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INEXACT NEWTON REGULARIZATIONS WITH
UNIFORMLY CONVEX STABILITY TERMS:

A UNIFIED CONVERGENCE ANALYSIS

FÁBIO MARGOTTI, MARCO PAULETI, AND ANDREAS RIEDER

Abstract. We present a unified convergence analysis of inexact Newton regularizations
for nonlinear ill-posed problems in Banach spaces. These schemes consist of an outer
(Newton) iteration and an inner iteration which provides the update of the current outer
iterate. To this end the nonlinear problem is linearized about the current iterate and
the resulting linear system is approximately (inexactly) solved by an inner regularization
method. In our analysis we only rely on generic assumptions of the inner methods and we
show that a variety of regularization techniques satisfies these assumptions. For instance,
gradient-type and iterated-Tikhonov methods are covered. Not only the technique of
proof is novel, but also the results obtained, because for the first time uniformly convex
penalty terms stabilize the inner scheme.

1. Introduction

We are interested in solving the ill-posed inverse problem

(1) F (x) = y ,

where F : D(F ) ⊆ X −→ Y is a continuous nonlinear operator acting between Banach
spaces X and Y . We assume that only noisy data yδ ∈ Y are available, satisfying

(2) ∥y − yδ∥ ≤ δ,

where the noise level δ ≥ 0 is known.
Inexact Newton methods form a class of very efficient solvers for nonlinear inverse prob-

lems in many situations. In these methods, the forward operator F is linearized around
the current iterate xn and then the resulting linear system is (inexactly) solved to generate
an update to xn. This scheme was introduced by Dembo et al. [5] for well-posed problems,
and was first adapted to ill-posed problems by Hanke [9, 10]. Rieder [26] generalized the
ideas of Hanke by introducing the so-called REGINN algorithms (REGularization based on
INexact Newton method).

The REGINN algorithm operates with two iterations. The inner iteration applies a
regularization technique to stably approximate the solution of the linearized system and
generate the update, which is added to the current iterate in the outer iteration. In
addition to linear regularization methods, such as the stationary iterated-Tikhonov and
Landweber methods, the solution of the linearized system can be approximated using non-
linear methods, such as the steepest descent or the conjugate gradient methods. Further,
convergence, stability, and convergence rates have already been proven in Hilbert spaces
[26, 27, 28]. In 2010, Lechleiter and Rieder [16] proposed a unified convergence analysis of
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the REGINN algorithm in Hilbert spaces based on generic properties of the sequence used
in the inner iteration.

Many inverse problems are naturally formulated in Banach spaces, such as parameter
identification tasks for partial differential equations. Moreover, sparseness of the solution
can be forced by penalization in an appropriate Banach space [4]. Also, Banach spaces
may be suitable for handling special types of noise in the data, for instance, impulsive
noise as in [3]. On the other hand, the convergence analysis is complicated in Banach
spaces, in part because the iterations usually operate in the dual space.

The first convergence results of REGINN in Banach spaces were proved by Jin [11], where
a Landweber-like method was used in the inner iteration. Stability and regularization
properties were achieved for the first time by Margotti et al. [23] for a Kaczmarz version of
REGINN-Landweber. After that, different versions, using, e.g., the non-stationary iterated-
Tikhonov and gradient-like methods appeared in [20, 22, 24].

All versions of the inexact Newton method cited above work in reflexive spaces and
employ the subdifferential of the norm, called duality mapping (see (12) below), to link
the primal to the dual spaces, but see [25] for a version of REGINN in L∞. The properties
of the duality mapping strongly depend on the smoothness and convexity properties of
the space. Generally speaking, the smoother and more convex the norm of the space,
the better the duality operator will behave. In [12], Jin investigated a version of REGINN-
Landweber, replacing the duality mapping by the subdifferential of a p-convex functional.
This interesting idea replaces the smoothness and convexity properties of the Banach
space with the properties of the functional used. In addition, it allows us the use of more
appropriate functionals than the norm of the Banach space, such as the combination of
the norm with the seminorm of Total Variation or with the L1-norm. Gu and Han [8]
employed the same idea to define a p-convex two-points gradient method as inner iteration.

Inexact Newton methods penalized with more general functionals are very rare. In
[13] and [21], variations of the Levenberg-Marquardt method are investigated which are
penalized by the Bregman distance with respect to uniformly convex functional. To the
best of our knowledge, there is no version of REGINN that uses regularization techniques
penalized by uniformly convex functionals in the inner iteration. We will do exactly this
in the present paper.

Main contributions of this work. We present a convergence analysis of the algorithm
REGINN in reflexive Banach spaces with general uniformly convex penalty terms. More-
over, inspired by [16], we assume that the sequence generated in the inner iteration satisfies
some generic conditions and use them to prove convergence and stability properties. Fur-
ther, we validate that several regularization techniques satisfy the required conditions and
are therefore included in the convergence analysis. Among the regularization techniques
used to generate the inner iteration we will consider versions of gradient-type methods,
iterated-Tikhonov methods (stationary and non-stationary, with a priori and a poste-
riori choices of regularization parameters), mixed gradient-Tikhonov methods, and the
Tikhonov-Phillips method.

This paper is organized as follows: In the next section, we survey results concerning the
theory of convex analysis and geometry of Banach spaces, which will be important for the
full comprehension of the development of the following sections. Section 3 presents the
version of algorithm REGINN whose convergence analysis is then given in Section 4, where
the generic assumptions on the inner iteration are introduced and the main theoretical
results are proved. Section 5, in turn, presents concrete examples of regularization meth-
ods, which satisfy the required assumptions, and therefore can be implemented as inner
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iteration. Section 6 is devoted to the analysis of the Tikhonov-Phillips method which,
unfortunately, requires a separate treatment as it cannot be shown to satisfy the generic
assumptions of Section 4. Finally, in Appendix A we simultaneously prove the stability
of gradient and mixed-gradient Tikhonov methods.

2. Convex functionals and Bregman distances

For details on the material discussed in this section, we refer the reader to the textbooks
[2, 6, 30]. Unless the contrary is explicitly stated, we always consider X a real Banach
space.

The effective domain of the convex functional f : X −→ R := (−∞,∞] is defined as
Dom (f) := {x ∈ X | f(x) < ∞}. The set Dom (f) is always convex, and we call f proper
if Dom (f) ̸= ∅.
The functional f is said to be uniformly convex if there exists a non-decreasing function

Θ: [0,∞) −→ [0,∞], vanishing only at zero, such that

(3) f(λx+ (1− λ)y) + λ(1− λ)Θ (∥x− y∥) ≤ λf(x) + (1− λ)f(y) ,

for all λ ∈ (0, 1) and all x, y ∈ Dom (f). If f is uniformly convex, its modulus of convexity
is the function φ : [0,∞) −→ [0,∞] defined by

φ(t) := inf

{
λf(x) + (1− λ)f(y)− f(λx+ (1− λ)y)

λ(1− λ)

∣∣∣∣ x, y ∈ Dom (f) , ∥x− y∥ ≥ t,

λ ∈ (0, 1)

}
.

Note that φ ≥ Θ. Further, the functional f is p−convex, p ≥ 2, if there exists a constant
β > 0 such that φ(t) ≥ βtp. In case p = 2, the functional f is called strongly convex.

The functional f is (sequentially) lower semi-continuous (l.s.c.) if, for any sequence
(xk) ⊆ X satisfying xk −→ x, the inequality f (x) ≤ lim infk→∞ f (xk) holds. It is called
weakly lower semi-continuous (w.l.s.c.) if the last property holds true with xk −→ x
replaced by xk ⇀ x. The concepts of l.s.c. and w.l.s.c. coincide if f is convex.

Let f be a proper, l.s.c., and uniformly convex functional with modulus of convexity φ.
As inf(∅) = ∞, it may happen that φ(t0) = ∞. Throughout this text, we will adopt the
assumption that all considered proper, l.s.c., and uniformly convex functionals f are such
that Dom (f) is an unbounded subset of X. In that case, φ( · ) < ∞. Moreover, it is
possible to prove (see [29, 30]) that φ has the following properties: 1. φ(t) = 0 ⇔ t = 0 ;
2. φ is convex, continuous, and increasing ; 3. t 7→ φ(t)/t2 is non-decreasing on (0,∞) and
lim inft→∞(φ(t)/t2) > 0. Most of the results presented here can be obtained without the
extra assumption adopted on Dom (f), but we will make this assumption for simplicity.
Also, the main functionals f that we consider during applications share this property.

The subdifferential of a functional f : X −→ R is the point-to-set mapping ∂f : X ⇒ X∗

defined by

(4) ∂f (x) := {x∗ ∈ X∗ | f (x) + ⟨x∗, y − x⟩ ≤ f (y) for all y ∈ X} .
The effective domain of ∂f is the set Dom (∂f) := {x ∈ X | ∂f (x) ̸= ∅}. It is clear that
the inclusion Dom (∂f) ⊆ Dom (f) holds whenever f is proper.

The definition of the subdifferential readily yields that 0 ∈ ∂f (x) if and only if x
minimizes f . Further, if f, g : X −→ R are convex and there is a point x ∈ Dom (f) ∩
Dom (g) where either f or g is continuous, then ∂ (f + g) = ∂f + ∂g. It is evident that
∂(λf) = λ∂f for all λ > 0.

Assume f is proper. Then, choosing elements x, y ∈ X with y ∈ Dom (∂f) , we define
the Bregman distance between x and y in the direction of ξ ∈ ∂f(y) as

(5) ∆ξf(x, y) := f(x)− f(y)− ⟨ξ, x− y⟩ .
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Obviously, ∆ξf(y, y) = 0 and, since ξ ∈ ∂f(y), it additionally holds that ∆ξf (x, y) ≥ 0.
Moreover, it is straightforward to prove the three points identity :

(6) ∆ξ1f (x3, x1)−∆ξ2f (x3, x2) = −∆ξ2f (x1, x2) + ⟨ξ2 − ξ1, x3 − x1⟩

for all x3 ∈ Dom (f), x1, x2 ∈ Dom (∂f), ξ1 ∈ ∂f (x1), and ξ2 ∈ ∂f (x2). Further, the
functional ∆ξf ( · , y) : X −→ R is convex and it becomes strictly convex whenever f is
strictly convex. In this last case, ∆ξf (x, y) = 0 if and only if x = y.

The conjugate of f : X −→ R is the functional f ∗ : X∗ −→ [−∞,∞] defined by

f ∗(x∗) = sup
x∈X

{⟨x∗, x⟩ − f(x)} .

If f is proper, convex, and l.s.c., so is f ∗. From the definition follows that f ≤ g implies
f ∗ ≥ g∗. If g(x) = p−1∥x∥p, with p > 1, then g∗(x∗) = (p∗)−1∥x∗∥p∗ , where 1/p+1/p∗ = 1.
Similarly, for h : [0,∞) −→ [0,∞] satisfying h(0) = 0, we define its pseudo-conjugate

h# : [0,∞) −→ [0,∞] by

h#(t) = sup
s≥0

{ts− h(s)} .

If φ is the modulus of convexity of f , then φ# is called modulus of smoothness of f ∗,
see [30, Cor. 3.5.4].

Proposition 2.1. Let f be a proper, l.s.c., and uniformly convex functional. If φ is the
modulus of convexity of f , then the function g(t) = φ#(t)/t defined on (0,∞) is positive,
non-decreasing, and continuous with

(7) lim
t→0+

φ#(t)

t
= 0 and lim

t→∞

φ#(t)

t
= ∞ .

