2019.

[11] T. Bohlen, M. R. Fernandez, J. Ernesti, C. Rheinbay, A. Rieder, and C. Wieners,
Visco-acoustic full waveform inversion: from a DG forward solver to a Newton-CG
inverse solver, 2021, https://doi.org/10.1016/j.camwa.2021.09.001, https://doi.org/10.
1016/j.camwa.2021.09.001.

[12] K. M. Bretthauer and B. Shetty, The nonlinear knapsack problem—algorithms and
applications, European J. Oper. Res., 138 (2002), pp. 459–472, https://doi.org/10.1016/
S0377-2217(01)00179-5, https://doi.org/10.1016/S0377-2217(01)00179-5.

[13] L. Caccetta and A. Kulanoot, Computational aspects of hard knapsack problems, Nonlinear
Anal., 47 (2001), pp. 5547–5558, https://doi.org/10.1016/S0362-546X(01)00658-7, https:
//doi.org/10.1016/S0362-546X(01)00658-7.

[14] R. E. Caflisch, Monte Carlo and quasi-Monte Carlo methods, 7 (1998), pp. 1–49, https:
//doi.org/10.1017/S0962492900002804, https://doi.org/10.1017/S0962492900002804.

[15] T. F. Chan, G. H. Golub, and R. J. LeVeque, Algorithms for computing the sample variance:
analysis and recommendations, Amer. Statist., 37 (1983), pp. 242–247, https://doi.org/10.
2307/2683386, https://doi.org/10.2307/2683386.

[16] J. Charrier, Strong and weak error estimates for elliptic partial differential equations with
random coefficients, SIAM J. Numer. Anal., 50 (2012), pp. 216–246, https://doi.org/10.
1137/100800531, https://doi.org/10.1137/100800531.

[17] J. Charrier, R. Scheichl, and A. L. Teckentrup, Finite element error analysis of elliptic
PDEs with random coefficients and its application to multilevel Monte Carlo methods,
SIAM J. Numer. Anal., 51 (2013), pp. 322–352, https://doi.org/10.1137/110853054, https:
//doi.org/10.1137/110853054.

[18] K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup, Multilevel Monte Carlo
methods and applications to elliptic PDEs with random coefficients, Comput. Vis. Sci.,
14 (2011), pp. 3–15, https://doi.org/10.1007/s00791-011-0160-x, https://doi.org/10.1007/
s00791-011-0160-x.

[19] N. Collier, A.-L. Haji-Ali, F. Nobile, E. von Schwerin, and R. Tempone, A continuation
multilevel Monte Carlo algorithm, BIT, 55 (2015), pp. 399–432, https://doi.org/10.1007/
s10543-014-0511-3, https://doi.org/10.1007/s10543-014-0511-3.

[20] D. Corallo, W. Dörfler, and C. Wieners, Space-time discontinuous Galerkin methods
for weak solutions of hyperbolic linear symmetric Friedrichs systems, Tech. Re-
port 1, 2023, https://doi.org/10.1007/s10915-022-02076-3, https://doi.org/10.1007/
s10915-022-02076-3.

[21] R. Courant, K. Friedrichs, and H. Lewy, Über die partiellen Differenzengleichungen der
mathematischen Physik, Math. Ann., 100 (1928), pp. 32–74, https://doi.org/10.1007/
BF01448839, https://doi.org/10.1007/BF01448839.

[22] M. A. H. Dempster, J. Kanniainen, J. Keane, and E. Vynckier, High-performance
computing in finance: Problems, methods, and solutions, CRC Press, 2018.

[23] C. R. Dietrich and G. N. Newsam, Fast and exact simulation of stationary Gaussian
processes through circulant embedding of the covariance matrix, SIAM J. Sci. Comput.,
18 (1997), pp. 1088–1107, https://doi.org/10.1137/S1064827592240555, https://doi.org/
10.1137/S1064827592240555.

[24] W. Dörfler, S. Findeisen, and C. Wieners, Space-time discontinuous Galerkin
discretizations for linear first-order hyperbolic evolution systems, Comput. Methods Appl.
Math., 16 (2016), pp. 409–428, https://doi.org/10.1515/cmam-2016-0015, https://doi.org/
10.1515/cmam-2016-0015.

[25] D. Drzisga, B. Gmeiner, U. Rüde, R. Scheichl, and B. Wohlmuth, Scheduling massively
parallel multigrid for multilevel Monte Carlo methods, SIAM J. Sci. Comput., 39
(2017), pp. S873–S897, https://doi.org/10.1137/16M1083591, https://doi.org/10.1137/
16M1083591.