Proof. Since f is uniformly convex, its conjugate f ∗ is uniformly smooth, [30, Thm. 3.5.5]
and the left limit in (7) follows from the definition of uniform smoothness. Moreover,
since φ# is convex and φ#(0) = 0, the function t 7→ φ#(t)/t is non-decreasing on (0,∞).
Thus, the limit L ∈ [0,∞] of φ#(t)/t as t −→ ∞ exists. If L < ∞, there is some s ∈ R
such that s > L. From the definition of φ# we have that

φ#(t) ≥ t s− φ(s) , for all t > 0.

Dividing by t > 0, and letting t −→ ∞, we get

L = lim
t→∞

φ#(t)

t
≥ s > L .

The above contradiction yields the limit on the right in (7). Now, φ#(t) = 0 if and only
if t = 0, see [30, Lem. 3.3.1 (iii)], which implies g(t) > 0 for t > 0. Finally, φ#(t) < ∞ for
t ≥ 0, see [30, Cor. 3.5.4], and therefore Dom(φ#) = [0,∞). Since φ# is a proper, l.s.c.,
and convex function, φ# is continuous on int(Dom(φ#)) = (0,∞). □

Let X be reflexive and f : X −→ R be proper, convex, and l.s.c. For x ∈ X and
x∗ ∈ X∗ the following equivalences hold

(8) x∗ ∈ ∂f(x) ⇔ ⟨x∗, x⟩ = f(x)+f ∗(x∗) ⇔ x ∈ ∂f ∗(x∗) ⇔ x ∈ argmin
z∈X

{f(z)−⟨x∗, z⟩} .

Proposition 2.2. If f : X −→ R is uniformly convex with modulus φ, then,

(9) φ (∥x1 − x2∥) ≤ ∆ξ2f (x1, x2)
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for all x1 ∈ X, x2 ∈ Dom (∂f) and ξ2 ∈ ∂f (x2). Additionally, if the space X is reflexive,
x1 ∈ Dom (∂f) and ξ1 ∈ ∂f (x1), then

(10) ∆ξ2f (x1, x2) ≤ φ# (∥ξ1 − ξ2∥)

and

(11) 2φ (∥x1 − x2∥) ≤ ⟨ξ1 − ξ2, x1 − x2⟩ .

Proof. For a proof of inequality (9), see, e.g., [18, ineq. (7)].
To prove (10), define g(z) := ∆ξ1f(z, x1). Then, we have that ∂g(z) = ∂f(z)− ξ1, and

since ξ2 ∈ ∂f(x2), we have ξ2 − ξ1 ∈ ∂g(x2). From (8),

g∗(ξ2 − ξ1) = ⟨ξ2 − ξ1, x2⟩ − g(x2) = ∆ξ2f(x1, x2) + ⟨ξ2 − ξ1, x1⟩ .

Define h(z) = φ(∥z − x1∥). Then, from (9) we obtain g ≥ h. Thus, g∗(z∗) ≤ h∗(z∗) ≤
φ#(∥z∗∥) + ⟨z∗, x1⟩ for all z∗ ∈ X∗. Therefore,

∆ξ2f(x1, x2) + ⟨ξ2 − ξ1, x1⟩ = g∗(ξ2 − ξ1) ≤ h∗(ξ2 − ξ1) ≤ φ#(∥ξ2 − ξ1∥) + ⟨ξ2 − ξ1, x1⟩ ,

which proves (10).
Finally, (11) follows from (9) using ∆ξ2f(x1, x2)+∆ξ1f(x2, x1) = ⟨ξ1− ξ2, x1−x2⟩. □

We fix p > 1 and define the point-to-set function Jp : X ⇒ X∗ as

(12) Jp (x) := {x∗ ∈ X∗ | ⟨x∗, x⟩ = ∥x∗∥ ∥x∥ and ∥x∗∥ = ∥x∥p−1} ,

which we call duality mapping. The Hahn-Banach theorem shows that Jp (x) ̸= ∅ for all
x ∈ X. Moreover, one can prove that Jp = ∂g, where g(x) := p−1∥x∥p. We call the
Banach space X smooth if the functional g is Gâteaux-differentiable in X.1 In this case,
Jp : X −→ X∗ is single-valued and Jp(x) = {∇g(x)}. Similarly, the Banach space X is
called locally uniformly smooth if the functional g is Fréchet-differentiable in X, in which
case, Jp is continuous. Important examples of locally uniformly smooth Banach spaces
are the Lebesgue spaces Lp (Ω), the Sobolev spaces W n,p (Ω), n ∈ N, and the space of
p−summable sequences ℓp (R), for 1 < p < ∞.

Let Ω ⊆ X be a nonempty set. The annihilator of Ω is defined by

Ω⊥ := {ξ ∈ X∗ | ⟨ξ, x⟩ = 0 , for all x ∈ Ω} .

It is easy to show that Ω⊥ is a subspace of X∗ and that Ω1 ⊆ Ω2 ⇒ Ω⊥
2 ⊆ Ω⊥

1 . Moreover, if
A : X −→ Y is a bounded linear operator acting between Banach spaces and A∗ : Y ∗ −→
X∗ is the adjoint operator, then R(A∗) ⊆ N (A)⊥.

3. Inexact Newton method REGINN

Algorithm REGINN, as proposed in [26], linearizes the nonlinear equation F (x) = yδ

around the current iterate xn and then solves the linearized system inexactly in the so-
called inner iteration to generate an increment, which is added to the current iterate
in the outer iteration to obtain an update. More precisely, assume that F is Fréchet-
differentiable and define An := F ′(xn) and bδn := yδ − F (xn). Now, the inner iteration
(sn,k)k is generated by applying a regularization technique to approximate a solution of

the linearized system Ans = bδn. The inner iteration stops at the index k = k̂n defined by

(13) k̂n := inf {k ∈ N | ∥Ansn,k − bδn∥ < µn∥bδn∥} ,

1The differentiability properties of this functional are independent of the particular choice of p > 1.
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where µn ∈ (0, 1) is a pre-defined constant. The next outer iterate is then xn+1 :=
xn + sn,k̂n . Finally, the outer iteration is terminated by the discrepancy principle, i.e., we
fix τ > 1 and finish the iteration at the index n = nδ where

(14) nδ := inf {n ∈ N | ∥F (xn)− yδ∥ ≤ τ δ} .

In what follows, we describe the version of algorithm REGINN we shall consider in this
work. First of all, we assume that X is a reflexive Banach space and fix a proper, l.s.c.,
and uniformly convex functional f : X −→ R.

We start the outer iteration with initial guesses x0 ∈ D(F )∩Dom (∂f) and ξ0 ∈ ∂f(x0).
Assuming the iterates xn ∈ D(F ) ∩ Dom (∂f) and ξn ∈ ∂f(xn) are already defined, we
define An and bδn as above and produce the inner iteration as follows: set xn,0 := xn

and ξn,0 := ξn. Now, assuming the k−th inner iterates xn,k and ξn,k ∈ ∂f(xn,k) are
already computed, choose a direction ωn,k ∈ X∗, a step-size λn,k > 0, and define ξn,k+1 :=
ξn,k − λn,k ωn,k. Now we set xn,k+1 := ∇f ∗(ξn,k+1). Because f is uniformly convex, the
conjugate function f ∗ is Fréchet-differentiable in X∗ and ∇f ∗ is uniformly continuous, see
[30, Thm. 3.5.10]. Therefore, the next inner iterate xn,k+1 is well defined and since X is
reflexive, ξn,k+1 ∈ ∂f(xn,k+1), see (8). Moreover, using (8) once more, one sees that xn,k

may be computed by solving the following minimization problem

xn,k = argmin
x∈X

{f(x)− ⟨ξn,k, x⟩} .

The inner iteration terminates with a generalization of the rule (13). More precisely, for
sn,k := xn,k − xn choose µn ∈ (0, 1) as well as kmax,n ∈ N ∪ {∞}. Then, xn+1 := xn,kn

(which is equivalent to xn+1 = xn + sn,kn) and ξn+1 := ξn,kn , where

(15) kn := min {k̂n, kmax,n} .

Finally, the outer iteration (xn) terminates at index n = nδ according to the rule (14).

Remark 3.1. a) According to rule (15) the inner iteration may stop at any index less

than or equal to k̂n in (13).
b) The directions ωn,k and the step-sizes λn,k depend on the specific method used in the

inner iteration. We give two examples. By taking f(x) = p−1∥x∥p, p > 1, and assuming
that the spaces X and Y fulfill certain conditions, we have that ∂f = Jp is the duality
mapping, and the inner iteration of REGINN becomes

ξn,k+1 = Jp(xn,k)− λn,k ωn,k ,

xn,k+1 = Jp∗(ξn,k+1) ,

where 1/p+1/p∗ = 1. Thus, if ωn,k = A∗
nJr(Ansn,k−bδn) for some r > 1, then our method

reduces to the one studied in [20]. Moreover, in case ωn,k = A∗
nJr(Ansn,k+1 − bδn), then, it

is similar to the one analyzed in [22].
In particular, if X and Y are Hilbert spaces and f(x) = ∥x∥2/2, then ∂f is the identity

operator and the inner iteration reduces to

xn,k+1 = xn,k − λn,k ωn,k ,

which is essentially the original method introduced in [26].

Algorithm 1 describes the method in pseudocode.
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INPUT: x0, ξ0, F, f, yδ, δ, τ (as specified in the text)

OUTPUT: xn satisfying ∥F (xn)− yδ∥ ≤ τ δ .

n = 0;

While ∥F (xn)− yδ∥ > τ δ Do

[1] An = F ′(xn), bδn = yδ − F (xn);

[2] k = 0, xn,0 = xn, ξn,0 = ξn;

[3] Choose kmax,n ∈ N ∪ {∞} and µn ∈ (0, 1);

[4] Repeat

[4.1] Choose ωn,k ∈ X∗ and λn,k > 0;

[4.2] ξn,k+1 = ξn,k − λn,k ωn,k;

[4.3] xn,k+1 = ∇f ∗(ξn,k+1);

[4.4] k = k + 1;

Until ∥An(xn,k − xn)− bδn∥ < µn ∥bδn∥ or k = kmax,n

[5] xn+1 = xn,k, ξn+1 = ξn,k;

[6] n = n+ 1;

End While

Algorithm 1. Algorithm REGINN with convex penalization terms.

4. Convergence analysis

In the current section, we adopt some assumptions concerning the inner iteration and
derive a unified convergence analysis of Algorithm 1. Later, in Section 5, we will show
that many regularization methods satisfy these assumptions.

For the remaining of this article, we assume the following conditions related to the
inverse problem (1), the spaces X and Y and the functional f : X −→ R:

Assumption 1. The initial guesses x0 ∈ D(F )∩Dom (∂f) and ξ0 ∈ ∂f(x0) are fixed and
independent of the noise level δ ≥ 0. Let the following hold.

(A.1) There is a radius ρ > 0 such that Bρ(x0) := {x ∈ X | ∥x− x0∥ < ρ} ⊆ D(F ).
(A.2) f is a proper, l.s.c., and uniformly convex functional with modulus of convexity φ,

see (3). Moreover, the effective domain Dom(f) is unbounded.
(A.3) There is some x⋆ ∈ D(F ) ∩ Dom (f) such that F (x⋆) = y and ∆ξ0f(x

⋆, x0) <
φ(ρ/2) < ∞.

(A.4) Tangential cone condition (TCC): F is continuously Fréchet-differentiable in Bρ(x0)
and there is a constant η ∈ [0, 1) such that

∥F (x)− F (z)− F ′(z)(x− z)∥ ≤ η∥F (x)− F (z)∥ for all x, z ∈ Bρ(x0).