[26] J. Fröhlich, A segregated finite element method for cardiac elastodynamics in a fully coupled
human heart model, PhD thesis, Karlsruher Institut für Technologie (KIT), 2022.

https://doi.org/10.5445/IR/1000158415
https://doi.org/10.1016/j.camwa.2020.03.004
https://doi.org/10.1016/j.camwa.2020.03.004
https://doi.org/10.1016/j.camwa.2020.03.004
https://doi.org/10.1016/j.camwa.2021.09.001
https://doi.org/10.1016/j.camwa.2021.09.001
https://doi.org/10.1016/j.camwa.2021.09.001
https://doi.org/10.1016/S0377-2217(01)00179-5
https://doi.org/10.1016/S0377-2217(01)00179-5
https://doi.org/10.1016/S0377-2217(01)00179-5
https://doi.org/10.1016/S0362-546X(01)00658-7
https://doi.org/10.1016/S0362-546X(01)00658-7
https://doi.org/10.1016/S0362-546X(01)00658-7
https://doi.org/10.1017/S0962492900002804
https://doi.org/10.1017/S0962492900002804
https://doi.org/10.1017/S0962492900002804
https://doi.org/10.2307/2683386
https://doi.org/10.2307/2683386
https://doi.org/10.2307/2683386
https://doi.org/10.1137/100800531
https://doi.org/10.1137/100800531
https://doi.org/10.1137/100800531
https://doi.org/10.1137/110853054
https://doi.org/10.1137/110853054
https://doi.org/10.1137/110853054
https://doi.org/10.1007/s00791-011-0160-x
https://doi.org/10.1007/s00791-011-0160-x
https://doi.org/10.1007/s00791-011-0160-x
https://doi.org/10.1007/s10543-014-0511-3
https://doi.org/10.1007/s10543-014-0511-3
https://doi.org/10.1007/s10543-014-0511-3
https://doi.org/10.1007/s10915-022-02076-3
https://doi.org/10.1007/s10915-022-02076-3
https://doi.org/10.1007/s10915-022-02076-3
https://doi.org/10.1007/BF01448839
https://doi.org/10.1007/BF01448839
https://doi.org/10.1007/BF01448839
https://doi.org/10.1137/S1064827592240555
https://doi.org/10.1137/S1064827592240555
https://doi.org/10.1137/S1064827592240555
https://doi.org/10.1515/cmam-2016-0015
https://doi.org/10.1515/cmam-2016-0015
https://doi.org/10.1515/cmam-2016-0015
https://doi.org/10.1137/16M1083591
https://doi.org/10.1137/16M1083591
https://doi.org/10.1137/16M1083591

A FULLY PARALLELIZED AND BUDGETED MLMC METHOD 27

[27] M. Giles, Improved multilevel Monte Carlo convergence using the Milstein scheme,
(2008), pp. 343–358, https://doi.org/10.1007/978-3-540-74496-2 20, https://doi.org/10.
1007/978-3-540-74496-2 20.

[28] M. B. Giles, Multilevel Monte Carlo path simulation, Oper. Res., 56 (2008), pp. 607–617,
https://doi.org/10.1287/opre.1070.0496, https://doi.org/10.1287/opre.1070.0496.

[29] M. B. Giles, Multilevel Monte Carlo methods, Acta Numer., 24 (2015), pp. 259–328, https:
//doi.org/10.1017/S096249291500001X, https://doi.org/10.1017/S096249291500001X.

[30] I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl, and I. H. Sloan, Quasi-Monte Carlo
methods for elliptic PDEs with random coefficients and applications, J. Comput. Phys.,
230 (2011), pp. 3668–3694, https://doi.org/10.1016/j.jcp.2011.01.023, https://doi.org/10.
1016/j.jcp.2011.01.023.

[31] M. J. Grote, S. Michel, and F. Nobile, Uncertainty quantification by multilevel Monte
Carlo and local time-stepping for wave propagation, SIAM/ASA J. Uncertain. Quantif.,
10 (2022), pp. 1601–1628, https://doi.org/10.1137/21M1429047, https://doi.org/10.1137/
21M1429047.

[32] J. L. Gustafson, Reevaluating amdahl’s law, Communications of the ACM, 31 (1988), pp. 532–
533.

[33] G. Hager and G. Wellein, Introduction to high performance computing for scientists and
engineers, CRC Press, 2010.