(A.5) There is a constant M > 0 such that ∥F ′(x)∥ ≤ M for all x ∈ Bρ(x0).
(A.6) The Banach spaces X and Y are reflexive and locally uniformly smooth, respec-

tively.

The critical of the above assumptions is the tangential cone condition (A.4) because it
significantly restricts the structure of admissible nonlinearities. Yet, in different versions
it is a notorious prerequisite for the convergence analysis of many regularization schemes,
see, e.g., the corresponding papers cited in Section 1. Examples of nonlinear inverse
problems which satisfy the TCC are reported in [7, 14, 15]. We emphasize that, by (A.6),
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the duality mapping Jp : Y −→ Y ∗, p > 1, is single-valued and continuous, see text below
(12).

We now define An := F ′(xn), b
δ
n := yδ −F (xn), sn,k := xn,k − xn, en := x⋆ − xn, and fix

some r > 1. Next, we formulate an assumption on the inner iteration of REGINN:

Assumption 2. If the n-th iterate xn ∈ D(F ) ∩ Dom(∂f) is well defined, let there exist
a constant c0 ∈ (0, 1) such that, for k = 0, . . . , kn − 1, there is a nonzero vector vn,k ∈ X
satisfying

(16) ∆ξn,k+1
(x⋆, xn,k+1)−∆ξn,k

(x⋆, xn,k)

≤ λn,k∥vn,k∥r−1
[
∥Anen − bδn∥ − c0∥Ansn,k − bδn∥

]
.

From here on, if the context permits, we will write ∆ξ (v, w) or even ∆ (v, w) instead
of ∆ξf (v, w). In particular, ∆(·, xn,k) = ∆ξn,k

(·, xn,k) and ∆(·, xn) = ∆ξn(·, xn).
Assumption 2 implies monotonicity of the inner iterations, as we now prove.

Theorem 4.1. Let Assumptions 1 and 2 hold with η < c0. Let τ > (1 + η)/(c0 − η).
Assume that the iterates x0, x1, . . . , xn are well defined in D(F ). Moreover, assume that
∥F (xn)− yδ∥ > τ δ. Define

(17) µn := η +
(1 + η)δ

∥bδn∥
.

If µn ∈ (c−1
0 µn, 1) then, for all k < kn,

(18) (c0 − µn/µn)λn,k∥vn,k∥r−1∥Ansn,k − bδn∥ ≤ ∆(x⋆, xn,k)−∆(x⋆, xn,k+1) ,

and, consequently, the Bregman distances of the inner iterates are strictly decreasing, i.e.,

(19) ∆(x⋆, xn,k+1) < ∆(x⋆, xn,k) , for all k = 0, . . . , kn − 1 .

Proof. First, observe that the lower bound on τ together with ∥bδn∥ > τ δ implies that the
interval for selecting µn is nonempty. Now, the TCC (Assumption 1, (A.4)) implies that
∥Anen − bδn∥ ≤ µn∥bδn∥. By ∥Ansn,k − bδn∥ ≥ µn∥bδn∥ for k < kn, and by Assumption 2 we
obtain (18), which in turn proves (19). □

Assumption 3. Under Assumption 2 let there exist a non-decreasing function h : (0,∞) −→
(0,∞) such that

h(∥Ansn,k − bδn∥) ≤ λn,k∥vn,k∥r−1

for n = 0, . . . , nδ − 1 and k = 0, . . . , kn − 1.

Theorem 4.2. Let Assumptions 1, 2, and 3 hold with η < c0. Let τ > (1+η)/(c0−η). If
µn ∈ (c−1

0 µn, 1) then, for n = 0, . . . , nδ − 1, the inner iteration terminates, i.e., the index

k̂n is finite. Further, xn is well defined for n ≤ nδ and belongs to D(F ). Moreover, for
n < nδ,

(20) (c0 − µn/µn)
kn−1∑
k=0

λn,k∥vn,k∥r−1∥Ansn,k − bδn∥ ≤ ∆(x⋆, xn)−∆(x⋆, xn+1) ,

and consequently, the Bregman distances of the outer iterates are strictly decreasing, i.e.,

(21) ∆(x⋆, xj+1) < ∆(x⋆, xj) , for all j = 0, . . . , nδ − 1 .

Especially, xn,k ∈ Bρ(x0) ⊆ D(F ), for all n < nδ and k ≤ k̂n.
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Proof. We argue by induction on n. We start with x0 ∈ D(F ) and suppose that the
iterates x1, . . . , xn ∈ D(F ) have already been computed for some n < nδ satisfying (21)

for j = 0, . . . , n− 1. Let ℓ ∈ N0 with ℓ ≤ k̂n. In view of (18),

(22) (c0 − µn/µn)
ℓ−1∑
k=0

λn,k∥vn,k∥r−1∥Ansn,k − bδn∥

≤
ℓ−1∑
k=0

[∆(x⋆, xn,k)−∆(x⋆, xn,k+1)] = ∆(x⋆, xn,0)−∆(x⋆, xn,ℓ) ≤ ∆(x⋆, xn) .

Since ∥Ansn,k − bδn∥ ≥ µn∥bδn∥ for k < k̂n and since the function h from Assumption 3 is
non-decreasing, we infer that

h(µn∥bδn∥)µn ∥bδn∥ℓ ≤
ℓ−1∑
k=0

h(∥Ansn,k − bδn∥)∥Ansn,k − bδn∥

≤
ℓ−1∑
k=0

λn,k∥vn,k∥r−1∥Ansn,k − bδn∥.

(23)

This bound together with (22) leads to

ℓ ≤ ∆(x⋆, xn)

(c0µn − µn)h(µn∥bδn∥)∥bδn∥
< ∞

and hence k̂n < ∞. Plugging ℓ = kn ≤ k̂n into (22) we obtain (20), which, in turn, proves
(21) for j = 0, . . . , n. By (19) we have, for k ≤ kn,

(24) ∆(x⋆, xn,k) < ∆(x⋆, xn,k−1) < · · · < ∆(x⋆, xn,0) = ∆(x⋆, xn) .

But, from Assumption 1 (A.3) we get

φ(∥x⋆ − x0∥) ≤ ∆(x⋆, x0) < φ(ρ/2) ,

which results in ∥x⋆ − x0∥ < ρ/2. From (24) and (21) we conclude that

φ(∥x⋆ − xn,k∥) ≤ ∆(x⋆, xn,k) < ∆(x⋆, xn) < · · · < ∆(x⋆, x0) < φ(ρ/2).

Thus, ∥x⋆ − xn,k∥ < ρ/2 and xn,k ∈ Bρ(x0) ⊆ D(F ) for all k ≤ kn. In particular,
xn+1 = xn,kn ∈ D(F ) and the inductive step is complete. □

From (20) we obtain for all i ≤ nδ that

i−1∑
n=0

kn−1∑
k=0

(c0 − µn/µn)λn,k∥vn,k∥r−1∥Ansn,k − bδn∥ ≤
i−1∑
n=0

[∆(x⋆, xn)−∆(x⋆, xn+1)]

= ∆(x⋆, x0)−∆(x⋆, xi) .

(25)

We now prove that the outer iteration terminates for noisy data (δ > 0), i.e., nδ < ∞.
To this end we must control the term c0µn − µn. Note that the restrictions on η and τ in
the last theorem ensure c−1

0 (η + (1 + η)τ−1) < 1. We thus fix a number µmin satisfying

(26) c−1
0 (η + (1 + η)τ−1) < µmin < 1

and restrict µn to the interval (µmin, 1). As µmin > c−1
0 µn for n < nδ, all the results of the

previous theorems hold in this new situation.

Corollary 4.3. Let δ > 0 be fixed and adopt all the hypotheses of Theorem 4.2. Moreover,
assume that µn ∈ (µmin, 1) for all n < nδ with µmin as in (26). Then, nδ < ∞.
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Proof. Let i ≤ nδ. For n < nδ we have that c0−µn/µn > c0−(η+(1+η)τ−1)µ−1
min =: C0 > 0.

Hence, from (25),

(27) C0

i−1∑
n=0

kn−1∑
k=0

λn,k∥vn,k∥r−1∥Ansn,k − bδn∥ ≤ ∆(x⋆, x0) .

Note that ∥bδn∥ > τ δ and kn ≥ 1 for n < nδ. Since h is positive and non-decreasing, it
follows from (23) with ℓ = kn that

i C0h(µminτ δ)µminτ δ ≤ i C0h(µn∥bδn∥)µn∥bδn∥kn

≤ C0

i−1∑
n=0

kn−1∑
k=0

λn,k∥vn,k∥r−1∥Ansn,k − bδn∥ ≤ ∆(x⋆, x0) < ∞ ,

so that i < ∞ and, consequently, nδ < ∞. □

Corollary 4.4. For those outer iterations satisfying kn = k̂n, we have

∥bδn+1∥ ≤ Λ∥bδn∥, with 0 < Λ :=
µmax + η

1− η
,

where η is the constant in Assumption 1 (A.4), µmin < µmax < 1 and µn ∈ (µmin, µmax).
Additionally, if η < c0/(1 + 2c0), then by choosing τ > (1 + η)/((1 − 2η)c0 − η) we can
further restrict µmin and µmax such that

c−1
0

(
η +

1 + η

τ

)
< µmin < µmax < 1− 2η.

Consequently, Λ < 1, and accordingly

nδ ≤ logΛ

(
τδ

∥F (x0)− yδ∥

)
+ 1,

whenever kn = k̂n for n = 0, . . . , nδ − 1.

Proof. See, e.g., [20, Rem.6]. □

4.1. Convergence without noise. In the noise-free situation (δ = 0) we cannot guar-
antee nδ to be finite. However, we can prove summability of some important series, which
yield then convergence of (xn) to a solution of the inverse problem (1). In the sequel, we
use the notation bn := y − F (xn).

Corollary 4.5. Under the hypotheses of Theorem 4.2 assume that δ = 0, nδ = ∞, and
µn ∈ (µmin, 1) for all n ∈ N, with µmin as in (26). Then,

(28)
∞∑
n=0

kn−1∑
k=0

λn,k∥vn,k∥r−1∥Ansn,k − bn∥ < ∞ and
∞∑
n=0

h(µmin∥bn∥)µmin∥bn∥ < ∞ .

Consequently, F (xn) −→ y as n −→ ∞.

Proof. Because nδ = ∞, inequality (27) holds true for all i ∈ N. Letting i −→ ∞ we
obtain the convergence of the first series in (28). In view of (23), µn > µmin, and kn ≥ 1,
convergence of the second one follows from the first. Hence, h(µmin∥bn∥)µmin∥bn∥ −→ 0
as n −→ ∞ which implies ∥F (xn) − y∥ = ∥bn∥ −→ 0 since h is positive and non-
decreasing. □

For the proof of the above announced convergence result, we need a further assumption
on the inner iteration.
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Assumption 4. Under Assumption 2 let there exist a sequence (γn,k) ⊆ X∗ such that for
all n < nδ and k < kn,

ξn,k+1 = ξn,k − λn,k [A
∗
nJr(vn,k) + αn,kγn,k] ,

where αn,k∥γn,k∥ ≤ c1∥vn,k∥r−1∥Ansn,k − bδn∥, with (αn,k) ⊆ [0,∞) and c1 ≥ 0.

Theorem 4.6 (Convergence with exact data). Let δ = 0 and adopt all the hypotheses of
Theorem 4.2. Further, assume that µn ∈ (µmin, 1) for n ∈ N, with µmin as in (26). Under
Assumption 4 there is some x∞ ∈ D(F ) satisfying F (x∞) = y such that REGINN either
terminates after m ∈ N iterations with xm = x∞ or the sequence (xn) converges:

(29) lim
n→∞

∆(x∞, xn) = 0 and lim
n→∞

∥x∞ − xn∥ = 0 .

Proof. If there is some m with ∥F (xm) − y∥ ≤ τ δ = 0, then F (xm) = y and the outer
iteration terminates with a solution of (1).

We now assume that nδ = ∞ and prove (29). Indeed, as bn −→ 0 by Corollary 4.5, we
can select a subsequence (xnj

) such that, for each j ∈ N,

(30) ∥bnj
∥ ≤ ∥bm∥ for all m ≤ nj .

We first validate that (xnj
) is a Cauchy sequence. In fact, fix natural numbers m < ℓ.

From the three points identity (6),

(31) φ(∥xnℓ
− xnm∥) ≤ ∆(xnℓ

, xnm) = [∆(x⋆, xnm)−∆(x⋆, xnℓ
)] + ⟨ξnℓ

− ξnm , xnℓ
− x⋆⟩ .

We now estimate the last term on the right, relying on Assumption 4:

|⟨ξnℓ
− ξnm , xnℓ

− x⋆⟩| =

∣∣∣∣∣
nℓ−1∑
n=nm

⟨ξn+1 − ξn, enℓ
⟩

∣∣∣∣∣ =
∣∣∣∣∣
nℓ−1∑
n=nm

⟨ξn,kn − ξn,0, enℓ
⟩

∣∣∣∣∣
=

∣∣∣∣∣
nℓ−1∑
n=nm

kn−1∑
k=0

⟨ξn,k+1 − ξn,k, enℓ
⟩

∣∣∣∣∣
=

∣∣∣∣∣
nℓ−1∑
n=nm

kn−1∑
k=0

−λn,k [⟨Jr(vn,k), Anenℓ
⟩+ αn,k⟨γn,k, enℓ

⟩]

∣∣∣∣∣
≤

nℓ−1∑
n=nm

kn−1∑
k=0

λn,k

[
∥vn,k∥r−1∥Anenℓ

∥+ αn,k∥γn,k∥∥enℓ
∥
]
.

Further, in view of (30), for n < nℓ and k < kn,

∥Anenℓ
∥ ≤ ∥F (xnℓ

)− F (xn)− F ′(xn)(xnℓ
− xn)∥

+ ∥F (x⋆)− F (xn)− F ′(xn)(x
⋆ − xn)∥+ ∥bnℓ

∥
≤ η∥F (xnℓ

)− F (xn)∥+ η∥F (x⋆)− F (xn)∥+ ∥bnℓ
∥

≤ 2η∥bn∥+ (η + 1)∥bnℓ
∥ ≤ (3η + 1)∥bn∥ ≤ 3η + 1

µmin

∥Ansn,k − bn∥ .

(32)

According to Theorem 4.2, the sequence (xn,k) is uniformly bounded in n and k and so is
(en). From Assumption 4 follows the existence of a constant C1 ≥ 0 such that

αn,k∥γn,k∥∥enℓ
∥ ≤ C1∥vn,k∥r−1∥Ansn,k − bn∥ .
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Putting all together, we get

(33) |⟨ξnℓ
− ξnm , xnℓ

− x⋆⟩| ≤
[
C1 +

(3η + 1)

µmin

] nℓ−1∑
n=nm

kn−1∑
k=0

λn,k∥vn,k∥r−1∥Ansn,k − bn∥ .

From (28), we conclude that the last term on the right of (31) converges to zero as
m, ℓ −→ ∞. Moreover, the term in the brackets in (31) also tends to zero as m, ℓ −→ ∞
for the following reason: the sequence (∆(x⋆, xn))n converges, since it is monotonically
decreasing, see (21), and bounded from below by zero. As a result, φ(∥xnm − xnℓ

∥) −→ 0
and, consequently, ∥xnm − xnℓ

∥ −→ 0 as m, ℓ −→ ∞, proving that (xnj
) is a Cauchy

sequence. Since X is a complete space, there is some x∞ ∈ X such that xnj
−→ x∞. By

monotonicity of (∆(x⋆, xn))n,

φ(∥x⋆ − xnj
∥) ≤ ∆(x⋆, xnj

) ≤ · · · ≤ ∆(x⋆, x0) < φ(ρ/2) ,

giving ∥x⋆ − x∞∥ ≤ ρ/2. Since ∥x⋆ − x0∥ < ρ/2, we have x∞ ∈ Bρ(x0) ⊆ D(F ). From
∥bnj

∥ −→ 0, we conclude that F (x∞) = y.
Finally, for every j ∈ N, the functional ∆( · , xnj

) is l.s.c. and by (31) and (33),

lim
j→∞

∆(x∞, xnj
) ≤ lim

j→∞

[
lim inf
m→∞

∆(xnm , xnj
)
]
= 0 .

Using (21) again, we see that the sequence (∆(x∞, xn))n must converge, and since the
subsequence (∆(x∞, xnj

))j converges to zero, we conclude that ∆(x∞, xn) −→ 0, which
in turn proves that xn −→ x∞, and the proof is complete. □

Let S ⊆ X be the set of all solutions of (1) in the closed ball Bρ/2[x0] := {x ∈
X | ∥x− x0∥ ≤ ρ/2} ⊆ D(F ), i.e., S := {x ∈ Bρ/2[x0] | F (x) = y}. Because the operator
F is continuous, S is closed and by using the TCC (Assumption 1 (A.4)), we obtain
that S is convex. Further, Assumption 1 (A.3) guarantees that S is nonempty because
F (x⋆) = y and ∥x⋆ − x0∥ ≤ φ−1 (∆(x⋆, x0)) < ρ/2.
Now, since the functional f is proper, l.s.c., and uniformly convex (Assumption 1 (A.2)),

the functional g(·) = ∆ξ0(·, x0) is proper, l.s.c., strictly convex, and coercive. Because
the space X is reflexive (Assumption 1 (A.6)), there exists a unique x† ∈ S such that
x† = argmin{∆ξ0( · , x0) | x ∈ S}, see e.g., [6, Prop. II 1.2].
We call x† the x0-minimum distance solution. It is uniquely characterized by x† ∈ S

and

∆ξ0(x
†, x0) ≤ ∆ξ0(z, x0) for all z ∈ S .

In [21] it is proven that, if x† ∈ int(Dom(f)) and z ∈ N (F ′(x†)), then f is subdifferentiable
at x† and there exists an element ξ†z ∈ ∂f(x†) such that

(34) ⟨ξ†z − ξ0, z⟩ ≥ 0 .

Corollary 4.7. Let all assumptions from Theorem 4.6 hold true. Additionally, assume
that c1 = 0 in Assumption 4, x† ∈ int(Dom(f)), nδ = ∞, and

(35) N (F ′(x†)) ⊆ N (F ′(x)) for all x ∈ Bρ(x0) .

Then, xn −→ x† as n −→ ∞.

Proof. From Assumption 4 with c1 = 0 follows that, for n ∈ N and k < kn,

ξn,k+1 − ξn,k = −λn,kA
∗
nJr(vn,k) ∈ R(F ′(xn)

∗) ⊆ N (F ′(xn))
⊥ ⊆ N (F ′(x†))⊥ ,
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so that, for m ∈ N,

ξm − ξ0 =
m−1∑
n=0

kn−1∑
k=0

(ξn,k+1 − ξn,k) ∈ N (F ′(x†))⊥ .

Define z := x∞ − x† and recall from (29) that xn −→ x∞ with F (x∞) = y. From TCC
(Assumption 1 (A.4)),

∥F ′(x†)z∥ = ∥F ′(x†)(x∞ − x†)∥ ≤ (1 + η)∥F (x∞)− F (x†)∥ = 0 ,

which proves that z ∈ N (F ′(x†)), and therefore, ⟨ξm − ξ0, z⟩ = 0, for all m ∈ N. On the
other hand, since x† ∈ int(Dom(f)), there exists a vector ξ†z ∈ ∂f(x†) such that inequality
(34) holds. Thus,

(36) ⟨ξ†z − ξm, z⟩ ≥ 0 for every m ∈ N .

Next, let (xnj
) be a subsequence satisfying (30). We first prove that xnj

−→ x†. Fix
ϵ > 0. Choose M1 ∈ N such that

(37)
∞∑

n=nM1

kn−1∑
k=0

λn,k∥vn,k∥r−1∥Ansn,k − bn∥ <
µmin

3η + 1
ϵ ,

which is possible because this series converges, see (28). Now choose M2 ∈ N such that

j ≥ M2 =⇒ ∥xnj
− x∞∥ <

ϵ

∥ξ†z − ξnM1
∥
.

Then, for j > max{M1,M2}, it follows from (36), (11), and (33) (with C1 = 0, since
c1 = 0) that

2φ(∥x† − xnj
∥) ≤ ⟨ξ†z − ξnj

, x† − xnj
⟩

= −⟨ξ†z − ξnj
, z⟩+ ⟨ξ†z − ξnM1

, x∞ − xnj
⟩+ ⟨ξnj

− ξnM1
, xnj

− x∞⟩
≤ 0 + ∥ξ†z − ξnM1

∥∥x∞ − xnj
∥

+
3η + 1

µmin

nj−1∑
n=nM1

kn−1∑
k=0

λn,k∥vn,k∥r−1∥Ansn,k − bn∥

< 2ϵ .

This proves that xnj
−→ x†. Since the sequence (xn) converges to x∞, see (29), and the

subsequence (xnj
) converges to x†, we conclude that x∞ = x† and xn −→ x†. □

4.2. Regularization property. We start with a regularization result in the weak topol-
ogy. Then, with an additional assumption on the inner iteration, we prove norm conver-
gence.

Theorem 4.8. Let (δj) be a sequence of positive numbers converging to zero. Assume
all the hypotheses of Theorem 4.6 and that F is weakly (sequentially) closed2. Then,

any subsequence of (x
δj
nδj

)j has itself a subsequence which converges weakly to a solution

of (1). Additionally, if x⋆ is the unique solution of the inverse problem in Bρ(x0), then

the sequence (x
δj
nδj

)j converges weakly to x⋆.

2F weakly closed means that, if (zk) ⊆ D(F ) converges weakly to z ∈ X and (F (zk)) converges weakly
to y ∈ Y , then z ∈ D(F ) and y = F (z).
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Proof. According to Theorem 4.2, the sequence (x
δj
nδj

)j stays within Bρ(x0) ⊆ D(F ).

Hence, (x
δj
nδj

)j is bounded and, since X is reflexive, there is a subsequence zm = x
δjm
nδjm

which converges weakly to some z ∈ X. Now, ∥F (zm)−y∥ ≤ ∥F (zm)−yδjm∥+∥y−yδjm∥ ≤
(τ+1)δjm implies that F (zm) −→ y asm −→ ∞. As F is weakly closed, we have z ∈ D(F )

and y = F (z). Applying the same reasoning to any subsequence of (x
δj
nδj

)j, we obtain the

first result. As at the end of the proof of Theorem 4.6, one can show that z ∈ Bρ(x0).
Now, if x⋆ is the unique solution of the inverse problem in Bρ(x0) then, any subsequence

of (x
δj
nδj

)j has a further subsequence which converges weakly to x⋆, and consequently,

x
δj
nδj

⇀ x⋆, as j −→ ∞. □

In order to obtain norm convergence, we assume a kind of stability of the inner iteration.
For this purpose, we fix a sequence (δj) of positive noise levels converging to zero and, for
each j ∈ N, we fix the data vector yδj ∈ Y satisfying ∥y − yδj∥ ≤ δj. Also, for each pair

(δj, y
δj), we fix the (finite) sequence (x

δj
n )

nδj

n=0 . Moreover, we define

n := lim sup
j→∞

nδj ,

which might be infinity. The arguments we will use consist of successively extracting a
subsequence from the current sequence, and to avoid a notation overload, we denote a
subsequence of (δj) again by (δj).