[34] A.-L. Haji-Ali, F. Nobile, L. Tamellini, and R. Tempone, Multi-index stochastic collocation
for random PDEs, Comput. Methods Appl. Mech. Engrg., 306 (2016), pp. 95–122, https:
//doi.org/10.1016/j.cma.2016.03.029, https://doi.org/10.1016/j.cma.2016.03.029.

[35] A.-L. Haji-Ali, F. Nobile, and R. Tempone, Multi-index Monte Carlo: when sparsity
meets sampling, Numer. Math., 132 (2016), pp. 767–806, https://doi.org/10.1007/
s00211-015-0734-5, https://doi.org/10.1007/s00211-015-0734-5.

[36] M. Hochbruck, T. Pažur, A. Schulz, E. Thawinan, and C. Wieners, Efficient time
integration for discontinuous Galerkin approximations of linear wave equations [Plenary
lecture presented at the 83rd Annual GAMM Conference, Darmstadt, 26th–30th March,
2012], ZAMM Z. Angew. Math. Mech., 95 (2015), pp. 237–259, https://doi.org/10.1002/
zamm.201300306, https://doi.org/10.1002/zamm.201300306.

[37] P. Kumar, P. Luo, F. J. Gaspar, and C. W. Oosterlee, A multigrid multilevel Monte Carlo
method for transport in the Darcy-Stokes system, J. Comput. Phys., 371 (2018), pp. 382–
408, https://doi.org/10.1016/j.jcp.2018.05.046, https://doi.org/10.1016/j.jcp.2018.05.046.

[38] F. Y. Kuo, C. Schwab, and I. H. Sloan, Quasi-Monte Carlo finite element methods for a
class of elliptic partial differential equations with random coefficients, SIAM J. Numer.
Anal., 50 (2012), pp. 3351–3374, https://doi.org/10.1137/110845537, https://doi.org/10.
1137/110845537.

[39] A. Litvinenko, A. C. Yucel, H. Bagci, J. Oppelstrup, E. Michielssen, and R. Tempone,
Computation of electromagnetic fields scattered from objects with uncertain shapes using
multilevel Monte Carlo method, IEEE Journal on Multiscale and Multiphysics Computa-
tional Techniques, 4 (2019), pp. 37–50.

[40] S. Mishra and C. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods
for hyperbolic conservation laws with random initial data, Math. Comp., 81 (2012),
pp. 1979–2018, https://doi.org/10.1090/S0025-5718-2012-02574-9, https://doi.org/10.
1090/S0025-5718-2012-02574-9.

[41] S. Mishra, C. Schwab, and J. Šukys, Multi-level Monte Carlo finite volume methods for
nonlinear systems of conservation laws in multi-dimensions, J. Comput. Phys., 231 (2012),
pp. 3365–3388, https://doi.org/10.1016/j.jcp.2012.01.011, https://doi.org/10.1016/j.jcp.
2012.01.011.

[42] S. Mishra, C. Schwab, and J. Šukys, Multilevel Monte Carlo finite volume methods for
shallow water equations with uncertain topography in multi-dimensions, SIAM J. Sci.
Comput., 34 (2012), pp. B761–B784, https://doi.org/10.1137/110857295, https://doi.org/
10.1137/110857295.

[43] S. Mishra, C. Schwab, and J. Šukys, Multi-level Monte Carlo finite volume methods for
uncertainty quantification in nonlinear systems of balance laws, in Uncertainty quan-
tification in computational fluid dynamics, vol. 92 of Lect. Notes Comput. Sci. Eng.,
Springer, Heidelberg, 2013, pp. 225–294, https://doi.org/10.1007/978-3-319-00885-1 6,
https://doi.org/10.1007/978-3-319-00885-1 6.

[44] S. Mishra, C. Schwab, and J. Šukys, Multi-level Monte Carlo finite volume methods for
uncertainty quantification of acoustic wave propagation in random heterogeneous layered
medium, J. Comput. Phys., 312 (2016), pp. 192–217, https://doi.org/10.1016/j.jcp.2016.
02.014, https://doi.org/10.1016/j.jcp.2016.02.014.