Assumption 5. Let n, k ∈ N be given with n < n and k < lim supj→∞ k
δj
n .

If, for some subsequence of (δj), we have that ξ
δj
n,m −→ ξn,m as j −→ ∞, m = 0, . . . , k,

then ξ
δj
n,k+1 −→ ξn,k+1 as j −→ ∞ for a further subsequence of (δj) (depending on k).

The condition k < lim supj→∞ k
δj
n in Assumption 5 has the following reason: at least

for one subsequence the next inner iteration step should be possible, i.e., ξ
δj
n,k+1 is well

defined.
We are now in the position to establish stability of Algorithm 1.

Theorem 4.9 (Stability). For any n ≤ n there are a subsequence of (δj) (depending on
n) and sequences (xm) and (ξm) generated by a run of REGINN with a suitable choice of
(kmax,m), such that

(38) xδj
m −→ xm and ξδjm −→ ξm as j −→ ∞ , for m = 0, . . . , n .

Proof. We argue by induction on n. For n = 0 the claim is clearly true because x
δj
0 = x0

and ξ
δj
0 = ξ0 for all j ∈ N. Assume that (38) holds true for some n < n and some

subsequence (δj). Our task is to find a k ≤ k̂n, see (13) and (15), such that ξ
δj
n+1 −→ ξn,k

for some subsequence. Then, by setting kmax,n = k, we get ξ
δj
n+1 −→ ξn+1, and using

the continuity of ∇f ∗, see, e.g., [30, Thm. 3.5.10], we obtain x
δj
n+1 = ∇f ∗(ξ

δj
n+1) −→

∇f ∗(ξn+1) = xn+1, which will complete the proof.

First, we prove that lim supj→∞ k
δj
n ≤ k̂n < ∞. Indeed, assume the contrary. By (38),

ξ
δj
n,0 = ξ

δj
n −→ ξn = ξn,0 as j −→ ∞. Then, by using induction on k, together with

Assumption 5, we conclude that, for each k ≤ k̂n, there is a subsequence (depending on
k) satisfying

ξδjn,m −→ ξn,m as j −→ ∞ , for m = 0, . . . , k .
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Consequently, after passing to a subsequence, x
δj
n,m = ∇f ∗(ξ

δj
n,m) −→ ∇f ∗(ξn,m) = xn,m,

for all m ≤ k̂n. Hence,

∥Ansn,k̂n − bn∥ < µn∥bn∥ =⇒ ∥Aδj
n s

δj

n,k̂n
− bδjn ∥ < µn∥bδjn ∥

for j large enough. We then conclude that k
δj
n ≤ k̂

δj
n ≤ k̂n for j large enough. This

contradicts the assumption that lim supj→∞ k
δj
n > k̂n. Therefore, there is a number k ≤ k̂n

and a subsequence of (δj) such that k
δj
n = k for all j.

Now, since lim supj→∞ k
δj
n = k, using the same reasoning as above, we have, for a

subsequence,

(39) x
δj
n,k −→ xn,k and ξ

δj
n,k −→ ξn,k as j −→ ∞ for k = 0, . . . , k .

We thus set kmax,n = k, which implies that ξn+1 = ξn,k. Finally,

lim
j→∞

ξ
δj
n+1 = lim

j→∞
ξ
δj

n,k
δj
n

= lim
j→∞

ξ
δj

n,k

(39)
= ξn,k = ξn+1.

Hence, x
δj
n+1 −→ xn+1 and the inductive argument is complete. □

Theorem 4.10 (Regularization). Every subsequence of (x
δj
nδj

)j has itself a subsequence

which converges strongly to a solution of (1).

Proof. It is sufficient to prove that (x
δj
nδj

)j has a subsequence which converges strongly to

a solution of the inverse problem. We distinguish two cases:
Case 1. The sequence (nδj)j has an accumulation point n̂ ∈ N. Then, taking a

subsequence if necessary, we may assume that nδj = n̂ for all j ∈ N. Of course, n̂ ≤
lim supj→∞ nδj = n. By Theorem 4.9,

lim
j→∞

xδj
nδj

= lim
j→∞

x
δj
n̂ = xn̂ .

Then, xn̂ must be a solution of the inverse problem:

∥F (xn̂)− y∥ = lim
j→∞

∥F (xδj
nδj

)− yδj∥ ≤ lim
j→∞

τ δj = 0 .

Case 2. The sequence (nδj)j has no accumulation points. Here, nδj −→ ∞, and we
can follow the proof of Theorem 9 from [21]. □

Using the same arguments as in [17] we can prove the following corollary.

Corollary 4.11. The following assertions hold true.

(1) The sequence (x
δj
kδj

) splits into convergent subsequences, each one converging to a

solution of (1).

(2) If x⋆ in Assumption 1 (A.3) is the unique solution of (1) in Bρ(x0), then x
δj
kδj

−→
x⋆ as j −→ ∞;

(3) If condition (35) holds, c1 = 0 in Assumption 4, and the x0-minimum distance

solution x† belongs to int(Dom(f)), then the sequence (x
δj
kδj

)j converges to x†.

Proof. See [17, Cor. 3.12]. □
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5. Verification of the assumptions for some regularization schemes

We present examples of iterative regularization schemes for the linearized system Ans =
bδn, which satisfy the required properties to be included as the inner iteration of REGINN.
These methods are: gradient-type, iterated-Tikhonov, and mixed gradient-Tikhonov meth-
ods. We take Assumption 1 as given and check Assumptions 2, 3, and 4 for these methods.
The verification of Assumption 5 for the gradient and mixed gradient-Tikhonov methods
relies on similar arguments and is therefore presented for both methods together in Ap-
pendix A; for the iterated-Tikhonov method we refer to [21, Thm. 8].

5.1. Gradient methods. In these methods, the iterates are updated by a multiple of
the negative gradient of the functional H(x) = r−1∥An(x − xn) − bδn∥r, r > 1. As Y is
smooth (Assumption 1 (A.6)), the gradient is ∇H(x) = A∗

nJr(An(x− xn)− bδn) so that

(40) ξn,k+1 = ξn,k − λn,kA
∗
nJr(An(xn,k − xn)− bδn),

with λn,k > 0 to be defined. Thus, ωn,k = A∗
nJr(An(xn,k − xn) − bδn) in step [4.1] of

Algorithm 1.

Remark 5.1. If kmax,n ≡ 1, then kn ≡ 1 and REGINN becomes

ξn+1 = ξn,1 = ξn − λn,0F
′(xn)

∗Jr(F (xn)− yδ) ,

xn+1 = ∇f ∗(ξn+1) ,

which is the gradient method applied to the nonlinear inverse problem F (x) = yδ.

Let x⋆ be as in Assumption 1 (A.3), k < kn and n < nδ. As before, en := x⋆ − xn and
sn,k := xn,k − xn. We start with the verification of Assumption 2. By the three points
identity (6),

(41) ∆(x⋆, xn,k+1)−∆(x⋆, xn,k) = ∆(xn,k, xn,k+1) + ⟨ξn,k+1 − ξn,k, xn,k − x⋆⟩ .
From (40) and properties of the duality mapping we obtain

⟨ξn,k+1 − ξn,k, xn,k − x⋆⟩ = −λn,k⟨A∗
nJr(Ansn,k − bδn), sn,k − en⟩

= λn,k

[
⟨Jr(Ansn,k − bδn), Anen − bδn⟩

−⟨Jr(Ansn,k − bδn), Ansn,k − bδn⟩
]

≤ λn,k∥Ansn,k − bδn∥r−1
[
∥Anen − bδn∥ − ∥Ansn,k − bδn∥

]
.

(42)

Moreover, from (10),

(43) ∆(xn,k, xn,k+1) ≤ φ#(∥ξn,k+1 − ξn,k∥) = φ#(λn,k∥A∗
nJr(Ansn,k − bδn)∥)

and, from Assumption 1 (A.5),

1

M
∥Ansn,k − bδn∥ ≤ ∥Ansn,k − bδn∥r

∥A∗
nJr(Ansn,k − bδn)∥

.

Recalling the function g(t) = φ#(t)/t from Proposition 2.1, to any choice of c0 ∈ (0, 1)
and c1 ∈ (0, (1− c0)/M) there exist 0 < λmin

n,k < λmax
n,k such that λn,k ∈

[
λmin
n,k , λ

max
n,k

]
yields

(44) c1∥Ansn,k − bδn∥ ≤ g(λn,k∥A∗
nJr(Ansn,k − bδn)∥) ≤

(1− c0)∥Ansn,k − bδn∥r

∥A∗
nJr(Ansn,k − bδn)∥

.

From (41), (42), (43) and the upper bound of (44) we obtain (16) for vn,k := Ansn,k − bδn.
So, Assumption 2 is verified.
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Now we turn to Assumption 3. Let w : (0,∞) −→ (0,∞) be a bijective and increasing
function such that w ≥ g, for instance, w(t) := g(t) + t will do the job. By the lower
bound of (44),

w−1(c1∥Ansn,k − bδn∥r)
M

≤ λn,k

M
∥A∗

nJr(Ansn,k − bδn)∥ ≤ λn,k∥vn,k∥r−1 .

Thus, Assumption 3 holds for

h(t) :=
w−1(c1 t

r)

M
.

In view of (40), Assumption 4 trivially holds with γn,k ≡ 0, αn,k ≡ 0 and c1 = 0. The
verification of Assumption 5 can be found in Appendix A.

Remark 5.2. If f is p-convex, then there exists a constant β > 0 such that φ#(·) ≤ β(·)p∗.
In this case, it is possible to obtain explicit formulas for λmin

n,k and λmax
n,k . Indeed,

φ#(λn,k∥A∗
nJr(Ansn,k − bδn)∥) ≤ (1− c0)λn,k∥Ansn,k − bδn∥r

whenever λn,k ≤ λmax
n,k , where

λmax
n,k :=

(
1− c0
β

) p
p∗ ∥Ansn,k − bδn∥

rp
p∗

∥A∗
nJr(Ansn,k − bδn)∥p

.

Using (41), (42), and (43) we obtain (16) with vn,k = Ansn,k − bδn for all λn,k ≤ λmax
n,k .

Now, from Assumption 1 (A.5), λmax
n,k ≥ λmin

n,k with

λmin
n,k :=

(
1− c0
βMp∗

) p
p∗

∥Ansn,k − bδn∥p−r

and by restricting λn,k to the interval
[
λmin
n,k , λ

max
n,k

]
we also obtain Assumption 3 with

h(t) =

(
1− c0
βMp∗

) p
p∗

tp−1.

In variations of the Landweber, Steepest Descent, and Minimal Error methods, we have
an explicit step size λn,k, see e.g., [20, eq. (42)]. If c0 is properly chosen, we can guarantee
that λn,k ∈

[
λmin
n,k , λ

max
n,k

]
. Hence, all the assumptions hold for these methods.

5.2. Iterated-Tikhonov methods. For λn,k > 0, we define

(45) xn,k+1 := argmin
x∈X

Tn,k(x), where Tn,k(x) :=
λn,k

r
∥An(x−xn)− bδn∥r+∆ξn,k

(x, xn,k) .

Hence, 0 ∈ ∂Tn,k(xn,k+1), and therefore, the vector ξn,k − λn,kA
∗
nJr(An(xn,k+1 − xn)− bδn)

belongs to ∂f(xn,k+1). We thus define the inner iteration

(46) ξn,k+1 := ξn,k − λn,kA
∗
nJr(An(xn,k+1 − xn)− bδn),

with λn,k > 0 to be determined below. Hence, ξn,k+1 ∈ ∂f(xn,k+1), meaning that
xn,k+1 = ∇f ∗(ξn,k+1). Obviously, here we set ωn,k = A∗

nJr(An(xn,k+1 − xn) − bδn) in [4.1]
of Algorithm 1. Moreover, from Tn,k(xn,k+1) ≤ Tn,k(xn,k), we find that ∥Ansn,k+1 − bδn∥ ≤
∥Ansn,k − bδn∥.
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Remark 5.3. If kmax,n ≡ 1, then kn ≡ 1 and REGINN becomes

xn+1 = argmin
x∈X

{
λn,0

r
∥F ′(xn)(x− xn) + F (xn)− yδ∥r +∆ξn(x, xn)

}
,

ξn+1 = ξn − λn,0F
′(xn)

∗Jr(F
′(xn)(xn+1 − xn) + F (xn)− yδ) ,

which is a variant of the Levenberg-Marquardt method. In case the forward operator F is
linear, the above iteration is the iterated-Tikhonov method.

Let x⋆ be as in (A.3) of Assumption 1. As usual, en := x⋆ − xn and sn,k := xn,k − xn.
We start with the verification of Assumption 2. By the three points identity (6),

∆(x⋆, xn,k+1)−∆(x⋆, xn,k) = −∆(xn,k+1, xn,k) + ⟨ξn,k+1 − ξn,k, xn,k+1 − x⋆⟩
≤ ⟨ξn,k+1 − ξn,k, xn,k+1 − x⋆⟩.

(47)

From (46) and properties of the duality mapping,

(48) ⟨ξn,k+1 − ξn,k, xn,k+1 − x⋆⟩ = −λn,k⟨A∗
nJr(Ansn,k+1 − bδn), sn,k+1 − en⟩

≤ λn,k∥Ansn,k+1 − bδn∥r−1
[
∥Anen − bδn∥ − ∥Ansn,k+1 − bδn∥

]
.

By (11),

2φ(∥xn,k+1 − xn,k∥) ≤ ⟨ξn,k+1 − ξn,k, xn,k+1 − xn,k⟩
= −λn,k⟨Jr(Ansn,k+1 − bδn), An(sn,k+1 − sn,k)⟩
≤ λn,k∥Ansn,k+1 − bδn∥r−1(∥Ansn,k − bδn∥ − ∥Ansn,k+1 − bδn∥)
≤ λn,k∥Ansn,k+1 − bδn∥r−1∥Ansn,k − bδn∥ ≤ λn,k∥Ansn,k − bδn∥r .

Therefore, if 0 < λn,k ≤ λmax
n,k , with

λmax
n,k :=

2φ(1−c0
M

∥Ansn,k − bδn∥)
∥Ansn,k − bδn∥r

,

where c0 ∈ (0, 1), then

(49) ∥Ansn,k − bδn∥ − ∥Ansn,k+1 − bδn∥ ≤ M∥xn,k+1 − xn,k∥ ≤ (1− c0)∥Ansn,k − bδn∥ .
Combining the above inequality with (47) and (48) we end up with (16) when vn,k :=
Ansn,k+1 − bδn. Thus, Assumption 2 holds for the iterated-Tikhonov method.

To verify Assumption 3, define λmin
n,k := c1λ

max
n,k , where c1 ∈ (0, 1). If λn,k ∈

[
λmin
n,k , λ

max
n,k

]
then (16) is satisfied and, by taking (49) into account,

λn,k∥vn,k∥r−1 ≥ λmin
n,k c

r−1
0 ∥Ansn,k − bδn∥r−1 = 2c1c

r−1
0

φ(1−c0
M

∥Ansn,k − bδn∥)
∥Ansn,k − bδn∥

.

Thus, Assumption 3 applies with

h(t) := 2c1c
r−1
0

φ(1−c0
M

t)

t
.

From (46), Assumption 4 trivially holds with γn,k ≡ 0, αn,k ≡ 0 and c1 = 0. The proof
for Assumption 5 is given in [21, Thm. 8].

Remark 5.4. There are many variants of the iterated-Tikhonov Method (iTM) depending
on the choice of the regularization parameters λn,k. If λn,k is constant in k, then the iTM
is called stationary. Otherwise, it is called nonstationary. Further, the regularization
parameter in the nonstationary iTM may be computed either a priori or a posteriori, that
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is, λn,k is chosen before or during the iteration, respectively. Finally, an a posteriori
choice of the regularization parameters may be computed either explicitly or implicitly.

The version of the iTM presented above employs an explicit a posteriori rule for choosing
the regularization parameters. In contrast, the range-relaxed strategy presented in the next
subsection, uses an implicit a posteriori rule for choosing λn,k, see (52) below.

5.3. Range-relaxed strategy. This strategy is a particular type of the nonstationary
iterated-Tikhonov method with a posteriori choice of the sequence of regularization pa-
rameters, see, e.g., [18].

In this method, the current iterate xn,k is “separated” from the set

S := {x ∈ Bρ(x0) | F (x) = y} ⊆ X

of solutions by the closed and convex set Ωγ := {x ∈ X | ∥An(x− xn)− bδn∥ ≤ γ}, γ > 0.
Then, xn,k is projected onto Ωγ to generate the next iterate xn,k+1:

(50) xn,k+1 = argmin
{
∆ξn,k

(x, xn,k)
∣∣ x ∈ Ωγ

}
.

Note that, if γ < ∥An(xn,k − xn)− bδn∥ then xn,k ̸∈ Ωγ.
Now, let x+ ∈ S. From the TCC (Assumption 1 (A.4)) follows

∥An(x
+ − xn)− bδn∥ ≤ ∥F (x+)− F (xn)− F ′(xn)(x

+ − xn)∥+ ∥bδn − bn∥
≤ η∥F (x+)− F (xn)∥+ δ ≤ η

(
∥bδn∥+ ∥bδn − bn∥

)
+ δ

≤ µn∥bδn∥
(51)

with µn as in (17). This means that S ⊆ Ωγ whenever µn∥bδn∥ ≤ γ.
Assuming µn∥bδn∥ < ∥An(xn,k −xn)− bδn∥, the minimization problem (50) can be trans-

lated into the following task (see, e.g., [18, Lem.2]): find a pair (xn,k+1, λn,k) ∈ X× (0,∞)
such that (45) is satisfied and

µn∥bδn∥ < ∥An(xn,k+1 − xn)− bδn∥ < ∥An(xn,k − xn)− bδn∥ .

So, the range-relaxed strategy can be interpreted as the iterated-Tikhonov method with
an implicit choice of the regularization parameters. To guarantee the convergence and
stability properties, one needs to use convex combinations of the left and right-hand terms
in the above inequalities. Summarizing, the range-relaxed strategy is defined as in (45)
with the parameter λn,k > 0 being chosen such that the computed xn,k+1 satisfies

(52) (1−t0)µn∥bδn∥+t0∥Ansn,k−bδn∥ ≤ ∥Ansn,k+1−bδn∥ ≤ (1−t1)µn∥bδn∥+t1∥Ansn,k−bδn∥ ,

where 0 < t0 ≤ t1 < 1 are prespecified constants.
Now, Assumption 2 is an immediate consequence of (52) with (47) and (48). In fact,

(16) holds for c0 = t0 and vn,k = Ansn,k+1 − bδn.
Next we consider Assumption 3. From (11) and (46),

2φ(∥xn,k+1 − xn,k∥) ≤ ⟨ξn,k+1 − ξn,k, xn,k+1 − xn,k⟩
= −λn,k⟨Jr(Ansn,k+1 − bδn), An(xn,k+1 − xn,k)⟩
≤ Mλn,k∥vn,k∥r−1∥xn,k+1 − xn,k∥.

Thus,

φ(∥xn,k+1 − xn,k∥)
∥xn,k+1 − xn,k∥

≤ M

2
λn,k∥vn,k∥r−1 .(53)
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Further, for k < kn (see (13) and Theorem 4.1),

(54) ∥Ansn,k − bδn∥ ≥ µn∥bδn∥ >
µn

c0
∥bδn∥ .

Hence, by (54), where c0 = t0, and the second inequality of (52),

∥xn,k+1 − xn,k∥ ≥ ∥An(xn,k+1 − xn,k)∥
M

≥ ∥Ansn,k − bδn∥ − ∥Ansn,k+1 − bδn∥
M

≥ (1− t1)(1− t0)

M
∥Ansn,k − bδn∥ .

(55)

Since t 7→ φ(t)/t is non-decreasing, from (53) and (55) we get that

φ
(

(1−t1)(1−t0)
M

∥Ansn,k − bδn∥
)

(1−t1)(1−t0)
M

∥Ansn,k − bδn∥
≤ φ(∥xn,k+1 − xn,k∥)

∥xn,k+1 − xn,k∥
≤ M

2
λn,k∥vn,k∥r−1 .

Now, Assumption 3 holds for

h(t) :=
2φ
(

(1−t1)(1−t0)
M

t
)

(1− t1)(1− t0)t
.

From (46), Assumption 4 trivially holds with γn,k ≡ 0, αn,k ≡ 0 and c1 = 0. The validation
of Assumption 5 is given in [21, Thm. 8].

5.4. Mixed gradient-Tikhonov methods. The main issue in applying a Tikhonov-like
method in the inner iteration of REGINN is that a minimizer of the Tikhonov functional
must be determined in each step. This may be a costly task. In practice, a gradient-like
method can be applied to the Tikhonov functional in order to approximate its minimizer.
The mixed method consists in applying a gradient-like method to a Tikhonov functional
but performing only a few steps and then changing the Tikhonov functional before the
minimizer is found, see, e.g., [19].

A gradient method usually works with the iteration

(56) ξn,k+1 = ξn,k − λn,kωn,k ,

where λn,k > 0 and ωn,k ∈ ∂H(xn,k). Here, H : X −→ R is an objective functional.
Typically, H(x) = r−1∥An(x − xn) − bδn∥r, in which case iteration (56) becomes (40).
For mixed methods, we use the Tikhonov functional H(x) = r−1∥An(x − xn) − bδn∥r +
αn,kPn,k(x) as objective functional. Here, Pn,k : X −→ [0,∞] is a proper, l.s.c., and convex
penalization term and (αn,k)k ⊆ (0,∞) is a sequence of regularization parameters. Thus,
the iteration of mixed methods is given by

ξn,k+1 = ξn,k − λn,k

[
A∗

nJr(An(xn,k − xn)− bδn) + αn,kγn,k
]
,

xn,k+1 = ∇f ∗(ξn,k+1) ,
(57)

with γn,k ∈ ∂Pn,k(xn,k).

Remark 5.5. If we use Pn,k(x) = ∆ξn,k−1
(x, xn,k−1), where, by definition, ξn,−1 = ξn,0 =

ξn (consequently, xn,−1 = xn,0 = xn), then, the iteration of the mixed method becomes

ξn,k+1 = ξn,k − λn,k

[
A∗

nJr(An(xn,k − xn)− bδn) + αn,k (ξn,k − ξn,k−1)
]
,

xn,k+1 = ∇f ∗(ξn,k+1) .