https://doi.org/10.1007/978-3-540-74496-2_20
https://doi.org/10.1007/978-3-540-74496-2_20
https://doi.org/10.1007/978-3-540-74496-2_20
https://doi.org/10.1287/opre.1070.0496
https://doi.org/10.1287/opre.1070.0496
https://doi.org/10.1017/S096249291500001X
https://doi.org/10.1017/S096249291500001X
https://doi.org/10.1017/S096249291500001X
https://doi.org/10.1016/j.jcp.2011.01.023
https://doi.org/10.1016/j.jcp.2011.01.023
https://doi.org/10.1016/j.jcp.2011.01.023
https://doi.org/10.1137/21M1429047
https://doi.org/10.1137/21M1429047
https://doi.org/10.1137/21M1429047
https://doi.org/10.1016/j.cma.2016.03.029
https://doi.org/10.1016/j.cma.2016.03.029
https://doi.org/10.1016/j.cma.2016.03.029
https://doi.org/10.1007/s00211-015-0734-5
https://doi.org/10.1007/s00211-015-0734-5
https://doi.org/10.1007/s00211-015-0734-5
https://doi.org/10.1002/zamm.201300306
https://doi.org/10.1002/zamm.201300306
https://doi.org/10.1002/zamm.201300306
https://doi.org/10.1016/j.jcp.2018.05.046
https://doi.org/10.1016/j.jcp.2018.05.046
https://doi.org/10.1137/110845537
https://doi.org/10.1137/110845537
https://doi.org/10.1137/110845537
https://doi.org/10.1090/S0025-5718-2012-02574-9
https://doi.org/10.1090/S0025-5718-2012-02574-9
https://doi.org/10.1090/S0025-5718-2012-02574-9
https://doi.org/10.1016/j.jcp.2012.01.011
https://doi.org/10.1016/j.jcp.2012.01.011
https://doi.org/10.1016/j.jcp.2012.01.011
https://doi.org/10.1137/110857295
https://doi.org/10.1137/110857295
https://doi.org/10.1137/110857295
https://doi.org/10.1007/978-3-319-00885-1_6
https://doi.org/10.1007/978-3-319-00885-1_6
https://doi.org/10.1016/j.jcp.2016.02.014
https://doi.org/10.1016/j.jcp.2016.02.014
https://doi.org/10.1016/j.jcp.2016.02.014

28 N. BAUMGARTEN, S. KRUMSCHEID, AND C. WIENERS

[45] F. Nobile and R. Tempone, Analysis and implementation issues for the numerical
approximation of parabolic equations with random coefficients, Internat. J. Numer. Meth-
ods Engrg., 80 (2009), pp. 979–1006, https://doi.org/10.1002/nme.2656, https://doi.org/
10.1002/nme.2656.

[46] F. Nobile, R. Tempone, and C. G. Webster, A sparse grid stochastic collocation method for
partial differential equations with random input data, SIAM J. Numer. Anal., 46 (2008),
pp. 2309–2345, https://doi.org/10.1137/060663660, https://doi.org/10.1137/060663660.

[47] F. Nobile and F. Tesei, A Multi Level Monte Carlo method with control variate for elliptic
PDEs with log-normal coefficients, Stochastic Partial Differential Equations: Analysis and
Computations, 3 (2015), pp. 398–444.

[48] P. Pébay, T. B. Terriberry, H. Kolla, and J. Bennett, Numerically stable, scalable
formulas for parallel and online computation of higher-order multivariate central moments
with arbitrary weights, Comput. Statist., 31 (2016), pp. 1305–1325, https://doi.org/10.
1007/s00180-015-0637-z, https://doi.org/10.1007/s00180-015-0637-z.

[49] B. Peherstorfer, K. Willcox, and M. Gunzburger, Survey of multifidelity methods in
uncertainty propagation, inference, and optimization, SIAM Rev., 60 (2018), pp. 550–591,
https://doi.org/10.1137/16M1082469, https://doi.org/10.1137/16M1082469.

[50] M. Pisaroni, F. Nobile, and P. Leyland, A continuation multi level Monte Carlo (C-MLMC)
method for uncertainty quantification in compressible inviscid aerodynamics, Comput.
Methods Appl. Mech. Engrg., 326 (2017), pp. 20–50, https://doi.org/10.1016/j.cma.2017.
07.030, https://doi.org/10.1016/j.cma.2017.07.030.

[51] C.-h. Rhee and P. W. Glynn, Unbiased estimation with square root convergence for sde
models, Operations Research, 63 (2015), pp. 1026–1043.

[52] I. H. Sloan and H. Woźniakowski, When are quasi-Monte Carlo algorithms efficient for
high-dimensional integrals?, J. Complexity, 14 (1998), pp. 1–33, https://doi.org/10.1006/
jcom.1997.0463, https://doi.org/10.1006/jcom.1997.0463.

[53] J. Šukys, S. Mishra, and C. Schwab, Static load balancing for multi-level Monte Carlo finite
volume solvers, in International Conference on Parallel Processing and Applied Mathemat-
ics, Springer, 2011, pp. 245–254.