The term in the brackets of the first equation belongs to the subdifferential of the Tikhonov
functional H(x) = Tn,k(x) = r−1∥An(x − xn) − bδn∥r + αn,k∆ξn,k−1

(x, xn,k−1) at xn,k. In
this situation, the mixed method can be interpreted as the iterated-Tikhonov method with
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inexact minimization. Indeed, xn,k+1 is not the exact minimizer of Tn,k, but only an
approximation obtained after performing one single step of a gradient method applied
to Tn,k with initial guess xn,k. A similar reasoning applies to the functional Pn,k(x) =
p−1∥x− xn,k−1∥p, p > 1.

If Pn,k(x) = Pn(x) = ∆(x, xn) or Pn(x) = p−1∥x−xn∥p, then the mixed method becomes
a variation of the Tikhonov-Phillips method with inexact minimization.

Remark 5.6. If kmax,n ≡ 1, then REGINN becomes a variation of the mixed method
presented in [19].

Let x⋆ be as in Assumption 1 (A.3). As usual, we set en := x⋆−xn and sn,k := xn,k−xn.
We start with the verification of Assumption 2. Assume that Pn,k(x

⋆) < ∞ and choose
dn,k > 0 such that Pn,k(x

⋆) ≤ dn,k. Then, as γn,k ∈ ∂Pn,k(xn,k), we obtain from the
definition of a subdifferential that

⟨γn,k, x⋆ − xn,k⟩ ≤ Pn,k(x
⋆)− Pn,k(xn,k) ≤ dn,k .

We now choose (αn,k) such that

(58) αn,k ≤ (1− c2) d
−1
n,k ∥Ansn,k − bδn∥r

and

(59) αn,k∥γn,k∥ ≤ c1∥Ansn,k − bδn∥r−1min{∥Ansn,k − bδn∥, 1} ,
where c2 ∈ (0, 1) and c1 > 0. Similarly to (42), we obtain that

⟨ξn,k+1 − ξn,k, xn,k − x⋆⟩ ≤ λn,k∥Ansn,k − bδn∥r−1
[
∥Anen − bδn∥ − ∥Ansn,k − bδn∥

]
+ λn,kαn,kdn,k

≤ λn,k∥Ansn,k − bδn∥r−1
[
∥Anen − bδn∥ − c2∥Ansn,k − bδn∥

]
.

(60)

Set ∇n,k := A∗
nJr(Ansn,k − bδn) + αn,kγn,k and fix c0 ∈ (0, c2). Following (43) and (44), we

choose 0 < λmin
n,k < λmin

n,k such that λn,k ∈
[
λmin
n,k , λ

max
n,k

]
implies

(61)
c3∥Ansn,k − bδn∥r

M∥Ansn,k − bδn∥r−1 + αn,k∥γn,k∥
≤ g(λn,k∥∇n,k∥) ≤

(c2 − c0)∥Ansn,k − bδn∥r

∥∇n,k∥
,

where 0 < c3 ≤ c2 − c0. Thus,

∆(xn,k, xn,k+1) ≤ φ#(λn,k∥∇n,k∥) ≤ (c2 − c0)λn,k∥Ansn,k − bδn∥r

and from (41) we obtain (16) with vn,k = Ansn,k − bδn. The verification of Assumption 2
is complete.

To verify Assumption 3, let w : (0,∞) −→ (0,∞) be any bijective and increasing func-
tion such that w ≥ g. From (59) there is a constant c4 > 0 such that

∥∇n,k∥ ≤ M∥Ansn,k − bδn∥r−1 + αn,k∥γn,k∥ ≤ c4∥Ansn,k − bδn∥r−1.

Thus, from the first inequality in (61), we get

w−1

(
c3
c4
∥Ansn,k − bδn∥

)
≤ λn,k∥∇n,k∥ ≤ c4λn,k∥vn,k∥r−1.

Hence, Assumption 3 holds with

h(t) :=
1

c4
w−1

(
c3
c4

t

)
.

From (57) and (59), Assumption 4 holds. For Assumption 5, see Appendix A.
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Remark 5.7. To implement the mixed method, one must choose the sequence (αn,k),
which in turn depends on the upper bounds dn,k of the sequence (Pn,k(x

⋆)), see (58).
In some cases, it is easy to determine these upper bounds. For instance, if Pn,k(x) =
p−1∥x−x0∥p, p > 1, then using Assumption 1 (A.3) and (9), one can prove that Pn,k(x

⋆) ≤
p−1(ρ/2)p =: dn,k. A similar reasoning applies in case Pn,k(x) = p−1∥x∥p. If, as in
Remark 5.5, Pn,k(x) = ∆(x, xn,k−1), then one may use induction, along with Assumption 1
(A.3), to validate Assumptions 2, 3, and Pn,k(x

⋆) < φ(ρ/2) =: dn,k at the same time.

6. Tikhonov-Phillips as inner iteration

In this section, we provide a convergence analysis of REGINN with the Tikhonov-Phillips
method as inner iteration. As it does not fit into our general framework of the previous
sections, see Remark 6.2 below, it needs a separate treatment. We emphasize that the
convergence result presented is nevertheless novel.

We define

Tn,k(x) :=
λn,k

r
∥An(x− xn)− bδn∥r +∆ξn(x, xn) ,

xn,k+1 := argmin
x∈X

Tn,k(x) ,

ξn,k+1 := ξn − λn,kA
∗
nJr(An(xn,k+1 − xn)− bδn) ,

(62)

with λn,k > 0 satisfying, for each n ∈ N,

(63) 1 <
λn,k+1

λn,k

≤ σ and lim
k→∞

λn,k = ∞ ,

where 1 < σ < (r + 1)/r. Moreover, we assume that

(64)
∞∑
n=0

λn,0 = ∞ .

Observe that the difference between the Tikhonov functionals in (62) and (45) occurs in
the second entry of the Bregman distance. Observe too, that 0 ∈ ∂Tn,k(xn,k+1), which
implies ξn,k+1 ∈ ∂f(xn,k+1), meaning that xn,k+1 = ∇f ∗(ξn,k+1).

Because the sequence (λn,k)k is increasing and grows to infinity, one can prove that
(see, e.g., [24, Lem. 30])

(65) ∥Ansn,k+1 − bδn∥ ≤ ∥Ansn,k − bδn∥ and lim
k→∞

∥Ansn,k − bδn∥ = inf
s∈X

∥Ans− bδn∥ .

Remark 6.1. In contrast to the iterated-Tikhonov method, the use of the Tikhonov-
Phillips method as inner iteration of REGINN always results in a variation of the Levenberg-
Marquardt method, independently of the choice of kmax,n.

Similarly to (48), we obtain, for every solution x⋆ ∈ Bρ(x0), that

(66) ⟨ξn,k+1 − ξn, xn,k+1 − x⋆⟩ ≤ −λn,k∥Ansn,k+1 − bδn∥r

+ λn,k∥Ansn,k+1 − bδn∥r−1∥Anen − bδn∥ .
Now, the inequality Tn,k−1(xn,k) ≤ Tn,k−1(xn,k+1) implies

−λn,k−1∥Ansn,k+1 − bδn∥r ≤ −λn,k−1∥Ansn,k − bδn∥r + r∆(xn,k+1, xn) ,

which, in view of (63), yields

−λn,k∥Ansn,k+1 − bδn∥r ≤ −λn,k

σ
∥Ansn,k − bδn∥r + r∆(xn,k+1, xn) .
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Then, by using the three points identity (6), we obtain, considering (66), that

∆(x⋆, xn,k+1)−∆(x⋆, xn) = −∆(xn,k+1, xn) + ⟨ξn,k+1 − ξn, xn,k+1 − x⋆⟩

≤ −λn,k

σ
∥Ansn,k − bδn∥r + λn,k∥Ansn,k+1 − bδn∥r−1∥Anen − bδn∥

+ (r − 1)∆(xn,k+1, xn) .

(67)

But, the inequality Tn,k(xn,k+1) ≤ Tn,k(xn) implies ∆(xn,k+1, xn) ≤ r−1λn,k∥bδn∥r. Then,
from (67) and the inequality in (65) we get

(68) ∆(x⋆, xn,k+1)−∆(x⋆, xn) ≤ λn,k

{
∥Ansn,k − bδn∥r−1[

∥Anen − bδn∥ − c1∥Ansn,k − bδn∥
]
+ c2∥bδn∥r

}
.

with c1 = 1/σ ∈ (0, 1) and c2 = (1− 1/r) ∈ (0, c1).

Remark 6.2. The Tikhonov-Phillips method behaves similarly to the previous ones, and
many of its properties are, to some extent, similar. However, the fact that the k-th inner
iterate does not depend on the previous one makes its iteration, defined in (62), and the
inequality (68) above to be considerably different from the previous ones. This hampers
the inclusion of the method in a unified convergence analysis.

We assume that η < c1 − c2 and τ > (1 + η)/(c1 − c2 − η). Then, for any n < nδ,

(69) µn + c2 <
1 + η

τ
+ η + c2 < c1 ,

where µn is defined in (17). Now, since

lim
t→1−

(
1+η
τ

+ η

t
+

c2
tr

)
< c1 ,

there exists µmin ∈
(
(1 + η)/τ + η, 1

)
such that µn ∈ [µmin, 1) implies

(70)
1+η
τ

+ η

µn

+
c2
µr
n

< c1 .

By (65) and (51),

lim
k→∞

∥Ansn,k − bδn∥ ≤ ∥Anen − bδn∥ ≤ µn∥bδn∥ ≤
(
1 + η

τ
+ η

)
∥bδn∥ ,

and, since (1 + η)/τ + η < µmin ≤ µn, we get k̂n < ∞, i.e., the inner iteration terminates.
Using again (51), we obtain

∥Anen − bδn∥ ≤ µn

µn

µn∥bδn∥ ≤ µn

µn

∥Ansn,kn−1 − bδn∥.

Now, from (68) follows that

∆(x⋆, xn+1)−∆(x⋆, xn) = ∆(x⋆, xn,kn)−∆(x⋆, xn)

≤ λn,kn−1

{
∥Ansn,kn−1 − bδn∥r−1

[
∥Anen − bδn∥

− c1∥Ansn,kn−1 − bδn∥
]
+ c2∥bδn∥r

}
≤ −Cnλn,kn−1∥Ansn,kn−1 − bδn∥r ,
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with

Cn = c1 −
(
µn

µn

+
c2
µr
n

)
.

Observe that Cn > 0 by (69) and (70). Hence,

(71) ∆(x⋆, xn+1) < ∆(x⋆, xn), for n = 0, . . . , nδ − 1 .

Setting µn = µmin in (70) we obtain

0 < C := c1 −

(
1+η
τ

+ η

µmin

+
c2
µr
min

)
< Cn for n < nδ.

Consequently, any j ≤ nδ must satisfy

C(τδ)r
j−1∑
n=0

λn,0 ≤ C

j−1∑
n=0

λn,0∥bδn∥r ≤
j−1∑
n=0

Cn
λn,kn−1

µr
min

∥Ansn,kn−1 − bδn∥r

≤ 1

µr
min

j−1∑
n=0

[∆(x⋆, xn)−∆(x⋆, xn+1)]

=
1

µr
min

(∆(x⋆, x0)−∆(x⋆, xj)) ≤
1

µr
min

∆(x⋆, x0) < ∞ .

In view of (64), this proves nδ < ∞ whenever δ > 0.
Now, by (71), the statement of Theorem 4.8 carries over to the Tikhonov-Phillips

method. Moreover, Corollary 4.4 holds as well with c0 = 1.
As before, if there is no premature termination in the noiseless situation (δ = 0), we

have

(72)
∞∑
n=0

λn,0∥bn∥r ≤
∞∑
n=0

λn,kn−1

µr
min

∥Ansn,kn−1 − bn∥r < ∞ ,

which, recalling (64), implies F (xn) −→ y as n −→ ∞.
Convergence in the noiseless case is obtained similarly to the proof of Theorem 4.6.

Indeed, if nδ = ∞ (for δ = 0), fix a subsequence (xnj
) satisfying (30) and proceed with

|⟨ξnℓ
− ξnm , xnℓ

− x⋆⟩| =

∣∣∣∣∣
nℓ−1∑
n=nm

⟨ξn+1 − ξn, enℓ
⟩

∣∣∣∣∣ =
∣∣∣∣∣
nℓ−1∑
n=nm

⟨ξn,kn − ξn, enℓ
⟩

∣∣∣∣∣
=

∣∣∣∣∣
nℓ−1∑
n=nm

−λn,kn−1⟨Jr(Ansn,kn − bn), Anenℓ
⟩

∣∣∣∣∣
≤

nℓ−1∑
n=nm

λn,kn−1∥Ansn,kn − bn∥r−1∥Anenℓ
∥

≤ 3η + 1

µmin

nℓ−1∑
n=nm

λn,kn−1∥Ansn,kn−1 − bn∥r ,

where the last estimate is due to (32) and (65). Finally, (31) with (71) and (72) reveal
(xnj

) to be a Cauchy sequence. As in the proof of Theorem 4.6, we conclude that the
whole sequence (xn) converges to a solution of (1).
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Still assuming that δ = 0 and nδ = ∞, we obtain from the definition (62) together with
(35), that for all n ∈ N,

ξn,kn − ξn ∈ R(F ′(xn)
∗) ⊆ N (F ′(xn))

⊥ ⊆ N (F ′(x†))⊥ .

Thus, for all m ∈ N we have

ξm − ξ0 =
m−1∑
n=0

(ξn+1 − ξn) =
m−1∑
n=0

(ξn,kn − ξn) ∈ N (F ′(x†))⊥ .

Further, by replacing the inequality (37) by

∞∑
n=nM1

λn,kn−1∥Ansn,kn−1 − bn∥r <
µmin

3η + 1
ϵ ,

we obtain, in view of the convergence in the noiseless case, that Corollary 4.7 holds true
for the Tikhonov-Phillips method.

Theorems 4.9 and 4.10 are verified only based on the structure of REGINN, Assumption 5
(which can be proved as a particular case of [21, Thm. 8]), and convergence in the noiseless
case. Corollary 4.11 follows from Theorem 4.10 and Corollary 4.7. Therefore, these results
also apply to the Tikhonov-Phillips method.

Appendix A. Stability of gradient and mixed methods

In what follows, we prove Assumption 5 for the gradient and mixed methods.

Let n ∈ N and k ∈ N be fixed. Assume that n < n and k < lim supj→∞ k
δj
n . Also,

assume that

(73) ξδjn,m −→ ξn,m as j −→ ∞ , for m = 0, . . . , k .

We shall prove that, there is a subsequence of (δj) (depending on k) such that ξ
δj
n,k+1 −→

ξn,k+1 as j −→ ∞.
We start with the proof of gradient methods.

From (44) and the continuity of the function g, the sequences (λ
min,δj
n,k )j and (λ

max,δj
n,k )j are

bounded, with (λ
min,δj
n,k )j being bounded away from zero. Therefore, taking a subsequence

if necessary, we may assume that λ
min,δj
n,k −→ λmin > 0 and λ

max,δj
n,k −→ λmax ≥ λmin > 0.

Since λ
δj
n,k ∈

[
λ
min,δj
n,k , λ

max,δj
n,k

]
for all j, we conclude that, for a subsequence, λ

δj
n,k −→ λ

and λ ∈ [λmin, λmax]. Now, observe that x
δj
n = ∇f ∗(ξ

δj
n,0) −→ ∇f ∗(ξn,0) = xn as j −→ ∞.

By (44),

(74) c1∥Ansn,k − bn∥r ≤ g(λ∥A∗
nJr(Ansn,k − bn)∥) ≤

(1− c0)∥Ansn,k − bn∥r

∥A∗
nJr(Ansn,k − bn)∥

.

Thus, by defining λn,k := λ, we get λ
δj
n,k −→ λn,k ∈ [λmin, λmax] as j −→ ∞.

Finally, from the continuity of F ′ and of Jr on Y (Assumption 1 (A6)), together with
(73) and (2) we obtain

(75) ξ
δj
n,k+1 = ξ

δj
n,k − λ

δj
n,kA

δj ,∗
n Jr(A

δj
n s

δj
n,k − bδjn ) −→ ξn,k − λn,kA

∗
nJr(Ansn,k − bn) = ξn,k+1 ,

as we wanted.
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Concerning the mixed methods, we additionally assume the sequences (dn,k) to be
independent of the noise level3 δ and the convex functionals Pn,k : X −→ [0,∞] in (57)
to be Fréchet differentiable. Then, its derivative is continuous, see, e.g., [1, Cor. 4.2.12].

Hence, γ
δj
n,k = ∇Pn,k(x

δj
n,k) −→ ∇Pn,k(xn,k) = γn,k as j −→ ∞. Further, by (58),

α
δj
n,k ≤

1− c2
dn,k

∥Aδj
n s

δj
n,k − bδjn ∥r ,

from which we conclude, taking a subsequence if necessary, that α
δj
n,k −→ αn,k as j −→ ∞,

where αn,k ≤ (1− c2)d
−1
n,k∥Ansn,k − bn∥r.

Taking (61) into account, we deduce, similarly to (74) and (75), that ξ
δj
n,k+1 −→ ξn,k+1

as j −→ ∞, and the proof is complete.

References

[1] J. M. Borwein and J. D. Vanderwerff, Convex functions: constructions, characterizations
and counterexamples, vol. 109 of Encyclopedia of Mathematics and its Applications, Cambridge
University Press, Cambridge, 2010, https://doi.org/10.1017/CBO9781139087322.

[2] I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, vol. 62 of
Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1990, https:
//doi.org/10.1007/978-94-009-2121-4.

[3] C. Clason and B. Jin, A semismooth Newton method for nonlinear parameter
identification problems with impulsive noise, SIAM J. Imaging Sci., 5 (2012), pp. 505–538,
http://dx.doi.org/10.1137/110826187.

[4] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), pp. 1413–1457,
http://dx.doi.org/10.1002/cpa.20042.

[5] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400–408, http://dx.doi.org/10.1137/0719025.

[6] I. Ekeland and R. Témam, Convex Analysis and Variational Problems, vol. 28 of Classics in
Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
english ed., 1999, https://doi.org/10.1137/1.9781611971088. Translated from the French.

[7] M. Eller, R. Griesmaier, and A. Rieder, Tangential cone condition for the full waveform
forward operator in the viscoelastic regime: the non-local case, CRC 1173 Preprint 2023/8, Karlsruhe
Institute of Technology, 2023, https://doi.org/10.5445/IR/1000155827.

[8] R. Gu and B. Han, Inexact Newton regularization in Banach spaces based on two-point gradient
method with uniformly convex penalty terms, Appl. Numer. Math., 160 (2021), pp. 122–145, https:
//doi.org/10.1016/j.apnum.2020.09.018.

[9] M. Hanke, A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater
filtration problems, Inverse Problems, 13 (1997), pp. 79–95, https://doi.org/10.1088/0266-5611/
13/1/007.

[10] M. Hanke, Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse
problems, Numer. Funct. Anal. Optim., 18 (1997), pp. 971–993, http://dx.doi.org/10.1080/

01630569708816804.
[11] Q. Jin, Inexact Newton-Landweber iteration for solving nonlinear inverse problems in Banach

spaces, Inverse Problems, 28 (2012), pp. 065002, 15, http://dx.doi.org/10.1088/0266-5611/28/
6/065002.

[12] Q. Jin, Inexact Newton-Landweber iteration in Banach spaces with nonsmooth convex penalty terms,
SIAM J. Numer. Anal., 53 (2015), pp. 2389–2413, https://doi.org/10.1137/130940505.

3The number dn,k is an upper bound for Pn,k(x
⋆). In principle, the functional Pn,k may depend on δ,

as in P δ
n,k(x) = ∥x − xδ

n,k∥2. However, for the cases of interest, we can assume that (dδn,k)δ is bounded

whenever δ ∈ [0, δ0) with δ0 > 0 constant. Thus, one may replace (dδn,k)δ by its upper bound. So, w.l.o.g.,

we assume that (dn,k) is independent of δ.

https://doi.org/10.1017/CBO9781139087322
https://doi.org/10.1007/978-94-009-2121-4
https://doi.org/10.1007/978-94-009-2121-4
http://dx.doi.org/10.1137/110826187
http://dx.doi.org/10.1002/cpa.20042
http://dx.doi.org/10.1137/0719025
https://doi.org/10.1137/1.9781611971088
https://doi.org/10.5445/IR/1000155827
https://doi.org/10.1016/j.apnum.2020.09.018
https://doi.org/10.1016/j.apnum.2020.09.018
https://doi.org/10.1088/0266-5611/13/1/007
https://doi.org/10.1088/0266-5611/13/1/007
http://dx.doi.org/10.1080/01630569708816804
http://dx.doi.org/10.1080/01630569708816804
http://dx.doi.org/10.1088/0266-5611/28/6/065002
http://dx.doi.org/10.1088/0266-5611/28/6/065002
https://doi.org/10.1137/130940505


INEXACT NEWTON REGULARIZATIONS WITH CONVEX PENALIZATION 27

[13] Q. Jin and H. Yang, Levenberg-Marquardt method in Banach spaces with general con-
vex regularization terms, Numer. Math., 133 (2016), pp. 655–684, https://doi.org/10.1007/

s00211-015-0764-z.
[14] B. Kaltenbacher, T. T. N. Nguyen, and O. Scherzer, The tangential cone condition for

some coefficient identification model problems in parabolic pdes, in Time-dependent Problems in
Imaging and Parameter Identification, Springer, Cham, 2021, pp. 121–163, https://doi.org/10.
1007/978-3-030-57784-1_5.

[15] A. Lechleiter and A. Rieder, Newton regularizations for impedance tomography: conver-
gence by local injectivity, Inverse Problems, 24 (2008), pp. 065009, 18, https://doi.org/10.1088/
0266-5611/24/6/065009.

[16] A. Lechleiter and A. Rieder, Towards a general convergence theory for inexact New-
ton regularizations, Numer. Math., 114 (2010), pp. 521–548, http://dx.doi.org/10.1007/

s00211-009-0256-0.
[17] A. Leitão, F. Margotti, and B. F. Svaiter, Range-relaxed criteria for choosing the Lagrange

multipliers in the Levenberg–Marquardt method, IMA J. Numer. Anal., 41 (2021), pp. 2962–2989,
https://doi.org/10.1093/imanum/draa050.

[18] M. P. Machado, F. Margotti, and A. Leitão, On nonstationary iterated Tikhonov methods
for ill-posed equations in Banach spaces, in New trends in parameter identification for mathematical
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[29] C. Zălinescu, On uniformly convex functions, J. Math. Anal. Appl., 95 (1983), pp. 344–374, https:
//doi.org/10.1016/0022-247X(83)90112-9.
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