[54] A. L. Teckentrup, P. Jantsch, C. G. Webster, and M. Gunzburger, A multilevel
stochastic collocation method for partial differential equations with random input data,
SIAM/ASA J. Uncertain. Quantif., 3 (2015), pp. 1046–1074, https://doi.org/10.1137/
140969002, https://doi.org/10.1137/140969002.

[55] A. L. Teckentrup, R. Scheichl, M. B. Giles, and E. Ullmann, Further analysis of multilevel
Monte Carlo methods for elliptic PDEs with random coefficients, Numer. Math., 125
(2013), pp. 569–600, https://doi.org/10.1007/s00211-013-0546-4, https://doi.org/10.1007/
s00211-013-0546-4.

[56] J. Šukys, Adaptive load balancing for massively parallel multi-level Monte Carlo solvers, in
Parallel processing and applied mathematics. Part I, vol. 8384 of Lecture Notes in Comput.
Sci., Springer, Heidelberg, 2014, pp. 47–56, https://doi.org/10.1007/978-3-642-55224-3 5,
https://doi.org/10.1007/978-3-642-55224-3 5.

[57] J. Šukys, S. Mishra, and C. Schwab, Multi-level Monte Carlo finite difference and finite
volume methods for stochastic linear hyperbolic systems, in Monte Carlo and quasi-
Monte Carlo methods 2012, vol. 65 of Springer Proc. Math. Stat., Springer, Heidel-
berg, 2013, pp. 649–666, https://doi.org/10.1007/978-3-642-41095-6 34, https://doi.org/
10.1007/978-3-642-41095-6 34.

[58] B. P. Welford, Note on a method for calculating corrected sums of squares and products,
Technometrics, 4 (1962), pp. 419–420, https://doi.org/10.2307/1266577, https://doi.org/
10.2307/1266577.

[59] C. Wieners, D. Corallo, D. Schneiderhan, L. Stengel, L. Lindner, C. Rheinbay, and
N. Baumgarten, Mpp 3.1.5, 2023, https://doi.org/10.35097/1103.

[60] J. M. Wunderlich, Computer-assisted Existence Proofs for Navier-Stokes Equations on an
Unbounded Strip with Obstacle, PhD thesis, Karlsruher Institut für Technologie (KIT),
2022, https://doi.org/10.5445/IR/1000150609.

https://doi.org/10.1002/nme.2656
https://doi.org/10.1002/nme.2656
https://doi.org/10.1002/nme.2656
https://doi.org/10.1137/060663660
https://doi.org/10.1137/060663660
https://doi.org/10.1007/s00180-015-0637-z
https://doi.org/10.1007/s00180-015-0637-z
https://doi.org/10.1007/s00180-015-0637-z
https://doi.org/10.1137/16M1082469
https://doi.org/10.1137/16M1082469
https://doi.org/10.1016/j.cma.2017.07.030
https://doi.org/10.1016/j.cma.2017.07.030
https://doi.org/10.1016/j.cma.2017.07.030
https://doi.org/10.1006/jcom.1997.0463
https://doi.org/10.1006/jcom.1997.0463
https://doi.org/10.1006/jcom.1997.0463
https://doi.org/10.1137/140969002
https://doi.org/10.1137/140969002
https://doi.org/10.1137/140969002
https://doi.org/10.1007/s00211-013-0546-4
https://doi.org/10.1007/s00211-013-0546-4
https://doi.org/10.1007/s00211-013-0546-4
https://doi.org/10.1007/978-3-642-55224-3_5
https://doi.org/10.1007/978-3-642-55224-3_5
https://doi.org/10.1007/978-3-642-41095-6_34
https://doi.org/10.1007/978-3-642-41095-6_34
https://doi.org/10.1007/978-3-642-41095-6_34
https://doi.org/10.2307/1266577
https://doi.org/10.2307/1266577
https://doi.org/10.2307/1266577
https://doi.org/10.35097/1103
https://doi.org/10.5445/IR/1000150609

	Introduction
	A Budgeted Multi-level Monte Carlo Method
	Assumptions and Notation
	Introduction to Multi-level Monte Carlo methods
	Implementation Techniques
	Budgeted Multi-level Monte Carlo
	Parallelization Techniques

	Multi-Sample Finite Element Method
	Multi-Mesh Parallelization
	Multi-Sample Finite Element Spaces

	Discretization of the Acoustic Wave Equation
	Semi-Discretization with Discontinuous Galerkin Methods
	Time-Discretization with Implicit Methods

	Numerical Experiments for the Acoustic Wave Equation
	Discussion, Conclusion and Outlook
	References

